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Abstract

This work considers analysis of sustained bouncing responses of rotating shafts with nonlinear lateral vibrations due to
rotor stator contact. The insight that this is an internal resonance phenomena makes this an idéal system to be studied
with the method of normal forms, which assumes that a system may be modelled primarily4n terms of just its resonant
response components. However, the presence of large non smooth nonlinearities due to impaetiand rub mean that the method
must be extended. This is achieved here by incorporating an alternating frequency/time (AFT) step to capture nonlinear
forces. Furthermore, the presence of gyroscopic terms leads to the need to handle complex modal variables, and a rotating
coordinate frame must be used to obtain periodic responses. The process results in_an elegant formulation that can provide
reduced order models of a wide variety of rotor systems, with potentially manywnonlinear degrees of freedom. The method is
demonstrated by comparing against time simulation of two example rotors;! demonstrating high precision on a simple model

and approximate precision on a larger model.

1. Introduction

Rotor-stator contact is an issue that affects a widevariety\of’applications, from turbomachinery [1] to drilling for mineral
extraction [2], and is driving a large body of research, see for example [3]. Many rotating devices incorporate magnetic
bearing systems [4, 5], and these must be desighed with consideration of the consequences of a touch-down event in response
to a failure or disturbance [6]. Ehrich [7] has. compiled examples of numerous contact phenomena witnessed in tests on
turbomachinery, including period-doubling bifurcation routes to chaos, subharmonic resonance and other surprising effects
such as bearing phenomenon that lead to a rotor slowly ‘switching’ between two amplitudes of vibration.

Contact nonlinearities are.typically due to friction during contact and discontinuous stiffness effects, and the typical
response behaviours are classified by Jacquet-Richardet et al. [1] within three classifications; forward whirl annular motion,
backward whirl motionf and rebotunds. This work is dedicated to the latter of these, which is often the most extreme and
certainly the least understood. Rebound motion consists of intermittent contact between rotor and stator, and while many
names for forms of this motion are used in the literature (chatter, intermittent contact, rattle, bouncing). We will henceforth
refer to these Tesponses as exhibiting partial contact motion, or as bouncing when brevity is preferred to formality. Some of
the earliest work on partial contact motion was summarised in the review by Ehrich [7]. Hallmarks of such motion can be
seen in the observation of sum and difference combination resonances in the response of impacting rotors [8], and a case where
a nonrigid stator was shown to whirl [9] in a manner apparently similar to a hula-hoop. Neilson and Barr [10] constructed
an experimental rig for rotor-stator contact, and showed that the resulting spectral output had synchronous content (i.e.

at integer ratios to the drive speed frequency) as well as asynchronous sidebands. Many contemporary works continue to
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identify and classify the wide variety of phenomena seen due to rotor-stator contact, for example the bifurcation aircraft
analysis of a whole engine by Salles et al. [11] and the recent experimental work by Ehehalt et al. [12].

During the 1980s, researchers began to view these systems through the framework of nonlinear dynamical systems theory
[13, 14] and later numerical and experimental studies began to show evidence of period doubling phenomena and chaos. For
example Muszynska and Goldman [15] numerically demonstrated bifurcations to period-n motion and transitions to chaos
under variation of shaft speed, with good qualitative comparison to experimental results. Chu and Zhang used Floquet
analysis of orbits of a contacting Jeffcott rotor to trace the progression to chaos [16]; their results bore similarity to those
of [15], where brief regions of chaos where interspersed between wider regions of simpler period-n response. Edwards et
al. [17] produced a numerical study of a single contacting disk on a shaft, that showed chaotic respongés at every integer and
half-integer multiples of the first critical drive speed, and demonstrated that this behaviour coulddbe significantly influenced
by torsional effects. The review of various nonlinear phenomena by Ishida is also of note [18].

In other work, Karpenko et al. developed a piecewise smooth model for rotors experiéncing frietionless impacts with a
snubber ring [19], and in later work examined the response space of this system with-bifurcation analysis, revealing the
basins of attraction for various solutions [20]. Pavlovskaia et al. [21] considered a similar system, but where the snubber ring
springs were preloaded to create additional nonlinearity, and Karpenko et al. [22] went on to compare these predictions with
experiment , where the experimental stator could rotate on a bearing to approximate the assumption of frictionless contact.
Chu and Lu studied a 2-disc experimental system [23], showing some highly complex multi-period and quasiperiodic behaviour,
although the authors comment that they could not directly tracehe"route into chaos due to experimental control issues.
Further experimental data has been provided by Torkhani et @l on a two disc experimental rig, which also demonstrated
agreement with a numerical model [24]. A series of papefs by Ishida and Inoue showed analytically and experimentally
that 1:(-1) internal resonance between the forward and. backward whirls of a nonlinear single disc rotor can drive interesting
phenomena, including subharmonic response to out of balance, and reduced critical whirl amplitude [25, 26, 27, 28].

Cole and Keogh [29] emphasise the important’distinction between two forms of partial contact motion; synchronous partial
contact motion that occurs at harmonics and subharmonics of the rotor shaft speed, and asynchronous partial contact where
the frequency of impacts is apparently mnrelated to the shaft speed. That work suggests that synchronous partial contact
occurs when the rotor/stator system is anisotropic, a conclusion also supported within the literature cited above. (Typical
features that break isotropy aredbearings where the vertical stiffness is different to the horizontal stiffness, or a significant
gravitational loading on the/Shaft. Yy Analysis of asynchronous partial contact motion is harder, because the fundamental
frequency of an asynchreneus orbit is far less obvious than in the synchronous case. In [29], this frequency was found by
balancing the energy immediately before and after an impact accounting for the coefficient of restitution; hence relying on the
assumption of instantaneous contact. The same authors use a similar assumption to solve synchronous responses in [30], and
it is also interestingito-miote the recent work of Mora et al. [31] who use recent techniques from piecewise-smooth dynamical
systems theory to analyse the bifurcations that can occur at primary resonances.

