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Abstract

Modelling the progressive collapse of structures is necessary for planning con-
trolled demolitions, studying the effect of natural disasters on structures, and
determining the weakest locations of a structure for further reinforcement and
enhancement. Computational mechanics served an important contribution to
modelling the progressive collapse of structures, since it is very expensive to
model collapse in an experimental evaluation for large scales.

Existing developments of computational methods for the scope of collapse of
structures are extensively reviewed first. It is concluded that the Applied Element
Method (AEM) is one of the simplest schemes for modelling the progressive col-
lapse with sufficient accuracy. The AEM is represented as pairs of rigid elements
connected by shear and normal springs, along the edges of the elements. The
material properties are represented in the stiffness of the springs. The stresses
and deflection between elements are based on the deflection of the springs.

The deflection and internal stresses of several structural beams are assessed
using the conventional AEM and it is evident that the computational efficiency
of the method is inadequate since a sizable amount of elements and springs per
element is required to achieve a specific level of accuracy. Hence, a modification
to the AEM is necessary to reduce the computational cost of the method. This
thesis is focused on the development of the AEM for linear and nonlinear ma-
terial behaviour, the development of a damage material model for representing
damage and fragmentation, and an application of collapse of structures subject
to earthquake and extreme wind loading.

The AEM is enhanced using the Gaussian quadrature to find the exact loca-
tion of springs. Using a Gaussian distribution it is concluded that only 2 springs
per element are required for elastic elements, while a total of 6 springs are required
for elasto-plastic elements. In conjunction with the Gaussian springs modifica-
tion, a further modification is implemented that utilises an adaptive technique
for selecting the number of springs per element based on elasticity and elasto-
plasticity of the springs. In nonlinear material analysis the Newton-Raphson
integration scheme is adapted.

To model damage in materials a softening material behaviour is employed.
The developed softening algorithm is a return mapping method that is based on
the predictor-corrector hardening plasticity algorithm. To represent the failure
of a spring in the AEM, the stiffness of the spring is set to zero. This results in a
singular global stiffness matrix that can not be solved directly. Using a dynamic
model for the analysis eliminates the need of inverting the stiffness matrix, so
the explicit Central Difference Method is used for linear and nonlinear dynamic
analysis.

The findings in this thesis are (1) the conventional AEM is modified by chang-
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ing the distribution of the springs using the Gaussian quadrature allowing for ex-
act calculation of optimal spring locations (2) only 2 and 6 linear and nonlinear
springs are needed, respectively between a pair of elements, reducing the overall
computational cost of the structure and increasing the accuracy (3) an adaptive
transition springs technique is implemented and allowed for an overall reduced
computational cost (4) a softening return mapping algorithm is developed for
representing material damage (5) a time integrating technique is required when
element separation occurs to avoid a singular matrix (6) application of the Gaus-
sian AEM is performed on 2D frames subject to earthquake loads and extreme
wind loads.
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ة م ة ن

ارث ال تأث ودراسة ة، ه ال م اله ات ل ع ل ور ض أم ه آت لل ي ر ال ار الإنه جة ن
و ها ت أجل م اني ةلل ائ ةالإن ال في عف ال نقا ی ت الى الإضافة آت، ال ه ه على ة ع ال
ة العال لفة ال ف ت في ساه ح ة, ل الع ه ه في فعَال ور ب ة اس ال ا ان ال ساه لق ها. ع ت
ة اب ال ق ال ته شه ا ل عُ ب ُق ال سالة ال ه ه في أولا ی س. مل ي ت اق ن في ار الإنه جة ل
الأسال أ أح ه (AEM) قي ال الع ب أسل أن اج إس ت ه, عل و ال. ال ا ه في رات ت م

ات زن خلال م لة ال ة ل ال اص الع م كأزواج (AEM) َل ة. كاف قة ب ي ر ال ار الإنه جة ل
ع ا ك ك, ن ال ة صلا خلال م اد ال ائ خ ی ت ف . اص الع اف ح اد إم على ة د ع و قاصة

ك. ن ال اف إن ار مق على اص الع ب افات والإن الإجهاد ی ت
اضح ال م كان . قل ال (AEM) ام إس ت ة ل اله ارض للع ة اخل ال الإجهاد امل وع اف إن تق
ل ة ت ال ات ن وال اص الع م اً ك د ع ل ت ة ل الع أن ح ة, كاف غ قة لل ة اب ال ة الفعال أن
ة.ت اب ال قة ال ه ه لفة ت ل قل ل لاً تع (AEM) ل ی ، الي ال و قة. ال م كافي م ق ل ع

ت على ل ك و اد، لل ي ال واللا ي ال ك ل ال ل (AEM) ت على سالة ال ه ه في ال
ة. ی ال اح وال لازل لل ضة ع ال اكل اراله إنه ت تق إلى الإضافة ، ؤ وال ر ال ل ل ماد ذج ن
زع ت ام إس و قة. ب ك ن ال قع م ی ل "جاوس" ع ت ام إس ع (AEM) ل ع ت ت
ي. لاخ ع ل ل فق ات زن ة ول ي, خ ع ل ل فق ان ن ل حاجة اك ه أن ت ، "جاوس"
في ات ن ال د ارع لإخ ة ف ت ة تق ام إس آخ یل تع ف ت ت "جاوس"، ات زن یل تع مع ان الإق
ام إس ت اد, لل ي خ الغ ل ل ال في ات. ن لل ة لاس ال ونة وال ونة ال أساس على ع كل

ن. -راف ت ن امل ت م
وع ال ا ه في رة ال ل ال ة ارزم خ . ل ال مادة ك سل ام إس ت اد ال في لف) (ال ر ال جة ل
ض نف (AEM), في ك ن ال اخفاق ل ل ح. ئ-م م ل ال ة ارزم خ على تع معاد ت قة هي
حلها لا دة ف م شاملة ة صلا فة ف م على ل ال الى د ی ا ه . صف او ت ك ن ال ة صلا أن
قة " م تُ ل ب و ة، لا ال فة ف م ع إلى اجة ال یلغي ل ل لل ي ام دی ذج ن ام اس ة. اش م

هي: سالة ال ه ه ائج ن ي. واللاخ ي ال ي ام ی ال ل ل لل ة ال ة" ال ق الف
ق ال اب ال ح ا م "جاوس" ع ت ام اس ات ن ال زع ت تغ ع قل ال (AEM) یل تع .١

ات. ن لل ة ال ال للأماك
م ف ا م ، اص الع م زوج ب الي, ال على ة خ ولا ة خ ات زن ة س أو ان ن ل فق اجة ال .٢

قة. ال م فع و ل لله ة ل ال ة اب ال لفة ال
عام. ل ة اب ال لفة ال خف الى أد ا م ة, ف ال ة قال الان ات ن ال ة تق ف ت .٣

ر. ال ل ل ل ل معاد ت قة ة ارزم خ ت .٤
دة. ف م فة ف م ء ن ل ع ال إنف حالة في ة ق ال املة ال ة تق ام لإس اجة ال .٥

ة. ی ال اح ال اء وأع لازل ال ال لأح خاضعة عاد الأ ة ائ ث ارات إ على "جاوس" (AEM) ت ف ت ت .٦
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Chapter 1

Background

1.1 Motivation

"Earthquakes dont kill people, buildings do"

During earthquakes, hurricanes, tornadoes or even tsunamis, structures undergo

several types of structural damage that can cause total collapse in structures, and

more importantly, danger to human life. Modelling the progressive collapse of

structures is necessary for understanding the weakest locations of structures for

further reinforcement and enhancement. Figure 1.1 shows the death toll since the

1900’s to the late 2010’s due to natural disasters. From the figure it is evident

that the most deaths were due to extreme weather and earthquakes, with a death

toll of 210,000 and 350,000 respectively.

Figure 1.2 presents the distribution of the causes of death after the Great

Hanshin-Awaji Earthquake occured in 1995 [2]. The most common cause of death

during this earthquake was suffocation.

The extensive study on the deaths from the Great Hanshin-Awaji Earthquake

also showed that most deaths were caused by structural damage [2]. The study

also showed that most people died in structures that were made of wood, rather

than reinforced structures. Figure 1.3 shows the relationship of the human ca-

sualties with the structural damage and type [2]. The majority of the deaths

occured due to completely collapsed structures or severly damaged buildiings,

except for those that died due to burning wood buildings.

3



1.1. MOTIVATION

Figure 1.1: Death rates from natural disasters [1]

Figure 1.2: Direct causes of death [2]

Figure 1.3: Relationship between structural damage among deceased cases [2]
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CHAPTER 1. BACKGROUND

1.2 Introduction to Progressive Collapse

Current structural design codes posses enough collapse resistance under conven-

tional loads. However, since structural failure is the biggest cause of death when

natural disasters strike, structural engineers face a responsibility of modelling

structural collapse and damage, to further aid in reinforcing buildings at their

weakest points, when the structures undergo such extreme loading. The phe-

nomena of progressive collapse has become a topic of major interest, and can be

defined as follows [3];

"A progressive collapse is characterized by the loss of load-carrying capacity of

a relatively small portion of a structure due to an abnormal load which, in turn,

triggers a cascade of failure affecting a major portion of the structure"

In other words, once a small structural element fails, it causes a chain reaction of

other structural elements to fail. Understanding the collapse state of a building

can allow a higher margin of safety in design [4]. Sometimes local failures can

be unavoidable if subject to very rare abnormal loading, however, understanding

how to control the expansion of the failure, from local to global state that can

ensure an overall stability of a structure is the important aspect.

Testing the structural collapse of buildings using experiments can be quite

demanding since they require a lot of time, cost, and resources. This is why

numerical methods are significant in analysing such large scale problems.

Collapse analysis requires modelling a structure from a continuous body, to

a discrete one [5]. The numerical model should be able to accurately model the

structure’s elasto-plastic deformation and energy dissipation before collapse, as

well as the rigid body movement and impact of the structural members [5].

There are several methods that can be used to analyse the behaviour of struc-

tural collapse. Currently, the available numerical models for modelling collapse

are classified into two categories; continuum method (such as the Finite Element

Method), and discrete element method (such as Rigid Body and Spring Model

(RBSM) or the Extended Distinct Element Method (EDEM)) [6]. Nonlinear
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dynamic analysis has been widely modelled using the finite element method for

analysis of progressive collapse of structures; however, difficulties in the analysis

were found at the presence of excessively deformed elements with cracking or

crushing, as well as having a high computational cost, and difficulties in choosing

the appropriate material models for analysis [6].

1.2.1 Types of Progressive Collapse

Different structures are susceptible to different types of collapse and are described

by a disproportion between a trigger and resulting in the collapse of a major part

or the whole structure. The different types of collapse are explained in this section

[7].

1. Pancake-type collapse

The mechanism of this collapse entails an initial failure or vertical load

bearing elements that result in a separation of structural components and

their fall in the vertical rigid body motion. The gravitational potential

energy is transformed to kinetic energy. The failure progresses in the verti-

cal direction, and impact forces are generated. The gravitational potential

energy that occurs during the fall exceeds the strain energy in the struc-

ture. Once the energy is reintroduced in the structure in an impact manner,

large internal forces are generated [7]. The pancake-type collapse is better

demonstrated in Figure 1.4 [8].

(a) (b) (c)

Figure 1.4: Pancake-type Collapse [8]

2. Zipper-type collapse

The mechanism of a zipper-type collapse entails an initial failure of one or

few load bearing elements, continued by a redistribution of the forces on

the elements remaining in the structure. There is a dynamic response of the
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structure to the impulsive dynamic loading due to the suddenness of the

initial failure. The failure progression is in the direction transverse to the

principal forces in the failing elements. The zipper-type collapse mechanism

is shown in Figure 1.5 [8].

(a) (b) (c)

Figure 1.5: Zipper-type Collapse [8]

3. Domino-type collapse The mechanism behind a domino type collapse

starts with one initial overturning of one element, that cause it to fall in

an angular rigid body motion. There is then a lateral impact of the upper

edge of the overturning element on the adjacent element, causing a chain

reaction of the adjacent element overturning and causing an impact on its

adjacent element. The mechanism is better represented in Figure 1.6 [8].

(a) (b) (c)

Figure 1.6: Domino-type Collapse [8]

4. Mixed-type collapse

The mixed type collapse includes a combination of different collapse mech-

anisms mentioned, as it is not necessary that only one of the mechanisms

are encountered in actual collapse of structures.

1.2.2 Analysis Procedure Possibilities

There are several analytical methods of analysis to simulate the behaviour of

structures after damage is initiated. It is important to note that the loss of

7



1.2. INTRODUCTION TO PROGRESSIVE COLLAPSE

bearing elements is modelled as a sudden dynamic removal. The most common

analysis methods are [9];

1. Linear Elastic Static Analysis

2. Nonlinear Static Analysis

3. Linear Elastic Time History Analysis

4. Nonlinear Time History Analysis

The linear elastic method is considered the simplest of all the methods and

the removal of of structural elements is performed statically. The method is con-

sidered relatively simple, with fast calculations. However, it does not consider

dynamic effects and does not consider material nonlinear behaviour. Therefore,

large or complex structures may not be evaluated with realistic results, instead it

is limited to simple structures with predictable behaviour. Modelling the progres-

sive collapse of a structure subject to a dynamic loading, such as an earthquake,

will not be possible.

The nonlinear static analysis is commonly used to analyse a building under-

going a lateral load, and is known as a "push-over analysis". The applied load

increases incrementally until the maximum load or displacement is reached, while

undergoing nonlinear behaviour in structural members. It was found that the ad-

vantage of using this method is allowing nonlinear material behavior. However,

the disadvantages outweigh the advantages since the method does not consider

dynamic effects, it is expensive in terms of time, and is considered quite complex.

The linear elastic time history analysis is based on real-time removal of the

major load bearing structural elements that result in real-time linear elastic mo-

tions, and can be referred to as a time history analysis. This method incorporates

dynamic amplification factors, inertia and damping forces, in other words it in-

cludes dynamic behaviour. Disadvantages of the method are induced from the

inability to consider material nonlinearity, time consuming, requires additional

procedures for including time stepping and internal forces. The method is there-

fore limited to structures that may undergo large plastic deformations.

Finally, the nonlinear time history analysis provides the most realistic re-

sults from all approaches since it considers dynamic behaviour of structure, and

material nonlinearity. Having those features allows larger deformations, energy

8
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dissipation, material yielding, cracking and failure. However, is time demanding,

complex and incorrect assumptions can lead to extremely incorrect and invalid

results [9]. Of all the analytical approaches it is clear that the nonlinear time

history analysis is the most applicable in analysing the progressive collapse of

structures.

The design approaches developed and expanded belong to one of the following

categories; Performance based methods - Direct design, and Prescriptive methods

- Indirect design method.

The direct design methods consider potential dangers to a structure by at-

tempting to suitably protect the structure from the adverse affects. This approach

is implemented when a threat can be identified or quantified, such as vehicle im-

pacts, high winds, earthquakes or even flooding. In order to generate such an

analysis, information about the possible forces is required, and on which elements

the forces are applied [7]. There are two approaches to implement this method

(a) the Alternate Path Method or (b) the Specific Local Resistance Method [10].

The alternate path method allows local failure to occur; however redistributes the

forces to find an alternate load path where the damage may be absorbed to avoid

a major collapse. Whereas, the local resistance method, pursues to to provide

tolerable strength to resist an event [9].

The indirect design approaches are performed by removing structural elements

and performing the analysis of the behaviour of the structure. For instance one

approach is having a sudden loss of a column and the remaining structure is

assessed. It should be noted that loss of a structural element can be a quite

drastic assumption, leading to an over-design since the remainder of elements

will be larger to compensate the loss. Also, every structural configuration must

be considered and this cannot give a general solution [10].

The next chapter is a literature review of the numerical methods that in-

clude nonlinear behaviour of structures for progressive collapse, along with their

applications.

9



1.3. SCOPE OF THE THESIS

1.3 Scope of the thesis

The scope of this thesis is to improve a progressive collapse model of structures for

better accuracy and efficiency, and model material damage behaviour to analyse

structures subject to earthquakes and extreme wind loads. With reference to this

underlying objective, this work proposes a modification to the Applied Element

Method based on using the Gaussian Quadrature for improving efficiency. The

AEM is coded in MATLAB. The AEM will be analysed for both linear and

nonlinear material models. This thesis will cover structures in 2D only.

1.4 Outline of the thesis

The chapters in the thesis are organised as follows.

• Chapter 2 is a literature review of implementation of numerical methods

that have been developed for modelling the progressive collapse of struc-

tures, as well as their advantages and disadvantages.

• Chapter 3 demonstrates the numerical formulations to the methods that

were presented in Chapter 2. The purpose is to display the logic in the evo-

lution of the numerical models as well as their relationships to one another,

and their limitations in implementation.

• Chapter 4 is an overview of the formulation of the Applied Element

method (AEM), as well as the developments to the method over the last

two decades.

• Chapter 5 displays an implementation of the AEM to elastic material

behaviour, with a novel modification to the springs distribution using the

gaussian quadrature, called the Gaussian-AEM. Examples in how the mod-

ification improves the size of the model and accuracy are presented.

• Chapter 6 the Gaussian-AEM is implemented to nonlinear material be-

haviour by implementing isotropic hardening.
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• Chapter 7 the damage of materials is modelled through a softening return-

mapping algorithm. A time integrating scheme is is implemented to solve

problems related to fracture and damage.

• Chapter 8 the progressive collapse of structures due to earthquakes is

presented for different multi-storey 2D framed structures.

• Chapter 9 the progressive collapse of structures due to extreme wind loads

is presented, with an analysis of the 3 second wind gusts using CFD models.

• Chapter 10 is a conclusion of the work done in the thesis as well as future

recommendations.
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Chapter 2

Literature Review

Computational models for structural analysis have been developed for almost a

century. There are several methods to model continuum behaviour and discrete

element behaviour. This chapter entails the different computational methods that

have been developed with applicability to the progressive collapse of structures

field.

2.1 The Finite Element Method

The finite element method (FEM) originated as early as in the 1940’s. It is based

on continuum material equations and has been widely applied to engineering

problems including the structural analysis of large-scale structures [11]. However,

some limitations in FEM arise with nonlinear and discontinuous problems [11].

Different techniques developed in the FEM for implementing dynamic behaviours

with nonlinearities and discontinuities are mentioned in this section.

The finite element method typically assumes that the structures remain con-

tinuous. In some cases the collapse mechanism is represented by plastic hinges.

Among other numerical methods for analysing the dynamic behaviour of contin-

uum are: the finite difference method, the finite volume method and the bound-

ary element method. However, these methods cannot simulate the entire failure

process because additional considerations are involved where damage or fracture

appears. There are some developed elasto-plastic material models for reinforced

concrete FEM analysis [12, 13], but their complexity lead to large computational
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costs for calculation.

A study done by Michaloudis et al. in 2010 [14] was performed to model

the structural failure of controlled demolition buildings using the finite element

program LS-DYNA. The problems anticipated in modelling the collapse were

due to high nonlinearities, multiple contact possibilities and the necessity for

discretisation with continuum elements, which results in models with a very large

number of elements. The discretisation on the LS-DYNA program was performed

using 8-node solid finite elements, and a stabilisation technique developed by

Belytschko-Bindeman was required. Other problems evolved from the material

model. The material model did not allow detailed modification for simulating

the behaviour of reinforced concrete. The explosion is modelled by removing key

elements in the structure. Two different numerical models were studied: element

erosion algorithm and the node-split algorithm, presented in Figure 2.1.

(a) Element Erosion Algorithm (b) Node-Split Algorithm

Figure 2.1: Element Separation Algorithms [14]

The element erosion algorithm is based on removing elements that have failed.

It was noted that a ‘fairly fine mesh’ was required in order to capture the failure

zone. This model did not allow a detailed modification to simulate the behaviour

of reinforced concrete. It also deleted elements that exceed the plastic strain,

resulting in a limitation in its usability, since the deletion of elements during

the simulation resulted in inconsistent computations in terms of volume, mass

and energy. Also, contact conditions between structural elements could not be

described since contact surfaces were deleted due to the material failure. It was

concluded that the results were not very useful since a very large part of the

building was being deleted.

However, the results were different using the node-split algorithm. The method
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is based on that the nodes are tied (constrained) together until a failure criteria is

met. Figure 2.1b shows the split behaviour when the failure criteria at a node is

met. The node is split into two separate nodes and the analysis proceeds. With

this method no elements are deleted, so the simulation of the structure remains

consistent in terms of energy, mass and volume. Also, all contact between ele-

ments is considered. Moreover, the kinematics of the failure procedure are not

affected by any kind of artificial erosion, and the contact procedures during de-

molition were sufficiently taken into account. Each element consists of 8 nodes,

shown in Figure 2.1b. So no node belongs to more than one element at the same

time, which leads to an increase in the total simulation time, and an increase in

the time to construct the model, as well as an increase in the number of equations

in the problem, in comparison to the element erosion algorithm.

Figure 2.2 shows a comparison analysis of the collapse kinematics and the final

rest position. The figures on the left are based on the element erosion behaviour,

and on the right are based on the node-split algorithm. It was concluded that

both approaches provided similar behaviour of the collapse kinematics at the

initial stage of the collapse and also in the whole evolution. The structures showed

similar rest position, because the failure occurred mostly at the connections.

Another example of the collapse is presented in Figure 2.3, where a nine

storey building undergoes two phases of blasts. Firstly, two rows of columns are

removed from the fifth floor, and after 1.5 seconds two rows of columns from the

second and ground floor are destroyed. The node-split algorithm is selected for

the analysis, since the element erosion model will remove a very large part of

the structure from the system. The results showed a realistic description of the

collapse kinematics and an appropriate final rest position of the structure.

This study showed the complexities of trying to use the FEM for modelling

structural collapse, even though it included several modifications to the original

method. Although the method was able to present realistic final resting position

of the structure as well as providing information on the possible collapse kine-

matics, it does not seem to be concentrating on the details of the analysis neither

the accuracy. It is evident that the finite element method alone may not be the

most efficient method to solve large displacement problems that include elements
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Figure 2.2: Comparison of collapse mechanism using the Element Erosion algo-
rithm, and the Node-Split Algorithm [14]

Figure 2.3: Nine storey building evolution of collapse kinematics - using Node-
Split algorithm [14]
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separation. For this reason different approaches were exploited, and are discussed

in further detail in the following sections.

2.2 Discrete Element Method

The Discrete Element Method (DEM), also known as the distinct element method,

was developed by Cundall [15], and is used to analyse non-continuum media such

as rocks and granular materials. The significance of the method arises in its gov-

erning equations where no continuum condition is required, which allows it to be

applicable in structural collapse. The DEM was proven very useful in geotechnical

engineering since it is very effective in modelling behaviour analysis of discrete

media. There have not been many applications of using the discrete method

alone for progressive collapse analysis, however. The advantages of the DEM can

be significant when coupled with the FEM. The coupled FEM-DEM analysis is

presented in Section 2.2.1. Modifications to the DEM for better applicability in

progressive collapse problems are presented in the sections 2.2.2 and 2.2.3.

Large displacement using DEM

Qi and Ye applied the DEM to nonlinear dynamic analysis of space frame struc-

tures [16]. A frame was divided into rigid spherical elements connected by spring

systems between the elements to represent the discretisation using the DEM, and

is shown in Figure 2.4. Using this discretisation procedure a dome under an im-

Figure 2.4: Space frame discretisation using DEM [16]

pact load was analysed. The dome geometry is shown in Figure 2.5. The dome

is made of 169 nodes, and 462 members. The load is applied at point B shown

in Figure 2.5. 3,355 particles were used for the DEM simulations. The deflection
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of the dome is presented in Figure 2.6. The analysis was compared to a solu-

tion from ANSYS, however no converged solution was obtained due to the large

displacements the dome had undergone. Although the results were not demon-

strated for progressive collapse, they showed that the DEM is applicable for use

in large displacement analysis for continuum problems, and are well applied for

nonlinear dynamic analysis of frame structures.

Figure 2.5: Dome initial configuration and dimensions. Point B represents the
location of the applied load [16]

Figure 2.6: Final configuration of Dome after load [16]

Collapse using DEM

Masoero et al. showed the analysis of 3D framed structures that were subject to

the removal of one column using the DEM [17]. Their analysis demonstrated that

the DEM is a suitable approach for modelling the progressive collapse of struc-

tures since the mechanical response and the inter-particle contacts were captured

within a robust and efficient simulation scheme [17]. They highlighted that there

was a need for a fine mesh to reduce the discretisation errors of the volume rep-

resentations and discrete local fracture. Also, small time increments were needed
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for the contact of stiff elements. The small time increments were due to decreases

in α, a uniform dimensionless geometry parameter. A large α signifies a larger el-

ement cross-sections which therefore led to stiffer and stronger structures. Figure

2.7 demonstrates the progressive collapse of the framed structures with increas-

ing α over time. The time increments were in the order of 10−5 − 10−6, and the

simulation needed to run for a range of at least 2−8 real time seconds of collapse,

resulting in a very high computational cost.

Figure 2.7: Collapse of structures with increasing α using DEM [18]

2.2.1 The Combined Finite Discrete Element Method (FDEM)

Munjiza, Owen, and Bicanic introduced a combined finite-discrete element method

for modelling failing, fracture and fragmenting solids in 1990 [19]. The method

is based on an incorporation of contact detection and contact interaction aspects

of the discrete element method [20]- [22] into the finite element method. The

contact interaction requires an accurate representation of the geometry of the

contacting domains. This is achieved through discretised contact solutions. The

discretisation of the contact and the deformation is assumed to coincide with the

finite element discretisation in order two avoid having two separate discretisations

[23]-[28]. The discretised contact solutions are used for both contact detection
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and contact interaction [28] - [31]. The combined fem-dem has been implemented

in many applications and enables simulation of initiation and propagation of a

large number of cracks in both 2D and 3D solids [32] -[37].

In [37], a finite strain-finite displacement shell model was developed and in-

corporated to the combined FEM-DEM. A thin glass shell was analysed using the

combined finite-discrete element method, shown in Figure 2.8. The shell has a 50

mm radius, and 1 mm thickness, and is subject to an impact of a 50g impactor

at a speed of 5 m/s. The radial cracks are clearly captured. The large blocks of

the shell move while the small fragments are being pushed by the impactor. The

method is suitable for analysis of progressive fracture and fragmentation of shell

structures with large number of cracks.

Figure 2.8: Fracture process [37]

2.2.2 Modified Distinct Element Method

Meguro and Hakuno extended the distinct element method to account for frac-

ture of concrete structures [38], calling it the Modified Distinct Element Method

(MDEM). The method has been applied to problems of concrete fracture, which

could not be solved by the conventional DEM [38]. In MDEM, the concrete gravel

and mortar are represented as circular particle elements and nonlinear springs re-

ferred as pore-springs. The model can therefore include continuity because of the
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pore-spring. The model gradually becomes plastic as the pore-springs are frac-

tured. The MDEM automatically conveys the nonlinearity of the medium. While

the pore-springs are unyielding, the medium behaves as a continuum. Once the

pore-springs are destroyed then the model starts to behave as a discrete body.

Therefore, MDEM can follow the total fracture process, including the discon-

tinuous medium [38]. The MDEM was used to simulate the dynamic fracture

behaviour of concrete structures. Figure 2.9 shows the analysis of a frame that is

subject to a horizontal impulsive load. The three diagrams in the first row of the

figure show the normal compressive force distributions. The left diagram on the

top row shows the particle distribution in the initial state. While the diagrams

in the bottom row are the mortar spring distributions [38].

Figure 2.9: Fracture of a rigid-frame concrete structure under horizontal impulsive
loading [38]

Figure 2.10 shows the fracture mechanism of the masonry concrete wall subject

to horizontal sinusoidal loading. As presented, the fracture occurs within the wall.

Cracks appear at stage between the column and the bottom wall. The findings of

using the method on different structures with different dynamic loadings showed

good agreement with laboratory tests performed on specimens in the past as

well as comparison with actual seismic damage that was observed from past

earthquakes [38].
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Figure 2.10: Fracture of masonry concrete wall with a frame subject to sinusoidal
horizontal loading

2.2.3 Extended Distinct Element Method

Another modification to the original DEM is presented in this section done by

Hakuno and Meguro [39][40], and is called the Extended Distinct Element Method

(EDEM). The EDEM was developed where pore springs between rigid bodies

could deal with continuous media . However the results from the papers explained

that the EDEM requires a large calculation time because it involves explicit nu-

merical integration, which requires a very small time step. Therefore the method

is computationally very expensive for application to structures [39][40].

Sun et al. proposed a lattice element model for collapse analysis of RC bridges

subject to earthquakes by using the EDEM [41]. The lattice method was devel-

oped in Reference [42], and it was compared to the conventional FEM. It was

found that the analysis required less nodes, and a shorter CPU time [41]. Sun

et al. proposed a model similar to the lattice element model in Reference [42], but

the difference is in the details of modelling. With the model, the entire process of

a structural response to an earthquake, including partial failure and collapse of

whole structures was successfully simulated with good accuracy and CPU time

[41].