Further insight into asynchronous partial contact motion was demonstrated in the recent paper by Zilli et al. [32]. Here
they find a condition for isolated bouncing motion of a simple lumped mass rotor that can coexist with the fundamental
response curve, well away from any primary resonances. They explained the onset of this motion through a synchronisation
condition between the linear forward and backward whirling modes of this system that made it susceptible to asynchronous
partial contact motion. This led to an approximate prediction of the drive speeds that could cause this motion. In [33], the
present authors reported a generalisation of Zilli’s work to multi degree of freedom systems. This showed further forms of

asynchronous response, made possible by the increased number of linear whirling modes of the two disk system considered.



Furthermore, it demonstrated that if these responses are viewed in a coordinate system that rotates with the shaft, many of
these responses become periodic, and are plainly driven by internal resonance. The works [32, 33] together provided a major
step forward in the qualitative understanding of the rich dynamics seen in asynchronous partial contact motion of rotating
systems.

The majority of work in this field to date relies on experimental and numerical investigations that are highly time
consuming, and it is likely that this has been a barrier to the development of understanding in this field. There is therefore a
requirement for improved analytical approaches. Some researchers have employed harmonic balance methods to investigate
these systems, seeking the reductions in computation time that these can achieve over numerical time simulation. For example,
Kim and Noah [34, 35] found solutions using a method that combined harmonic balance with an alterniating frequency time-
domain analysis, that assumed two fundamental frequencies, to handle the observed effect that Some response frequencies
were not periodic in the drive speed frequency. Von Groll and Ewins [36] performed a harmonié balange method on a system
where the stator had inertia as well as stiffness, which found both constant contact solutions)but also some partial contact
solutions. This was augmented with arc-length continuation to trace families of solutions ence a solution had been found.
Peletan et al. again used a harmonic balance procedure augmented with arc-length{continuation, but also used the idea of
hypertime to allow quasiperiodic solutions, and noted that that method allowed and, order of magnitude increase in speed
compared to time-marching approaches [37]. For methods to scale to large systemsya form of system reduction is invariably
required, and both [34] and [36] use the impedance method to reduce the system/to just nonlinear degrees of freedom.

This work presents a new method to find the asynchronous partial‘éentact solutions for isotropic rotors with rotor stator
contact nonlinearity, through an adaptation to the method of normal forms. The method of normal forms is a model reduction
approach that has been widely applied to nonrotating structuresy’and works by first applying a modal transformation, and
then by reducing the system to just modal frequency,.components that are resonant using a near-identity transformation
[38, 39, 40, 41, 42]. The reduced system is solved by a“harmonic balance method, and then approximate information on
the non-resonant components is recovered from/the transformation, and in this method the non-resonant responses can be
used to further refine the solution. This approach,is/a natural choice given the insight of [33], where it is shown that the
responses are dominated by typically just.twoe‘modes in internal resonance. In principle this remains true even in the presence
of large numbers of nonlinear degrees of\freedom, meaning that the method should scale well to more complex systems. A
further advantage is gained by working in’the rotating coordinate system, where quasiperiodic responses become periodic
[33], preventing many complications that arise from using two fundamental frequencies for the harmonic balance solution. In
order to handle the non-smooth nenlinearities the method incorporates an alternating frequency/time (AFT) step [43, 34],
and uses numerical equation-splving to obtain the final results. Furthermore, the method of normal forms is adapted for use
on systems with gyroscopic forces and consequent complex underlying linear mode shapes. What results is a compact and
elegant general methedfor dealing with nonlinearity in complex isotropic rotor systems.

The work ig/Oorganised as follows; Section 2 comprehensively describes the process in a general manner. Then Section 3
details the application to a simple overhung rotor, demonstrating its ability to search for both 2:1 and 3:2 resonant responses.
Section 4 then describes the application to a four disc rotor and gives some results for 2:1 internal resonance. Finally, in

Section 5 conclusions are presented.

2. Analysis

The normal forms analysis consists of a series of transformations of the equations of motions before a harmonic balance

solution can be attempted. An overview of this process is given in Figure 1, and the individual stages are detailed in the
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Figure 1: Summary of the normal forms solution process.
following subsections.

2.1. System description

The systems under consideration can be described in terms of\models* written in the following form in a stationary
coordinate system:

M + QGx + Kx + C&t+ ny(x, %) = R (Q°be’™) | (1)

where x = x(t) is a vector of generalised displacements withisize N.! Following a time-varying transformation to a coordinate

system that rotates with the shaft the transformedsequations take the form:
Mg #0Gq4 Kq+ Cq + Keq +1n4(q,q) = b, (2)

where x = T(Q2t)q, with T a rotatiofiymatrixywhere the rotation angle constantly progresses at the drive speed 2, which
is assumed constant. The squaresmatrices)M, G and K are the mass, gyroscopic and stiffness matrices respectively. The
overbars in equation (1) indicate that G, K and b will be different between the two coordinate systems, where the rotating
forms will include additionalytérms that are functions of 2. The matrix C is the system linear damping matrix and K.
contains stiffness-like térms that actually arise due to the transformation of damping forces from the stationary system into
the rotating frame? The final'term b represents force due to unbalance; note that this term is constant in time in the rotating
coordinate frame. In practice, system matrices are typically generated through finite element methods such as those discussed

in [44], or throughsdirect modelling for smaller systems.

2.2. First order form

System (2) is a second order system that cannot be directly diagonalised due to the presence of the first-order term QGq,

so therefore it is reduced to first order form as follows:

y:Ay+ny(y)a (3)

1Henceforth (¢) is dropped from all state variables and their transformed equivalents for convenience.



where

q 0 I 0 0 0 0
Yy = ) A= ) ny = y — + )
q MK —OM-'G MK, —-OM-'C ng(y) b

Note that the matrix A contains the underlying linear conservative system; everything else is bundled into ny (y).

2.3. Transformation using undamped complexr modes
The eigensolutions of the linear conservative system y = Ay can be used to transform the system and partly diagonalise
system (3). A matrix ® is defined, consisting of all eigenvectors of A placed side by side. Similarly, a*diagonal matrix A

contains the eigenvalues of A, to match the ordering of @ in the usual way. The transformed systeni'is then given by
p=Ap+® 'ny (Pp), (4)

where y = ®p.
The systems of (3) and (4) have 2NN states; this seems a little cumbersome whén the original system (2) had only N
degrees of freedom. Therefore system (4) is reduced by noting that since matrix Anis all real, its eigenvalues and eigenvectors

will occur in complex conjugate pairs. The order of modes is chosen such that the modal matrix has the form
o= [@ ‘ @*] . (5)

Note that the choice of which eigenvector out of a conjugate pair is to be retained in ® is important. An arbitrary choice,
such as simply choosing whichever has positive imaginary compenents, has no physical relevance and will cause the method

to fail. The eigenvectors retained in ® are selected by the following procedure:

1. Express the associated eigenvalue in the form j@, andnote whether @,,; is positive or negative

2. Evaluate whether the mode concerned is backward whirling or forward whirling in the rotating coordinate system that
is being used, using methods such as those'described in [44].

3. If the mode is forward whirling, apd '@, is jpositive, retain it. If the mode is backward whirling, and @,,; is negative,

retain it. Otherwise discard it.

This process results in a set of eigenvalues that reflect the physical direction of whirling, in that the value @,; can be
interpreted as the modal whirling angular velocity in the rotating coordinate system. This also means that they are suitable
for the rudimentary arithmetieyrequired in what follows. It is also useful to note that if the equivalent whirling angular

velocity in the stationary system is required, it can be found simply by adding the shaft speed:

Note that equation (6) shows that a mode that whirls backward at a small negative whirlspeed such that 0 > @,; > —Q in
the rotating system will be seen as having a positive whirlspeed in the stationary system, therefore a slow backward whirl in
the rotating systems can appear as a forward whirl in the stationary system. Sorting other matrices to match the retained

eigenvectors in ® gives

— A| O — - n
p-[P]. A- &, @p) = |
b ofa 5 (p)

so that finally a system with N complex variables can be extracted from these definitions:

p=Ap+np(p) . (M)



2.4. Normal form transformation
The method of normal forms seeks a near-identity transformation p = u+ h(u) such that the variable u results in a
system

u=Au+ny,(u) (8)

that is much simpler equation than (7) to solve. If we subtract (8) from (7) we obtain:
p—tu=h=Ah+n,(p) — nu(u). 9)

A problem occurs in trying to eliminate p from this equation in order to solve for u and h; this has to be’done by approxima-
tion. At an analytical level, a common approach is to use a Taylor series expansion of ny(p). However,this is,cumbersome in a
numerical method. Instead we use a pragmatic predictor-corrector method which improves upon theywidely used (for example
[39]) approximation np(u) = np(p) + O(h), which works well in systems where h contains only wery small components. It
shall be seen that in these cases, h can become larger due to constant (or synchronous) termssthat can have an important

symmetry-breaking effect [45]. Specifically, we assume that

np(p) *np(u+h_;) =np(p_1), (10)

with accuracy of O(hg —h_1) where h_; is an estimate from a previous-iteration or initial guess h, and hg is the true value
for h. Of course, this raises the problem of choosing a suitable initial guessifor h_; to get the process started. However, it has
been found that in general the underlying damped linear out-of-balanee solution is a reasonable choice. After incorporating

this approximation, equation (9) can be rearranged to:
h— Ah — np(u £ h%y) + n,(u) =0. (11)

Note that the actual form of the transformation h(u)will be’determined in the frequency domain along with the trial solution,

which we describe in the next section.

2.5. Trial solution in frequency domain using.a matriz representation

The general solution of u can be-written in the frequency domain as

ny/2-1
u= Z Ugert = Ut (12)
l=—nyg/2

i.e. a summation of yectors multiplied by exponential time functions, so that each transformed modal variable is represented
by a complex Fourier series with unknown fundamental frequency w, and signed harmonics. In the matrix form Ut, U will
have dimensions N“xns where n indicates the length of the Fourier series, and the harmonic vector t will be a vector of
all the terms e%¥* with length n ¢- Note that we have assumed that ny is even. The aim is a system where u is simple, and

therefore it is desirable that U is as sparse as possible. Similar representations are made for all other variables:
h = Ht s nu(u) = Nut . np(u + hfl) = Npt . h,1 = Hflt s, P-1 = Pflt . (13)

In principle these forms have accuracy limited by approximation (10) and by the number of points in the Fourier series, n;.
As shall be seen, for larger systems it will usually be necessary to limit the number of modes retained in @, and also higher

harmonics may have to be zeroed, further limiting accuracy. Differentiation can also be achieved by noting that

h=Ht=HUt, (14)



where W is an ny x ny diagonal matrix where the ¢th diagonal entry has form ¥,, = fjw,. Furthermore, a shorthand is
henceforth applied to indexing matrix elements which refer to signed Fourier components; the {th row or column actually
refers to whichever row or column relates to the £th harmonic. This saves having to constantly refer to a mapping between
a signed harmonic and a positive integer matrix index?.