The lattice model is composed of two parts, pre-fracture and post-fracture of

the connecting springs. A concrete element consists of lumped masses connected

to one another by truss elements (concrete springs), and the reinforcement bars

are modelled as a discrete model, and an integrated model is used to describe the

main steel bars. The constitutive relations of the springs are presented by one-

dimensional material models. After spring fracture, the dynamic characteristics

22



CHAPTER 2. LITERATURE REVIEW

are described by DEM. The fracture of the concrete and steel are determined by

the ultimate strain of the material. A re-contact spring model is also proposed to

simulate re-contact between the concrete masses after springs are fractures. The

structure gradually changes from elastic to plastic and then to a discontinuous

medium as the springs yield. Also, the effect of structural damping is mimicked by

a viscous damper that is connected with a truss spring. The damping is assumed

as a Rayleigh damping in proportion to the connected mass and spring stiffness.

Experimental results of a RC cantilever column subjected to a static horizontal

cyclic load was used to verify the lattice model developed, and only in the pre-

collapse analysis. The results of this analysis showed acceptable results, for the

pre-collapse stage. The use of EDEM with the lattice model allowed to analyse the

process from elastic to collapse [41]. It was noted that the results were acceptable

but further work is required to improve the accuracy of the simulations before

collapse. Also, benchmark simulations must be compared with other existing

models to further verify the method.

Figure 2.11: Whole collapse of RC column using Lattice EDEM [41]
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2.3 Rigid Bodies Spring Models

The Rigid Bodies-Springs Model (RBSM) was developed by Kawai in 1977, as a

method that can analyse structures undergoing cracking or sliding. RBSM are

discrete models that are composed of rigid elements connected with two types

of springs, one resisting dilatation, and the other resisting shearing. They are

suitable for the plastic collapse analysis of structures using the concepts of plas-

tic hinges, hinge lines and slip lines introduced by zero spring constraints after

yielding [44]. The accuracy and convergence of the linear elastic solutions are not

guaranteed [45]. The effects of the finite rotation of the blocks on the collapse

load and mechanism were not taken into effect [46]. Accuracy and convergence

of linear elastic solutions are not guaranteed because normal strains and stresses

in the direction of inter-element boundaries are neglected, except in the case of

one-dimensional elements [47].

A. Tingatinga, Kawakami, and M. Shrestha presented a study to model

a three dimensional collapse simulation of wooden structures using the RBSM

under an earthquake load. The approach of RBSM is to divide the structure

into appropriate number of rigid elements connected by spring systems [48]. A

nonlinear analysis was carried out by using nonlinear springs to model the large

displacements [48].

A. Tingatinga, Kawakami, and M. Shrestha analysed the collapse of typical

wooden houses in Japan that are subjected to a doubly amplified 1995 Kobe

earthquake. The collapse of this structure is shown in Figure 2.12. A link system

used to model the plastic hinges were able to simulate the local failure causing

the total collapse of the house. Also, using this method, the weak points of the

structure became easily identifiable and reinforcement plans were presented by

the authors of this analysis [48].
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Figure 2.12: Collapse of Wooden House [48]

2.4 Shifted Integration Technique

Toi developed the shifted integration technique for modelling collapse of struc-

tures using the finite element method by using linear and cubic finite elements for

beams and axisymmetric shells. The strain energy approximations were compared

to the RBSM [47]. Toi was the first to find the relations between the locations

of numerical integration points and the points with occurrences of plastic hinges.
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The linear Timoshenko beam element and the cubic beam element, as well as

the RBSM, can be used in plastic collapse analysis by using plastic hinges, where

the occurrence of plastic hinges can be controlled by the shifting of locations of

the numerical integration points. This shifting technique, defined as the ’shifted

integration technique’, was shown to be effective in the finite element collapse

analysis of framed structure. The shifting formed plastic hinges at the exact lo-

cations where they were expected to form, such as at clamped ends, member joints

and concentrated load points locations. There was a minor loss in the accuracy

of displacement, but the accuracy of the solutions for plastic collapse load had

improved. The equivalence conditions between the strain energy approximations

of those finite elements and the physical models, the rigid-bodies-spring-models,

in which the locations of stress evaluations and plastic hinge formulations are

explicitly given, were considered [47].

2.4.1 Adaptive Shifted Integration Technique

Toi and Isobe implemented an adaptation procedure to improve the accuracy

of the displacement solution [49]. The numerical integration points in an an

elastically deformed element are placed at the optimal points for linear analysis,

which are the midpoint in the linear Timoshenko beam element, and Gaussian

integration points in the cubic beam element. The shifted integration technique

is applied immediately after the occurrence of a fully plastic section to form a

plastic hinge exactly at that section. This procedure is called the Adaptively

Shifted Integration Technique (ASI) [49]. It was found that this method gave

accurate results in plastic collapse analysis with low number of elements. Since

a low number of elements was attainable, the computational cost of a large-scale

plastic collapse analysis is drastically lowered. It was noted that buckling and

dynamic collapse problems were to be considered in future analysis.

2.4.2 ASI-Gauss Technique

Further research has been done by Lynn and Isobe to improve the ASI into a

modified ASI-Gauss technique, where numerical integration points are placed in

a way that the stresses and strains are are calculated at the Gaussian integra-
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tion points of the two element member. The results showed that the ASI-Gauss

technique had higher accuracy than the ASI technique in the elastic range [11].

Lynn and Isobe performed an elasto-plastic analysis under static and dynamic

loading, and it was confirmed that "nearly confirmed" solutions were obtained

when the number of elements per member is two. Furthermore, due to the diffi-

culty in determining the loads that result from impact in structures, applying the

impact loads as nodal forces deems to falsely simulate impact[11]. The impact

phenomenon was presented by means of contact between elements involved, using

a contact algorithm.

Lynn and Isobe also applied the ASI-Gauss technique a dynamic analysis with

high non-linearities and discontinuities, by considering the impact of an aircraft

against a 10 storey steel framed structure. The structure was assumed to be made

of steel, while the aircraft was made of duralumin. The 10 storied structure was

assumed to be fixed at the lower ends. The aircraft had zero degree of inclination

from the horizon, and an initial velocity was applied to it [11]. The collapse of

the structure due to the impact is shown in Figure 2.13. The results showed a

relatively low computational cost with reference to the scale of the problem. The

authors mentioned that further study is required to clarify the effect of the size of

the aircraft on the impact damage and to evaluate the structural damage caused

by the tensile stresses of the columns [11]. The only difference between ASI and

ASI-Gauss is in the initial location of the numerical integration point [50].

Katahira et al. implemented the ASI-Gauss technique into a nonlinear finite

element code to develop an accurate seismic collapse simulator, including con-

sidering structural discontinuities [51]. A comparison of the conventional finite

element scheme in which the numerical integration point of each element is fixed at

the midpoint, the ASI technique and the ASI-Gauss technique was also presented.

Analysis of a frame under seismic excitation was performed. The results showed

that the conventional finite element scheme had a very slow convergence and only

converges when a 64-element model is used. The ASI technique showed faster

convergence results than the finite element scheme, but not with two element

model since there is deficiency in accuracy in the elastic stage. The ASI-Gauss

technique showed a very fast convergence, since the stress evaluation points are
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Figure 2.13: Collapse of steel framed structure due to impact of aircraft using
the ASI-Gauss technique for analysis [50]

adaptively controlled in both the elastic and plastic ranges. Therefore, the ASI-

Gauss technique gave realistic results in a short calculation time; however the

damping matrices and the member properties such as local buckling were not

considered [51].

Papadrakakis et al. performed a seismic collapse analysis on a 22 storey framed

structure using a nonlinear finite element method with the ASI-Gauss technique

[52]. The collapse of the frame is shown in Figure 2.14. The code that was used

included contact between members. The results showed acceptable results for a

numerical estimation of the seismic design of the large-scale framed structures.

The authors noted that future work is needed to consider the damping matrices,
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and more details in the material properties.

Figure 2.14: Seismic Collapse of Frame using the ASI-Gauss Technique [52]

2.5 Applied Element Method

The Applied Element Method (AEM), was developed by Meguro and Tagel-Din,

and is based on combining FEM and DEM. In AEM the members are divided into

rigid elements connected through the surface using shear and normal springs, that

represent the stresses and strains within the structure. The AEM was developed

to aid in the analysis of highly nonlinear behaviour of structures, such as crack

initiation, crack propagation, separation of structural elements, rigid body motion

of failed elements and total collapse of the structure [6]. Once the stresses in

the springs exceed the ultimate yield value, the springs are disconnected and

the discontinuous behaviour can be modelled. Several works have been done

in this area to implement the collapse behaviour of structures. The Extreme

Loading software was developed as a commercial software to analyse structures

by using the AEM. The major advantages of the method come from the simplicity

in the modelling analysis as well as the low CPU time. The AEM has been

successful in modelling the collapse of structures under earthquake loading and

blast loads, incorporating highly nonlinear behaviour, such as crack initiation,

crack propagation [54].

There have been several modifications to the method as well as applications

to progressive collapse of structures during the last 20 years. A commercial

software was also developed using the AEM for design and modelling of structures.

The commercial software is called the Extreme Loading Software (ELS). Several

researchers have used the software to model structures under different loadings
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such as blast loadings, earthquakes and impact, and found relatively good results.

Some of the applications using ELS are shown below.

2.5.1 Progressive Collapse of RC structures using ELS

Helmy, Salem, and Mourad evaluated the resistance of RC structures designed,

according to the American Concrete Institute 318-08 (ACI), to progressive col-

lapse initiated by the loss of a primary vertical support [55]. ELS was used for

the analysis of a 10-storey RC frame structure, with seven equal 6 metre bays in

each direction. The cases of analysis were based on the General Services Admin-

istration Code specifications and were; removal of a corner column, removal of an

edge column, removal of an internal column, removal of another internal column

near the structure edge, removal of an edge shear wall, removal of an internal

shear wall, and removal of an internal core corner. All the removals are to be

taken from the ground floor.

The authors first analysed all the mentioned cases in 2D [55] . It was recom-

mended that the consideration of debris collision should not be considered in 2D

analysis since, it resulted in a 100 % chance that collapse of the structure would

occur, as shown in Figures 2.15 and 2.16.

A 3D analysis was then performed by these authors for all the cases shown in

Figure 2.17. All the cases showed partial collapse except for the internal shear

wall and core corner cases. These cases did not include slabs. When the slabs

were added no collapse took place. This research showed that modelling collapse

cases using the ELS was an efficient way and code requirements were met.

Figure 2.15: 2D Frame analysis [55]

Figure 2.16: 2D Frame analysis while considering debris collision [55]
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Figure 2.17: 3D Frame analysis [55]

Rahman, Elfouly, and Booth used the alternate path method to analyse a 5-

story building for progressive collapse based on the criteria of the Department of

Defence [56]. Two different wall sections were removed for the analysis. The ELS

was used for the analysis for a 3D nonlinear dynamic analysis. The results showed

that composite deck floor slabs were able to bridge over the removed wall sections.

Re-distribution of gravity loads was achievable from the slabs to the adjacent

wall components. The study provided an understanding of the composite deck

floor-cold-formed steel stud bearing walls building system in resisting progressive

collapse [56].

Lupoae and Bucur modelled the controlled demolition of a 6-storey reinforced

concrete frame [57] using the ELS software. In order to demonstrate a demolition,

several steps needed to take place. The sequence in which the elements destruc-

tion had to be presented, as well as the time of analysis and time step. Figure 2.18

displays images of the demolition of the building at different stages, compares to

the ELS software generated results. The results show good accordance with the

real collapse.

As well as using the AEM and its accompanying ELS for modelling structures,

researchers have implemented modifications to the method in order to increase

its usability and performance. Those modifications are explained in the following

sections.

2.5.2 Improved Applied Element Method

AEM has shown high accuracy; however, it is hard to handle non-rectangular

cross-sections. The Improved Applied Element Method [58], IAEM, is therefore

introduced by Elkholy, Tagel-Din, and Meguro to handle steel materials such as

I-beam cross-sections, and U-channels. This was done by using two extensions
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Figure 2.18: Comparison of Real Demolition vs ELS [57]

of the AEM: (1) improving the element type to follow any change in the non-

rectangle cross-section thickness and (2) allowing different thickness to be used

for calculating normal and shear stiffness [58].

A steel beam with an I cross-section was also analysed by the authors [58].

The results of both AEM and IAEM deflection results are shown in Table 2.1. The

results showed that the number of elements required in IAEM is significantly lower

than in AEM, as well as the DOF required, with a low change in error difference.

This shows that the IAEM can get almost the same results as AEM but 120

times faster and with a model that is 355 times smaller. The error percentage is

the difference with the solution obtained from AEM and IAEM compared to the

analytical solution.

Table 2.1: Comparison AEM vs IAEM steel beam

No. elements No. DOF CPU Time [sec] Deflection [mm] Error %
AEM 6040 17940 120.1 0.9003 +2.31
IAEM 17 45 > 1 0.8657 -1.59
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A dynamic analysis of a 15 storey 2D frame was also performed. The columns

are I-beams with the same cross-section. Using the IAEM, 870 elements were

needed, while 543,750 elements were needed using conventional AEM. The results

showed that the first 8 modes of vibration of the structure had less than 1.5%

difference with the conventional AEM. This shows that almost the same results

were obtained using a significantly different number of elements.

Finally, the collapse analysis of a 30 storey frame structure. The structure

was subjected to a localized failure due to fire effect, modelled by changing the

steel material properties for the members undergoing fire. Figure 2.19 displays

the progressive collapse of the structure.

Figure 2.19: IAEM frame collapse [58]

2.5.3 Voronoi Applied Element Method

An AEM based on Voronoi shape was developed, where the elements are based on

the Voronoi tessellation [59]. Representing the domain within the elements is done

by associating the locations of the elements nodes in the physical domain, with

the closest member(s) of the element nodal set with respect to Euclidean distance.

Using the Voronoi Applied Element Method (VAEM), the element nodes can be

placed in the physical domain without any constraint. This gives the advantage

of being able to fit any domain shape without considerably reducing the element

size in the original AEM. The advantages of the method were that the domain

was easy to fit, the numerical Poisson’s ratio is not required, varying the element
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size is easy to implement and finally, the displacement solution is independent of

element size. The formulation of the method is displayed in the next chapter.

A simulation of a reinforced concrete beam was carried out by Worakanchana

and Meguro [59]. Figure 2.20 shows the crack of the beam from the analysis

using VAEM. By comparing the crack patterns from the VAEM, the AEM and

the actual damage, it was observed that crack patterns from the VAEM were

closer to the actual crack patterns rather than the AEM.

(a) Experimental crack pattern [59]

(b) VAEM crack pattern [59]

(c) AEM crack pattern [59]

Figure 2.20: Comparison of crack pattern of beam [59]

2.6 Summary of Methods and Conclusion

Different methods that have been used in modelling the progressive collapse of

structures were presented in this chapter. The advantages and disadvantages of

the methods mentioned are summarized in Table 2.2.
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Table 2.2: Summary of Advantages and disadvantages of Methods

Method Advantages Disadvantages
FEM Accurate in continuum phase Cannot model element separa-

tion
DEM Can model element separation Not efficient in continuum

New DEM Can model continuum behaviour New method should be coupled
with original method

FEM-DEM Can model collapse of structures
by using FEM for small displace-
ments and DEM for large dis-
placements

Complexity in coupled equations

MDEM Can model continuous media -
such as concrete

Explicit - requires large compu-
tational time

EDEM Can model collapse of structures Explicit - requires large compu-
tational time

RBSM Can analyse structures undergo-
ing cracking or sliding. Suitable
for plastic collapse analysis using
plastic hinges, hinges lines and
slip lines

The accuracy and convergence
of the linear elastic solutions are
not guaranteed. The effects of
rotation are not taken into ac-
count.

ASI-Gauss Gives realistic results in short
period of time

Damping matrices are not con-
sidered.

AEM Can model collapse of struc-
tures. accurate in continuum
and discontinuous phase

-

Table 2.3 shows what the formulations of the methods are based on. The FEM

and DEM are considered to have been original formulations, and the remainder

of the methods are formulated based on improvements or modifications to the

methods. The RBSM, although based on the FEM was one of the first methods

to use springs between elements to represent discrete behaviour.

From this review it is clear that there were three different approaches to modelling

the collapse of structures behaviour. The first is by combining the finite element

method and the discrete element method, where the finite element method was

used for the continuum phase, and the discrete element method models in the

discontinuous phase.

Another approach that was found in most of the presented solution models is

the use of springs between elements. The rigid bodies spring model was one of the
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Table 2.3: Summary of methods formulation basis

Method Formulation
FEM Original
Discrete element method Original
FEM-DEM Coupling between FEM and

DEM
New Distinct Element method Based on DEM
RBSM Original Springs based method
EDEM Based on RBSM and DEM
MDEM Based on RBSM and DEM
ASI-Gauss Based on FEM and use of plastic

hinges
AEM Based on RBSM

first methods to use springs between elements for analysis of collapse behaviour.

The method is based on using springs between rigid elements. When the elements

springs fail, the elements behave as discrete elements. The extended distinct

element method used pore springs between rigid bodies. The disadvantage of the

method is that it required large computational cost. A modification to the method

was presented by implementing the lattice element model in the extended distinct

element method. The method successfully modelled the collapse of reinforced

concrete structures, but further verifications to the method were required. The

modified distinct element method also used pore springs between elements to

model the progressive collapse behaviour of structures. The applied element

method can accurately model the behaviour of a structure from no loading to

total failure, since the elements can be separated and act both as continuum

when connected together with springs, and discrete when they separate.

The final approach, presented in the shifted integration technique, is based

on finding the exact location of plastic hinges.

It is clear that the methods are related to one another and have been derived

by creating different modifications that allowed the presence of different types of

results. In the next chapter the formulation of the methods is presented.
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Chapter 3

Numerical Methods Approaches

This chapter is a summary of the formulations of some methods mentioned in

Chapter 2. The purpose is to demonstrate the evolution of the formulations,

to have a full understanding of the method used for modelling the collapse of

structures. Also, it is important to comprehend the difference between the com-

putational algorithms of the methods for a clearer view on the advantages and

disadvantages of each as well as their relationships to one another. The methods

formulations presented in this chapter are the finite element method, the discrete

model for continuum, the Lattice model using the Extended distinct element

method, the rigid bodies spring models, and the shifted integration technique.

The formulation of the Applied Element Method is presented in the next chap-

ter.

3.1 Mechanics of Continuous Bodies

Before describing the numerical methods, a couple of principles must first be in-

troduced. The mathematical models of structural problems are generated from

differential equations that satisfy the whole domain. These equations are for-

mulated from the three fundamental laws of mechanics; conservation of mass,

conservation of linear momentum, and conservation of angular momentum [60].

For Lagrangian description of problems, the conservation of mass is satisfied and

the conservation of angular momentum is symmetric, leaving the conservation of

linear momentum to be the leading equation that must satisfy the force equilib-
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rium. The principle of conservation of linear momentum can be derived either by

using Newton’s Second Law, or the principle of virtual displacements [61]. The

use of Newton’s laws required the isolation of a volume element of a structure

with all its applied and reactive forces. The sum of the static and dynamic forces

and moments acting on the element is then set to zero in order to retrieve the

equations of motion. For a simple mechanical system, this approach may be vi-

able since the free-body diagram can be set up, and it is a simple way to derive

the governing equations. However, this approach is more inconvenient for more

complicated systems, and the type of boundary conditions are not always clear

[61]. The energy principle is one of the simplest theories that can formulate a

structural problem, since, if the structural system is in equilibrium, then it has

potential energy [60]. In the energy approach the total work done in the vol-

ume element due to the actual forces moving through the virtual displacements

that are consistent with the geometric constraints are set to zero to obtain the

equations of motion [61]. The energy approach produces both the equations of

motions and the force boundary conditions, as well as the form of the variables

related to the boundary conditions. The energy expressions are also effective in

obtaining approximate solutions by direct variational methods, such as the finite

element method [61].

3.1.1 External and Internal Virtual Work

The work done by a force that acts on a material point and moves through a

displacement, is defined by the projection of the force in the direction of the dis-

placement times the magnitude of the displacement [61]. The work done through

virtual displacements is called virtual work. The virtual work done by actual

forces F in a body Ω is given by Equation 3.1.

δW =

∫
Ω

F · δudv (3.1)

where dv is the volume element in the material body Ω [61], δu is the virtual

displacement. The virtual work done by virtual forces moving through the actual
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displacement u is;

δW ∗ =

∫
Ω

δF · δudv (3.2)

The virtual work done by externally applied forces moving through their respec-

tive virtual displacements is called the external virtual work denoted by δWE.

Similarly, the virtual work done by internal forces moving though the virtual

displacements is called internal virtual work, denoted by δWI .

External Virtual Work

The external virtual work due to virtual displacements δu in a body Ω subjected

to body forces f per unit volume and surface tractions T per unit area of the

boundary ΓΩ is given by 3.3.

δWE = −
(∫

Ω

f · δudv +
∫
ΓΩ

T · δuds
)

(3.3)

where ds denotes the surface element. Th first integral extends over the volume

of the body, while the second integral extends over the surface of the body. The

negative sign indicates that the work is performed on the body. The external

virtual work done due to virtual body forces is given by;

δW ∗
E = −

(∫
Ω

δf · udv +
∫
Ωu

δt · uds
)

(3.4)

Internal Virtual Work

Internal stresses are experienced in bodies when they deform due to forces applied.

The movement of the particles in the body can be represented in terms of strains

[61]. The internal virtual work done due to the virtual displacement can be com-

puted. Assuming an infinitesimal material element of volume dv = dx1dx2dx3,

experiencing small virtual strains δεij , shown in Equation 3.5 due to the virtual

displacements δui; the work done by the force due to the actual stress σ11, in
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moving through the virtual displacement δu1 = δε11dx1 is shown in Equation 3.9.

δεij =
1

2

(
∂δui

∂xj

+
∂δuj

∂xi

)
(3.5)

(σ11dx2dx3)(δε11dx1) = σ11δε11dx1dx2dx3 (3.6)

The work done by the force due to stress σ12 in the shearing body from Figure

3.1 is

(σ12dx2dx3)(2δε12dx1) = 2σ12δε12dx1dx2dx3 (3.7)

Therefore the total virtual work done by the forces due to all the stresses is

(σ11δε11 + σ22δε22 + σ33δε33 + 2σ12δε12 + 2σ13δε13 + 2σ23δε23)dx1dx2dx3 = σijδεijdv

(3.8)

The total internal virtual work done δWI is obtained by integrating Equation 3.8

over the volume of the body, giving

δWI =

∫
Ω

σijδεijdv =

∫
Ω

σ : δεdv (3.9)

where “:” is the double dot product.

(a) by shear stress σ11 (b) by shear stress σ21

Figure 3.1: Virtual Work Done [61]
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3.2 Energy Principle Equations

3.2.1 The Principle of Virtual Displacements

The virtual work due to virtual displacements is the work done by the actual forces

required in moving particles of a body through virtual displacements. Considering

a rigid body with applied forces F1, F2, .., and the points subject to those forces

undergo virtual displacements δu1, δu2, ..., respectively. The external virtual work

done by the virtual displacements in given by Equation 3.10 [61].

δWE = −[F1 · δu1 + F2 · δu2 + ...+ Fn · δun] = −Fi · δui (3.10)

The internal virtual work done δWI = δU is zero because a rigid body does not

undergo any strains. Thus,

δWE = −Fi · δui = −
(
Σn

i=1Fi

)
· δu and δWI = 0 (3.11)

Now considering a body β in equilibrium under body forces f and boundary forces

T, and the initial configuration of the body C0, with volume denoted by Ω. u

is the displacement vector corresponding to the equilibrium configuration of the

body, and σ and ε are the stress and strain tensors respectively. In order to

determine the equations that govern the equilibrium configuration C, the body

should experience a virtual displacement δu from the true configuration. The

principle of virtual work can be stated as: If a continuous body is in equilibrium,

the virtual work of all actual forces in moving through a virtual displacement is

zero, given by Equation (3.12)

δWI + δWE = δW = 0 (3.12)

The principle of virtual displacements for deformable body can be expressed as

Equation (3.13)

∫
Ω

σ : δεdv −
∫
Ω

ρf · δudv −
∫
Γσ

T · δuds = 0 (3.13)
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3.2.2 The Principle of Minimum Potential Energy

Consider a body in static equilibrium under an applied force. Due to the load,

the structure experiences deformation, described by u(x) = [u1, u2, u3]
T . The

structure resists deformation by generating internal forces, where each internal

force is proportional to the amount of deformation. If the internal force is smaller

than the load, then the structure continues to deform to equilibrate the forces.

The internal force generated during deformation may be considered as the energy

stored in the structure. As the structure deforms, the internal force increases as

well as the energy in the structure. The stored energy is referred to as the strain

energy and is shown in Equation 3.14.

U(u) =
1

2

∫∫
Ω

σ(u) : ε(u)dΩ (3.14)

where the components of the strain tensor are defined as;

εij(u) =
1

2

(
δui

δxj

+
δuj

δxi

)
=

1

2
(ui,j + uj,i) (3.15)

where ui,j = δui/δxj. The strain energy U(u) is the energy required to produce

the displacement . Since U(u) does not depend on the deformation path in elastic

problems, it is a function of the displacement only. If the forces are applied to

the structure, and the deformation is in the direction of the applied forces, then

the work is done by those applied forces, and can be defined as

W (u) =

∫∫
Ω

u · fdΩ (3.16)

If the applied force is conservative(the load is independent of deformation), then

the work done is a negative value of the potential energy generated by the loads.

And since the strain energy U(u) is independent of the path, it is the potential

energy that is stored in the structure. The potential energy is the difference

between the strain energy and the work done, and is written as

Π(u) = U(u)−W (u) =
1

2

∫∫
Ω

σ(u) : ε(u)dΩ−
∫∫

Ω

u · fdΩ (3.17)
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3.3 Finite Element Method

Many problems are expressed in partial differential equations that cannot be

solved with analytical methods. Thus, an approximation is required, and can

be based on different types of discretisation. The discretisation methods ap-

proximate the differential equations with numerical model equations, which can

be solved using numerical methods. Since the solution can have a complicated

expression, the finite element can be used [62].

Figure 3.2 is used to interpolate the two nodes ξ1 and ξ2. The element is the

segment between the two nodes, and the values of the function are f1 and f2.

Approximating the function at an arbitrary point in the element gives

Figure 3.2: Interpolation of a one-variable function

f(ξ) =
ξ2 − ξ

ξ2 − ξ1
f1 +

ξ − ξ1
ξ2 − ξ1

f2 (3.18)

The interpolation can be written in the form

f(ξ) = N1(ξ)f1 +N2(ξ)f2 (3.19)

where N1 and N2 are functions of ξ and are known as the shape functions. The

shape functions must satisfy the following conditions

N1(ξ1) = 1, N1(ξ2) = 0 (3.20)

N2(ξ1) = 1, N2(ξ2) = 0 (3.21)
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The shape functions are shown in Figure 3.3.

Figure 3.3: 1D finite element e with shape functions

3.3.1 Isoparametric mapping

A solid component in the (x, y) plane should be divided into finite elements. For

the scope of this thesis quadrilateral elements are considered. First, a unit square

on plane (ξ, η) must be mapped to a quadrilateral on plane (x, y). The unit square

is a reference element. It is necessary to use a reference element so that different

shape functions are not needed to be built for different elements. Assume the

four nodes of the quadrilateral are labelled as 1, 2, 3, 4 in the counter-clockwise

direction. Thus on the (x, y) plane the four nodes have coordinates (x1, y1),

(x2, y2), (x3, y3), (x4, y4). The quadrilateral in both planes is shown in Figure 3.4.

Mapping a point in the (ξ, η) to a point in the (x, y) plane gives

(a) ξ, η plane (b) x, y plane

Figure 3.4: Quadrilateral in different planes

x = N1x1 +N2x2 +N3x3 +N4x4

y = N1y1 +N2y2 +N3y3 +N4y4 (3.22)
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Equation 3.22 can be written as

x(ξ) = Σn
i=1Ni(ξ)xi (3.23)

where n is the number of nodes in the element, for a linear quadrilateral n = 4.