Thus equation (11) may be written:

HWt — AHt — Npt + Nyt =0 (15)

2.0. Fwaluating the modal nonlinear function matriz Np

In order to evaluate the trial nonlinear frequency components an alternating frequency/time (AET) step is used. This
consists of

1. Evaluating the trial solution in the time domain.

2. Evaluating all nonlinear and nonconservative forces based on this time series.

3. Using a Fast Fourier Transform (FFT) to return the frequency components of thé-forces.

Firstly, the time series of p_1 used in approximation (10) is expressed using the forms in (13):

p.1=(U+H_)t. (16)
Equation (16) is evaluated at each time step of the period ¢; = ni:» [142...n¢] using an inverse complex FEFT f(..):
P-1; :f(U+H_1) . (17)

Note that the value of any p_y; does not vary with w,, so anarbitrary value for the fundamental w, can be used for evaluation
of this stage (the true value of w, is an unknown that must'beisolved). Note that U is sought to be sparse, whereas H_ is
a matrix of constants from a previous solution or initial guess; and is in general full except for elements where U is nonzero.
Now the discrete time series of approximation (10) can be evaluated using the complex modally transformed nonlin-

ear/nonconservative function np(...):
np, = np(p-1;) - (18)

It is then straightforward to get theFoutier components using a complex FFT F(...):
Np =F(np,) . (19)

2.7. Choosing the transformation matrices H and Ny
Note that corresponding elements k, £ of the matrices in (15) can be compared separately because they each relate to a

different harmonic of a different modal variable. Hence equation (15) (with t eliminated) can be considered term by term:
HyoVoo — Mg eHio — Npr,oy + Nugrey =0, (20)

where the convention for ¢ used in (14) is used. In general, because we want to simplify equation (8), equation (20) is solved
by choosing
Nu,y =0, Hyy = e (21)

2Many implementations of the complex FFT for even ny return an array with the positive harmonics from 0 to ny/2 — 1 appear consecutively

in positions 1 to ny /2, followed by negative harmonics from —ns/2 to -1 appearing in positions ny/2+1 to ny. This mapping can be conveniently

Z(ifl)J

expressed by the mapping from signed harmonic £ to matrix index i as £ — ¢ = 14+£ mod ny, and the reverse mapping i = £ =i—1—ny| y



However, if W,y ~ Ay i, this will cause Hj ¢ to be large, violating the assumption of a near identity transformation. These

components are known as resonant terms [46] and must be solved by choosing:
Nu,ey = Np,o) » Hp,=0, (22)

and then solving as part of the frequency domain solution to equation (8). Note that while (21) can be used to ‘test’ terms
for resonance, in practice the form of anticipated internal resonance is chosen prior to attempting the solution, based on
consideration of the underlying system in a similar manner to [33]. This process is formalised by the definition of two ordered
lists, Sk and S¢, which contain the numbers of the modes involved in resonance, and their harmonics of the fundamental

frequency respectively. Examples of how to define these will be given in Section 3.4 and in Section 4.2.

2.8. Solving the resonant equation
Typically interesting solutions (i.e. not simply synchronous whirling in or out of contaet) occur when exactly two modes
become internally resonant [33], hence (8) will reduce to a harmonic balance problem of-theform:
Ui j%Wjj = NiilUij = Nugij) = 0
Ukt — MUkt — Nuior) =0

(23)

Hence our system of N degrees of freedom has been reduced to the formief two complex equations. Equation (23) has 5
unknowns; the real and imaginary parts of U; ; and Uy, and also the unknown fundamental frequency w, which is appcars
in ¥, ; and Wy, (see the definition of ¥ following eqn. (14)). However, we may impose that one of the transformed modal
variables is either purely real or purely imaginary; this constraing/the phase of this modal variable and therefore locks the
phase of the solution. Therefore, with this imposition equatiomis (23) is solvable.

It is clearly possible to rearrange (23) into the form
g4><1(U*fw7‘) =0 )

where U* is a 3 x 1 vector of all the unknewn (arid nonzero) parts of U; ; and Uy, and then solve it with any nonlinear
equation solving algorithm. Howevers1tiis possible to further assist the solving algorithm by noting that each row of equation
(23) is linear in w, ; therefore &, can always be directly obtained from one real or imaginary component of one of the
equations. For example, the ifnaginary part of the second line of equation (23) could be solved by exploiting the form of the

various matrices to find
R (Uke) @k + S (Nu(,n))

IR (U, c) (24)

Wyr =

Hence, the smaller system

g1 (U") =0, (25)

can be solved instead, where this linear stage for w, is incorporated into the definition of gzx1(...).

3. Example 1 - A snubbed overhung rotor

3.1. General description
The system considered is similar to that proposed by Zilli in [32]; however a different notation is used and alternative
forms for the nonlinearity are considered. The system is as depicted in figure 2 (a). A disc of mass m, polar moment of inertia

I,,, and diametral moment inertia Iy, is mounted on an inertialess rigid shaft of length £. The shaft is pinned at point O, and



m,Ip,I4

Figure 2: a) A snubbed overhung rotor. b) Assumed kinematics of point, C.

rotations around this point are resisted by a linear isotropic rotational viscously damped spring, with rate & and damping
coefficient ¢. The disc rotates at a constant angular speed €2 about its cenitre point C; however imperfections in its geometry
cause its centre of mass M to be at a distance ¢ from C, resulting in out of\balance forces. A stator with clearance 0 exists at
a distance a along the shaft. This generates additional restoring forces when the displacement at this point is greater than
d, represented by the nonlinear contact force Ny.

The disc will exhibit coupled translational and rotationalirespenses; Figure 2 (b) shows that angular and translational
displacements are coupled by

u =yl v=—-00, (26)

where the sign of rotations has been determinediby the right-hand screw convention, and ¢ and 6 are assumed to remain

small to allow linearising assumptions. Farthermore, Figure 2 shows that contact will occur when
ol
Vuz4+vi>A, A=—. (27)
a

Using equation (26), all kinetictand potential energy can be evaluated in terms of the chosen displacement variables, and

Lagrangian mechanics can‘theréfore be used to derive the following equations of motion:

1, k
Mi, + E_SQ?') + Pk + ﬂ%u = meQ? cos Ot + Ny (u, v, 1, 9) ,
Mi— 204+ Eyy Co—me2sin0t+ N 1,0
M- 25 u+€—2v+£—2v7m5 sin Qt + N, (u, v, u,0) , (28)

where Ny, (u, v, @y0)and N, (u,v,4,0) are the components of Ny in the u and v directions respectively, and M = m + l%‘.

3.2. Nondimensionalisation

Time is nondimensionalised by the undamped natural frequency of the underlying nonrotating system:

|k
T:O.}nt.wn:' W, (29)

and henceforth differentiation with respect to 7 shall be denoted by a prime (’). Displacements are nondimensionalised by

the displacement magnitude required for contact:

N u N v

10



Furthermore, the following definitions are made to scale the polar moment of inertia, driving frequency, out of balance forcing

and damping;:

. I, A Q . me c
= , Q=— =— = — 31
P M2 W, / MA ¢ 202w, M (31)
and the nonlinear contact forces are also scaled accordingly:
N, (4,0, 0/,9") = L (At AD, wp A, w, AD)
u LA I AW%M u 9 yn s
. 1
N’U ('ll, ’lj, ’Al, ’lAJ/) = WN’U (A’I:L, A’lA}. w’,—,,Aa,, (lJnA’l/)/) 5 (32)
Substituting equations (29) to (32) into equation (28) gives the nondimensional equations of motion:
@'+ L' + a4 2¢0 = fO%cos Qr + N, (a0, 0,4, 9")
0" — L + 0+ 200" = fQ*sinQr + N, (4, 0,4,0) , (33)
If we define x = {i,}" this can be expressed in matrix form as
" fl’ ’ / ra2 | €08 QT /
x" + N x' +x+20x" = fQ | #F N (x) (34)
-1, 0 sin Q1
which is clearly in the form of equation (1).
3.8. Transformation to rotating coordinate system
The transformation between the rotating coordinates and thesstationary coordinates is defined in matrix form as
U cos Qn —sinQr| | @
X = = . R =Tq, (35)
) sin Qs \ cos Q1 v

Equation (33) can be transformed to the rotating"system by substituting equation (35) and premultiplying by T—! = TT,

R 0 — .
applying the chain rule as necessary. Using/the identities T7T’ = QJ, where J = ,and T = —Q2T leads to the
1 0

nondimensional equation of motion inthe rotating coordinate system:
q" — U4 2)Iq +(1 - 01— 1,)qg - 2(Tq +2(q = . + Ngy(a.q') . (36)

This is in the form of system (2) with matrices as follows:

M= Ty, G=—(I,-2)3, K= (1—0%(1 - I))Iaxs , C=2Taxo
~ N T
K.=-200J, b= {f&22,0}

and it is assumedsthat the nonlinear contact function is isotropic hence

where the term (1J q will only have any effect if the nonlinearity contains tangential velocity components e.g. friction. In this

example we shall consider purely radial stiffness and damping i.e.

) ks(r—=1) + &0 )a/r, ifr>1
Ng (a,4) = ( ) ; (38)
0, ifr<1

where k, and é, are nondimensional stator stiffness and damping respectively and r = |q|.
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Figure 3: (a) Campbell diagram showing nondimensional undamped backward (|why|) and forward (Jwp2|) whirl speeds in stationary coordinate
frame, fp = 0.14. (b) Equivalent angular velocities in the rotating frame, plussselectedyinteger multiples. Circles highlight the nonlinear critical

speeds for 2:1 and 3:2 internal resonance.

3.4. Solution

The steps of sections 2.2 and 2.3 are applied to (36).. The two eigensolutions of A relate to the well-known backward and
forward whirl modes of an overhung rotor. The whirl velogities relating to the backward whirl mode are labelled w,; and
Wn1 in the stationary and rotating frames respegtively. Similarly the whirl velocities relating to the forward whirl mode are

labelled wy2 and @,2. The eigenvector matrix is

P = (39)

=) =J

The above eigenanalysis and (6)/can be used over a range of drive speeds to produce the traditional Campbell diagram
shown in Figure 3 (a), showing the unsigned whirl speeds in the stationary frame; this is the classic representation of natural
frequencies of a rotating systemy[44]. However a more useful diagram in this case is shown in Figure 3 (b), which shows
signed angular velo¢itiesiin the rotating frame. The sign of these velocities indicate whether the motion is forward whirling
(i-e anticlockwise, same direction as the shaft rotation) or backward whirling (i.e. clockwise, opposite to the shaft rotation).

Figure 3 (b) also includes some lines to indicate integer multiples of these velocities.

To begin the normal form transformation process, there must be some initial assumptions about the expected form of
internal resonance and roughly at what drive speeds these may occur. Figure 3 (b) shows that at () ~ 3.3 there is a 2:1 ratio
between @pa and &yp1. Following [32] and [33], asynchronous partial contact cycles are found numerically at drive speeds just
above this point, so this drive speed will be used to begin searching for 2:1 resonance motion. Hereupon, we will introduce
the term nonlinear critical speed to refer to a condition such as this; specifically the drive speed Q) ~ 3.3 is the nonlinear
critical speed for 2:1 resonance. It may be seen from Figure 3 (b) that many nonlinear critical speeds exist for even a simple
rotor such as this; in particular the nonlinear critical speed for 3:2 internal resonance at Q) ~ 5.8 is also highlighted.

To formalise our assumption about internal resonance, two ordered lists are created to state which modes and harmonics

12



are considered resonant. Firstly, S is the list of modes involved in the solution - for this simple system this is trivial,
Sk = 1,2 because there are only two underlying linear modes. The second list defines the signed nonlinear resonant response
frequency for each mode, as a harmonic of the positive fundamental response frequency w,., and is denoted S;. This can
be determined graphically, with reference to Figure 3 (b). For example, for the 2:1 resonance, we see that at the relevant
nonlinear critical speed, both @&, and @, are negative, so we choose Sy = —2, —1 (respecting the order of Sj). The physical
interpretation of this is that in the vicinity of the relevant nonlinear critical speed in Figure 3 (b), we are anticipating an
internally resonant orbit where the first modal variable is mainly responding at an angular velocity of —1w,, and the second
modal variable is mainly responding at an angular velocity of —2w,. Furthermore, both of these response velocities are similar
to their respective underlying linear modal angular velocities. Similarly, for the 3:2 case Sy = —3, =2, because mode 1 will
be resonant at a frequency of —3w, and mode 2 at a frequency of —2w,..