Now the shape functions must be determined. On the plane (ξ, η), N1 should be

1 at node 1 and zero at the other three nodes. The four shapes functions are

N1 =
1

4
(1− ξ)(1− η) (3.24)

N2 =
1

4
(1 + ξ)(1− η) (3.25)

N3 =
1

4
(1 + ξ)(1 + η) (3.26)

N4 =
1

4
(1− ξ)(1 + η) (3.27)

The mapping is called isoparametric mapping because the shape functions are

used for interpolating geometry and displacements [60]. The displacements of

the four nodes are presented in vector q

q =
[
u1 v1 u2 v2 u3 v3 u4 v4

]T
(3.28)

N =

N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4

 (3.29)

The displacement vector is

u = Nq (3.30)

u(ξ) = ΣNi(ξ)ui (3.31)

Representing the strain field in terms of the nodal displacements, ε = Bq, where

B is a matrix depending on (ξ, η).
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3.3.2 Jacobian of the Mapping

The displacement gradient on the (ξ, η) plane is

∂u
∂ξ

∂u
∂η

 =
1

4

−(1− η) (1− η) (1 + η) −(1 + η)

−(1− ξ) (1− ξ) (1 + ξ) −(1 + ξ)



u1

u2

u3

u4

 (3.32)

Using the chain rule for converting the gradient on (ξ, η) to (x, y)

∂u
∂ξ

∂u
∂η

 =

∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

∂u
∂x

∂u
∂y

 (3.33)

The two by two matrix is the Jacobian matrix J of the map (ξ, η) to (x, y). The

elements of the Jacobian matrix are calculates as

J11 =
∂x

∂ξ
=

1

4
(1− η)(−x1 + x2) +

1

4
(1 + η)(x3 − x4) (3.34)

J12 =
∂y

∂ξ
=

1

4
(1− η)(−y1 + y2) +

1

4
(1 + η)(y3 − y4) (3.35)

J21 =
∂x

∂η
=

1

4
(1− ξ)(−x1 + x4) +

1

4
(1 + ξ)(−x2 + x3) (3.36)

J22 =
∂y

∂η
=

1

4
(1− ξ)(−y1 + y4) +

1

4
(1 + ξ)(−y2 + y3) (3.37)

Using Cramer’s rule to find ∂u
∂x

and ∂u
∂y

from Equation 3.33, gives

∂u
∂x

∂u
∂y

 =

∣∣∣∣∣∣
∂u
∂ξ

∂y
∂ξ

∂u
∂η

∂y
∂η

∣∣∣∣∣∣∣∣∣∣∣∣
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∂u
∂ξ

J12

∂u
∂η

J22

∣∣∣∣∣∣∣∣∣∣∣∣J11 J12

J21 J22

∣∣∣∣∣∣
=

1

detJ

∣∣∣∣∣∣
∂u
∂ξ

J12

∂u
∂η

J22

∣∣∣∣∣∣ (3.38)

∂u
∂x

∂u
∂y

 =
1

detJ

(
J22

∂u

∂ξ
− J12

∂u

∂η

)
(3.39)
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where ∂u
∂ξ

and ∂u
∂η

are known from Equation 3.32. Similar expressions can be

formed for ∂v
∂x

and ∂v
∂y

. The strain vector is

ε =
[(

∂u
∂x

)
,
(

∂v
∂y

)
,
(

∂u
∂y

+ ∂v
∂x

)]T
(3.40)

and since

ε = Bq (3.41)

δε = Bδq (3.42)

The entries to the B matrix are

B11 =
1

4detJ
[−J22(1− η) + J12(1− ξ)] (3.43)

Now the stress should be presented in terms of the nodal displacements. The in-

plane stresses are σ = [σx, σy, σxy]
T . The stress is related to the strain as

σ = Dε (3.44)

Under plane strain conditions, this can be explicitly be represented as
σx

σy

σxy

 =
E

(1 + ν)(1− 2ν)


1− ν ν 0

ν 1− ν 0

0 0 0.5− ν



εx

εy

εxy

 (3.45)

From Equation 3.41

σ = DBq (3.46)

Recall the internal work done from Equation 3.9. Substituting the terms from

Equation 3.42 and 3.46, results in the internal virtual work as

∂WI = δqTkq (3.47)
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where k is an integral over the volume of the element and presented as

k =

∫
Ω

BTDBdV (3.48)

Writing the internal virtual work in terms of the global degrees of freedom gives

∂WI = δQTK (3.49)

Recall the external virtual work, from Equation 3.3

∂WE =

(∫
Ω

f · δudv +
∫
ΓΩ

T · δuds
)

and replacing the displacement variation δu = Nδq

δWE =

∫
Ω

δuTfdv +

∫
ΓΩ

δuTTds (3.50)

δWE =

∫
Ω

NT δqTfdv +

∫
ΓΩ

NT δqTTds (3.51)

δWE = δqT
(∫

Ω

NTfdv +

∫
ΓΩ

NTTds

)
(3.52)

where the first integral is over the volume body, and the second over the surface

body where traction is prescribed. Let

F =

∫
Ω

NTfdv +

∫
ΓΩ

NTTds (3.53)

then Equation 3.52 becomes

δWE = δqTF (3.54)

The principle of virtual work requires that the ∂WE = ∂WI , so

δQTKQ = δQTF (3.55)

KQ = F (3.56)
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Large displacement can be handled in the framework. Refer to [63] for complete

large displacement formulations.

3.3.3 Differential Volume and Area

The differential volume dV is the differential area dA on the (x, y) plane multiplied

by the thickness of the element h. The integration will be over each element, and

then all elements will be summed. The integration will be carried out over the ξ, η

plane. Consider a rectangular infinitesimal element in the (ξ, η) plane, defined by

four point shown in Figure 3.5. The element maps to the (x, y) plane. The point

(ξ, η) maps to a vector x(ξ, η) on the (x, y) plane.

(a) on (ξ, η) plane (b) on (x, y) plane

Figure 3.5: Infinitesimal quadrilateral element

The quadrilateral is made of the vectors

dxξ = x(ξ + dξ, η)− x(ξ, η) =
∂x

∂ξ
dξ (3.57)

dxȷ = x(ξ, η + dη)− x(ξ, η) =
∂x

∂η
dη (3.58)

The area of the quadrilateral is the cross product of the two vectors

dA = |dxξ × xη| (3.59)
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Calculating the cross product gives

dxξ × xη =

∣∣∣∣∣∣∣∣∣
i j k

∂x
∂ξ
dξ ∂y

∂ξ
dξ 0

∂x
∂η
dη ∂y

∂η
dη 0

∣∣∣∣∣∣∣∣∣ = k

(
∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ

)
(3.60)

Therefore, the area of the differential element is

dA = detJdξdη (3.61)

The differential line length is

dL = |dxη|=

√(
∂x

∂η

)2

+

(
∂y

∂η

)2

dη (3.62)

The volume integral then becomes

k =

∫ 1

−1

∫ 1

−1

hBTDBdetJdξdη (3.63)

fb =

∫ 1

−1

∫ 1

−1

hNTbdetJdξdη (3.64)

ft = dL

∫ 1

−1

hNT tdη (3.65)

where h is the thickness of the element.

3.3.4 Numerical Integration

The finite element formulation requires solving Equations 3.63-3.65 over the do-

main for the construction of the element stiffness matrix and force vector [60].

Most integrals cannot be evaluated explicitly. It is usually faster to integrate them

numerically rather than analytically [60]. Among numerical integration methods,

the Gauss integration rule is most commonly used for its simplicity and extreme

accuracy [60]. The Gauss integration method integrates polynomials with the

order of 2np − 1 exactly, with np is the number of integration points.

Since the integration is carried out in the reference configuration ξ ∈ [−1,+1],
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then all the values must be transformed to the following configuration

∫
X

g(X)dX =

∫ +1

−1

g(ξ)
dX

dξ
dξ

∫ +1

1

g(ξ)J(ξ)dξ (3.66)

where g(ξ) is the function that should be integrated, and J is the Jacobian of

the transformation configuration, calculated in Equations 3.34-3.37. The integra-

tion is done numerically since the product g(ξ)J(ξ) is in general not a polynomial.

Therefore it is approximated by the sum

∫ +1

−1

g(ξ)J(ξ)dξ ≈
np∑
p=1

g(ξp)J(ξp)Wp (3.67)

where Wp are the weighting factors and ξp denote the coordinates of the evaluation

points.

3.4 Discrete Model for Continuum

The following method is the modification that was implemented to the original

discrete element method. The modification allows to model structures accurately

in continuum and in discrete behaviour. The modification to the method is based

on connective links between destroyed elements change to contact links of the

traditional DEM and the element arrangement patterns remain the same. The

DEM model for continuum dynamics problems was presented by [64] based on

the principle of minimum potential energy. The method used a seven-disc model

as well as an extension to a nine-disc model. The seven-disc model derivation is

presented in this section.

Consider an elastic plate that is divided into rigid disc elements, connected

by normal and tangential springs. Two potential compact arrangement patterns

are possible; type A and type B. Type A is a seven-disc model, while type B is a

nine-disc model. The model is presented in Figure 3.6.
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Figure 3.6: Discrete element method models based on rigid disc elements [64]

The total potential energy for the disc-spring system is

Π =
N∑
i

(UiVi) +
N∑
i

(uxiρüxiVi + uyiρüyiV i)−
N∑
i

(uxifxiVi + uyifyiVi)

−
N∑
i

(uxiT̄xiSi + uyiT̄yiSi) (3.68)

where Ui is the average strain energy around disc i, Vi is the volume of the disc, ρ

is the mass density, Si is the boundary area of the external force on the disc, uxi

and uyi are the displacements, üxi and üyi are the accelerations in the horizontal

and vertical directions, respectively. fxi, fyi and T̄xi, T̄yi are the components of the

body force and surface force in the horizontal and vertical directions, respectively.

The deformation of the body is presented through the deformation of the

springs. For a disc i that connects with p discs, the average strain energy around

disc i is

Ui =
1

Vi

p∑
j

1

2

[
1

2
knij(unj − uni)

2 +
1

2
ksij(usj − usi)

2

]
(3.69)

where knij and ksij are the normal and tangential spring constants between discs i

and j. Assuming the rotation angle between the x-axes and the normal direction
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of the spring as α, l = cosα and m = sinα, then

un = uxl + uym, us = uyl − uxm (3.70)

Substituting Equation 3.70 in 3.69 gives

Ui =
1

4Vi

p∑
j

knij[lij(uxj − uxi) +mij(uyj − uyi)]
2

+
1

4Vi

p∑
j

ksij[lij(uyj − uyi)−mij(uxj − uxi)]
2 (3.71)

Substituting Equation 3.71 into the total potential energy Equation 3.68, and

according to variational calculus ∂Π/∂uxi = 0, ∂Π/∂uyi = 0, üxi and üyi are given

by

üxi =
1

ρVi

(fxiVi + T̄xiSi +

p∑
j

knij[l
2
ij(uxj − uxi) + lijmij(uyj − uyi)]

+

p∑
j

ksij[m
2
ij(uxj − uxi)− lijmij(uyj − uyi)]

(3.72)

üyi =
1

ρVi

(fyiVi + T̄yiSi +

p∑
j

knij[lijmij(uxj − uxi) +m2
ij(uyj − uyi)]

+

p∑
j

ksij[−lijmij(uxj − uxi) + l2ij(uyj − uyi)]

(3.73)

At moment t, üxi and üyi are obtained from Equations 3.72 and 3.73. At moment

t+∆t

[u̇xi]t+∆t = [u̇xi]t + [üxi]t∆t (3.74)

[u̇yi]t+∆t = [u̇yi]t + [üyi]t∆t (3.75)

[uxi]t+∆t = [uxi]t + [u̇xi]t∆t (3.76)

[uyi]t+∆t = [uyi]t + [u̇yi]t∆t (3.77)

where ∆t is a time increment.
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Figure 3.7: Seven-disc model

Seven-disc model

The seven-disc model is presented in Figure 3.7.

A = r2(2kn1 +
1

8
kn2 +

1/8

k n3
), B = r2(

9

8
kn2 +

9

8
kn3), (3.78)

C1 = r2(
3

8
kn2 +

3

8
kn3), C2 = r2(

3

8
ks2 +

3

8
ks3), (3.79)

D = r2(2ks1 +
1

2
ks2 +

1

2
ks3), E = r2(

√
3

8
kn2 −

√
3

8
kn3) (3.80)

F = r2(
3
√
3

8
kn2 −

3
√
3

8
kn3), G = r2(−

√
3

4
ks2 +

√
3

4
ks3) (3.81)

where δ = V/(2
√
3r2) is the disc thickness. For orthotropic c16 = 0 and

c26 = 0 [64].

3.5 Lattice Model for RC using EDEM

The lattice model is composed of two parts; before fracture, and after fracture.

A concrete element is modelled as a lattice model consisting of two lumped-

masses connected by axial truss elements as shown in Figure 3.8. The consti-

tutive model of a concrete truss element is therefore described by a uni-axial

tensile/compressive law.

The dynamic characteristics of the model after spring fracture are described

by DEM. Re-contact of the fracture materials is also considered. The lumped-

54



CHAPTER 3. NUMERICAL METHODS APPROACHES

Figure 3.8: Concrete Lattice Model [41]

mass cannot be treated as an abstract point in this case, rather as a planar

circular solid with a some radius after fracture of all connected springs [41]. Each

two-dimensional square element is modelled as a lattice model cell composed of

four lumped masses and six uni-axial concrete truss members. Every concrete

truss member consists of a concrete spring and damper. The initial stiffness of

the horizontal and vertical truss is k1, and the two diagonal trusses is k2. Under

a unit compressive load the vertical and horizontal deformations of the concrete

element are shown in Equations 3.82 and 3.83.

δC1 =
2l

EA
=

2l

Etl
=

2

Et
(3.82)

δC2 = vδ1 =
2v

Et
(3.83)

where E is the elastic modulus, and v is the Poisson’s ratio of concrete, t, A

and l are the thickness, the sectional area and the length of the element. The

deformations of the lattice model are;

δL1 =
2(2k1 + k2)

2k1(k1 + k2)
(3.84)

δL2 =
k

2k1(k1 + k2)
(3.85)

Equating the deformations of the two systems gives;

δC1 = δL1 , δC2 = δL2 (3.86)
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k1 and k2 are;

k1 =
1

2(1 + v)
Et (3.87)

k2 =
v

1− v2
Et (3.88)

Under a unit shear load, the shear deformations for the systems are;

δC3 =
2

GA/L
=

2

Gt
=

1 + v

Et
(3.89)

δL3 =
2

k2
(3.90)

Equating 3.89 and 3.90, gives;

k2 =
Et

2(1 + v)
(3.91)

It must be noted that Equations 3.88 and 3.91 are satisfied simultaneously when

v = 1/3. For concrete, this value increases the limit of 0.1 − 0.2. Therefore,

Equation 3.88 should be used for a beam-like member, where the deformation is

primarily a results of flexural strain. Equation 3.91 should be used for wall-like

members in which the deformation is mainly due to the shear strain [41].

For modelling the steel bars in the concrete, the stiffness of the springs are

shown in Equation 3.92. The steel bars are treated as lumped masses connected

to one another by an axial spring.

ks =
EsAs

ls
(3.92)

where, Es is the elastic modulus of the steel, As is the cross-sectional area of the

steel bar, and ls is the displacement between two adjacent nodes. The nodes of

the steel bar and the concrete are independent of one another. The model can

simulate local failure, and local buckling of the bar, and stripping of the concrete

cover. The springs for bonding and sliding between steel and concrete are also

considered.
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3.6 Rigid Bodies Spring Models

The Rigid Bodies Spring Models (RBSM), has several different formulations for

different element types. For the scope of this project, the beam element and

the plane strain elements are the most relevant, and are shown in the following

sections.

3.6.1 Formulation of Beam Element

Consider the deformation of two rigid bars that are connected by one rotational

spring in the middle, shown in Figure 3.9. At locations A,B, and C, the bars have

a displacement of ui−1, ui and ui+1, and a force applied of Xi−1,Xi and Xi+1,

respectively. The strain energy of the bar is shown in Equation 3.93. where, kb

Figure 3.9: Beam Bending Element [43]

is the spring constant. Then it is written in terms of the displacements ui−1, ui

and ui+1, Equation 3.94

V (θi−1, θi) =
kb
2
(θi − θi−1)

2 (3.93)

V (ui−1, ui, ui+1) =
kb
2

[(
ui+1 − ui

li

)
−
(
ui − ui−1

li−1

)]2
(3.94)

The stiffness matrix can then be resolved by applying Castigliano’s theorem on

Equation 3.94, which leads to the stiffness matrix shown in Equation 3.101. The
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partial derivatives of the energy are as follows

∂V

∂ui−1

= k
( 1

li−1

)(ui+1 − ui

li
+

−ui + ui−1

li−1

)
(3.95)

∂V

∂ui

= k
(−1

li
− 1

li−1

)(ui+1 − ui

li
+

−ui + ui−1

li−1

)
(3.96)

∂V

∂ui+1

= k
(1
li

)(ui+1 − ui

li
+

−ui + ui−1

li−1

)
(3.97)

Rewriting the equations in terms of ui−1, ui and ui+1, gives Equations 3.98 - 3.100

:

Xi−1 = k
[( 1

l2i−1

)
ui−1 −

(1
li

1

li−1

+
1

l2i−1

)
ui +

( 1

l2i−1

)
ui+1

]
(3.98)

Xi = k
[
−

(1
li

1

li−1

+
1

l2i−1

)
ui−1 +

(1
li
+

1

li−1

)2

ui +
(−1

li
− 1

li−1

)
ui+1

]
(3.99)

Xi+1 = k
[(1

li

1

li−1

)
ui−1 −

(1
li

1

li−1

+
1

l2i

)
ui +

( 1

l2i

)
ui+1

]
(3.100)

Rewriting Equations 3.98 - 3.100 in matrix format, gives the stiffness matrix in

Equation 3.101.


Xi−1

Xi

Xi+1

 = kb


1

l2i−1
sym

−1
li−1

(
1
li
+ 1

li−1

) (
1
li
+ 1

li−1

)2

−1
li−1li

−1
li−1

(
1
li
+ 1

li−1

)
1
l2i



ui−1

ui

ui+1

 (3.101)

3.6.2 Plane strain elements

Considering the beam bending model in plane strain, where two rigid triangular

plates are connected by three different types of springs at the middle of the

boundary edges, shown in Figure 3.10. Points 1 and 2 are the centroids of ∆ABC

and ∆ACD. ∆ABC and ∆ACD are connected at the middle of AC by three

types of springs kd, ks and kr. The centroid displacements of the plate are denoted

by (u1, v1, θ1) and (u2, v2, θ2).

The potential energy of the two elements is given in Equation 3.102:

V =
1

2
ks(u1 + u1)

2 +
1

2
kd(v1 + v2)

2 (3.102)
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(a) RBSM 2 element body (b) RBSM deformed

Figure 3.10: Plane strain element in RBSM [43]

Applying Castigliano’s theorem gives;

∂V

∂u1

= ks(u1 + u2),
∂V

∂u2

= ks(u1 + u2) (3.103)

∂V

∂v1
= kd(v1 + v2),

∂V

∂v2
= kd(v1 + v2) (3.104)

Writing the equations in matrix format gives:
ks 0 ks 0

0 kd 0 kd

ks 0 ks 0

0 kd 0 kd




u1

v1

u2

v2

 (3.105)

Considering that the angle of rotation is shown in Figure 3.10 and is γ, and given

that a transformation is matrix is given by

 cosθ sinθ

−sinθ cosθ

. Since θ = 90 − γ,

then the transformation matrix will be

 sinγ cosγ

−cosγ sinγ

. For simplicity sin(γ)

and cos(γ) will be denoted by s and c respectively. Transforming the stiffness

matrix using T ′K, Equation 3.106:
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s −c 0 0

c s 0 0

0 0 s −c

0 0 c s




ks 0 ks 0

0 kd 0 kd

ks 0 ks 0

0 kd 0 kd

 =


kss −kdc 0 0

ksc kds 0 0

0 0 kss −kdc

0 0 ksc kds

 (3.106)

now,T ′KT gives the stiffness matrix shown in Equation 3.108.
kss −kdc 0 0

ksc kds 0 0

0 0 kss −kdc

0 0 ksc kds

×


s c 0 0

−c s 0 0

0 0 s c

0 0 −c s

 = (3.107)


kss

2 + kdc
2 kssc− kdsc 0 0

kssc− kdsc ksc
2 + kds

2 0 0

0 0 kss
2 + kdc

2 kssc− kdsc

0 0 kssc− kdsc ksc
2 + kds

2

 (3.108)



kdy
2 + ksx

2

−(kd − ks)xy kdx
2 + ksy

2

kdy∆11 − ksx∆21 −(kdx∆11 + ksy∆21) kd∆
2
11 + ks∆

2
21 + krl

2
35

−(kdy
2 + ksx

2) (kd − ks)xy −(kdy∆11 − ksx∆21 kdy
2 + ksx

2

(kd − ks)xy −(kdx
2 + ksy

2) kdx∆11 + ksy∆21 −(kd − ks)xy kdx
2 + ksy

2

kdy∆22 − ksx∆12 −(kdx∆22 + ksy∆12) kd∆11∆22 + ks∆21∆12 − krl
2
35 −(kdy∆22 − ksx∆12) kdx∆22 + ksy∆12 kd∆

2
22 + ks∆

2
12 + krl

2
35


(3.109)

where y = y53 and x = x53.

Consider a set of 3D rigid bodies of arbitrary shape. They are assumed to be in

equilibrium with external loads.

3.7 Shifted Integration Technique Formulation

There are two versions of the shifted integration technique; one utilising the

Bernoulli-Euler beam elements, and the other using the linear Timoshenko beam

elements. Since the application of the technique will be for modelling fracture
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and collapse, the Timoshenko beam element with one integration point is more

suitable, because fracture cannot be considered by a single Bernoulli-Euler beam

element [50].

(a) Timoshenko beam element (b) Rigid Body Spring Model element

Figure 3.11: Timoshenko beam element compared to RBSM element [50]

3.7.1 Adaptively Shifted Integration Technique

The location of the numerical integration point during the elastic stage is the

midpoint of the element. When a fully plastic sections occurs, the numerical

integration point is shifted to the location at where the plastic hinge would occur.

Figure 3.11 is a linear Timoshenko beam element and its equivalence to the

RBSM. The location of the numerical integration point and stress evaluation

point is shown in Equation 3.110 [47].

s1 = −r1 (3.110)

When the entire region is elastic, s = s1 = 0 and r = r1 = 0, since the integration

point is at midpoint. The stiffness matrix for the element is as follows;

[KE] = l[B(0)]T [De(0)][B(0)] (3.111)

The strain vector {∆)nε(0)} and the force increment vector {∆)nσ(0)} at r =

r1 = 0 are;

{∆nε(0)} = [B(0)]{∆nu} (3.112)

{∆nσ(0)} = [De(0)]{∆nε(0)} (3.113)
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The forces calculated in Equation 3.113 are at the midpoint of the element. The

bending moments along the elastic deformed element are;

∆nMx(s) = ∆nMx(0)−∆nVy(0)
ls
2

(3.114)

∆nMy(s) = ∆nMy(0)−∆nVx(0)
ls
2

(3.115)

Once a plastic section has fully formed, the integration points are shifted to

s = s1 = −r1. The elemental stiffness matrix, the generalized strain and the

force increment vectors are as follows;

[KE] = l[B(s1)]
T [Dp(r1)][B(s1)] (3.116)

{∆nε(r1)} = [B(s1)]{∆nu} (3.117)

{∆nσ(r1} = [Dp(r1)]{∆nε(r1)} (3.118)

where [Dp(r)] is the force-strain matrix for plastic deformation. This matrix can

be expressed as;

[Dp(r1)] = [De(r1)]−
[De(r1)]{∂f/∂σ}[∂f/∂σ][De(r1)]

H ′ + [∂f/∂σ][De(r1)]{∂f/∂σ}
(3.119)

where, H ′ is the strain hardening coefficient and f is the plastic potential ex-

pressed as;

f = fy(σ(r1))− 1 = 0 (3.120)

3.7.2 ASI-Gauss Technique

In both the ASI and ASI-Gauss techniques, the numerical integration point is

shifted adaptively if a full plastic section is developed to express a plastic hinge.

When the plastic hinge is unloaded the numerical integration point is shifted back

to its initial locations. The initial location of the integration point in the ASI

is the midpoint of the beam element, and is considered optimal when the entire

element is elastic. Bending deformations are inaccurate because the displacement

functions of the element are defined by linear functions. An efficient way to solve
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the discrepancy is using the ASI-Guass technique where the numerical integration

points of a member coincide with the Gaussian integration points of the mem-

ber, shown in Figure 3.12. The locations are optimal for two-point integration

in Gaussian quadrature and the accuracy of the deformation defined by a cubic

function is guaranteed. The relation between the locations of the numerical inte-

(a) ASI (b) ASI-Gauss

Figure 3.12: ASI element compared to ASI-Gauss [50]

gration point and the stress evaluation point is the same as Equation 3.110 [47].

The numerical integration points of the elements in the ASI-Gauss technique are

places at s = s1 = sg when the element is entirely elastic. The initial locations of

the numerical integration points in the ASI-Gauss technique is sg = 1−(2/
√
(3)),

and the stress evaluation points is rg = −sg = −1 + (2/
√
(3)). Therefore, the

elemental stiffness matrix, the strain and the force increment vectors in the ASI-

Gauss technique are shown in Equations 3.121-3.123.

[KE] = l[B(sg)]
T [De(rg)][B(s1g)] (3.121)

{∆nε(rg)} = [B(sg)]{∆nu} (3.122)

{∆nσ(re} = [De(rg)]{∆nε(rg)} (3.123)

The bending moments are;

∆nMx(s) = ∆nMx(sg)−∆nVy(sg)
l

2
(s+ sg) (3.124)

∆nMy(s) = ∆nMy(sg)−∆nVx(sg)
l

2
(s+ sg) (3.125)
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The yield condition by the plastic flow theory is;

f =

(
Mx

Mxo

)2

+

(
My

Myo

)2

+

(
N

N0

)2

− 1 = fy − 1 = 0 (3.126)

where fy is the yield function, and Mx,My and N are the bending moments

around the x-axis, y-axis and axial force respectively. The remainder of the

equations are the same as the ASI technique. By adaptively shifting the numerical

integration point of an element, a precise location of a plastic hinge is found and

highly accurate elasto-plastic solutions can be obtained with a very small number

of elements [50].
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Formulation of Linear and

Nonlinear Gaussian Based AEM
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Chapter 4

Applied Element Method

Formulation

To model the progressive collapse of structures the continuum and discrete ele-

ment behaviour must be considered to capture all stages of collapse. In Chapters

2 and 3, different methods were presented along with their formulations to present

the brief progression of methods used for modelling the progressive collapse. Out

of all the methods that were presented, the Applied Element Method stood out,

since it is based on combining the FEM and DEM in some sense. Since the

AEM was developed to aid in the analysis of highly nonlinear behaviour of struc-

tures, it is selected as the appropriate model to analyse the progressive collapse

of structures.

In this chapter a complete formulation of the AEM is presented along with

modifications to the method that have been presented in the previous decades

for use in different applications.

4.1 AEM Formulation for 2-D element

The AEM was developed in year 2000 by Meguro and Tagel-Din [6]. The ele-

ments in AEM are rigid bodies that are connected with sets of normal and shear

springs along the edges of the elements. The springs represent the two connecting

elements in that region. The material properties are specified through the spring

stiffness. For a 2-D element, three degrees-of-freedom are considered per element:
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4.1. AEM FORMULATION FOR 2-D ELEMENT

deflection in x, deflection in y and rotation [6].

Consider a linear spring that is subjected to axial forces at both ends of the

spring, f1 and f2. The displacement at each end of the spring is represented as u1

and u2. Assuming the spring is in equilibrium then the sum of the forces should

be zero. So, f1 + f2 = 0, or f1 = −f2. By using the spring constant k, the force

displacement relationship of each spring from Hooke’s law gives, k(u1 − u2) = f1

and k(u2 − u1) = f2. Rewriting these equations in matrix form gives

 k −k

−k k

u1

u2

 =

f1

f2

 (4.1)

The equivalent spring constant for a linear spring when considered as an axial

member with cross-sectional area A and length l is shown in Equation 4.2.

k =
EA

l
(4.2)

The stiffness matrix for a pair of elements is a 6×6 matrix shown in Equation

4.3. The upper left quadrant of the matrix is displayed in Equation 4.4 [6]. Each

spring location in an element is represented by a pair of normal and shear springs,

with stiffness displayed in Equation 4.5. The elements distribution is displayed

in Figure 4.1, and the details in elements are presented in Figure 4.2.

Figure 4.1: 2D AEM Elements [6]

K =

k11 k12

k21 k22

 (4.3)
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Figure 4.2: 2D AEM Elements degrees-of-freedom [65]

where k11 is

k11 =


Kn1 0 −Kn1bn1

0 Ks1 Ks1
a
2

−Kn1bn1 Ks1
a
2

(Kn1bn1) + (Ks1
a
4
)

 (4.4)

where Kn and Ks are

Kn =
Edt

a
; Ks =

GdT

a
(4.5)

where E is the Young’s Modulus of elasticity of the material; G is the shear

modulus of elasticity of the material; bn1 is the distance between the centre of

the element and the spring location, that can be positive, negative or zero; d is

the length from the tributary area each spring covers; a is the width from the

tributary area each spring covers (also the width of the element if the elements

are the same size, since the width of the element is also the width from centre to

centre of two adjacent elements); and t is the thickness of the element. K is the

stiffness matrix in the local system, represented by q in Figure 4.2. The local to

global transformation matrix L , Equation 4.6 is used to calculate the stiffness
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4.2. AEM MESHING AND ELEMENT DISTRIBUTION

matrix in the global system.

L =



c s 0 0 0 0

−s c 0 0 0 0

0 0 1 0 0 0

0 0 0 c s 0

0 0 0 −s c 0

0 0 0 0 0 1


(4.6)

where c = cos(φ) and s = sin(φ). φ is shown in Figure 4.2, and is the angle

between the local q axis, and the global y axis. The transformation of the local

K matrix to the global Kglobal matrix for one element is shown in Equation 4.7.

Kglobal = LTKL (4.7)

4.2 AEM Meshing and Element distribution

MATLAB is used to mesh beam structural elements. Consider a cantilever beam

displayed in Figure 4.3. As mentioned previously the AEM elements are rect-

angular, so distributing elements is straightforward in rectangular and square

shaped structures. Figure 4.3 shows the mesh distribution for different number

of elements.