A harmonic balance equation of the form
Ur,Veo — M i Usye — Nyrepy = 0, (40)

can then be defined for each k in Sy with the respective ¢ from S,. Hence for the 2:1 case the resonant harmonic balance

equations in the form of (23) are

Up,—2¥_3 2 —A11U1, 2 — Ny, 2) = 0= =290, Us(—2 — 390n1U1 —2 — Nyq1,2) » (a1)
Uz, 1W_q, 1 — Ao pUs 1 — Nya,—1) = 0 = —gwplUs 1 %g@noUsz —1 — Ny(2,—1) »
where the right-hand side shows A and ¥ expanded to reveal the presence of w, and @, in the equations. Similarly, the

following resonant harmonic balance equations are found for the, 3:2:esonance

Ur,—3Y_3 3 — A1,1U1,—3 — Ny, —3) = 0= =3gw,Ur,—3 — j0n1U1,—3 — Nuq1,—3) (42)
Uz 2¥_2 2 —A22Us 2 — Ny, 9y =0 = —2yw,Us 2 — jn2Us 2 — Ny2,_2) -

The final step before attempting to solve the"above equations is an initial guess for H_q, as required by approximation
(10). It emerges that the linear synchronous whirling response, with solutions in many texts e.g [44], generally gives good
results once the relevant transformations.have’been applied. This is fortunate, because it means that the only starting guesses
that need to be made before solvingsareyfor the resonant components.

With all this initial transformation work done, we are finally in a position to attempt a solution. We define a target

function that will allow us to’numerigally solve the resonant equation (23) using an AFT process. This function takes U as

an input and performs the.following steps:

1. Add the current estimate of U to H_; to form P_;, an approximation of P.

Use an inverse complex Fourier transform to obtain the time sequence of p_y; for i = 1...n;.

Evaluate the tifi€ series of nonlinear and nonconservative force np,, by applying equation (18) at each time step.
Using a ¢complex Fourier transform to obtain N, from ny,.

Evaluate Ny, - zero everywhere except for components deemed resonant through choice of Sy and Sy.

Solve for w, with something in the form of eqn. (24), and use this to evaluate .

N ok wN

For cach k and £ in Sy and Sy respectively evaluate Uy oWy — Ag x Uk — Ny(k,e) and append the real and imaginary

components to the residual vector.

A numerical solver is used to find roots of the above target function, giving the next estimate for U.
Ouce U has been found, a corresponding value for H can be calculated with equation (21). This value may be passed

into H_4, and the whole process iterated until H = H_4, following the process in Figure 1. When the accuracy is sufficient,
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Figure 4: Complex modal amplitudes of resonant components of responses with 2:1 internal resonance at various drive speeds.

P can be evaluated, then the entire result transformed back to the time démain with an inverse complex FFT. Then the

modal variables can be transformed back to spatial variables using
y = ®p = ®p + &"p < 2R (®p) (43)
and physical reflections can be made.

3.5. Results

The following results are for a system with the following parameters; fp = 0.14, ¢ = 0.01, f = 0.0648, ]ACS = 13.2,
¢s = 0.0232. The number of points in the FFT4s ny = 1024; note that for relatively weak nonlinearity much lower values for
ny may be used and still give acceptable résults, althiough care must be taken to avoid the possibility of aliasing.

The value of H_; is taken to be the'linearisynichronous whirl solution on the initial run; the solution is then iterated two

more times to improve accuracy. Four trial starting values for U were used which were all permutations of:

U1’_2 =1.5
Uy, 1 =—1.5, —1.55, 1.5, 1.5 (44)

all other Uy ¢ = 0, as these are not resonant.

These were chosen to give reasonable penetration into the stator, and to give a range of phases for Uy _;.

3.5.1. 2:1 resomance

Figure 4 shows results of this process, in terms of the resonant components U; o and Us 1, over a range of shaft speeds.
As may be seen, in many cases both resonant components are zero. This indicates a simple synchronous whirling motion,
which for the purpose of this investigation is considered trivial. At 0= 3.38, the first non-trivial solution appears. Note
that this is slightly above the nonlinear critical speed given by Figure 3, in keeping with numerical observations in [33, 32].
For higher shaft speeds, after some noisy looking points, two rows of solutions for each component appear, and this situation
persists up to approximately () = 4.48. The higher amplitude responses for |U; _o| correspond to the higher amplitude
respounses for |Us,_1|, and similarly the lower amplitude responses for |U;,_s| correspond to the lower amplitude responses

fOI‘ |U27_1|.
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Figure 5: (a) Comparison between analysis and time simulation for a predicted contactingyeycle at Q= 3.9, upper solution branch. Thin circle
indicates boundary of stator contact, asterisk indicates start/end of period. b)Y Amplitude of Fourier components of motion for each complex

modal variable.

In order to validate these solutions, the results can be compared to time simulation. The time simulation using the
Matlab® [47] function ode45 with event handling uséd te.accurately locate transition from contact to non contact.

A typical result of this is shown in Fig. 5 (a), whichpshows the orbit of a the solution for Q) = 3.9 taken from the
upper solution branch in Fig. 4. It is clear how closely the time simulation tracks the analytical solution. Figure 5 (b)
shows the amplitudes of Fourier components of each’ complex modal variable, taken from the P matrix. This confirms our
assumption that the resonant terms deininateythie first modal variable at the -2nd harmonic, and the second modal variable
at the -1st harmonic, and these are the terms we have captured within U. Note there are some other small but visible
contributions (which are capturedywithin H), most significant of which is the Oth harmonic, which gives the synchronous
whirling components. However, ‘away from these and the resonant components the amplitudes of all harmonics rapidly
become negligible.

A similar presentation is.given in Fig. 6, however in this case the analytical solution is taken from the lower branch of
solutions in Fig. 4. The/ analytical orbit shown in part (a) is similar in character to that shown in Fig. 5 (a), however the
‘loop’ in the arbit.is oriented differently. Furthermore, as shown in part (b), the frequency content and fundamental response
frequency w, are both quite similar. However, the comparison to time simulation in Fig. 6 (a) shows an apparently poor
agreement - in fact the time simulation fails to show a periodic orbit. However, if we follow the time simulation closely from
the start (as shown by the asterisk) it can be seen that initially it does follow the analytical solution closely- however, after
a few cycles it begins to diverge. This suggests that the analytical and numerical solutions are in agreement, but that this
branch of solutions are dynamically unstable. This suggests the existence of a cyclic fold bifurcation for () ~ 3.38 at which
a stable bouncing orbit and an unstable one are created for higher Q-values. Note that a formal stability analysis of these

solutions not yet been performed and will be the subject of future work.
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3.5.2. 3:2 resonance

It was found that the same system, but with twice.thesout of balance forcing ( f = 0.130), could exhibit a stable 3:2
resonant response. Again, the onset of these solutions is just beyond the value of Q= 5.8, which Figure 3 (b) shows to be
the nonlinear critical speed for this internal résonance. Initial guesses in a similar form to (44) were used, however a larger

amplitude was required to find solutions:

Up_3=25
Us, o =—2.5, —2.5, 2.5, 2.5) (45)

all other Uy ¢ = 0, as these are not resonant,

Numerous 3:2 resonancés were found as shown in Figure 7. The previous pattern, where ‘upper’ branches seem stable and
the lower branches are unstable is continued, as shown by figures 8 and 9 respectively which show a stable and an unstable

orbit coexisting at, the same drive speed.

4. Example 2 - A multi disc rotor

4.1. System description

The method can in principle scale to any number of degrees of freedom in the rotor. An arbitrarily designed rotor with
four discs shown in Figure 10, which was chosen as a more challenging test case for analysis with more degrees of freedom.

The shaft is a hollow tube with inner diameter of 3mm, outer diameter 5mm, length 500mm and made from steel assumed
to have Young’s modulus 210GPa, Poisson ratio 0.3 and density 7810kg/m?. The shaft is simply supported at each end.

There is an inertialess stator at the midpoint of the shaft, with a clearance of lmm and a contact stiffness of 10N/mm. Hence
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the nonlinear force at this point is given by:

ks(r —1)) x/n , if » > 0.001
g = 4 Ut = o

0 , if » < 0.001
where x is the lateral displacement of the midpeint of the shaft and » = |x|. The four discs are 30mm thick and 300mm in
diameter and also made from steel, placed at.100mm intervals along the shaft. An out-of-balance force is added to the 2nd

disc from the left, equivalent to this disc’being 0.75mm off centre. No gravitational force is present.

4.2. Modelling and solution

The rotor is modelled with a“20 element shaft-line FEA model implemented via the Matlab® based software that
accompanies the book [44].Phis represents each shaft section as Timoshenko beam, and the discs as lumped mass and
inertias. The software outputs stationary coordinate frame mass, gyroscopic, damping and stiffness matrices and an out of
balance force vector, thatimay readily be transformed to the rotating coordinate system, for example by following the process
in [33].

The first stagerin the analysis is the modal transformation. Unlike the previous example, there are a high number of modes,
so a sensible way of sorting the modes must be found. The modes are numbered based upon their stationary coordinate
system behaviour, where the first mode is the first backward whirl, the second is the first forward whirl, the third is the second
backward whirl, the fourth is the first forward whirl, and so on. This order groups modes with similar shapes together, while
avoiding awkward problems with modes apparently crossing as seen in the stationary system Campbell diagram in Figure 11
(a).

It is now necessary to determine the nonlinear critical speeds. By inspecting Figure 11 (b), it can be seen that a drive
speed of approximately 24.2rad/s gives @,1 = 2,2 , so bouncing solutions might be expected at drive speeds slightly above

this value. (The nonlinear critical speed can also be found in the stationary frame condition can be found by using (6) to
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obtain € = 2w,2 — wyy as discussed in [33], and this is also indicated in Figure 11 (a). ) The type of internal resonance is
formalised in the method by using the ordered lists S; = 1,2 and Sy =/=2j—1 similarly to the previous case. Note that Sy
could now refer to a far greater range of modes than just the two considered previously.

The initial guesses for U are again chosen to ensure a response amplitude that gives some penetration into the stator,
and also to give a range of phases for Up _;. The list of initial guesses was taken as all permutations of the following lists

giving a total of 8 initial guesses:

a=0.3,0.6
Ui,—2=a,
Us, 1= a(T ), a(l =), a(=1+7), a(=1—y),

all other Uy , = 0, as these are not resonant.

The initial guess for H_; is again_taken frem the underlying linear system’s response to the out of balance force.

The simple rotor studied in Section 3 had only two modes and could therefore be solved to an arbitrary degree of
precision by choosing a high 7/ and converging to a low tolerance. However, when higher modes are present, equation
(21) can encounter problems when the value ¥, , = fjw, coincides with the kth linear natural frequency held in Ay . This
situation causes the"Hy ato become large, and usually prevents the solution from converging. These spikes in higher modes
have not been seen in simulation, perhaps because in the presence of highly nonlinear responses, the other modal responses
no longer actimythe same manner. Since these spikes are therefore just an unwanted artefact of the solution method, they
must be prevented by truncating the response in terms of frequency, at the cost of some accuracy in the solution. This is
done by zeroing all components in H that are outside the frequency range of the resonant components in U. Furthermore,
only the first eight modes of the system are included in the analysis. In the solutions presented, the initial solution is followed

by 3 more iterations to improve the accuracy of H.