8 nodes - x-direction

8 nodes - x-direction
2 nodes - y-direction

1
3

2
4

8 nodes - x-direction
3 nodes - y-direction

16 nodes - x-direction
3 nodes - y-direction
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Figure 4.3: Mesh distribution for structural beam

In the second mesh for the beam configuration, with 8 elements in the x-direction

and 2 in the y-direction, the connectivity of springs between elements 1,2,3 and 4

are presented in Figure 4.4c, where all edges are connected by springs. Figure 4.4a

displays the connectivity between elements 1 and 2, and Figure 4.4b shows the

connectivity between elements 1 and 3. For a structural frame shown in Figure

(a) Element 1-2 (b) Element 1-3 (c) Element 1-2-3-4

Figure 4.4: Connectivity between adjacent elements

4.5 the general meshing is shown, where the elements are connected by springs

through the faces of the elements.

(a) (b)

Figure 4.5: Frame meshing in AEM

4.2.1 Structures with multiple materials

One of the advantages of using springs between elements is that different material

properties can be easily represented in different springs. For example, consider
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modelling a reinforced concrete beam. The springs that are depicting the con-

crete behaviour will have the modulus of elasticity of concrete, while the springs

modelling the reinforcement will have the steel modulus of elasticity. Figure 4.6

displays an example of a beam with both concrete springs (represented in black)

and reinforcing steel springs (represented in red). The highlighted red area de-

picts the location of the steel reinforcement, since that is the tributary area of

all springs. Implementing this in the MATLAB code is done by defining which

spring from the element has the reinforcement properties, and the analysis will

be carried on. An example of this is displayed below.

Figure 4.6: Representation of a cantilever concrete and steel reinforcement springs

In order to analyse a structural beam in the AEM code, the following input

information is required:

• Material properties

• Beam geometry: span, width of cross-section, thickness of beam.

• AEM properties: Number of elements in the x-direction, number of ele-
ments in the y-direction, local dimensions of element (a and b), number of
springs.

• Connectivity table: node 1, node 2, element orientation.

4.3 Effect of Number of Springs and Elements

Using different numbers of elements and springs when modelling structural ele-

ments will lead to different accuracy in results. This section provides the effect of

the number of springs and number of elements in a system, and how increasing

the accuracy of an analysis is achieved by changing these two variables.
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4.3.1 Effect of Number of Springs Between Elements

Firstly, the number of springs between elements is considered. In elastic analysis

the number of springs may not seem as crucial as in nonlinear analysis, since

increasing the number of springs between elements leads to better analysis of

crack propagation. It is assumed that "2n" evenly-spaced springs are connecting

two elements together, where each spring represents the distance of "d=b/2n"

[6]. For translational degrees of freedom, number of connecting springs does not

affect the element stiffness, since decreasing the number of springs increases the

area represented by each spring, in the translational degrees-of-freedom case [6].

Theoretical rotational stiffness Kr, calculated from normal springs, is given in

Equation 4.8 [6].

Kr =

y=b/2∫
y=−b/2

Et

b
× bn1 × bn1 × dbn1 =

Et

3b
× 2(

b

2
)3 =

Etb2

12
(4.8)

The element rotational stiffness is obtained by summing up all the rotational

stiffness calculates for each spring separately. Therefore, the total rotational

stiffness is given in Equation 4.9. From Equation 4.8 substitute b = b/2n, since

b will now represent each spring separately. Therefore ETb2

12
will be ETb2

4n3 and is

multiplied by the number of springs.

Kr =
Etb2

4n3

n∑
i=1

(i− 0.5)2 (4.9)

where i is the spring number. The calculated rotational stiffness is a function

of the number of connecting springs. From Reference [6], it was found that the

rotational stiffness is smaller than the theoretical value by 25%, and the error

reduced to less than 1% when the number of connecting springs is larger than 10.

If the element size is relatively large in comparison to the structure size then the

rotational stiffness affects the accuracy. However if the element size is small then

the rotational stiffness cannot affect the system because the rotation between

elements becomes small [6].
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4.3.2 Effect of Element Size

The element size in the model is an important factor in the accuracy of results

[6]. Large elements increase the structure stiffness and thus the failure load of the

structure. A series of simulations were carried out of a laterally loaded cantilever

to show the element size effect. Two analyses were performed using 10 and 20

springs respectively [6]. Figure 4.7a displays the cantilever with different numbers

of base elements. Figure 4.7b shows the percentage error and CPU time for each

cantilever with 10 and 20 springs. The results show that there is an increase of

the CPU time as the number of elements increases, which is expected. Moreover,

the ratio of error decreases as the number of elements increases. Using 10 springs

resulted in half the CPU time of using 20 springs, but both spring cases resulted

in the same ratio of error [6]. It is concluded that using a large number of elements

with a relatively low number of connecting springs leads to a high accuracy with

acceptable CPU time. Therefore, in order to increase the accuracy of an analysis,

it is recommended to increase the number of elements rather than increasing the

number of springs [6].

(a) Cantilever beams with different number of
base elements

(b) CPU time and error difference

Figure 4.7: Effect of Element Size [6]

4.4 Large Displacement Analysis using AEM

The numerical procedure for simulating large displacement is shown below [66].

The modification to the displacement calculation equation is shown in Equation
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4.10.

K∆u = ∆f +Rm +RG (4.10)

where K is the linearised stiffness matrix; ∆u is the incremental displacement

vector; ∆f is the incremental load vector; Rm is the residual force vector due

to cracking or incompatibility between spring strains and stresses; and RG is

the residual force vector due to the geometrical changes in the structure during

loading. The limitations of the method are as follows: (1) complete symmetry

of the structure and loading must be avoided in buckling analysis; (2) small

displacement theory is assumed during each increment, therefore small increments

of load and displacements should be assumed; and (3) the apparent structure

stiffness decreases after buckling.
Box. 4.4.1: Large displacement analysis procedure in AEM

1. Assume that Rm and RG are null and solve Equation 4.10 to get ∆u.

2. Modify the structural geometry according to the calculated incremen-

tal displacements.

3. Modify the direction of the spring force vectors according to the new

element configuration. The geometrical changes generate incompati-

bility between the applied forces and internal stresses.

4. Verify whether cracking occurred and calculate Rm. In elastic anal-

ysis Rm = 0.

5. Calculate the element force vector, Fm, by summing the forces of the

springs around each element.

6. Calculate the geometrical residuals around each element with Equa-

tion 4.11.

RG = f − Fm (4.11)

7. Small deformations are assumed during each increment.

8. Calculate the stiffness matrix for the structure with the new config-

uration considering stiffness changes due to cracking or yielding.

9. Repeat the entire process.

A simply supported beam was analysed to test the accuracy of the modifi-
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cation for large displacement [66]. The beam has a span of 12m, square cross

section of 1m, and simply supported (pinned on one side and roller on the other),

with a point load at the midspan. The Young’s modulus is 210 MPa. Figure

4.8a displays the deflection of the beam without accounting for the modifications

for the large displacement analysis, while Figure 4.8b is the beam deflection with

large displacement modification considered. In the case of small displacement

analysis, the volume of the beam increases when the analysis approaches very

large deformations, and the roller does not move, which is unrealistic. By using

the large displacement theory, the more realistic results were found.

(a) Without large displacement modifications

(b) With large displacement modifications

Figure 4.8: Large Displacement of Simply supported beam [66]
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4.5 Modifications in AEM

As mentioned in the previous chapter, some modifications have been done to the

original AEM to improve the methods applicability. The modifications are the

Improved Applied Element Method in 2003, and the Voronoi Applied Element

method, 2008.

4.5.1 Improved Applied Element Method

The Improved Applied Element Method can accurately simulate the shear stiff-

ness without using a large number of springs [58]. The normal and shear stiffness

for each spring is shown in Equation 4.12.

Ki
N =

EdtiN
a

Ki
S =

GdtiS
a

(4.12)

where tiN and tis are the thickness represented by spring i for normal and shear

cases respectively. The differences in the values of t for each spring are due to the

change of effective area for both normal and shear directions. This modification

allows modelling different flanged steel sections, like I-beam, Box and Channel

cross-sections.There were also modifications in the dynamic properties. Recalling

that the general dynamic equation of motion governing the response of structure

in small displacement is shown in Equation 4.13.

[M ]{∆ü}+ [C]{∆u̇}+ [K]{∆u} = ∆f(t)− [M ]∆{üG} (4.13)

where [M ] is the mass matrix; [C] is the damping matrix and [K] is the non-

linear stiffness matrix; ∆f(t) is the incremental applied load vector; {∆ü}, {∆u̇},

{∆u} and {∆üG} are the incremental acceleration, velocity, displacement and

gravity acceleration vectors, respectively. The mass matrix and the polar moment

of inertia of each element are lumped at the element centroid. Equation 4.14

represents the value of lumped mass in each degree of freedom direction assuming
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elements having square shape [58].


M1

M2

M3

 =


D2 · ρ · tav
D2 · ρ · tav

D4·ρ
nsp

·
∑i=nsp

i=1 (
txi
12

+
tyi
12
)

 (4.14)

where D is the element size; tav is the average thickness of the element; ρ is the

density of the material. [M1] and [M2] correspond to the element mass, and

[M3] is the element polar moment of inertia about the centre of gravity.

4.5.2 Voronoi AEM

The Voronoi AEM (VAEM) was presented by Worakanchana and Meguro to elim-

inate the disadvantages of using square shaped elements from the conventional

AEM [59]. The element formulation of the VAEM is shown in Figure 4.9, and is

based on the Voronoi tessellation [67]. Considering a two-particle assembly, each

Figure 4.9: Element Assembly in VAEM [59]

rigid particle has two translational and a rotational degree of freedom defined at

the particle centroid. For small rotations, the motion of any two points (x,y) of

a rigid body can be defined as in Equation 4.16

u1 = uc1 − u3(y − yc1);u2 = uc2 + u3(x− xc1) (4.15)

u4 = uc4 − u6(y − yc2);u5 = uc5 + u6(x− xc2) (4.16)

where u1, u2, u3, u4, u5, u6, are translational displacements and rotation angles

of elements 1 and 3 in the global coordinate system. The subscript c specifies

the value at the particle centroid. The relative displacement vector of spring
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deformation in the global coordinate system at point p can be defined as Equation

4.17

{δg} =
−−→
p′p′′ =

δx

δy

 =

u4 − u1

u5 − u2

 (4.17)

Substituting Equation 4.16 in 4.17 and rotating the displacement to the local

coordinates parallel to the element surface, the relationship between the spring

deformation in the local coordinates and particle displacement in the global co-

ordinates is obtained, shown in Equation 4.18

{δt} = [R][B]{u} (4.18)

where {δt}T = [δn, δt] in which δn and δt are the normal and shear deformation

of a spring respectively, and [R] is the rotational matrix

[B] =

−1 0 (y − yc1) 1 0 −(y − yc2)

0 −1 −(x− xc1) 0 1 (x− xc2)

 (4.19)

and {u}T = [u1, u2, u3, u4, u5, u6] .

4.6 Conclusion

The complete formulation of the Applied Element Method was presented in this

chapter, along with modifications to the method. The AEM showed to have some

advantages in modelling structural behaviour. Some of the advantages include the

ease of modelling structures with multiple materials, such as reinforced concrete,

since the material properties are represented in the springs. The AEM was ex-

amined for small displacements, large displacements, and modification to element

shape and the stiffness for improvements of the method, which are summarised

as follows.

An analysis run by Meguro and Tagel-Din was presented to show the effect of

the number of elements and the number of springs in a structure and how they

affect computational cost and accuracy. The study highlighted very important
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factors that must be considered. It was mentioned that the number of springs did

not affect the element stiffness, when only considering the translational degrees-

of-freedom. Problems must arise when bending is considered. It was concluded

that at least 10 springs where needed per element in order to reduce the rotational

stiffness error. So it was suggested to use 10 springs per element and use smaller

sized elements as errors arise in the rotational stiffness.

The AEM was also examined for validation of large displacement analysis.

Residual force vectors are needed to be considered in this analysis. Some limita-

tions were presented which were, symmetry of structure must avoided in buckling

analysis. Small increments of load must be assumed since the small displacement

theory is implemented. Moreover, the stiffness of the structure decreases after

buckling.

Different modifications in the last decades have been made to the original

AEM. One of the modifications presented is the Improved Applied Element

Method. The major advantage is its capability of accurately analysing shear

stiffness without requiring a large number of springs. The modification is imple-

mented by having different values of t thickness for each spring. The modification

allows modelling different cross-sectional elements such as I-beams, box and chan-

nel sections.

Another modification to the AEM is the change in the shape of the ele-

ments. Rather than using square elements, the element formulation is based

on the Voronoi tessellation. The advantage of using Voronoi elements is that

meshing of structures is not limited to square shaped elements.

From this chapter it is concluded that there is a need for optimization of the

number or springs required to successfully model beam bending accurately with-

out requiring a large number of springs or elements. An optimization solution to

this problem will be presented in the following chapter using Gaussian quadrature

for spring distribution.
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Chapter 5

Gaussian based AEM

Formulation

In this chapter structural elements in linear elastic cases using the AEM are

presented. In the scope of this research, the AEM is programmed using MATLAB.

As mentioned in the previous chapter, the number of springs required in

the system is quite large for linear problems in the case that rotational stiffness

needs to be considered. A number of at least 10 springs were required with the

limitation that the element size is also relatively small. Solving linear elastic

problems should be simple enough to use larger number of elements and less

number of springs to optimise the computational cost. An optimisation solution

is presented in this chapter by modifying the AEM springs distribution using the

Gaussian quadrature.

This chapter entails two parts. First the AEM with equally distributed springs

is modelled using MATLAB. The conventional AEM is compared with the FEM

which is analysed on ANSYS Workbench. The two methods will be compared

for validation purposes. The second part of this chapter addresses the problem

of using many springs per element. An optimisation modification to the AEM is

presented: a new distribution for the springs based on the Gaussian quadrature

in section 5.3.
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5.1 AEM for Linear Elastic Cases

As previously mentioned, the AEM is coded on MATLAB. The algorithm for

a linear elastic beam analysis is split into the pre-processing, processing and

post-processing stage. In the preprocessing stage, user defined input is required:

determining the geometrical and material properties of the beam, the load applied

and its location, as well as the boundary conditions. Given the span and the

number of elements required, the meshing of the beam can be done using the

meshgrid function on MATLAB, where the element centres are obtained, along

with the vertices of the elements. The connectivities between elements are then

obtained based on finding elements with shared vertices. The springs locations are

then determined based on the number of springs between elements, and if elements

are connected in all directions. The processing stage then commences. There are

two loops in the code: the first loop goes through every pair of connected elements,

while the second one loops through every pair of springs to calculate the stresses

and strains in each spring.

Consider the cantilever beam shown in Figure 5.1 as an example. The code

will loop through every pair of elements; 1-2, 2-3, 3-4, 1-9, 2-10, 9-10, etc. In each

element loop, there is a loop to pass through all the springs between each pair of

elements. For the simplicity and reduction of redundancy in analysis, every pair

of elements is analysed locally and then transformed back to the global matrix.

The elements are transformed to the local coordinates which have the orientation

shown in Figure 5.2 and then the loop through every spring is done. The stiffness

matrix for each spring is obtained and added to the global stiffness matrix. For

example, the global element 1-9 is transformed from the local coordinates to

global coordinates, as shown in Figure 5.2. The computational algorithm for

analysing beam deflection in the elastic stage is shown in Box 5.1.
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Box. 5.1.1: Applied Element method linear algorithm

1. Input: Geometric and material properties, boundary conditions, load
application and method properties (number of elements, springs, etc.)

2. Calculate global springs locations
3. Loop through every pair of connected elements

(a) obtain nodes, dof’s and coordinates of springs
(b) transform global coordinates to local

i. Loop through every spring
ii. Calculate stiffness matrix

(c) Assemble in Global stiffness matrix
4. Calculate displacement

u = [K]−1(fext) (5.1)

5. Calculate stress and strain from obtained deflection

1
9

2
10

3
11

4
12

5
13

6
14

7
15

8
16

Figure 5.1: Noded cantilever beam diagram

Figure 5.2: Local Orientation

The computational method is efficient and can successfully obtain the dis-

placement between elements. If the load is applied in one time step, and no fur-

ther time steps are considered or load increments implemented, then the beam is

analysed by calculating the stiffness of each spring and implementing the stiffness

in the local stiffness matrix, that is eventually assembled in the global stiffness

matrix. When the stiffness matrix of the whole system is obtained, the deflection
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can be calculated along with corresponding stresses and strains in the system due

to the applied load.

5.2 Linear Elastic Case Studies: AEM vs. FEM

This section entails the verification of the AEM code written and compared to

FEM and analytical solutions, in order to quantify the accuracy of the method. In

this section, simple structural elements will be analysed using AEM and compared

to the finite element method using ANSYS. Analysis will be done to also find the

optimal number of elements and springs needed in AEM to acquire a good level

of convergence. The load in these examples is applied in one time step. No load

increments are presented.

5.2.1 Cantilever Beam

Assume a cantilever beam, fixed at one end and free at the other, with a point

load applied at the free end, as displayed in Figure 8.5. The material properties

of the beam are shown in Table 5.1, which are of steel. The load applied is very

small to allow only small deformations and elastic material behaviour. The beam

will initially be analysed using the same number of elements, in both AEM and

in FEM. Then a comparison of the number of elements to springs using AEM

will be displayed.

P

Figure 5.3: Cantilever Free Body
Diagram

Modulus of Elasticity E 200,000 [MPa]
Shear Modulus of Elasticity G 76,923 [MPa]

Yield Stress 250 [MPa]
Beam span 1 [m]

cross-section width 0.15 [m]
cross-section thickness 0.15 [m]

Applied Load 1000 [N]

Table 5.1: Beam Properties
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Analytical Solution

For a cantilever beam, with a point load at the free end, the rotation, deflection

at any point and the maximum deflection, are shown in Equations 5.2 - 5.4.

θ =
Pl2

2EI
(5.2)

y =
Px2

6EI
(3l − x) (5.3)

δmax =
Pl3

3EI
(5.4)

where l is the beam length; P is the applied load, x is the point on the beam at

which the deflection is to be calculated; E is the Modulus of Elasticity, and I is

the moment of inertia. For an applied load of 1 kN applied at the free end, the

deflection at the free end is

δmax =
1000× 13

3 ∗ 210× 109 ∗ 4.2187× 10−05
= 3.76× 10−5[m] (5.5)

This deflection will be used for comparison with the solutions obtained from AEM

and FEM.

Computational Solutions

The FEM solution is obtained using ANSYS. The beam deflection and normal

stresses are compared. Assuming a beam with an initial number of 10 elements in

the x-direction and 1 element in the y-direction, the beam deflection from ANSYS

is shown in Figure 5.4, and from the MATLAB code using AEM in Figure 5.5. As

seen from the figures, the distribution of the deflection is the same. The reason

the FEM results appear with a higher deflection is due to the factor that the

deflection is multiplied by to extenuate the deflection for better visibility.

The analytical solution for deflection at the free end of the the cantilever compared

with FEM and AEM is shown in Table 5.2. The results of both the FEM and

AEM showed good accordance in comparison to the analytical solution.

Figure 5.6 is the analysis of the cantilever beam from the example in Figure
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Figure 5.4: ANSYS Cantilever Deflection

Figure 5.5: MATLAB Cantilever Deflection

Table 5.2: Small Displacement comparison

FEM [m] AEM [m] Analytical [m]
Deflection 3.82× 10−5 3.88× 10−5 3.78× 10−5

5.5, with the load applied in the positive direction. The purpose is to validate

that the deflection is the same in the opposite direction. This shows that the

elements are reacting to the load in the correct way.

Figure 5.6: MATLAB Cantilever Deflection 10 elements in x-direction opposite
load

Normal Stress

The stresses of the springs are calculated after the deflection is obtained. Figure

5.7 is the stress at each spring, for every cross section between elements. The
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stresses show that the behaviour of all elements are in the linear elastic region. It

can be seen that the stress distribution at each cross-section is exactly symmetric,

and at the neutral axis, the stress is zero.

Figure 5.8 is the normal stress distribution across the beam from ANSYS,

and Figure 5.9 displays the results from the AEM MATLAB code. A visual

comparison of the figures shows that the results are almost exact. The absolute

value of the normal stress is shown in the figures (this is why the red appears in

both the top and bottom fibres at the sections closest to the fixed support). The

maximum stress is 1.6× 106 for both the FEM and the AEM.

Figure 5.7: MATLAB Cantilever Normal Stress

Figure 5.8: ANSYS stress distribution

Figure 5.9: AEM stress distribution

Shear Stress

The maximum shear stress from the ANSYS was 4.8×104, while it was 4.445×104

from the AEM. The shear stress is constant across the element. Figure 5.10 is
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the shear stress using FEM, and Figure 5.11 is the shear stress from the AEM

analysis. The results are quite similar as the stress is almost constant throughout

the whole beam, except for the ends where the load is applied.

Figure 5.10: ANSYS shear stress distribution

Figure 5.11: AEM shear stress distribution

Validation of Multilayer Mesh

A multilayer mesh is used to analyse the same cantilever beam as the previous

sections. Recall that an element connected in all four edges will need have four

contributions to the stiffness matrix. The purpose of this example is to ensure

that the elements are transformed from the local to global coordinates correctly,

and that adding the extra elements in the y-direction does not cause any errors.

Figure 5.12 displays the deflection of the beam with the load applied in the

negative y-direction. The deflection is compared to the FEM analysis and similar

results were obtained. Figure 5.13 shows the deflection of the beam with the

load applied in the positive y-direction. The deflection is exactly the same for

the positive and negative load. This is a good indication that the system can

successfully model elements that are presented in any direction.

5.2.2 Fixed End Beam

Similar to the cantilever beam analysis, a fixed end beam is analysed. The fixed

end beam is fixed at both ends. A point load is applied at the midspan. The
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Figure 5.12: AEM Cantilever Deflection 30 elements in x, 5 elements in y

Figure 5.13: AEM Cantilever Deflection Load Positive Direction

beam properties are the same as the properties shown in Figure 5.1.

Analytical Solution

The deflection at the location of the applied load is shown in Equation 5.6.

δmax =
Pl3

192EI
(5.6)

For an applied load of 1kN the deflection at the location of the load is

δmax =
1000 ∗ 13

192 ∗ 210× 109 ∗ 4.2187× 10−05
= 5.88× 10−07[m] (5.7)

This deflection will be used for comparison with the solutions obtained from AEM

and FEM.

Computational Solution

The deflection of the fixed end beam from MATLAB is shown in Figure 5.15,

where the results are scaled up to show the deflection of the beam since the

displacement is very small. The beam deflection from the FEM analysis is shown
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in Figure 5.14. The results in Table 5.3 show that both the FEM and AEM

have similar results. However there is a difference with the analytical result. The

number of elements in both the FEM and AEM analysis were exactly the same:

10 elements along the x-direction and 2 elements along the y-direction.

Table 5.3: FEB deflection Comparison

FEM AEM Analytical
Deflection 7.04× 10−7 7.8× 10−7 5.88× 10−07

Figure 5.14: ANSYS Fixed End Beam Deflection

Figure 5.15: AEM Fixed End Beam Deflection

Figure 5.17 is the normal stress along the beam cross-section from the AEM

in MATLAB, and Figure 5.16 displays the stress from ANSYS. The maximum

stress from the AEM was 1.95× 105[Pa] and from ANSYS was 1.81× 105[Pa].

Figures 5.18a and 5.18b display the deflection of the beam with more elements

in the y-direction. The results were exactly the same in both cases of applied

loads in opposite directions.

5.2.3 Simply Supported Beam

A simply supported beam is also analysed. The boundary conditions consist of a

constrained x degree-of-freedom on one side, and the x and y degrees-of-freedom

on the other side.
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Figure 5.16: Normal stress for FEB from ANSYS

Figure 5.17: Normal stress for FEB from AEM

(a) Negative load

(b) Positive load

Figure 5.18: AEM Different loading direction for FEB
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Analytical Solution

The analytical solution for the deflection of a simply supported beam with a point

load at the midspan is

δmax =
PL3

48EI
(5.8)

In this case, for a point load of 1 kN, the deflection at the midspan is

δmax =
1000 ∗ 13

48 ∗ 210× 109 ∗ 4.2187× 10−5
= 2.35× 10−6[m] (5.9)

Computational Solution

Figure 5.19 is the y-deflection of the beam scaled up by a factor of 103, and Figure

5.20 is the absolute value of the normal stress of the beam.

Figure 5.19: AEM Deflection Simply Supported Beam

Figure 5.20: AEM Normal stress Simply Supported Beam

5.3 Gaussian Springs based AEM

For a beam, the exact second moment of inertia is needed for the stress calcula-

tion, and using the Gaussian quadrature rule with n = 2 points will integrate a

polynomial of order 2n − 1 = 3 exactly. Since the moment of inertia is of order
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2, 2 points were sufficient. However, 50 equally spaced springs where required to

obtain the same results.

Gaussian quadrature is used for finite element applications because it has

fewer function evaluations for given orders. The weights and evaluation points

are determined so that the integration rule is exact to as high an order as possible

Gaussian quadrature of order N for the standard interval [−1, 1], is given by

∫ 1

−1

g(ξ)d(ξ) =
N∑
i=1

wig(ξi) (5.10)

where ξi and wi are the Gaussian quadrature points and weights. A Gaussian

quadrature using N points can provide the exact integral if g(ξ) is a polynomial

of the degree 2N − 1 or less. The Gaussian quadrature for the general integral

I=[a,b] is given by

∫ b

a

f(x)dx =
b− a

2

∫ 1

−1

f

(
b− a

2
x+

b+ a

2

)
dx =

b− a

2

n∑
i=1

Wif(xi) (5.11)

5.3.1 Gaussian Springs Implementation in AEM

The Gaussian Quadrature is implemented to a pair of 2-D AEM elements to

determine the Gaussian weights and coordinates using the number of springs.

The location of the springs is determined by considering w as the width of the

tributary area of each spring (’d’ in AEM Equation 4.5), and x as the spring

location from Equation 5.11.

Figure 5.21a and Figure 5.21b show the comparison of the tributary area when

the distribution of the springs is equal (left), and springs are distributed using

the Gaussian quadrature (on the right).

Table 5.4 shows the Gaussian and Equal spring location, xi, and weighting

factor, wi, of each spring i for 3 springs, and Table 5.6 is the distribution for 5

springs. xie is the spring location for an equal spring, and xig is for a Gaussian

spring. Similarly for wie and wig.

Assuming the width of the section is 5, then xi and wi are multiplied by

5/2 = 2.5. The multiplication is presented in Tables 5.5 and 5.7 for 3 and 5

springs, respectively. Looking at row 2.5wie and 2.5wig, a clear distinction of the
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(a) 3 springs - Equal (left), Gaussian (right) (b) 5 springs - Equal (left), Gaussian (right)

Figure 5.21: Comparison of Gaussian and Equal Springs Tributary Area for 3
and 5 springs

weight of each spring is shown. For instance for the 3 springs, the middle spring

(point 2), has a weighted factor of 1.67 in the equal distribution rather than 2.2

in the Gaussian distribution.

Table 5.4: 3 springs coordinates and
weighting factor

Point xie wie xig wig

1 -0.667 0.67 -0.775 0.556
2 0 0.67 0 0.889
3 0.667 0.67 0.775 0.556

Table 5.5: 3 springs wi and xi for cross-
section 5m

Point 2.5xie 2.5wie 2.5xig 2.5wig

1 -1.668 1.67 -1.937 1.389
2 0 1.67 0 2.222
3 1.668 1.67 1.937 1.389

Table 5.6: 5 springs coordinates and
weighting factor

Point 2.5xie 2.5wie 2.5xig 2.5wig
1 -2 1 -1.359 0.355
2 -1 1 -0.808 0.718
3 0 1 0 0.853
4 1 1 0.808 0.718
5 2 1 1.359 0.355

Table 5.7: 5 springs coordinates and
weighting factor

Point xie wie xig wig
1 -0.8 0.4 -0.906 0.237
2 -0.4 0.4 -0.538 0.479
3 0 0.4 0 0.569
4 0.4 0.4 0.538 0.479
5 0.8 0.4 0.906 0.237

5.3.2 Comparison of equal springs with Gaussian springs

A comparison of equal and Gaussian springs will be shown to prevail the impact

the distribution of the springs can have on the accuracy of the solution. As

before, a cantilever beam and a fixed end beam analysis will be done, with a

small linear-elastic load.
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Cantilever Beam

Consider a cantilever beam with the similar properties shown from Table 5.1, and

a point load applied at the free end. The only difference in the MATLAB code

occurs in the spring distribution definition. For a load of 1kN, a comparison of the

beam deflection is shown in Table 5.8, for an equal number of 10 elements along

the x-direction, and varying springs. The results show that using the Gaussian

springs distribution with just 2 springs gives almost the same deflection that was

calculated with 50 equally distributed springs. The error percentage presented

is the difference in the deflection at the free between the result obtained from

the equal springs distribution and the Gaussian springs distribution. Therefore,

a beam with 10 elements, requires a total of 10 × 2 = 20 Gaussian springs, or

10× 50 = 500 equal springs.

Table 5.8: Deflection at free end comparison
No. springs 2 5 10 15 30 50

Equal 0.4215 0.3295 0.3196 0.3179 0.3168 0.3165
Gaussian 0.3164 0.3164 0.3164 0.3164 0.3164 0.3164
Difference 24.9% 4.0 % 1.0 % 0.5 % 0.1 % 0.0 %

Table 5.9 displays the y-deflection at each node of the beam using 2 equally-

distributed springs, and 2 Gaussian springs. The y-deflection in the first element

is not shown since it is fixed to zero as a boundary condition. The results show

that the percentage difference in the deflection is quite different for every element,

almost 25%. Table 5.10 displays the y-deflection at each node, with 50 springs

per element. It can be seen that the beam deflection is almost exactly the same

at every node.

It is also important to compare the data of the deflection of the elements using

2 Gaussian springs and 50 Gaussian springs, displayed in Table 5.11. It is clear

that the results are exactly the same. This verifies that using Guassian springs

is much more efficient than using equally distributed springs, since the deflection

of all the elements along the beam is the same.

1 2 3 4 5 6 7 8 9 10
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Figure 5.22: Beam with 10 elements

Table 5.9: y-deflection of beam at every node - 2 springs
Element 2 4 5 6 8 10
Equal -0.0075 -0.0624 -0.1063 -0.1589 -0.2831 -0.4213

Gaussian -0.0057 -0.0469 -0.0799 -0.1193 -0.2126 -0.3162
Difference 24.0% 24.8% 24.8% 24.9% 24.9% 24.9%

Table 5.10: y-deflection of beam at every node - 50 springs
Element 2 4 5 6 8 10
Equal -0.0057 -0.0469 -0.0799 -0.1194 -0.2127 -0.3164

Gaussian -0.0057 -0.0469 -0.0799 -0.1193 -0.2126 -0.3162
Difference 0 0 0 -0.08% -0.05% -0.06 %

Table 5.11: y-deflection of beam at every node - 2 and 50 Gaussian springs
Element 2 4 5 6 8 10
2 springs -0.0057 -0.0469 -0.0799 -0.1193 -0.2126 -0.3162
50 springs -0.0057 -0.0469 -0.0799 -0.1193 -0.2126 -0.3162
Difference 0 0 0 0 0 0

Fixed End Beam

An analysis similar to that of the cantilever beam will be done for a fixed end

beam. Tables 5.12 and 5.13, display the deflection in the y-direction of every

element in the beam for elements with 2 springs and 50 springs respectively.

The results show that the use of Gaussian springs is much more efficient than

equally distributed springs. Elements 1 and 10 have a boundary condition of

fixed displacement of 0, so they are not shown in the tables.

1 2 3 4 5 6 7 8 9 10

Figure 5.23: Fixed End Beam with 10 elements

Table 5.12: y-deflection of FEB at every node - 2 springs
Element 2 4 5 6 8 9
Equal -0.0449 -0.279 -0.375 -0.395 -0.182 -0.055

Gaussian -0.0341 -0.211 -0.283 -0.299 -0.139 -0.042
Difference 31.67 % 32.54 % 32.54 % 32.37 % 32.29 % 31.73 %
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Table 5.13: y-deflection of FEB at every node - 50 springs
Element 2 4 5 6 8 9
Equal -0.034 -0.211 -0.283 -0.299 -0.137 -0.0417

Gaussian -0.034 -0.211 -0.283 -0.299 -0.239 -0.137 -0.0416
Difference 0 0 0.035 % 0.033 % 0.073 % 0.240 %

Therefore, it can be concluded that using a Gaussian distribution for the

springs, rather than an equal spring distribution, can have a significant effect on

the number of springs needed to acquire a rapid convergence in terms of solution

accuracy, with a significantly low number of springs.

5.4 Conclusion

This chapter entailed an analysis difference between the FEM and the AEM,

where the AEM was modelled using MATLAB. Analysis of different structural

beams (a cantilever beam, a fixed ends beam and a simply supported beam),

were performed to prove the validity and accuracy of the method. The maximum

deflection of each beam was compared to its respective analytical solution as well

as the solution from the finite element analysis, using ANSYS. The shear and

normal stresses were also compared. The results showed that the applied element

method is a good tool for modelling structural members in the elastic range, and

the developed code is valid for future modifications in the method.

A modification to the method was presented in this chapter, since the con-

ventional AEM required a large number of springs and elements in linear elastic

solution states. The distribution of the springs by using the Gaussian quadrature,

referring to the springs as Gaussian springs, is developed. Instead of using equally

distributed springs along element edges, the springs are distributed based on the

Gaussian quadrature. The Gaussian springs showed an advantage in the num-

ber of springs required to accurately model an elastic behaviour of a structural

element.

A cantilever beam with 10 elements and a load of 1 KN applied at the free end

was analysed using ANSYS for FEM results, the conventional AEM (with equally

spaced springs), and the Gaussian AEM. The findings of the solutions were re-

markable. It was found that a total of 50 equally spaced springs were needed to
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obtain the same result as obtained from 2 Gaussian springs when compared to

the FEM analysis. A comparison analysis was performed for the cantilever beam

deflection of each element with 2 Gaussian springs and 50 Gaussian springs, and

it the results showed that the deflection at each element was exactly the same

regardless of the number of springs. The comparison analysis was also performed

for a fixed ends beam, and the results were just as remarkable. The compari-

son was performed for analysis between FEM, conventional AEM and Gaussian

AEM. When 50 equal springs were used, there was a small discrepancy of 0.03%.

In other words, for the same beam and same number of elements, the conven-

tional AEM required a total of 500 springs, while only 20 springs were required

using the Gaussian distribution. This substantially decreases the CPU time re-

quired to model the structural element, which in larger scale models will have a

much larger effect.

Since the Gaussian springs showed to be much more efficient for modelling

structural elements in the elastic region, the model will be extended for analysis

of materials subject to elasto-plasticity, in the next chapter.
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Chapter 6

Gaussian AEM in

Elasto-plasticity

The goal of this research is to model the collapse behaviour of structures. There-

fore materials are expected to undergo elasticity, elasto-plasticity, full plasticity,

fracture and collapse. To model the complete behaviour from an initial state of

no loading until total collapse, all the stages must be considered.

This chapter is an introduction to constitutive models and their applications

for material behaviour in elasto-plasticity. A constitutive model is implemented to

the MATLAB code, and analysis results are shown for different structural mem-

bers where comparisons of deflections and stresses are performed. The Gaussian

AEM, which was developed in the previous chapter, is implemented for hardening

elasto-plasticity and a modification is presented to implement adaptive springs

that are based on the yield criteria. The efficiency of the modification is also

presented.

6.1 Overview

The theory of plasticity is based on solids that sustain permanent deformations

when completely unloaded, after being subjected to a loading. This theory is

regarded as one of the most successful phenomenological constitutive models of

solid materials [68].

Consider a uniaxial tension experiment with a metallic bar in order to il-
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lustrate features of the phenomenological behaviour of materials. The uniaxial

tension tests produce stress-strain curves, as shown in Figure 6.1. The axial stress,

σ, is plotted against the axial strain, ε, where the bar is subjected to an increase

in axial stress from zero to a prescribed values, σ0. The bar is then unloaded, and

subsequently loaded to a higher stress level, σ1, and produces the corresponding

stress-strain curve. In the initial line segment O0Y0, the bar is regarded as linear

elastic. Loading and unloading before reaching Y0, the bar will remain linearly

elastic. After Y0 the slope changes and the bar is in plastic range where it will

undergo permanent plastic deformation. At point Z0 (for instance), if the bar is

unloaded it will follow the same linear elastic behaviour as from O0Y0. The new

permanent shape is observed from the unstressed state O1, instead of O0.

The vital phenomenological properties from the uniaxial test are as follows

[68]: (1) an elastic domain exists, (2) plastic yielding takes place if the material is

loaded further than the yield stress, and (3) the evolution of the plastic strain is

also observed, known as hardening (in Figure 6.1 Y0 and Y1 are observed to have

different yielding stresses). These material behaviours are observed in metals,

concrete, soils, rocks and others [68]. This nonlinear material behaviour will be

tested in the developed MATLAB code in the following sections.

Figure 6.1: Uniaxial Tension Test [68]

In order to represent this material behaviour, mathematical theory of plasticity

must be used to demonstrate continuum constitutive models that are capable
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of describing the phenomenological behaviour of materials, quantitatively and

qualitatively, with sufficient accuracy. Characterising material behaviour from

the initial stages of loading until final stages of failure, or modelling material

behaviour with instabilities require complex models of the material behaviour

which are obtained through constitutive modelling.

Different engineering materials require different constitutive models due to the

difference in the physical mechanisms of the material degradation at the macro-

scopic level. However, materials show similar mechanical behaviour, such as: elas-

ticity, yielding, plastic strain, strain induced anisotropy, damage by monotonic

loading and crack growth. Therefore, models may be developed to display the

common behaviour of materials, using continuum mechanics without requiring

the complex physical micro structures of the materials, and these models are the

constitutive models. In other words, constitutive models are the mathematical

simplification of the complex physical behaviour. The mathematical structure of

a model depends on the material and the purpose (loading conditions). Different

purposes may include [69]:

1. Structural analysis under working load: Linear elasticity

2. Analysis of damped vibrations: Viscoelasticity

3. Calculation of limit load: Rigid perfect plasticity

4. Accurate calculation of permanent deformation after monotonic and cyclic

loading: Hardening elasto-plasticity

5. Analysis of stationary creep and relaxation: Perfect (non-hardening) elasto-

viscoplasticity

6. Prediction of lifetime in high-cycle-fatigue: Damage coupled to elastic de-

formations

7. Prediction of lifetime in low-cycle-fatigue: Damage coupled to plastic de-

formations

8. Prediction of lifetime in creep and creep-fatigue: Damage coupled to vis-

coplastic deformations

9. Prediction of stability of a pre-existing crack: Linear elasticity (from which

singular stress fields are derived for sharp cracks)

10. Prediction of strain localization in shear bands and incipient material fail-
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ure: Softening plasticity or damage coupled to plastic deformation

In the scope of this thesis, the linear elasticity, perfect plasticity, hardening elasto-

plasticity and softening plasticity are demonstrated.

6.2 Definitions

In this section, a brief description of how a constitutive model typically works,

and the conditions that must be satisfied are explained. The following section

entails detailed constitutive equations and derivations. The terminology used in

modelling plasticity is presented here and is based on terminology from [70].

Elastic strain, εe, is any strain that occurs before exceeding the yield stress.

The plastic strain, εp, is the permanent strain that remains after unloading. The

total strain is the sum of the elastic strain and plastic strain. When plastic strain

is taking place, then it follows that plastic flow is taking place. Internal hardening

variables are used when hardening takes place, because when hardening occurs

the yield stress changes. The internal variables keep track of the plastic strain.

The isotropic internal hardening variable, α, is the equivalent plastic strain [71].

A yield condition is used to determine when yielding occurs, denoted by f .

The yield condition usually includes the current stress minus the initial yield

stress added to a function of α, which describes the type of hardening. When

plastic strain occurs, α is updated. The yield condition f is then calculated, and

results in either a positive or negative value.

If a positive result is obtained from the yield condition, then the stress is

currently greater then the yield stress, which means that the elastic and plastic

strains are increasing. However, f > 0 is not permitted, and the amount of plastic

flow and hardening such that the condition f = 0 is satisfied must be calculated.

For this, a consistency parameter λ is introduced to determine the level of

plastic flow and hardening required to achieve the condition f = 0. The process

of elastic or elasto-plastic loading and unloading requires a mathematical descrip-

tion, which led to the use of the Kuhn-Tucker conditions that are used to develop

the mathematical algorithms to model the plastic flow [71].

The Khun-Tucker conditions are: λ ≥ 0, f(σ) ≤ 0 and λf(σ) = 0. Plastic-
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ity algorithms are often used to model nonlinear material behaviour which are

incremental in nature. As the load increment increases, the stresses, strains and

displacements also increase. The initial displacement is assumed to be in the elas-

tic region, and the resulting new stress is defined as a trial stress. The trial stress

is placed in the yield function f , and the algorithm is applied. The algorithm

"corrects" the trial stress to a new stress if it is not elastic. Assuming the current

values of the internal variable α is αn, then during the load increment α may

increase by ∆α and, αn+1 = αn + ∆α. For this reason, for a rate independent

material, the load increment is like a time increment.

Another important issue to consider is that the tangent modulus is equivalent

to the elasto-plastic modulus, which is not true in higher dimensions. This causes

difficulty in solving the consistency parameter and this issue can be overlooked

by using the Newton-Raphson method. To obtain a second order convergence,

the derivative of the stress to the total strain must be taken. The algorithmic

tangent modulus is defined as Ck
n+1 =

∂σk
n+1

∂εkn+1
. The way that plastic strain evolves

in plasticity algorithms is referred to as the flow rule, which takes the form of

ε̇p = λ df
dσ

= λ sign(σ). The isotropic hardening law takes the form of α̇ = ∆α = λ

[71].

The definitions have now been explained as well as the logic behind the consti-

tutive equations in plasticity. The following section is a derivation of the equations

used and implementation of the computational algorithm.

6.3 Elasto-plastic Constitutive Equations Deriva-

tion

Deformations of elasto-plastic solids at small strains are characterized by the

additive split of the total strain

ε = εe + εp (6.1)
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where ε is the total strain, εe is the elastic reversible strain, and εp is the plastic

permanent strain. Hence, the elastic strain can be defined as

εe = ε− εp (6.2)

The stress σ is governed by the elastic constitutive equation (when f < 0), and

is calculated as

σ = Eεe = E(ε− εp) (6.3)

The phenomenological properties that were described in section 6.1 must be sat-

isfied in the constitutive equations [68].

The stress cannot be greater in absolute value than σY . Therefore, the stresses

cannot exceed the closed interval [−σY , σY ] where σY is the yield stress. This

condition is formally expressed as

Eσ = σ ∈ R|f(σ) := |σ|−σY ≤ 0 (6.4)

where σy is the yield stress and f is the yield function. If |σ| is less than the flow

stress, no change in εp occurs, so

ε̇p = 0, if f(σ) < 0 (6.5)

Plastic strain occurs when the yield criterion is satisfied; f(σ) := |σ|−σY = 0.

Introducing a parameter λ̇ ≥ 0 as λ̇ = |ε̇p|, the plastic slip can be expressed as

ε̇p = λ̇, if σ = σY (6.6)

ε̇p = −λ̇, if σ = −σY (6.7)

This may be written as Equation 6.8, and is known as the flow rule.

ε̇p = λ̇ sign(σ) (6.8)
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The sign function is defined as

sign(σ) =

+1 if σ > 0

−1 if σ < 0

(6.9)

The boundary of the elastic range is called the yield surface, and is defined as

∂Eσ = {σ ∈ R|f(σ) := |σ|−σY = 0} (6.10)

From the above discussion it follows that σ must be valid (σ ∈ E) and λ̇ must be

non-negative [72, 73]

λ̇ ≥ 0, f(σ) ≤ 0 (6.11)

Also if

f(σ) < 0 ⇒ λ̇ = 0, (6.12)

λ̇ > 0 ⇒ f(σ) = 0, (6.13)

which implies

λ̇f(σ) = 0 (6.14)

Conditions 6.11 and 6.13 are the Kuhn-Tucker conditions. Now consider a Taylor

expansion of the function

f̂(t+∆t) = f̂(t) +
˙̂
f(t)∆t+ (O)(∆t) (6.15)

where ˙̂
f(t) = ∂

∂t
f̂(t) and (O)(∆t) represents the Taylor series terms that tend to

zero faster than ∆t. Since the assumption f̂(t) = 0, it has ˙̂
f(t) ≤ 0. Therefore

ḟ < 0 ⇒ λ̇ = 0 (6.16)

λ̇ > 0 ⇒ ḟ = 0 (6.17)
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which implies that

λ̇ḟ(σ) = 0 (6.18)

The 1-D model for rate independent perfect elasto-plasticity [72] is shown as

follows in Box 6.3.
Box. 6.3.1: 1-D Model for rate independent perfect elasto-

plasticity

1. Additive strain split: ε = εe + εp [eq.6.1]

2. Elastic constitutive law: σ = Eεe [eq.6.3]

3. Yield criterion: f(σ) := |σ|−σY ≤ 0 [eq.6.4]

4. Flow rule: ε̇p = λ̇ sign(σ) [eq.6.8]

5. Kuhn-Tucker (loading/unloading) conditions:λ̇ ≥ 0, f(σ) ≤

0, λ̇f(σ) = 0 [eq.6.11, 6.13]

6. Consistency condition λ̇ḟ(σ) = 0, Equation 6.14

6.4 Strain Hardening

Strain hardening occurs when a solid is plastically deformed, then unloaded,

and then re-loaded so as to induce further plastic flow. It will be found that

its resistance to plastic flow would have increased; its yield point/elastic limit

increases. For a finite element material model, there are two ways for modelling

the strain hardening:

1. Isotropic Hardening: plastically deform a solid, then unload it, then reload

it again. It will be found that the yield stress/elastic limit would have

increased in comparison to the first cycle. In other words, if something was

loaded in tension past its yield point, then unloaded, and then loaded in

compression, it will not yield in compression until it reaches the level past

yield achieved when loading in tension.

2. Kinematic Hardening: correctly model cyclic behaviour and the Bauschinger

effect, since the material softens in compression.

In the scope of this research, only the isotropic hardening is considered.
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Isotropic Hardening

The mathematical representation for the yield criterion in isotropic hardening is:

f(σ, α) = |σ|−[σY +Hα] ≤ 0 (6.19)

where α is a hardening parameter (internal variable) that describes the evolution

of the elastic domain, and α > 0. There are several ways to represent α. The

most widely used approach represents strain and work hardening respectively as

α̇ = |ε̇p|, and α̇ = σ|ε̇p| (6.20)

The 1-D Model for rate independent isotropic hardening elasto-plasticity is pre-

sented in Box 6.4.

Box. 6.4.1: 1-D Model for rate independent isotropic hardening

elasto-plasticity

1. Additive strain split: ε = εe + εp [eq.6.1]

2. Elastic constitutive law: σ = Eεe [eq.6.3]

3. Yield criterion: f(σ, α) = |σ|−[σY +Hα] ≤ 0 [eq.6.19]

4. Flow rule and hardening Law: ε̇p = λ̇sign[σ], α̇ = |ε̇p| [eq.6.8,6.20]

5. Kuhn-Tucker loading/unloading conditions:λ̇ ≥ 0, f(σ, α) ≤

0, λ̇f(σ, α) = 0 [eq.6.11, 6.13]

6. Consistency condition, Equation 6.14

Tangent Elasto-plastic Modulus

The tangent modulus Ĉ = dσ/dε is obtained by explicitly solving for the param-

eter λ̇. The consistency condition is used for this purpose.

ḟ(σ, α) =
∂f(σ, α)

∂σ
σ̇ +

∂f(σ, α)

∂α
α̇ (6.21)
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taking the partial derivative with respect to σ and α gives

∂f(σ, α)

∂σ
σ̇ = |σ̇|= |Eε̇e|= |E(ε̇− ε̇p)|= sign[σ]E(ε̇− ε̇p) (6.22)

∂f(σ, α)

∂α
α̇ = −Hα̇ (6.23)

From Equation 6.21, the tangent elasto-plastic modulus is:

ḟ(σ, α) = sign[σ]E(ε̇− ε̇p)−Hα̇ = sign[σ]E(ε̇− ε̇p)−Hε̇p (6.24)

From Equation 6.20,

ḟ(σ, α) = sign[σ]E(ε̇− ε̇p)− ε̇pH

→ sign[σ](Eε̇− ε̇p(E +H)) (6.25)

By using the flow rule, Equation 6.8: λ̇ = ε̇p sign[σ]

ḟ(σ, α) = sign[σ]Eε̇− λ̇(E +H) (6.26)

By using the consistency condition that ḟ(σ, α) = 0, then solving for λ̇, gives

λ̇ =
sign[σ]E
E +H

ε̇ (6.27)

Hence, the following rate form is obtained

σ̇ =

Eε̇ if f < 0

EH
E+H

if f = 0

(6.28)

6.5 Incremental 1D rate independent plasticity

Assuming equal time steps ∆t, the discrete time instances t0, t1, t2, ... are indicated

by subscripts; generally denoted as equation 6.30, so the strain increment is
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denoted as εn+1:

tn+1 = tn +∆t (6.29)

εn+1 = εn +∆εn (6.30)

The backward Euler method is used to transform the equations to incremental

form at time instant tn+1. The algebraic equations become [72];

1. Flow rule

εpn+1 − εpn
∆t

=
∆λ

∆t
sign(σn+1) (6.31)

2. Isotropic Hardening Law

αn+1 − αn

∆t
=

∆λ

∆t
(6.32)

3. Yield function

f(σn+1, αn+1) = |σn+1|−(σy +Hαn+1) (6.33)

4. Complementary conditions

∆λ ≥ 0, fn+1 ≤ 0, ∆λfn+1 = 0 (6.34)

Since there are two inequalities that do not give a direct solution, operator split-

ting is applied to get rid of them: predictor and corrector.

6.5.1 Elastic step (Predictor Step)

The elastic trial step is first done by freezing the plastic flow: ∆λ = 0. This state

is admissible only when the incremental process is elastic.

εp,trialn+1 = εpn (6.35)

σtrial
n+1 = E(εn+1 − εpn) = E((εn+1 − εn) + (εn − εpn)) = σn + E∆εn (6.36)
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αtrial
n+1 = αn (6.37)

f trial
n+1 = |σtrial

n+1 |−(σY +Hαn) (6.38)

6.5.2 Plastic step (Corrector Step)

If f trial
n+1 ≤ 0 the trial state is admissible. So, εpn+1 = εpn, αn+1 = αn and σn+1 =

σtrial
n+1 . However if f trial

n+1 > 0 then the trial state is violating the complimentary

condition that f(α, σ) < 0 and ∆λ > 0 is required. In other words if f trial
n+1 ≤ 0

then this is an elastic step and ∆λ = 0. If f trial
n+1 > 0, then this is a plastic step and

∆λ > 0, and a return mapping algorithm can be implemented to accommodate

for that.

6.5.3 Return Mapping

As mentioned earlier, the return mapping algorithm is implemented because the

trial stress lies outside of the yield surface. The return mapping algorithm brings

the stress that lies outside the plastically admissible domain back to the yield

surface. Figure 6.2 is a visual representation of the return mapping scheme [68],

where Figure 6.2a shows that the elastic predictor takes σn to σtrial
n+1 , and the

plastic corrector will bring back σtrial
n+1 to σn+1 the new (updated) yield surface

(graphically shown as ϕ, otherwise presented in this thesis as f). In Figure 6.2b,

the predictor-corrector is similar. However since there is no hardening (per-

fect plasticity), the plastic corrector will place σn+1 at the initial yield surface.

The first of this algorithm was presented by Wilkins1984 in the "radial return

method" [Wilkins1984].

An expression for σn+1 in terms of σtrial
n+1 must be written

σn+1 = E(εn+1 − εpn+1) (6.39)

= E(εn+1 − εpn)− E(εpn+1 − εpn) (6.40)

= σtrial
n+1 − E∆λsign(σn+1) (6.41)
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(a) (b)

Figure 6.2: Return mapping scheme (a) with hardening (b) no hardening [68]

Applying this expression in incremental Equations 6.35 - 6.45 gives

σn+1 = σtrial
n+1 − E∆λsign(σn+1) (6.42)

εpn+1 = εpn +∆λsign(σn+1) (6.43)

αn+1 = αn +∆λ (6.44)

fn+1 = |σtrial
n+1 |−(σY +Hαn+1) = 0 (6.45)

The sign of the stress is the sign of the trial stress [72]

σn+1 = |σn+1|sign(σn+1) = |σtrial
n+1 |sign(σtrial

n+1 )− E∆λsign(σn+1) (6.46)

⇒ (|σn+1|+∆λE)sign(σn+1) = |σtrial
n+1 |sign(σtrial

n+1 ) (6.47)

⇒ sign(σn+1) = sign(σtrial
n+1 ) (6.48)

⇒ (|σn+1|+∆λE) = |σtrial
n+1 | (6.49)
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ε0 εy εf

σ

σo
y

σn

σtrial

σn+1

E

H

Figure 6.3: Return Mapping with hardening

Therefore [72]

fn+1 = |σn+1|−(σY +Hαn+1) (6.50)

= |σtrial
n+1 |−∆λ− (σY +Hαn+1) (6.51)

= |σtrial
n+1 |−∆λ− (σY +Hαn)−H(αn+1 − αn) (6.52)

= f trial
n −∆λ(E +H) = 0 (6.53)

⇒ ∆λ =
F trial
n+1

E +H
(6.54)

Hence [72]

σn+1 = σtrial
n+1 − E∆λsign(σtrial

n+1 ) (6.55)

εpn+1 = εpn +∆λsign(σtrial
n+1 ) (6.56)

αn+1 = αn +∆λ (6.57)

fn+1 = 0 (6.58)

Another visual representation of the return mapping algorithm is shown in Figure

6.3 where from σn to σtrial is the predictor step, and then σtrial to σn+1 is the

corrector (plastic) step.

The return mapping algorithm is summarised in Box 6.5.3 [72].
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Box. 6.5.1: Incremental 1D Return-mapping (predictor-

corrector) plasticity

1. Evaluate elastic predictor:

σtrial
n+1 = σn + E∆εn [Eq. 6.36]

2. Discrete version of Khun-Tucker conditions:

f trial
n+1 = |σtrial

n+1 |−σY +Hαn [eq.6.45]

3. If f trial
n+1 ≤ 0 → Elastic state

(a) (•)n+1 = (•)trialn+1

(b) Exit
Else → Plastic corrector
(a) ∆λ =

F trial
n+1

E+H

(b) σn+1 = σtrial
n+1 − E∆λsign(σn+1) [Eq. 6.42]

(c) εpn+1 = εpn +∆λsign(σn+1) [Eq. 6.43]
(d) αn+1 = αn +∆λ [Eq. 6.44]

4. Repeat steps

6.6 Application of AEM to elasto-plasticity

Equations [6.42 - 6.44] are generally nonlinear and must be solved using some

iterative procedures [68]. The common iterative procedure used in solving the

return mapping equations is the Newton-Raphson method. The motivation of

using this method is due to its quadratic rate of convergence [68]. The method

is explained in the following section.

6.6.1 Newton Raphson Method

As mentioned, the Newton Raphson method is an efficient nonlinear equation

solution scheme with a quadratic convergence. For the infinitesimal incremental

boundary value problem, given the internal variables αn at time tn such that

∫
Ω

[σ̂(αn,▽sun+1) : ▽sη − bn+1 · η]dv −
∫
∂Ωt

tn+1 · ηda = 0 (6.59)
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where bn+1 and tn+1 are the body force and the surface traction fields prescribed

at time instant tn+1. Equation 6.59 can be reduced after a standard finite element

discretisation. Let un+1 be the nodal displacement at time tn+1, the incremental

finite element equation becomes

r(un+1) ≡ fint(un+1)− f ext
n+1 = 0 (6.60)

where f int(un+1) and f ext
n+1 are assembled from the element vectors in Equations

6.61 and 6.62. The nonlinearity in Equation 6.60 is from the incremental con-

stitutive function that takes part in the definition of the element internal force

vector [68].

f int
(e) =

∫
Ω(e)

BT σ̂(αn, ε(un+1))dv (6.61)

f ext
(e) =

∫
Ω(e)

NT bn+1dv +

∫
∂Ω(e)

NT tn+1da (6.62)

The loading is described by the body force and te surface traction fields at an

instant tn+1 by

bn+1 = λn+1b̃ (6.63)

tn+1 = λn+1t̃ (6.64)

where λn+1 is the load factor at tn+1 and b̃ and t̃ are prescribed constant fields in

time [68]. The global external force reduces to

f ext
n+1 = λn+1f̄

ext (6.65)

where f̄ ext is computed only once at the beginning of the incremental procedure

for the element vectors as [68]

f̄ ext
(e) =

∫
Ω(e)

NT b̃dv +

∫
∂Ω

(e)
t

NT t̃da (6.66)
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The typical iteration of the Newton-Raphson scheme consists of solving the lin-

ear(ised) system of equations for δu(k) [68]

KT δu
(k) = −r(k−1) (6.67)

where the the residual vector is

r(k−1) ≡ f int(u
(k−1)
n+1 )− f ext

n+1 (6.68)

and KT is the global tangent stiffness matrix obtained from the applied element

method. With the solution of δu(k), applying the Newton correction to the global

displacement gives [68]

u
(k)
n+1 = u

(k−1)
n+1 + δu(k) (6.69)

and in terms of displacement increments [68]

u
(k)
n+1 = un +∆u(k) (6.70)

where ∆u(k) is the incremental displacement vector

∆u(k) = ∆u(k−1) + δu(k) (6.71)

The Newton Raphson iterations are repeated until the following convergence cri-

teria are satisfied

|r(i)|
f ext
n+1

≤ ϵtol (6.72)

where ϵtol is a small specified value for equilibrium convergence tolerance. The

schematic representation of the Newton-Raphson iteration procedure is shown in

Figure 6.4.
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Figure 6.4: Newton Raphson iteration - graphical representation [68]

6.7 Gaussian AEM in Hardening Elasto-plasticity

The hardening elasto-plasticity is implemented into the Gaussian based AEM

code. This section demonstrates different examples and implementations of be-

haviour of structures compared to FEM. For every load step, a Newton Raphson

iteration begins where α and ε (the plastic parameters) are updated and carried

to the next Newton Raphson iteration, and to the next load step. This is what

ensures that during unloading, if the stress had exceeded the yield stress limit,

the plasticity effect would remain. Different beams are presented below, with

loading-unloading-loading type mechanism, in order to view the behaviour of the

force-displacement diagram. For all the examples presented, a maximum of 20

Newton Raphson iterations is set as the limit in case the convergence criteria is

not met. Moreover, the tolerance for the convergence criteria is 10−3.