4.3. Results

Figure 12 shows the results of this analysis over a range of drivespeeds, in terms of the amplitudes of the resonant

components. Again, there appear to be corresponding low-amplitude and high-amplitude pairs of solutions. These solution
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begin at a drive speed of 25rad/s, slightly above the nonlinear critical speed found earlier, as seen in previous cases. A few
stray solutions are seen at around 47rad/s; these are very high amplitude solutions that are not connected to the main branch
of solutions shown (their equivalent Us _; points are out of the graph range) and we have not investigated these further.

In an alternative presentation in Figure 13, the analytical resultsyare compared to results from a brute force numerical
bifurcation study of this system, following the procedure n4[33].},As may be scen, the analytical and numerical solutions
accurately show similar maximal drive speeds at which bouncing limit cycles occur,however the lower end of this region is
not shown simulation, as these solutions appear to be unstable. The maximum amplitude of displacement is over-predicted
by analysis, perhaps because much of the dissipation in a multi rotor system is through higher modes that are truncated in
the analysis.

An individual solution is considered in Figuré 14 (a). The predicted orbit is again a doubled loop. A time simulation is
initiated on the same starting pointias thelanalytical solution, and this matches well although it can be seen that it deviates
slightly,reflecting that there ismowigome more approximation due to truncating the harmonics in the response. Figure 14 (b)
shows the amplitude of Fotrier’components for this response, and it shows that the response is dominated by the resonant
components and some Synchronous terms; all other components are relatively small. Figure 15 shows the unstable solution
at the same drive spced; as.shown by the time trace diverging from the analytically predicted orbit after an initial period of

approximate agreement. /In fact the response is rapidly attracted to the stable response previously shown in Figure 14.

4.4. Encounteving additional resonances

A complication occurs in the region of @ =36.8rad/s; at this speed the 2nd forward whirl (mode 4) becomes critical in
the classical linear sense of being directly excited by the out-of-balance forcing, near its resonant frequency. This can be seen
in Figure 11 (a) where the line for w4 intersects the drive speed line; alternatively Figure 11 (b) shows @,4 passing through
Zero.

The detailed view of an orbit in this region given in Figure 16 (b) shows that there is indeed a large synchronous spike
due to this effect predicted by analysis, although it is seen in Figure 16 (a) that the predicted orbit is still sufficiently near

the true solution so that the time simulation stays fairly near. It should be noted the denominator in equation (21) contains
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no damping terms, and as such can potentially give infinite results. Figure 17 gives the equivalent to Figure 16 (b), but
extracted from a time simulation. This shows that therarge synchronous contribution does not appear in reality. The way
to handle this more accurately is to include this component as a resonant term, by choosing Sy = 1,2,4 and S, = —2,—1,0.

This results in three resonant harmonic balancé equations which can be given explicitly as:

Uy, 2V 55 — MAU; 43 Ny1,—2) = 0 = =290, U1, —3 — gn1U1,—2 — Ny1,—2)
U2,71\I’71,71 7 A2,2U2,«1 - Nu(z,—l) =0= —]er2,71 - ]@n2U2,71 - Nu(2,71) (48)

Us0%o0,0 = A4,aUs0 — Ny,0) = 0= —90naUs0 — Nya0)

noting that ¥ o = Ojw, = 07 Figure,18 shows a solution of these equations at shaft speed 38.8rad/s, found with the same
initial guess as before butswith U4 taken from the damped linear whirl solution. As can be seen the unwanted spike is
gone from the solution which/is now more similar to that of Figure 17, although the overall accuracy of the orbit seems
unimproved. This is perhaps because in this case the 2nd forward whirl mode shape contributes very little at the point where

nonlinearity is applieds

5. Conclusions

This work has presented a method for analysing limit cycles in isotropic rotor systems with stator clearances. The method
has been built upon the insight that these limit cycles are periodic in a rotating frame, and are a form of internal resonance.
The method is very general in both the number of degrees of freedom and the nonlinearities that may be considered, so
it is thought that this can be an important step towards more efficient analysis and better understanding of the effects of

nonlinearity in complex rotor systems.
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Figure 18: A stable orbit at 2=38.8rad/s, calculated with three resonant equations as given in (48). (a) Solid black line shows orbit predicted

by normal forms analysis, orange dashed line shows time simulation. Marker shows initial point for both orbits. (b) Amplitude of complex modal

components of analytical solution; thick lines show resonant modes and asterisk markers show resonant harmonics of those modes.
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It has been demonstrated that solutions for a simple overhung rotor can be found with arbitrary precision. This is because
while the method primarily solves just for resonant components of the response, it also produces an approximate response
for all non-resonant components as well, which may be used repeatedly to refine the result in an iterative scheme. This is
much more efficient than solving the full (unreduced) system in one step. The method also gives good approximate results
for a multi-disc rotor, although here the accuracy is restricted by the need to truncate harmonics from the response. Work
to experimentally validate these findings and extend them to a wider range of systems is underway; it is of keen interest to
understand the full robustness of the method in the presence of different forms of nonlinearity and features such as densely
spaced modes.

Another pressing question is to predict analytically the presence of these bouncing orbits at drivesispeeds just beyond
the nonlinear critical speeds. The results here suggest that there is a cyclic fold bifurcation. Preliminary investigations, to
be reported elsewhere, suggest that this fold bifurcation only reaches the nonlinear critical spéed forithe internal resonance
in the limit that the stator stiffness tends to infinity (the impact limit) and the non-contact damping tends to zero.

Other things that require further investigation include what happens at the high-Q end of each of these branches of
bouncing orbits. From a practical point of view, it is also pressing to establish the basins of attraction of the bouncing orbits,

what transient events may trigger them, and what control actions might prevent orsalleviate them.
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