Comparison of Ansys results with Gaussian AEM with material nonlinearity

was examined. The deflection from the ANSYS analysis at the free end of the

beam was 0.0112m, and from Gaussian AEM was 0.0117m. The discrepancy is

about 3mm. These results are considered accurate enough for using the Gaussian

AEM. Therefore a detailed analysis of the cantilever beam using the Gaussian

AEM is presented.
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6.7.1 Cantilever beam

Considering a cantilever beam with load incrementally applied at the free end.

The stresses and beam deflection are shown as follows.

Beam deflection

The beam has 30 elements shown in Figure 6.5, with 10 Gaussian distributed

springs. The maximum applied load on the cantilever is 1000 kN, and a total of 60

load increments for loading, unloading and loading again. The load displacement

diagram of the free end of the beam is shown in Figure 6.6. The figure shows good

accordance with expected behaviour from Figure 6.1, since the the stress increases

linearly with the slope of the modulus of elasticity E, then after the stress yield

limit, the slope changes with the value of the hardening. At unloading, the stress

decreases with slope E. Loading again causes the stress to follow the linear path

of E and continue to a new yield stress limit where the path continues with H.

The stress which the load will exceed the elastic limit is shown in Equation 6.73.

σ =
My

I
(6.73)

Since the maximum moment the beam encounters is at the fixed end with M =

Pl, where P is the applied force at the cantilever beam, and l is the span of the

beam. Substituting the moment in terms of the applied force P gives

P =
σI

yl
(6.74)

Therefore, for the given cantilever beam with span 1m, cross section b = h = 0.15,

and yield stress σy = 250 MPa, the calculated yield force is 136.2 kN. Applying

a force greater than the yield force will result in exceeding the elastic limit, and

plasticity will be obtained. The deflection of the beam at different load steps is

displayed in Figure 6.7.
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Figure 6.5: Cantilever beam elements

Figure 6.6: Load displacement diagram at free end

Newton Raphson convergence

Figure 6.8 shows the number of Newton Raphson iterations required at every

load iteration. For cases of elasto-plasticity it can be seen that a maximum of

four Newton Raphson iterations were required when a tolerance of 10−3 is used,

shown in Figure 6.8a. Decreasing the tolerance to 10−5 resulted in more iterations,

since the accuracy has improved. The number of iterations can be seen in Figure

6.8b. An important feature of using the Newton Raphson scheme is its quadratic

convergence. Considering a point where the Newton Raphson iterations required

is 5, the convergence plot is shown in Figure 6.9. The residual at every iteration

is shown in Table 6.2.
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Figure 6.7: Beam deflection through loading-unloading-loading
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(a) tolerance 1e− 3 (b) tolerance 1e− 5

Figure 6.8: Number of iterations required at every load step

Figure 6.9: Newton Raphson conver-
gence

Table 6.1: Residual at each iteration

Iteration Residual log(residual)
1 0.006697 -5.006
2 0.006640 -5.0145
3 0.003961 -5.5303
4 0.000017 -10.963

Normal and Shear Stresses

For the cantilever beam with an applied load of 107N , the normal stress is shown

in Figure 6.11 and the shear stress of the beam is shown in Figure 6.12. From

Figure 6.11, the stress at 10 cross sections is shown. It is clear that the last 2

cross sections were linear, and the rest display the elasto-plastic behaviour. Also,

the values at the top and bottom fibres at each cross-section are the same. The

stress at the neutral axis is zero for all cross-sections.

120



CHAPTER 6. GAUSSIAN AEM IN ELASTO-PLASTICITY

1 1.5 2 2.5 3 3.5 4 4.5 5

Number of Newton Raphson iterations

-40

-35

-30

-25

-20

-15

-10

-5

0

lo
g(

re
si

du
al

)

Newton Raphson convergence at load 185kN

(a) 185 kN

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Number of Newton Raphson iterations

-35

-30

-25

-20

-15

-10

-5

0

lo
g(

re
si

du
al

)

Newton Raphson convergence at load 211kN

(b) 211 kN

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Number of Newton Raphson iterations

-35

-30

-25

-20

-15

-10

-5

0

lo
g(

re
si

du
al

)

Newton Raphson convergence at load 237kN

(c) 237 kN

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Number of Newton Raphson iterations

-35

-30

-25

-20

-15

-10

-5

0

lo
g(

re
si

du
al

)

Newton Raphson convergence at load 264kN

(d) 264 kN

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Number of Newton Raphson iterations

-35

-30

-25

-20

-15

-10

-5

0

lo
g(

re
si

du
al

)

Newton Raphson convergence at load 290kN

(e) 290 kN

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Number of Newton Raphson iterations

-40

-35

-30

-25

-20

-15

-10

-5

0

lo
g(

re
si

du
al

)

Newton Raphson convergence at load 316kN

(f) 316 kN

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Number of Newton Raphson iterations

-35

-30

-25

-20

-15

-10

-5

0

lo
g(

re
si

du
al

)

Newton Raphson convergence at load 343kN

(g) 343 kN

1 2 3 4 5 6 7

Number of Newton Raphson iterations

-12

-10

-8

-6

-4

-2

0

lo
g(

re
si

du
al

)

Newton Raphson convergence at load 369kN

(h) 369 kN

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Number of Newton Raphson iterations

-35

-30

-25

-20

-15

-10

-5

0

lo
g(

re
si

du
al

)

Newton Raphson convergence at load 395kN

(i) 395 kN

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Number of Newton Raphson iterations

-40

-35

-30

-25

-20

-15

-10

-5

0

lo
g(

re
si

du
al

)

Newton Raphson convergence at load 422kN

(j) 422 kN

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Number of Newton Raphson iterations

-40

-35

-30

-25

-20

-15

-10

-5

0

lo
g(

re
si

du
al

)

Newton Raphson convergence at load 448kN

(k) 448 kN

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Number of Newton Raphson iterations

-35

-30

-25

-20

-15

-10

-5

0

lo
g(

re
si

du
al

)

Newton Raphson convergence at load 474kN

(l) 474 kN

Figure 6.10: Convergence at different load steps for tolerance 10−5
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Figure 6.11: Normal stress for cantilever beam

Figure 6.12: Shear stress for cantilever beam
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6.8 Adaptive Gaussian Springs

Using the Gaussian quadrature for the springs distribution, and the plasticity

algorithm for calculating the stresses in the springs, an adaptive method for

springs distribution can be implemented. In each iteration, the stress in each

spring is calculated and determined whether it is in the elastic or the plastic

stage. If all springs between two elements are elastic, then the initial number

of springs will be changed to only two springs between elements, since only two

points are required to model the linear behaviour of the elastic region, displayed

in Figure 6.13. Hence, assuming an initial number of 10 springs between a pair

of elements, after the first Newton Raphson iteration, if all springs are deemed to

be elastic, then the total number of springs per pair of elements is reduced from

10 springs to 2 springs.

Elastic Region

Figure 6.13: Adaptive Elastic Springs

However, if plasticity is observed in springs between a pair of elements, then

the normal stress is split into 3 regions, plastic at the top and bottom, and elastic

in the middle of the cross-section, as displayed in Figure 6.14. Since at least two

springs are required for each region, then instead of having a total of 10 springs,

6 springs are required for elasto-plastic cases.
Plastic Region

Plastic Region

Elastic Region

Figure 6.14: Adaptive Elasto-plastic Springs

An algorithm procedure for the beam deflection analysis would first entail

an initial Newton Raphson iteration, where all spring stresses and strains are

preallocated as zero. After the first iteration, the deflection vector is obtained and

at the next iteration the stresses are recalculated. Depending on the yield criteria

the springs are determined as belonging in the elastic or in the plastic region.

Transition points at which exactly the change in regions occur are determined,
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and then the new spring locations are distributed.

The beam is analysed for the first Newton Raphson iteration, and the stresses

in the springs are calculated. Based on the springs elasticity - whether they were

elastic or plastic, the new springs will be placed between calculated transition

points. The transition points are the points calculated where the stress changes

from the elastic to plastic region, and vice versa.

Considering a cantilever beam fixed on the left end as displayed in Figure 6.17,

and loaded on the right end. The spring distribution is resolved from the adaptive

Gaussian Springs based Applied Element Method proposed. Initially there are

10 springs between each element, after determining the plasticity conditions of

the springs, the new springs will be allocated. Assuming a small load was applied

where all the springs remain in the elastic region, then all the springs between

elements will be reduced from 10 springs per pair of elements, to two springs.

While in the case of an elasto-plastic condition, where the elements closest to

the fixed end will have higher stresses than the elements closer to the free end,

it is expected that some plasticity will appear. So the elements with plasticity

will have a total of 6 springs, while elements that are totally elastic will have 2

springs per element. In a more global effect, consider a beam with 10 elements, 10

springs between each element, the initial number of springs in total is 10×9 = 90

springs. After reduction, and in the case that all elements are elastic, the total

number of springs becomes 2× 9 = 18 springs.

Figure 6.15: Representation of a cantilever with initial of 10 springs

Figure 6.16: Representation of a cantilever beam with all elastic springs
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Figure 6.17: Representation of a cantilever beam using adaptive AEM springs

6.8.1 Transition Point Locator

There are two different approaches that were used to locate the transition point

in a cross-section. The calculation of the transition point is based on determining

between which two springs there was a difference in the elasticity of the spring.

An initial guess of 10 springs is recommended so there are at least two springs

in each region between where the transition point will occur. This is to ensure

that there are two points to create a line, and an intersection point between these

two lines is calculated. Consider the intersection of two lines L1 defined by the

points (x1, y1) and (x2, y2), and line L2 defined by points (x3, y3) and (x4, y4),

the intersection of the point Px, Py is defined using determinants, as displayed in

Equation 6.75:

Px =
(x1y2 − y1x2)(x3 − x4)− (x1 − x2)(x3y4 − y3x4)

(x1 − x2)(y3 − y4)− (y1 − y2)(x3 − x4)

Py =
(x1y2 − y1x2)(y3 − y4)− (y1 − y2)(x3y4 − y3x4)

(x1 − x2)(y3 − y4)− (y1 − y2)(x3 − x4)

(6.75)

p

e

e

e

p

1

2

3

4

5

1

2

3

4

5

t1

t2

Figure 6.18: Transition Point locator

Figure 6.18 displays the process at which the transition point is located. Con-

sider a cross-section between a pair of elements. The five points on the figure rep-

resent five springs between the cross-section. The first part of the figure shows
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"p" which demonstrates plastic, and "e" represents elastic. This explains that the

spring is plastic or elastic. The way that the transition point is located is based

on the fact that the transition will occur between two points that have different

plasticity. So between spring 1 and 2 there should be a transition point, and

another transition between spring 4 and 5. The second part of the figure shows

the red points, which is the stress of each spring. Connecting the location of the

stresses to one another shows where the intersection between the two lines will

occur, and so the location of the transition point. Since the coordinates of the

stress at each spring is known, using equation 6.75 the transition springs can be

calculated. From knowing the transition points now the section can be separated

where the springs are Gaussian distributed within each region.

6.8.2 Examples

In this section, different structural beams subject to incremental loading will

be analysed using the adaptive Gaussian springs technique. First, consider a

cantilever beam, fixed at one end and load applied at the free end. As mentioned

every pair of elements starts with an initial 10 springs, and after the plasticity

is determined for that load step, the springs are redistributed. If the element is

totally elastic, then only 2 springs are required, while if it is elasto-plastic, a total

of 6 springs are required. The difference in the MATLAB code for the conventional

springs and the adaptive springs is adding an extra requirement in the second

iteration by checking the elasticity and redistributing the springs. For elasto-

plastic cases usually five Newton Raphson iterations were required. Therefore,

for an elasto-plastic case, the first iteration would have 10 springs, in the second

iteration there is an evaluation of the springs and they are redistributed with 6

total springs, and finally from the third iteration on, the analysis continues for

just 6 springs. This is presented in examples as follows.

Cantilever Beam

Considering a cantilever beam, an elastic analysis and an elasto-plastic analysis is

performed. The cantilever beam with its deflected shape is shown in Figure 6.19.

From the stress diagram, the first three spring sets were elasto-plastic, while the
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remainder of the spring sets are totally elastic. The transition point location for

the three spring sets is shown in Figure 6.22. The new springs distribution in

every spring set is shown in Figure 6.23.

Figure 6.19: Cantilever beam with 10 elements

Figure 6.20: Deflection of cantilever beam with adaptive springs

Figure 6.21: Normal stress of cantilever beam with adaptive springs

Figure 6.24 displays the stress distribution at every cross-section and the

points are the spring locations. Figure 6.25 is the convergence rate of the Newton

Raphson iteration for the beam with transition points. Also, it is worth men-

tioning that the transition points calculation did not change the convergence rate

from the conventional springs, so with less springs accurate results were obtained.

In the scheme of larger scale structures, the number of springs can be significantly

reduced.
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Figure 6.22: Spring sets that are elasto-plastic

Figure 6.23: Springs distribution between elements

Figure 6.24: Normal stress distribution at every cross-section

Figure 6.25: Converge Rate of New-
ton Raphson

Table 6.2: Residual at each iteration

Iteration Residual
1 1
2 1.50 ×10−1

3 9.75 ×10−3

4 9.67 ×10−4

5 3.64 ×10−16
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Fixed End Beam

Figure 6.28 shows the stress distribution at the elasto-plastic cross-sections. The

deflection of the beam is shown in Figure 6.26. Figure 6.27 is the normal stress

distribution for the fixed end beam. As can be seen, the maximum stresses occur

at the ends of the beam and at the location of the applied load at the midspan.

Therefore it is expected that elasto-plasticity occurs at the ends and midspan.

This is correctly conveyed in Figure 6.29. The stress distribution with the springs

displayed as points along the beam cross-sections are shown in Figure 6.30.

Figure 6.26: Deflection of FEB with adaptive springs

Figure 6.27: Normal stress distribution for Fixed End Beam

The results for the adaptive springs showed good accordance with the original

AEM and in comparison to the Gaussian AEM. The convergence rate did not

change. The main advantage of the method is that the number of springs is

significantly reduced. For perfectly elastic cases, only 2 springs per element are

needed, while for elasto-plastic cases 6 springs are needed.
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Figure 6.28: Stress with adaptive springs for FEB

Figure 6.29: New springs distribution for FEB

Figure 6.30: New stress distribution for FEB

6.9 Conclusion

The Applied Element Method has been modified for elasto-plastic problems by

efficiently distributing springs using the Gaussian quadrature. The Hardening

plasticity algorithm was used for representing the elasto-plastic material. The
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Newton Raphson iteration scheme was implemented, and resulted in quadratic

convergence. Moreover, an adaptive method was used to model the behaviour of

the elements in elasto-plasticity, where a total of 6 springs is required for elasto-

plastic elements, and 2 springs for elastic elements. This revelation allowed an

accurate analysis of structural members while have a remarkably low number of

springs per element.

The material damage behaviour is presented in the next chapter.
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Chapter 7

Material Damage Model &

Dynamic Analysis

In the previous chapters, the elastic and elasto-plastic material behaviour was

successfully modelled for applications in AEM. The modelling of progressive col-

lapse is an extension of these methods and is presented in this chapter. Modelling

progressive collapse entails that the material must undergo damage and fracture

first. One material behaviour that exhibits material damage is softening material

behaviour. The following sections describe material softening and constitutive

equations developed to model the collapse of structures.

7.1 Softening Material Behaviour

Strain softening is the deterioration of material strength with increasing strain

[74]. This is usually found in damaged quasi brittle materials such as fibre rein-

forced composites and concrete [74]. Other materials include rocks, some soils,

wood, sea ice, fibre-reinforced concretes, asphalt concretes, polymer concretes,

ceramics and some metals [75]. Strain softening has been considered as inadmis-

sible in continuum mechanics [75]- [79]. Hadamard [80] pointed out that the wave

velocity becomes imaginary and the differential equation becomes elliptic if the

tangent moduli matrix is not positive definite [75].

A major part of construction materials around the world include materials

from the above listed. For this reason, there is an importance to modelling the
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ε0 εY εF

Elastic Plasticσ
σY

E S

Figure 7.1: Strain Softening Material Behaviour

softening materials behaviour after materials exceed their elastic limit. In this

section the return mapping algorithm for softening is developed. The strain

softening behaviour is exhibited when failure occurs by progressive damage [75].

Return Mapping Algorithm for Softening Model

The stress-strain diagram of the softening materials is presented as a bilinear

model, with the slope as a positive E in the elastic region, and a declining

negative slope S that represents the strain-softening behaviour. Based on the

constitutive model derived for hardening, similar principles are implemented to

develop the softening behaviour. Figure 7.1 is a representation of the material

model presented as a stress-strain diagram. In AEM each spring will have a

unique stress-strain diagram. Once the strain exceeds the elastic yield limit εY ,

it enters the plastic region and the slope is the negative S. Then when the strain

exceeds the failed strain εF the material is considered to have been totally dam-

aged in that region. Since each spring represents a tributary area of a section

of an element, then a failed spring physically represents that that portion of the

region has failed.

The return mapping algorithm is described as follows. First the strain is

calculated from the beam deflection, and the strain increment is obtained. The

trial stress is calculated based on using E, shown in Equation 7.1. Note that

there are two different strain definitions in the equation: ε is the strain and ϵ

is the plastic softening strain calculated in Equation 7.6. ϵ keeps track of the

plastic strain. If the stress and strain do not exceed the yield limit state yet, then

ϵp is zero because there is no plastic strain yet. So Equation 7.1 will be simply
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σtrial
n+1 = E(εn+1).

σtrial
n+1 = E(εn+1 − ϵpn) (7.1)

Similar to the 1D hardening plasticity, a yield criterion is developed for the soft-

ening material behaviour. The yield condition is used to determine when yield

occurs, and is denoted by f . The yield function results in either a positive or

negative value. The yield function f is shown in Equation 7.2.

f trial
n+1 = |σtrial

n+1 |−(σ0
Y + S(εn+1 − ε0Y )) (7.2)

The yield function is examined to determine which region the spring is currently

located: elastic, plastic or failed. If the strain is larger than the failed strain then

the spring has failed. If the yield criteria is less than zero this means that the

difference of the yield stress and the calculated softening stress is smaller than

the current trial stress, so the location of the trial stress is before the yield stress

meaning that it is still in the elastic region, and the plasticity parameter ∆λ = 0.

In the elastic region linear stiffness of a spring is calculated from Equation 7.3.

Kn =
EA

l
; Ks =

GA

l
(7.3)

Otherwise the spring is in the plastic region. The plasticity parameter ∆λ is

calculated and is greater than zero, shown in Equation 7.4.

∆λ =
f trial
n+1

E
(7.4)

The new stress σn+1 is then calculated (corrector-step) Equation 7.5, and the

corresponding plastic strain ϵpn+1.

σn+1 = σ0
Y + S(εn+1 − εY ) (7.5)

ϵpn+1 = ϵpn +∆λsign
[
σtrial
n+1

]
(7.6)
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The nonlinear stiffness of the springs are calculated in Equation 7.7.

Kn =
CnA

l
; Cn =

EH

E +H

Ks =
CsA

l
; Cs =

GH

G+H

(7.7)

For a failed spring, the stiffness is set as zero.

The return mapping softening algorithm is presented in Box 7.1.

Box. 7.1.1: Return Mapping Softening algorithm

1. Loop for every element

(a) Loop for every spring
(b) Obtain new strain ϵn+1 = ϵn + δϵn+1

(c) Evaluate elastic predictor

σtrial
n+1 = E(εn+1 − ϵpn+1)

f trial
n+1 = |σtrial

n+1 |−(σY + S(εn − εY ))

(d) Check yield criterion

if


εn > εf spring failed
f trial
n+1 ≤ 0 ∆λ = 0

f trial
n+1 > 0 ∆λ > 0

(e) If spring failed set stiffness of spring to zero.
(f) else Elastic step (if f trial

n+1 ≤ 0). Calculate linear stiffness of
springs.

(g) Plastic step (if f trial
n+1 > 0)

∆λ =
f trial
n+1

E

σn+1 = σ0
Y + S(εn+1 − εY )

ϵpn+1 = ϵpn +∆λsign
[
σtrial
n+1

]
Calculate nonlinear stiffness of springs.

(h) Repeat from step for more springs within the same pair of ele-
ments

2. Assemble internal forces in global force vector, and stiffness in global
stiffness matrix

3. Repeat for next pair of elements
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Softening Return Mapping algorithm schematic representation

The return mapping algorithm is presented schematically for better explanation

of the formulation.

1. Trial stress predictor
First consider that the strain εn has not exceeded the yield strain εy, but
the next increment εn+1 exceeds εy, as shown in Figure 7.2. Since there is
no plastic strain, the corresponding σtrial

n+1 is calculated as σtrial
n+1 = Eεn+1.

Figure 7.2: Trail stress predictor calculation

2. Calculate fn+1

Now the yield function must be evaluated. Recall that S is negative, so the
purple line presents σY +S(εn+1−εy) and is less than σY because it is being
subtracted. The yield function f trial

n+1 calculation is displayed in Figure 7.3.

Figure 7.3: Demonstrating the trial function
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3. Calculate ∆λ
Since f trial

n+1 is now known, ∆λ is used to calculate the plastic strain ϵp just
by using the elastic slope E. ∆λ is represented in Figure 7.4.

Figure 7.4: Representation of ∆λ

4. Obtain the plastic strain ϵp.
The plastic strain is shown in Figure 7.5. Since there is no previous plastic
strain because this is the first time step in which the strain has exceeded
the yield strain, the plastic strain at this time step = ∆λ.

Figure 7.5: Plastic strain

5. Now that the strain and corrected stress is obtained the corresponding
stiffness of the spring is obtained as well as the internal force.

6. Begin next time step and calculate the trial stress. Since there is a plastic
strain, ϵp is included in the trial stress equation. εn+1 − ϵp is schematically
represented in Figure 7.6, along the x-axis. The trial stress is then obtained
using the Young’s Modulus E.

140



CHAPTER 7. MATERIAL DAMAGE MODEL & DYNAMIC ANALYSIS

Figure 7.6: Trial stress calculation

7. Similar to the previous time step f trial
n+1 is obtained, and shown in Figure

7.7.

Figure 7.7: f trial
n+1 calculation

8. ∆λ and new ϵp can now be obtained, and is shown in Figure 7.8.

7.1.1 Return-Mapping Algorithm verification

In this section the verification of the Predictor-Corrector algorithm is presented

and the Newton Raphson convergence is examined. Figures 7.9 and 7.10 show

the return mapping for the predictor and corrector at different time steps. The

green points describe the predictors, and the red points describe the correctors.

From the first figures it is clear that when the spring is in the elastic stage it will

follow the Young’s Modulus E, and therefore the predictor takes the next stress
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Figure 7.8: ∆λ and ϵp calculation

time step to the correct location, and no correction is actually needed. Once the

stress exceeds the elastic limit, the predictor predicts the stress along the elastic

modulus, and later the algorithm corrects the stress to the correct location along

the Softening modulus. Later the unloading stage is shown. Since the unloading

occurs after the yield stage it follows a new path which is parallel to the modulus

E, however, since there is permanent plastic strain, it will not go back to zero.

Finally in the reloading stage, the predictor predicts along the new slope of E,

and once it intersects with the softening slope, it starts to correct to the softening

slope rather than E. The point of intersection is considered the new yield stress.

7.1.2 Failed Elements

Newton Raphson convergence cannot be obtained with softening damage mate-

rials due to the singularity of the stiffness matrix. The stress-strain diagram of

the predictor corrector method shows a good behaviour of the strain softening,

however there is no Newton Raphson convergence. Also the eigen values for the

system are negative after the yield point is surpassed. For this reason a dynamic

model must be used. After failure or crack occurs in the static analysis (element

separation), the stiffness matrix becomes singular, causing inaccurate solutions

since it cannot be invertible. Solving the problem in a dynamic case will eliminate

this issue.
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(a) predictor (b) corrector

(c) predictor (d) corrector

(e) predictor (f) corrector

(g) predictor (h) corrector

Figure 7.9: Predictor-corrector Softening model
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(a) predictor (b) corrector

(c) predictor (d) corrector

(e) predictor (f) corrector

(g) predictor (h) corrector

Figure 7.10: Predictor-corrector Softening model
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7.2 Introduction to Dynamic Analysis

In this section, the formulation of the dynamic aspect in AEM is presented. A

general formulation of the equation of motion for multiple degrees-of-freedom

systems subject to external forces or earthquake ground motion is shown. Based

on the presented formulations, the most applicable numerical time integrator

for use in progressive collapse in AEM is selected. The equations for multiple

degrees-of-freedom system (MDOF) are presented, since the scope of this thesis

covers MDOF systems.

7.2.1 Equation of Motion for MDOF Systems

Consider the two story shear building shown in Figure 7.11a, with lumped mass

at each floor level. The system has two degrees-of-freedom; lateral displacements

u1 and u2 in the direction of the x-axis. The forces acting on the frame are in

Figure 7.11b, where fS is the resisting force, fD is the damping force and p(t) is

the external applied force. The derivation of these forces is shown in the following

section.

(a) (b)

Figure 7.11: (a) Two story shear frame (b) Forces acting on frame [81]

7.2.2 Equations of Motion for Linear Systems

In a single degrees-of-freedom linear system the relationship between the lateral

force and the deformation u is linear and shown in Equation 7.8.

fs = ku (7.8)
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where k is the lateral stiffness of the system, fs is the external force, and the

internal force is equal and opposite to fs [81]. The linear relationship implies

that the loading and unloading curves are identical. For structures undergoing

cyclic deformations, from earthquakes for instance, the initial loading curve is

nonlinear at larger amplitudes of deformation, and the unloading and loading

curves may differ from each other. This system is inelastic [81]. The resisting

force is an implicit function of deformation

fs = fs(u) (7.9)

Damping in structures is idealised since it is impossible to identify or mathemat-

ically represent the energy dissipation mechanisms in actual structures [81]. For

simple degrees-of-freedom structures the damping is idealised by a linear viscous

damper. The damping force is related to the velocity u̇ across the linear viscous

damper by

fD = cu̇ (7.10)

where c is the viscous damping coefficient and u̇ is the velocity. Vibration exper-

iments on actual structures provide the data for the damping coefficient. There-

fore, the forces acting on a mass at an instance of time are the external force p(t),

the resisting force fs and the damping resistance force fD. The resultant force

along the x-axis is p− fS − fD. The Newton’s second law of motion gives

p− fS − fD = mü (7.11)

which becomes

mü+ cu̇+ ku = p(t) (7.12)

Equation 7.12 can be extended for inelastic systems as

mü+ cu̇+ fS(u) = p(t) (7.13)
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The Newton’s second law of motion for each mass is

pj − fSj − fDj = mjüj (7.14)

for j = 1 and 2, Equation 7.14 can be written in matrix formm1 0

0 m2

ü1

ü2

+

fD1

fD2

+

fS1

fS2

 =

p1(t)

p2(t)

 (7.15)

which can be written as

Mü+ fD + fS = p(t) (7.16)

where M is the mass matrix. Since the elastic resisting force fS is related to

the displacement vector and stiffness matrix K, the force can be represented as

Equation 7.17. Also, the damping resistance force and the velocity vector are

related the damping matrix C, as shown in Equation 7.18.

fS = Ku (7.17)

fD = Cu̇ (7.18)

The equation of motion can now be written as

Mü+ Cu̇+Ku = p(t) (7.19)

For a general description of linear systems, with more than just two stories, the

same approach is used. The degrees-of-freedom in the system will increase. The

form of the equations of motion will remain the same as shown in Equation 7.19.

7.2.3 Natural Vibration Frequency and Modes Calcula-

tion

The solution to the eigenvalue problem presented in this section gives the natural

frequencies and the modes of a structural system [81]. The free vibration of

an undamped system of one of the vibration modes can be represented using
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Equation 7.20.

u(t) = qn(t)ϕn (7.20)

where the deflected shape ϕn does not vary with time. The time variation of the

displacements is described by the simple harmonic function

qn(t) = An cos(ωnt) +Bn sin(ωnt) (7.21)

where An and Bn are constants determined from the initial conditions. Combining

Equations 7.20 and 7.21 gives

u(t) = ϕn(An cos(ωnt) +Bn sin(ωnt)) (7.22)

Substituting in the undamped form Equation 7.19, ü is required.

u̇(t) = ϕnωn(−An sin(ωnt) +Bn cos(ωnt)) (7.23)

ü(t) = ϕnω
2
n(−An cos(ωnt)−Bn cos(ωnt)) (7.24)

so

ü(t) = −ϕnω
2
nqn(t) (7.25)

therefore, the undamped equation of motion can be rewritten as

−M(ϕnω
2
nqn(t)) +K(qn(t)ϕn) = 0 (7.26)

Equation 7.26 can be satisfied either if qn(t) = 0, which is a trivial solution since

it implies u(t) = 0 and there is no motion in the system, or

[K − ω2
nM ]ϕn = 0 (7.27)

The solution ϕn = 0 is also a trivial solution suggesting that there is no motion.

Therefore, Equation 7.28 must be satisfied and is known as the characteristic
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equation.

det[K − ω2
nM ] = 0 (7.28)

When Equation 7.28 is expanded, a polynomial of order N in ω2
n is retrieved.

The N roots, ω2
n, determine N natural frequencies of vibration, and are known

as the eigenvalues, characteristic values or normal values [81]. Once the natural

frequency is known, Equation 7.27 can be solved to obtain the vector, ϕn. For

every ωn there is a corresponding ϕn. ϕn vectors are known as the eigenvectors,

natural modes of vibration, or natural mode shapes of vibration [81].

Natural vibration and modes for structural beams

In MATLAB, there exists a function [V,D] = EIG(A,B) that produces a diagonal

matrix D of generalized eigenvalues and a full matrix V whose columns are the

corresponding eigenvectors. In this case A would be the stiffness matrix, and B

would be the mass matrix. Assuming a cantilever beam where the mass matrix M

and the stiffness matrix K are already known. The eigenvalues and vectors would

be easily retrieved using the function, where as previously noted, the eigenvalues

correspond to the natural frequency ωn and the eigenvectors are the natural

modes of vibration ϕn. The first six modal shapes of a cantilever beam using the

function are shown in Figure 7.12, and for a fixed ends beam in Figure 7.13.
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(f) Mode 6

Figure 7.12: Modal Shapes for Cantilever Beam
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Figure 7.13: Modal Shapes for a Fixed Ends Beam

7.3 Time-stepping Methods for linear systems

There are several time integrating methods for solving the equations of motion.

Some of the most common are the Newmark-β method (NBM), the Runge-Kutta

method (RKM), the Central Difference method (CDM), and several more. For

the scope of this project, the Newmark-Beta method, the Linear acceleration

method and the Central Difference method are listed below. Three requirements

are needed for selecting an appropriate numerical procedure: (1) convergence, (2)

stability, and (3) accuracy [81].

7.3.1 The Central Difference Method

The CDM is based on a finite difference approximation of the time derivatives of

displacement [81]. The expressions for velocity and acceleration are [81]

u̇i =
ui+1 − ui−1

2∆t
(7.29)

üi =
ui+1 − 2ui + ui−1

(∆t)2
(7.30)

Substituting these expressions for velocity and acceleration into the equation of

motion gives [81]

M

[
ui+1 − 2ui + ui−1

(∆t)2

]
+ C

[
ui+1 − ui−1

2∆t

]
+Kui = pi (7.31)
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From time stepping, ui and ui−1 are assumed known. Solving for ui+1 gives

[
M

(∆t)2
+

C

2∆t

]
ui+1 = −

[
M

(∆t)2
− C

2∆t

]
ui−1 +

[
2M

(∆t)2
−K

]
ui + pi (7.32)

which may be written as

A0ui+1 = A1ui + A2ui−1 + pi (7.33)

where

A0 =

[
M

(∆t)2
+

C

2∆t

]
(7.34)

A1 =

[
M

(∆t)2
− C

2∆t

]
(7.35)

A2 = −
[

2M

(∆t)2
+K

]
(7.36)

The unknown ui+1 is given by

ui+1 =
A1ui + A2ui−1 + pi

A0

(7.37)

From Equation 7.30 it is evident that u0 and u−1 are needed to determine u1.

The initial displacement u0 is known. For i = 0

˙(u0) =
u1 − u−1

2∆t
(7.38)

¨(u0) =
u1 − 2u0 + u−1

(∆t)2
(7.39)

solving for u−1 from Equation 7.38 and substituting in Equation 7.39,

u−1 = u0 −∆t(u̇0) +
(∆t)2

2
ü0 (7.40)

The equations of motion at time t=0 shown in Equation 7.41 gives the acceleration

in Equation 7.42,

Mü0 + Cu̇0 +Ku0 = P0 (7.41)

ü0 = [M ]−1(P0 − Cu̇0 −Ku0) (7.42)
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Based on the equations shown, the solution in the central difference method is

explicit.

Stability Condition

The stability condition for the CDM is

∆t

Tn

<
1

π
(7.43)

In CDM, a much smaller time step is required to approach good accuracy. Rather,
∆t
Tn

< 0.1 for definition of an adequate response, and ∆t = 0.01 to 0.02 to represent

ground acceleration accurately [81].

Computational Algorithm for Central Difference Method

The computational algorithm of the MDOF CDM is shown in Box 7.3.1. The mass

and damping matrix of the system are first obtained. Then the CDM method

starts where the initial acceleration, velocity and displacement are calculated.

The Gaussian AEM algorithm begins where the stresses and strains of each spring

is calculated using the return mapping softening model, and the internal forces

at each degree-of-freedom is calculated. The next time step begins where the new

internal force is presented in the equations of motion and the new acceleration,

velocity and displacement are calculated.
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Box. 7.3.1: Linear Central difference method

1. Initial Calculations

(a) Obtain Mass and Damping matrix of system
(b) ü0 = [M ]−1(P0 − Cu̇0 −Ku0) from [Eq. 7.42]

(c) Solve u−1 = u0 −∆t(u̇0) +
(∆t)2

2
ü0 from [Eq. 7.40]

(d) select appropriate ∆t

2. Calculate for each time step, i = 0,1,2,3,...

(a) update pi to include the new internal force vector
(b) ui+1 =

A1ui+A2ui−1+pi
A0

from [Eq. 7.37]

(c) u̇i =
ui+1−ui−1

2∆t
and üi =

ui+1−2ui+ui−1

(∆t)2
Eq. [7.30]

3. Repeat for the next time step. Replace i by i+ 1

7.3.2 The Newmark-β Method

The finite difference approximations for the Newmark-β method developed by

Newmark in 1959 are [82]

ui+1 = ui +∆tu̇i +
1

2
∆t2[(1− β

2
)üi + 2βüi+1] (7.44)

u̇i+1 = u̇i +∆t[(1− γ)üi + γüi+1] (7.45)

The parameters β and γ represent the variation of acceleration over a time step

and determine the stability and accuracy of the method [81]. γ is typically 1
2

and
1
6
< β < 1

2
. For linear systems, the equations of motion with iterations is

Müi+1 + Cu̇i+1 +Kui+1 = pi+1 (7.46)

Rewriting Equation 7.44 to represent üi+1 gives Equation 7.47. Substituting

Equation 7.47 in 7.45 gives 7.48.

üi+1 =
1

β∆t2
(ui+1 − ui)−

1

β∆t
u̇i − (

1

2β
− 1)üi (7.47)

u̇i+1 =
γ

β∆t
(ui+1 − ui) + (1− γ

β
)u̇i +∆t

(
1− γ

2β

)
üi (7.48)
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Regrouping and solving for ui+1, by substituting Equations 7.47 and 7.48 into

Equation 7.46 gives

M

(
1

β∆t2
(ui+1 − ui)−

1

β∆t
u̇i − (

1

2β
− 1)üi

)
+

C

(
γ

β∆t
(ui+1 − ui) + (1− γ

β
)u̇i +∆t

(
1− γ

2β

)
üi

)
+Kui+1 = pi+1

(7.49)

Rewriting Equation 7.49 in terms of the displacement, velocity and acceleration

gives

ui+1

(
M

β∆t2
+

Cγ

β∆t
+K

)
+ ui

(
− M

β∆t2
− Cγ

β∆t

)
+u̇i

(
− M

β∆t
+ C(1− γ

β
)

)
+ üi

(
−M(

1

2β
− 1) + C∆t

(
1− γ

2β

))
= pi+1

(7.50)

which can be written in the form of

A0ui+1 = A1ui + A2u̇i + A3üi + pi (7.51)

where

A0 =

(
M

β∆t2
+

Cγ

β∆t
+K

)
(7.52)

A1 =

(
M

β∆t2
+

Cγ

β∆t

)
(7.53)

A2 =

(
M

β∆t
+ C

(
γ

β
− 1

))
(7.54)

A3 =

(
M

(
1

2β
− 1

)
+ C∆t

(
γ

2β
− 1

))
(7.55)

The displacement at time i+ 1 is

ui+1 = [A0]
−1[A1ui + A2u̇i + A3üi + pi] (7.56)

and the acceleration can also be obtained from the equation of motion 7.46

üi+1 = [M ]−1[pi+1 − Cu̇i+1 −Kui+1] (7.57)
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Special cases of the Newmark-β method arise for specific values of γ and β. For

γ = 1/2 and β = 1/4, the Newmark method is identical to the constant average

acceleration. For γ = 1/2 and β = 1/6, the Newmark method is identical to

the linear acceleration. Finally, for γ = 1/2 and β = 0 the Newmark method is

reduced to the central difference method. For γ = 1/2 the Newmark method is

at least second-order accurate. It is first order accurate for all other values of γ

[83]. If the residual nonlinear forces are not negligible, then Equation 7.46 must

be solved using the Newton-Raphson method.

Newmark Method Stability

The Newmark’s method is stable with the condition of Equation 7.58 [81],

∆t

Tn

≤ 1

π
√
2

1√
γ − 2β

(7.58)

For γ = 1
2

and β = 1
4
, (constant average acceleration method), the condition

becomes

∆t

Tn

< ∞ (7.59)

Equation 7.59 indicates that the constant average acceleration method is stable

for any ∆t. It is only accurate for small values of ∆t. For γ = 1
2

and β = 1
6
, the

linear acceleration method is stable if

∆t

Tn

≤ 0.551 (7.60)

Computational Algorithm

The computational algorithm for the linear multiple degree-of-freedom Newmark

Method for a system is shown in Box 7.3.2.
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Box. 7.3.2: MDOF Linear Newmark Method

1. Initial Calculations

(a) Solve Mü0 + Cu̇0 +Ku0 = p0 for ü0 [Eq. 7.46]
(b) Select ∆t
(c) Calculate A1, A2, A3 from [Eq.7.53,7.54,7.55]

2. Calculate for each time step, i = 0,1,2,3,...

(a) Obtain ui+1 =
A1ui+A2u̇i+A3üi+pi

A0
[Eq. 7.56]

(b) Obtain u̇i+1 =
γ

β∆t
(ui+1 − ui) + (1− γ

β
)u̇i +∆t

(
1− γ

2β

)
üi [Eq.

7.48]
(c) Obtain üi+1 =

1
β∆t2

(ui+1 − ui)− 1
β∆t

u̇i − ( 1
2β

− 1)üi [Eq. 7.47]

3. Repeat for the next time step. Replace i by i+ 1

7.3.3 Numerical Methods Classifications

The general classifications of numerical integration methods are: explicit and

implicit [83]. For single step explicit methods, the displacements and velocities

at ti+1 are determined in the closed form from the displacements, velocities and

accelerations at ti. Hence, for structural systems with linear elastic stiffness and

damping, the discrete-time systems can be written as Equation 7.61.u(ti+1)

u̇(ti+1)

 = A

u(ti)
u̇(ti)

+Bf ext(ti) (7.61)

where A is a 2n×2n discrete time dynamics matrix that depends on M,C,K,∆t,

and the time step. However, the implicit methods are a solution of a set of linear

algebraic equations at each time step [83].

Based on the equations shown, the solution in Newmark method is implicit,

and the CDM is explicit. In the CDM no iterative procedure is required because

all the constitutive variables are available from computations at previous time

steps [84].
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7.4 Time-stepping methods for Nonlinear Sys-

tems

The implementation of nonlinear systems in the Equations of motion is simply

done by using internal forces rather than the stiffness multiplied by the displace-

ment. Similar to the amended equation of motion for nonlinearity (Equation

7.13), this modification is applied to the time integration schemes.

Mü+ Cu̇+ f(s) = p(t) (7.62)

The modifications to the Nonlinear Newmark-β Method and the Central Differ-

ence Method are presented in the following sections.

7.4.1 Nonlinear Newmark-β Method

The equations of the Newmark-β method were derived in section 7.3.2. The

acceleration, velocity and displacements equations do not change; however the

equations of motion 7.62 is implemented, where the stiffness matrix multiplied by

the displacements is replaced by the internal forces. The iteration scheme that

will be used is the Newton-Raphson method, for static analysis of a nonlinear

system. For the equations of motion written in the form of Equation 7.63, only

A0 changes since the stiffness matrix is not incorporated. The modified A0 is

shown in Equation 7.64.

A0ui+1 = A1ui + A2ui−1 + pi − fSi (7.63)

A0 =

(
M

β∆t2
+

Cγ

β∆t

)
(7.64)

It should be noted that this method determines the solution at time (i+1) from

the equilibrium condition at time (i+1). The resisting force (fS)(i+1) is an implicit

function of the unknown u(i+1), therefore an iteration method is required [81].
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Newton Raphson Iteration Scheme

An iterative procedure is used such that uj+1 can be found as an improved es-

timate from uj. Expanding the resisting force f
(j+1)
S in Taylor series about the

known estimate uj gives

f
(j+1)
S = F j

S =
∂fS
∂u

∣∣∣∣
uj

(u(j+1) − u(j)) +
1

2

∂2fS
∂u2

∣∣∣∣
uj

(u(j+1) − u(j))2 + ... (7.65)

If uj is close to the solution then change ∆uj = u(j+1) − uj will be small and the

second higher order terms are neglected, leading to Equation 7.66

f j+1
S = f j

S +Kj
T∆uj = 0 (7.66)

Kj
T∆uj = p− f j

S = Rj (7.67)

where KT is the tangent stiffness at uj. Solving 7.67 gives a new estimate of the

displacement

u(j+1) = u(j) +∆u(j) (7.68)

The additional displacement ∆u(j+1) due to the residual force is calculated from

K
(j+1)
T ∆u(j+1) = R(j+1) (7.69)

The new displacement is

u(j+2) = u(j+1) +∆u(j+1) (7.70)

The new value of R(j+2) is continued until convergence is achieved.

Computational Algorithm

The new computational algorithm for the nonlinear Newmark-β method is pre-

sented in Box 7.4.1.
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Box. 7.4.1: MDOF Nonlinear Newmark method with Newton

Raphson iteration

1. Initial Calculations

(a) Solve Mü0 + Cu̇0 + f(s)0 = p0 for ü0 Eq. [7.46]
(b) Select ∆t
(c) Calculate A1, A2, A3 from [Eq.7.53,7.54,7.55]

2. Calculate for each time step, i = 0, 1, 2, 3, ...

(a) initialize j = 1, uj
i+1 = ui,(fs)ji+1 = (fs)i and (KT )

j
i+1 = (KT )i

(b) p̂i = A1ui + A2u̇i + A3üi + pi

3. For each Newton Raphson iteration, j = 1, 2, ...

(a) Calculate residual force vector R̂j
i+1

(b) check if convergence is obtained. if convergence criteria is not
met then continue to step 3c, otherwise go to step 4

(c) (K̂T )
j
i+1 = (KT )

j
i+1 + A1

(d) ∆uj+1
i+1 = R̂j

i+1/(K̂T )
j
i+1

(e) uj+1
i+1 = i+ 1j +∆u(j)

Replace j by j + 1, and repeat steps 3a to 3e.

4. Calculate velocity and acceleration

(a) Obtain u̇i+1 from [Eq. 7.48]
(b) Obtain üi+1 from [Eq. 7.47]

5. Repeat for the next time step i. Replace i by i+ 1

7.4.2 Nonlinear Central Difference Method

Rewriting the equations of motion from Equation 7.73 to incorporate the inelastic

behaviour gives

Müi + Cu̇i + (fS)i = Pi (7.71)

üi = [M ]−1(Pi − Cu̇i − (fS)i) (7.72)

M

[
ui+1 − 2ui + ui−1

(∆t)2

]
+ C

[
ui+1 − ui−1

2∆t

]
+ fSi = pi (7.73)
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so

A0ui+1 = A1ui + A2ui−1 + pi − fSi (7.74)

where

A0 =

[
M

(∆t)2
+

C

2∆t

]
(7.75)

A1 =

[
M

(∆t)2
− C

2∆t

]
(7.76)

A2 = −
[

2M

(∆t)2

]
(7.77)

The difference between the linear and nonlinear CDM is in Equation 7.77, where

the stiffness matrix K is no longer a part of the equation. The advantage is

that K is no longer needed to be inverted in every iteration. Since the method

will be applied to a MDOF system of high rise structures, this will significantly

reduce computational cost as opposed to using the Newmark-β method. Another

advantage is that f(Si) is calculated explicitly, making the method one of the sim-

plest in comparison to other MDOF procedures for analysis. The computational

algorithm is therefore amended respectively. A disadvantage of using the CDM is

that the time step must be really small. Considering that the mass and damping

matrix are diagonalised, having a small time step is not so disadvantageous since

the computational cost is quite low, and there is no stiffness matrix inversion.

A special case of the dynamic problem can result in convergence of solution of a

static problem. In other words, a static problem can be presented as a special

case of dynamic problem. For representing the static case using the dynamic

model, Ku = Fint. The mass matrix, and damping matrix of Equation 7.19 are

presented in the following sections.

7.4.3 Summary of Methods

The method chosen for the nonlinear dynamic analysis is based on a comparison

of the methods, shown in Table 7.1. Assuming a cantilever beam, with span

of 1m, and 0.15m cross-section, the calculated critical time step for the Central

Average Acceleration Method, ∆t can be any number, however it must be small for
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Table 7.1: Summary of advantages and disadvantages

Newmark-β Central Differences
Numerical method Implicit Explicit

critical ∆t Stable with large ∆t Stable at small ∆t
Nonlinearity adaptation Requires iteration

scheme such as the
Newton Raphson
method

No iteration scheme
required

Requires inverting the
stiffness matrix in ev-
ery iteration

does not require in-
verting the stiffness
matrix

obtaining desired accuracy, and for the CDM should be at least ∆t = 1.6×10−4 =

0.00016.

7.5 Dynamic Formulation and Application in AEM

Now that the elastic and inelastic dynamic equations are formulated, they will be

applied in the context of AEM to analyse structural systems subject to dynamic

loading. The mass and damping matrix are formulated in the following sections.

Application of the dynamic analysis to earthquake loading and extreme wind

loading is presented in the following chapters.

7.5.1 Determination of Mass Matrix

The mass matrix for a single element is a 3 × 3 matrix, since each element has

3 degrees-of-freedom. The mass matrix is a diagonal matrix, with the diagonal

elements shown in Equation 7.78. The element mass and inertia are assumed

lumped at the element centre. The mass matrices must comply with the following

conditions [85]: (1) symmetry: (M e)T = M e; (2) conservation; and (3) positivity:

the matrix should have diagonally positive elements.

M e = diag


M1

M2

Mα

 = diag


m/2

m/2

αml2

 (7.78)
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where, [M1] and [M2] are the element mass in the x direction and the y-direction

respectively, and [M3] is the mass due to the rotation direction , m is the total

mass of the element, α is a small value and l is the length of the element. In the

computational algorithm, the mass matrix is:

1. localized: mass matrix of each element is formed separately

2. transformed from local to global coordinates: Mg = T tMT

3. assembled into global matrix with all elements and degrees-of-freedom

7.5.2 Determination of Damping Matrix

The process by which vibration diminishes in amplitude is damping [81]. The

Rayleigh Damping is a proportional damping model that expresses the damping

as a linear combination of mass and stiffness, shown as Equation 7.79.

C = aM + bK (7.79)

where a and b are damping parameters, [C] is the damping matrix, [M] is the

mass matrix, and [K] is the stiffness matrix.

a and b calculation

For linear problems the natural frequencies ωi and the modes of vibration ϕi can

be obtained. The damping ratio for the ith mode of a system is

ξi =
a

2ωi

+
bωi

2
(7.80)

where, ξi is the damping ratio, and ωi is the natural frequency. For every ωi there

is a corresponding ξi. Two values of ξi can be set to solve the two equations with

two unknowns a and b using Equation 7.80. Once a and b are calculated the

damping matrix C can be calculated.

It is evident that with an increasing ωi, then ξi will get bigger. However this

is not significant since the larger ωi are resulted from higher degrees of modal

shapes which are considered insignificant. For simplicity of the dynamic analysis

using the Gaussian AEM, b is chosen as zero. So the damping matrix is calculated
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as C = aM .

7.5.3 Implementing dynamics and nonlinearity in MAT-

LAB code

Implementing the nonlinear time stepping schemes into the dynamic code is pre-

sented. The nonlinearity in the model comes from the spring material nonlinearity

and is determined by whether the material is elastic or elasto-plastic, which is

related to the softening model yield criteria. Including the softening model along

with the Central Difference method allows to generate a code with both linear

and nonlinear behaviour. A few modifications are required to be done to the

return mapping softening algorithm for implementing the CDM. Firstly, the stiff-

ness matrix is not needed to be updated with every iteration, since the dynamic

model does not require the stiffness matrix, rather only the internal forces need

to be calculated. Therefore, the stiffness matrix is not needed to be calculated

in every iteration. Secondly, since the CDM is an explicit method the Newton

Raphson iteration scheme is not needed. Considering that there is no stiffness

matrix update needed or inversion, and no Newton Raphson scheme, this leads

to a computationally low cost algorithm.

The computational algorithm for a nonlinear dynamic code with AEM is

explained for each time step. At the first time step an initial displacement velocity

and acceleration are calculated from an initial guess (u = 0). Then the Gaussian

AEM with softening material behaviour begins. There is a loop for every element.

For each element, the stresses and strains for each spring are calculated from the

displacement calculated using the CDM. Based on the calculated stresses and

strains the yield criteria for each spring is examined. The yield criteria determines

whether the springs are elastic, elasto-plastic or failed, and then the corresponding

internal forces are calculated. For failed springs, the internal force is set to be

zero. The internal forces for each springs are assembled to the global force vector

to be used in the next time step iteration. At the next time step the internal

forces are updated, as well as all other external forces for that time step, and the

new displacement, velocity and acceleration are calculated using the CDM. Then

the Gaussian AEM algorithm begins again. This process is repeated until the
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time required is reached. The computational algorithm is displayed in Box 7.5.3.
Box. 7.5.1: Nonlinear CDM with Gaussian AEM

1. Initial Calculations

(a) Obtain Mass and Damping matrix of system
(b) üi = [M ]−1(Pi − Cu̇i − (fS)i) Eq.[7.72]

(c) Solve u−1 = u0 −∆t(u̇0) +
(∆t)2

2
ü0 [Eq. 7.40]

(d) Calculate A0, A1 and A2 [Eq. 7.75, 7.76, 7.77]
(e) select appropriate ∆t

2. Calculate for each time step, i = 0,1,2,3,...

(a) ui+1 = [A]−1[A1ui + A2ui−1 + pi − fSi] Eq.[7.74]
(b) u̇i =

ui+1−ui−1

2∆t
and üi =

ui+1−2ui+ui−1

(∆t)2
Eq. [7.30]

(c) Begin Gaussian AEM loop
• Loop through every element and then spring to calculate the

new stresses and strains from ui+1, using return mapping
algorithm and softening yield criteria.

• Update internal force vector fSi.

3. Repeat from 2 for the next time step. Replace i by i+ 1

7.6 Dynamic Analysis for Verification

This section presents some implementation of the dynamic model to simple struc-

tures. Analysis of structures undergoing free vibration with and without damping

are presented to ensure that the model behaves as expected. A large displacement

analysis of a frame is then presented, where no element separation is allowed.

7.6.1 Free Vibration

Free vibration is the motion of a structure without an external forces or dy-

namic excitation [81]. The vibration is initiated by an initial disturbance to the

structure. This phenomenon is verified in the AEM algorithm presented. Con-

sider a cantilever beam with a load applied at the free end at time step 500

(∆t = 0.00005, time = 0.025 sec, iteration 500 out of 10, 000). The free vibration

of the undamped and damped system are presented as follows.
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Undamped system

For an undamped system the expected behaviour of the beam after a disturbance

is shown in Figure 7.14. The equations of motion governing the undamped system

are presented in Equation 7.81, with initial conditions in Equation 7.82.

Figure 7.14: Free vibration of undamped system [81]

Mü+Ku = 0 (7.81)

u = u(0) u̇ = u̇(0) (7.82)

Figure 7.15 shows the displacement, velocity and acceleration of the point at

which the load is applied. Figure 7.15a is the displacement, velocity and acceler-

ation of the free end of the system during the first 0.2 seconds. As can be seen

before the perturbation was presented in the 500th iteration, the displacement,

velocity and acceleration is zero. From Figure 7.15b the graphs show that the

system is vibrating freely with no damping occurring. The results show good

accordance with the expected result from Figure 7.14.
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Figure 7.15: Free vibration of point at which load is applied
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Damped system

The free vibration of a damped system is shown in Figure 7.16, where the vibra-

tion eventually "damps" out due to the damping coefficient in the system. Similar

to the example in the undamped system, a cantilever beam is disturbed at the

500th time step, and the displacement, velocity and acceleration are shown in

Figure 7.17. It is evident that leaving the system to react to the disturbed force

eventually leads to a static solution.

Figure 7.16: Free vibration of damped system [81]

Mü+ Cu̇+Ku = 0 (7.83)
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Figure 7.17: Displacement, velocity and acceleration of damped cantilever system
at free end
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7.7 Analysis Results

Different types of loading scenarios are implemented on beams and frames in this

section to demonstrate the dynamic behaviour of a multiple degree-of-freedom

system. Considering a cantilever beam with 1m span and 0.15 × 0.15m cross-

section. The material properties are similar to the beam shown from Table 5.1.

Different loading conditions are are applied to the beam as shown below.

Point load increasing with time

Figure 7.18a displays the force-displacement diagram of the free end of the beam,

where the load is applied. Figure 7.18b shows the displacement, velocity and

acceleration of the point at which the load is applied, with respect to time. The

Figure shows that the displacement, velocity and acceleration damp out to even-

tually a static solution. Figure 7.19 is the deflection of the beam at different

time steps. It is cleat that the deflection is oscillating between the positive and

negative y direction, which is expected in the dynamic behaviour.
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Figure 7.18: displacement, velocity and acceleration at free end

Figure 7.19 shows the behaviour of the beam deflection at different time steps.

Point load on cantilever beam with no damping

The acceleration velocity and displacement of the cantilever beam with no damp-

ing is shown in Figure 7.20. The results show that velocity and acceleration

are clearly undamped. The displacement increases with time (in the negative

direction) because the load is incrementally increasing.
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Figure 7.19: Beam Deflection of cantilever beam at different time steps
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Figure 7.20: Displacement, velocity and acceleration of free free end of cantilever
beam for undamped system

Point load increasing with time applied sinusoidally

The cantilever beam is subject to an incrementally increasing sinusoidal load,

shown in Equation 7.84. Figure 7.21 is the force displacement diagram of the

free end of the cantilever beam, subjected to the loading. Figure 7.22 shows the

displacement, velocity and acceleration versus the time. The sinusoidal behaviour

is clearly shown.

Fext = F (t)× sin(ωnt) (7.84)
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Figure 7.21: Force-displacement diagram for sin load
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Figure 7.22: Displacement, velocity and acceleration at free end for cantilever
beam with sin load

Large displacement Analysis

The dynamic analysis is applied to a multi-storey frame. In this example no

failure (element separation) between elements is considered. So if the structure

is subjected to large loads then unrealistic large displacements are expected. The

deflection of a column frame subject to a large load that results in large displace-

ment is presented. The frame has material properties of steel and is loaded at

the top left point in the x-direction with an incrementally increasing load. The

softening material model is used and the structure is analysed dynamically using

the nonlinear CDM. The structure undergoes permanent deformation since the

load is very large plastic deformation was found in most elements. The unfactored

deflection of the frame is shown in Figure 7.23. As can be seen from the deflection

figures, at time 1.8 seconds, the frame already had a deflection of approximately

6m at the top roof, which is unrealistic. The large deformation of the structure

is well presented.
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Figure 7.23: Large displacement for tall frame with no collapse

7.8 Conclusion

In this chapter a damage material model was presented for modelling softening

material behaviour. The return mapping algorithm was formulated based on the

1D Hardening plasticity model. Material damage was represented as a material

that experiences a softening behaviour. The return-mapping algorithm success-

fully modelled the behaviour, however it caused problems when springs exceeded

the failed strain point. If a spring exceeds the failure limit then it would be con-

sidered totally detached from the system. In order to represent a failed spring,

the stiffness of the spring is set as zero, rather than deleting the spring from the

whole system. The problem is that zeros in the stiffness matrix cause the stiffness

matrix to become singular, and cannot be inverted.

The use of a dynamic time integrator solved the problem of singularity in the

stiffness matrix from the softening material behaviour. The Central Difference
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Method was chosen as the most suitable integrator, rather than the Newmark-β

Method. The CDM is explicit so does not require an iterative procedure to solve

the dynamic equations. Although using the time step size required for the CDM

is quite small, the advantages still outweigh this disadvantage. For simplicity, the

damping matrix was chosen to be calculated using only the mass matrix. So the

damping matrix is diagonal.

Some analysis of structures were presented such as the free vibration of a

damped and undamped cantilever beam, analysis of cantilever beam with a sinu-

soidal load, and a large displacement analysis of a frame.

Since the damage material model and the failure of elements has been estab-

lished in the Gaussian-AEM model the analysis of progressive collapse of struc-

tures can be presented. The collapse of frames subject to earthquake and wind

loads are presented in the following chapters.
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Chapter 8

Structures subject to Earthquake

loads

In this chapter, dynamic analysis of frames subject to earthquakes is presented.

The purpose is to analyse simple frame structures and their reaction to recorded

time-acceleration data of earthquakes that had occurred. Modern building codes

have strict requirements on the design of buildings to resist earthquakes. This

chapter will entail an introduction to how earthquakes occur and how they are

measured. From the given data of previous earthquakes, the ground acceleration

is applied to the frames and the response of the structures is analysed using the

nonlinear dynamic Gaussian AEM. The modification to the AEM algorithm is

presented along with some examples.

8.1 Introduction

An earthquake is considered as one of the most destructive natural disasters

[86]. Buildings have partially or totally collapsed during earthquakes [87] such as

the ones in Valparaiso, Chile in 1985 [88]; Mexico City in 1985 [89],[90]; Luzon,

Philippines in 1990 [91]; Guam in 1993 [92] ; Northridge, Calif. in 1994 [93];

Kocaeli, Turkey in 1999 [94]; Chi-Chi, Taiwan in 1999 [95]; and Bhuj, India in

2001 [96].

Several of the structural collapses occurred in buildings that were designed

with accordance to modern and current seismic design codes [87]. Some of the
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Table 8.1: Some of the Deadliest Earthquakes [97]

Date Location Deaths Magnitude
July 27, 1976 China, Tangshan 655,000 (estimated) 7.5
June 20, 1990 Iran 50,000 7.7
Dec. 26, 2004 Sumatra, Indonesia 227,898 9.1
Oct. 8, 2005 Pakistan 85,000 7.6
May 12, 2008 Sichuan, China 87,586 7.9
Jan. 12, 2010 Haiti 222,570 7

deadliest earthquakes are displayed in Table 8.1, where the magnitude, the num-

ber of deaths the location and year are shown. The data shows that there is

a significantly huge death toll as a circumstance to those earthquakes. For this

reason, building design codes take into account the effect of earthquakes so that

the structures can resist the natural occurrence in case it was to happen.

8.1.1 How do earthquakes occur?

An earthquake is the shaking and vibration of the earth’s crust due to movement

of the earth’s plates (plate tectonics) [98]. When tectonic plates do not move

smoothly against one another, a pressure build up occurs. When the pressure

is released, an earthquake occurs. The point at which the pressure is released is

called the focus. The point on the Earth’s surface above the focus is called the

epicentre. The energy of the earthquake is released in seismic waves that spread

out from the focus. The most severe damage occurs closest to the epicentre.

These terms are better displayed in Figure 8.1.

Figure 8.1: Focus, epicentre and seismic waves demonstration [99]

Understanding the earthquakes that may occur in regional areas is an impor-
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tant factor in structural design of buildings. Every area has its own "scale" based

on previous occurrences of earthquakes in that region. Structural design codes

attribute an earthquake load factor as well as a region code. Therefore, analysing

whether a structure will fail under seismic loading is very important in design of

structure.

8.1.2 Seismic Scales

Two common measures are used to characterise ground motion: acceleration, and

intensity. The acceleration is usually measured by seismometers that work during

intensive shaking near an earthquake. An example of the data obtained from a

seismograph is shown in Figure 8.2. This data is from the Indonesia earthquake

that occurred in 2004. Seismic hazards of areas estimate how probable an area

is likely to experience a certain acceleration at a given time [100]. Intensity is

a descriptive way of presenting earthquakes, and the Modified Mercalli intensity

(MMI) scale is used, which uses Roman scales to present the intensity, where I is

generally unfelt and XII is total destruction [100]. Table 8.2 shows the difference

between the Mercalli and Richter scales in how they are measured, calculated

and scaled. Table 8.3 lists the intensity of the scale and what each number could

represent.

Figure 8.2: Seismogram of Sumatra, Indonesia 2004 earthquake [101]

8.1.3 Structural Damage

Figures 8.3b displays a building that collapsed in the Kobe, Japan 1995 earth-

quake. The death toll for that earthquake was 5,100 people [103]. The earthquake

had a magnitude of 7.2, and a duration of 20 seconds. Since 1981, many of the
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Table 8.2: Methods of measuring earthquakes [102]

Mercalli Scale Richter Scale
Measures Effects caused by earthquake Energy released by earthquake
Measuring
Tool Observation Seismograph

Calculation

Quantified from observation of
effect on earths surface, hu-
man, objects and man-made
structures

Base-10 logarithmic scale ob-
tained by calculating loga-
rithm of the amplitude of
waves.

Scale I (not felt) to XII (total de-
struction)

From 2.0 to 10.0+. A
3.0 earthquake is 10 times
stronger than a 2.0 one.

Consistency Varies depending on distance
from epicentre

Varies at different distances
from the epicentre, but one
value is given for the earth-
quake as a whole.

structures built had been designed to strict seismic codes. Newly built high rise

structures were generally undamaged. Figure 8.3a shows a woman walking in

Kobe the day after the earthquake. Figure 8.3b shows a satellite image of Suma-

tra Indonesia in 2004 before and after the earthquake with magnitude 9.1 took

place.

(a) Structural collapse during the 1985 Mexico
City earthquake

(b) Kobe, Japan 1995 earthquake [104]
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Table 8.3: Mercalli scale & Richter scale [102]

Mercalli Richter Witness Observations
I 1.0 to 2.0 Felt by very few people; barely noticeable.
II 2.0 to 3.0 Felt by a few people, especially on upper floors.

III 3.0 to 4.0 Noticeable indoors, especially on upper floors, but
may not be recognized as an earthquake.

IV 4 Felt by many indoors, few outdoors. May feel like
heavy truck passing by.

V 4.0 to 5.0 Felt by almost everyone, some people awakened.
Small objects moved. Trees and poles may shake.

VI 5.0 to 6.0
Felt by everyone. Difficult to stand. Some heavy
furniture moved, some plaster falls. Chimneys may
be slightly damaged.

VII 6
Slight to moderate damage in well built, ordinary
structures. Considerable damage to poorly built
structures. Some walls may fall.

VIII 6.0 to 7.0
Little damage in specially built structures. Consid-
erable damage to ordinary buildings, severe damage
to poorly built structures. Some walls collapse.

IX 7
Considerable damage to specially built structures,
buildings shifted off foundations. Ground cracked
noticeably. Wholesale destruction. Landslides.

X 7.0 to 8.0
Most masonry and frame structures and their foun-
dations destroyed. Ground badly cracked. Land-
slides. Wholesale destruction.

XI 8
Total damage. Few, if any, structures standing.
Bridges destroyed. Wide cracks in ground. Waves
seen on ground.

XII 8.0 or
greater

Total damage. Waves seen on ground. Objects
thrown up into air.
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(a) 1964, Japan [105] (b) 1998 Turkey, Adana [106]

(a) Woman walking in Kobe the day after the
earthquake [107]

(b) A satellite image of Sumatra, Indonesia,
before and after [108]

8.2 Earthquake Implementation in AEM

Although the damage to structures from earthquakes are quite severe, modelling

the effect of a past earthquake on a linear elastic structure is straightforward.

Recalling the equation of motion, there will be an extra external load applied

to the structure which represents the earthquake effect. The data needed is the

acceleration of the ground motion. The force equation due to the earthquake is

shown in Equation 8.1.

FQ(t) = −Md(üQ(t)) (8.1)
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where FQ(t) is the earthquake force vector at time step t, M is the diagonal mass

matrix, d is the earthquake input vector, and üQ(t) is the ground acceleration

of the earthquake at time step t. To represent ground motion in the x-direction,

the x-degrees of freedom in the vector contain the value of the acceleration. It is

similar for the y-degrees of freedom if there was ground motion in the y-direction.

The gravity effect is also included to the equation of motion by Equation 8.2.

Fg = M(üg) (8.2)

where, Fg is the gravity force vector, and üg is −9.81m/s2 at every y degree-

of-freedom. The equation of motion at every time step is therefore shown as

Equation 8.3 for a nonlinear case. Representing a linear dynamic case is having

Fint = Ku.

Mü+ Cu̇+ Fint = Fext(t) + Fg + FQ(t) (8.3)

8.2.1 Earthquake Data

The acceleration used for the earthquake load applied to the following examples

is based on the 1940 El Centro Earthquake. The acceleration time-history plot is

shown in Figure 8.3. The time history for the Kobe 1995 earthquake is shown in

Figure 8.4. The El Centro data was recorded for 50 seconds, while the Kobe data

was recorded for 140 seconds. From the two graphs it can be seen that the Kobe

earthquake was more powerful since it had a maximum acceleration of almost

8 × 104m/sec while, the El Centro earthquake had a maximum acceleration of

3.5×104m/sec. The data is collected from reference [109]. There are several more

Figure 8.3: El Centro 1940 time history acceleration graph
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Figure 8.4: Kobe, Japan 1995 time history acceleration graph

earthquake data that are available, however for the purpose of demonstration only

the El Centro and Kobe earthquakes are considered. In the following sections the

implementation of earthquake data to the Applied Element code is presented for

analysis of 2D frames.

8.2.2 Frame Implementation

2D frames with different loads, heights and floors are analysed using the Gaus-

sian AEM in this section. As mentioned in previous chapters, the code is written

in MATLAB. The frame nodes and connectivities are generated in ANSYS Me-

chanical APDL. ANSYS exports a data file containing the number of nodes, the

table of connectivities and the degrees of freedom. MATLAB is used to read the

exported data files from ANSYS to create the frame and begin the analysis of

the frame using the Gaussian springs based AEM.

8.3 Applications

Some of the applications of the frame analysis to model the progressive collapse

behaviour of structures are presented in this section. Different frame dimensions

are considered and subject to the Kobe earthquake. There is no contact consid-

ered between elements.

8.3.1 1x1 Frame

The frame shown in Figure 8.5 is analysed for the point load applied at the

midspan of the roof level shown, as well as with base excitation due to earthquake
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loading, and inclusion of gravity effect. The properties of the materials are shown

in Table 8.4. The ends at the boundary are fixed in the three degrees of freedom

that are considered: horizontal direction, vertical direction and rotation. Figure

8.6 is the displacement, velocity and acceleration of the point at the midspan,

before any failure in the frame occurs. Figure 8.7 is the displacement, velocity

and acceleration . Figure 8.8 displays the deflection of the frame in the first

millisecond. The deflection is factored so it can be seen. However, in reality the

deflection cannot be seen and this is shown in the unscaled deflections presented

in Figures 8.8a - 8.8c. Figure 8.9 presents the progressive collapse of the frame

at different time steps until collapse occurs. As expected the frame first fails at

the bottom right column near the boundary and later fails from the applied load

that was at the midspan.

P

Figure 8.5: Frame with
point load

Parameters Value Units
Modulus of Elasticity E 200,000 [MPa]

Shear Modulus of Elasticity G 76,923 [MPa]
Yield Stress 250 [MPa]
Beam span 3 [m]

Column span 5 [m]
cross-section width 0.15 [m]

cross-section thickness 0.15 [m]
Applied Load 1000 [N]

Table 8.4: Section Properties
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Figure 8.6: Acceleration, velocity and displacement vs. time at midspan before
failure occurs
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Figure 8.7: Displacement, velocity and acceleration after failure at midspan
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Figure 8.8: Factored frame deflection in first 0.1 second under earthquake Kobe
load
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Figure 8.9: Progressive collapse of 1x1 frame with earthquake Kobe loading and
loading applied at midspan
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8.3.2 3x8 Frame

A frame with 8 floors and 3 bays is presented. The applied load on the frame is

the El Centro earthquake, and a fixed incremental load applied in the positive

x-direction along the first floor of the frame. Gravity is included. The results are

shown in Figures 8.10 and 8.11. It can be seen that the structure fails due to the

external load first, and the remainder of the building progressively collapses.

(a) 0 sec (b) 0.15 sec (c) 0.25 sec (d) 0.35 sec

(e) 0.45 sec (f) 0.55 sec (g) 0.65 sec (h) 0.85 sec

(i) 0.95 sec (j) 0.95 sec (k) 1.05 sec (l) 1.15 sec

Figure 8.10: Progressive collapse of 3x8 frame with earthquake loading and load-
ing applied at midspan
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(a) 1.35 sec (b) 1.35 sec (c) 1.55 sec (d) 1.65 sec

(e) 1.75 sec (f) 1.85 sec (g) 2.05 sec (h) 2.05 sec

(i) 2.25 sec (j) 2.25 sec (k) 2.3 sec (l) 2.35 sec

Figure 8.11: Progressive collapse of 3x8 frame with earthquake loading and load-
ing applied at midspan (continued)
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8.3.3 Multi-storey frame

The next application is a multi-storey frame, shown in Figure 8.12, subject to

the El Centro earthquake. The failure begins at the bottom left frame shown in

Figure 8.12c at 0.85 seconds.

(a) 0.6 sec (b) 0.8 sec (c) 0.85 sec

(d) 0.86 sec (e) 0.87 sec (f) 0.88 sec

(g) 0.89 sec (h) 0.9 sec (i) 1 sec

(j) 1.1 sec (k) 1.2 sec (l) 1.3 sec

Figure 8.12: Analysis of multi-storey steel frame subject to El Centro Earthquake
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8.3.4 2x8 Frame

Figure 8.13 depicts the progressive collapse of a 2x8 frame subject to the El

Centro Earthquake as well as a point load in the positive y direction applied on

the left wall at the first floor.

(a) 0.25 sec (b) 0.551 sec (c) 0.75 sec (d) 0.82 sec

(e) 0.83 sec (f) 0.84 sec (g) 0.9 sec (h) 1 sec

Figure 8.13: Time history of a high rise frame undergoing seismic loading and
point load at in positive x-direction at first floor

188



CHAPTER 8. STRUCTURES SUBJECT TO EARTHQUAKE LOADS

8.3.5 High rise frame - 15 floors

Figure 8.14 shows the progressive collapse behaviour of a frame with 15 floors.

The figure does not show the total collapse of the frame, rather just until where

major elements of the frame have failed. The total collapse of the structure can be

seen if the simulation is run for longer. From the collapse it can be seen that first

the structure undergo serious oscillations and finally collapses near the boundary.
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Figure 8.14: Time history of a high rise frame undergoing seismic loading and
point load at in positive x-direction at first floor
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8.4 Conclusion

The progressive collapse of different structures subject to earthquakes were suc-

cessfully analysed in this chapter. The analysis was performed using the Gaussian

springs based AEM for nonlinear dynamic behaviour. The implementation of

earthquake loading to the structure was quite simple, given that the time history

data from an earthquake is presented. From the acceleration at every time step,

the force is calculated, and applied as an external force on all degrees of freedom

of the structure.

Different materials can be used to model the frames as well as reinforced

concrete. Although some of the figures presented did not show total collapse of

the structure, this is just due to the run time of the analysis. Future improve-

ments would entail including contact between elements, and contact between the

elements and the ground. When contact between elements is included, effect of

failing neighbouring structures can be analysed.
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Chapter 9

Structures Subject to Extreme

Wind Loads

In this chapter, the Gaussian spring based AEM is used to analyse structures

subject to different weather conditions such as mean wind speeds, 3 second gusts

and extreme conditions. Firstly, the weather condition is analysed in FLUENT

to simulate the forces around the structure resulting from the applied wind load.

The forces generated are then input into the Matlab code where the Gaussian

spring based AEM is used to model the behaviour of structures due to the applied

wind loads, and if the structure will experience collapse or not.

A brief introduction to the collapse of structures that occurred in the past

due to wind loads is presented. Then the CFD model is built and explained.

And finally, the structure is analysed in the MATLAB code to check for possible

collapse of the structure. The purpose of this analysis is to present an application

of wind loads to the structure that can be quite realistic, due to the wind being

analysed on FLUENT first, rather than being applied as constant external forces.

9.1 Collapse of Structures due to Wind loads

In structural design codes, wind is usually represented by a speed profile. Its fea-

tures and effects depend on the velocity of the wind, the geometry of the building

and the protection from surrounding obstacles [110]. In slender structures, wind

is one of the main load actions to be considered [110]. The environment has a
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great influence on a building and accurate analysis of the wind conditions should

be experimentally produced using wind tunnel tests [111]. Low structures also

undergo significant influences from wind, depending on the geometry plan and

and the locations of the structures columns, the wind can create torsional forces

in the frame.

There has been several recorded structural damages due to wind storms in the

last 50 years. This is better presented in Figure 9.1, which shows the number of

natural disasters since the 1950’s - 2004 [112]. As can be seen, a large percentage

of structural damage is due to wind storms rather than floods or earthquakes.

Typhoon Mirielle in September 1991 caused 6 billion dollars of damage. There was

8 billion dollars in damages from 10 typhoons in Japan 2004, 28 billion dollars in

economic losses along with 2,541 deaths in August 2005, from Hurricane Katrina

[113]. This is why it is important to analyse structural behaviour under extreme

weather conditions.

Figure 9.1: Devastating natural disasters. Red: Earthquake, Tsunami, Volcanic
eruption. Blue: Flood. Green: wind-storm. Yellow: other events. [112]

Firstly a relationship between the mean wind speed and 3 second gust is

explained. Table 9.1 displays the equivalence of different wind conditions with

their corresponding damage associated. The damage does not only depend on the

wind speed but also on the quality of the structure, so the table phenomena is not

precise [113]. From the table it can be deduced that damage to structures starts

to occur 40 m/s gusts, and extreme damage starts with 45 m/s mean speed, or

70 m/s gusts. Therefore, these values will be used for analysis in the following

sections.
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Table 9.1: Wind induced phenomena [113]

Wind speed Phenomena/Damage
10 min mean 3s gust
5 m/s 7- 10 m/s - Vortex resonance/fatigue damage of truss members
10-15 m/s 15-20 m/s - Handrail vibration/wind-induced noise

- Vortex resonance of steel chimneys
- Vibration perception in flexible high-rise buildings

20 m/s 30 m/s - Seasickness and discomfort in high-rise buildings
- Damage to garage shutters
- Falling down of pedestrians

25 m/s 40 m/s - Damage to roof tiles
- Damage to window panes due to wind-borne debris

30 m/s 45 m/s - Collapse of RC block fences
- Damage to steel sheet roofing
- Overall roof lift-off - Collapse of wooden houses
- Falling down of gravestones

35 m/s 50 m/s - Damage to window panes due to wind pressure
of high-rise buildings
- Blow over of heavy tombstones

40 m/s 60m/s - Damage to cladding of high-rise buildings
- Limit of allowable distortion of external
sealing compounds

45 m/s 70 m/s - Main frame stresses in high-rise buildings
exceed elastic Limit
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Damage to structures

Damage to structures due to recent typhoons are presented in this section. Figure

9.2 shows the damage to a soccer stadium in Korea, 2002. Figure 9.3 displays

the damage to wind energy facilities due to Typhoon Maemi in 2003.

Figure 9.2: Damage to soccer stadium in Korea due to Typhoon Rusa, 2002 [113]

Figure 9.3: Damage to wind energy facilities in Miyakojima island due to Typhoon
Maemi, 2003 [114]

Figure 9.4: Broken windows in residential building in Korea, due to Typhoon
Maemi [113]
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Figure 9.5: Collapse of building under construction undergoing intense winds
[115]

9.2 Using CFD for turbulent wind analysis

Using computational fluid dynamics (CFD) for wind analysis is a fast and efficient

way to determine the wind behaviour without needing to conduct expensive wind

tunnel tests. There are some limitations on wind tunnel tests, such as tools

scarcity, since big tunnels are required for urban models investigations and the

scarcity in the number of measurement points in models [116]. The advantage

of using CFD over wind tunnel tests is that the simulation gives a quantitative

and qualitative wind flow representation of the whole volume rather than specific

measurement points.

Several validation processes have been developed to improve and verify the ac-

curacy of the CFD models in comparison to the wind tunnel tests. The FLUENT

software is used for the CFD simulations [116].

In this project, FLUENT is used to model the wind behaviour and the forces

exerted on the structure. The gust wind is modelled in FLUENT for 3 seconds.

A general model and set up for the CFD model is presented and later the wind

speeds will be changes to simulate the different conditions. From FLUENT we

can obtain the force on each wall at every iteration. This is a kind of mean

average force.

To implement the wind load in the AEM Matlab code, the force on each wall

at each time step is applied on all the wall nodes. So the force obtained from

the first time step is just one value for the whole wall. This value is applied to

every node in that wall, and similarly for the roof, etc. At every next time step

a new force is applied and the value is obtained from Ansys. This will be better

explained with an example.
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Figure 9.6 shows an overview of how the processes will work. The geometry

can be created in Ansys mechanical, and in parallel the forces due to the wind

loads is obtained from FLUENT. Then the data files are exported to be read in

the Matlab code for the frame to be analysed.

Figure 9.6: Flow chart for procedure

9.2.1 Solution Model

There are two major groups of turbulence models: RANS models (Reynolds-

averaged Navier-Stokes models) and LES models (Large Eddy Simulation Mod-

els). Among the RANS models are the standard k−ϵ model and its variations, as

well as the Reynolds Stress Model (RSM). However, it has been known that the

k − ϵ model is not appropriate for modelling airflow around buildings [117]. The

RSM methods give better results for the flow around buildings . On the other

hand, LES are more appropriate for analysis of wind around buildings because

the solve the largest eddy and simulate only the smallest eddies [116]. However,

LES methods require immense computational power, very fine meshing and long

calculation time. Most common CFD software do not offer full LES models in
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three dimensions.

Case study validation test Reiter [116] performed a validation analysis of

wind around a single building, around a group of buildings and a dense urban

environment, to select the right turbulence model and other parameters. The

results of the validation test were compared to a wind tunnel test published by

Wiren [118]. The structure is 12m high and 18m wide. The configuration of the

system is shown in Figure 9.7; where L = 80m wide. Important factors that affect

the simulation are:

• The blocking ratio should not exceed 3% (the ratio between the vertical
surfaces of the building exposed to the wind and the surface from the air
inlet surface).

• The minimum length of the simulation field is 5*min(L,2H) upstream of
the building and 8*min(L,2H) downstream. (L is length of building and H
is height).

• When wind speed is low, thermal effects can influence the air movements

Figure 9.7: Configuration of the simulation for flow past a single building [116]

The wind profile that was used in the CFD model is equal to the one of the

wind tunnel test, and had a profile of U = 10(z/2)0.125; where U is the wind

speed, z is the height at which the wind speed is calculate, and the turbulence

intensity is 14%. One of the simplest descriptors of atmospheric turbulence is

the turbulence intensity [113]. It is the ratio of the standard deviation of a wind

speed σ component to the mean wind speed U ; σ/U .
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For the simulation, 1,384,836 cells were used for the mesh. Figure 9.8 shows

the results from the CFD models in comparison to Wiren wind tunnel test results.

The CFD models that were considered are based on the realizable 2nd order, k−ϵ

2nd order and the RSM 2nd order models. The findings are as follows.

The standard k − ϵ shows that the maximum discomfort intensity is the the

first third of the passage; which is similar to the wind tunnel test results, however,

the position of maximum discomfort is not simulated correctly. The realizable

k − ϵ model improves the estimation of the location of the discomfort estima-

tion; however still underestimates the location of the maximum discomfort. The

Reynolds stress model gives the most accurate results, since it identifies the crit-

ical area correctly and the value of the maximum wind discomfort [116].

Therefore, the Reynolds stress model will be used for analysis in the scope of

this thesis, since it is the most accurate for a building type configuration.

Figure 9.8: Comparison of results from FLUENT and from the wind tunnel test
[116]

9.2.2 CFD Model

Problem Definition

Considering a frame of 10 metres height and 4 metres width, and a wind speed

of 40 m/s running for 3 seconds. The frame is shown in Figure 9.9a, along with
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the external surface boundary. The surfaces are labelled to show the inlet, outlet

and the walls. The frame walls are highlighted in Figure 9.9b. The wind is

applied from the inlet with the required velocity. The structure of the frame

is the empty space in the figure, where the walls have the material properties of

steel or concrete, as desired. The no-slip conditions are applied on the frame wall.

Since turbulence is expected, the unsteady state flow is selected for the analysis.

(a) Geometry of frame in Boundary

(b) Denotation of Frame walls in CFD Model

Figure 9.9: Boundary conditions

Mesh

The mesh refinement is very important to produce good quality precision [116].

It is recommended that the mesh is refined at the pedestrian level and locations

where strong wind gradients are expected. The mesh for the surface is gener-

ated by using equally sized quadratic elements since the flow is aligned with the
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geometry, and the geometry is not complex. The mesh is displayed in Figure

9.10.

The mesh can be better generated for a more efficient mesh. For instance,

there could be finer mesh refinement around the structural body and more dense

closer to the boundary walls and the outlet. However, a face mesh with equally

sized elements was used for simplicity and demonstration purposes. The mesh is

showed to have good results for capturing the air flow around the structure and

is therefore selected for all models in this chapter.

Figure 9.10: Mesh for flow around structure

Time step size

To run for three seconds, the time step size is 0.01 seconds, with a total number

of 300 time steps. From the CFD model the output required is the force applied

on each wall, in the x and y direction. The output will result in an average force

along each wall for every iteration. So there will not be a different value for the

force at each node along a wall.

Also, it is important to mention that the walls of the building are rigid and

will not deflect due to the applied wind load. Therefore, when the forces are being

applied in the AEM code, they are the forces that were applied to the undeformed

shape. In other words, if a node "a" was to move due to the wind load, the load

applied in later iterations is the load applied at that specific time step with the
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original configuration of the node.

The solution model used for modelling the 3 second gust is the ’Reynolds stress

model’, with a coupled pressure-velocity scheme and Second Order Upwind for

the turbulent kinetic energy and the turbulent dissipation rate.

9.2.3 40 m/s 3 second gust wind

Applying a wind speed of 40m/s in the x-direction from the inlet wall, the results

are displayed as follows.

CFD Results

Figure 9.11 shows the contours of velocity, vorticity, dynamic pressure and turbu-

lence kinetic energy for the 10x4 m frame. The residuals are shown in Figure 9.12.

The residuals show that the flow is unsteady, and resemblant to turbulent flow.

The force on each wall is shown in Figure 9.13. The forces are an average value

at each iteration on each wall. These values are input into the AEM Gaussian

code where the frame will be analysed due to the forces.

(a) Vorticity (b) Velocity

(c) Turbulence (d) Dynamic Pressure

Figure 9.11: Vorticity, velocity, dynamic pressure and turbulence kinetic energy
for flow past building with 40 m/s wind speed
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Figure 9.12: Residuals for turbulent flow

(a) Left wall - x (b) Left wall - y

(c) Right wall - x (d) Right wall - y

(e) Roof - x (f) Roof - y

Figure 9.13: Forces on each wall in x and y directions due to 40 m/s wind speed

Analysis of structure in AEM

The forces in the x and y directions on each wall is applied to the frame in AEM.

Figure 9.14 displays the displacement velocity and acceleration for a point on

the left wall for the duration of the three seconds gust. The frame deflection is

shown in Figure 9.15. The deflection is multiplied by 103 so the deflection may
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be seen. There was no collapse in the structure reported. The analysis therefore

shows that a frame of dimensions 10m×4m can with steel material properties can

withstand a 3 second gust of 40 m/s. The most significant forces on the structure

are the forces on the left wall in the x-direction, and the roof in the y-direction.

Table 9.2 is the maximum average force applied on each wall.
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Figure 9.14: Displacement, velocity and acceleration of a single point of the frame
due to the wind load of 40 m/s

Table 9.2: Maximum Average force applied on each wall of the frame

Wind speed 40 m/s
Location Maximum force [N]
Left wall -x 14,700.0
Left wall - y 16.8
Right wall - x 30.2
Roof - x 31.5
Roof - y 26,400.0

9.2.4 70 m/s 3 second gust wind

An extreme wind load of 70 m/s for the three second gust is applied on the same

frame structure. Figure 9.16 depicts the forces on the left and right wall in the

x and y direction. It can be seen that the results lead to an eventual steady

state solution where the forces remain constant. In Figure 9.17 the contours of

velocity, turbulence and vorticity are presented. The deflection of the frame at

several seconds are shown in Figure 9.18. From the deflection it can be seen that

the structure starts to collapse at 0.35 seconds near the right boundary nearest

to the ground. Eventually there is a total collapse of the frame.
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Figure 9.15: Frame displacement factored by 103 for 3 sec gust 40 m/s wind speed

(a) Left wall x (b) Left wall y

(c) Right wall x (d) Right wall y

Figure 9.16: Forces on left and right wall due to 70 m/s wind speed
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(a) Velocity contours (b) Vorticity contours

(c) Turbulence contours (d) Dynamic Pressure contours

Figure 9.17: Contours due to the 70 m/s wind speed, 3 second gust
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Figure 9.18: Collapse of frame subject to 70 m/s wind speed
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9.3 Loads from surrounding structures

It is also important to consider the change in the wind effect due to surrounding

structures. An analysis done by Aly showed that the existence of short buildings

in the upstream wind increases the turbulence in the region [119]. Since the scope

of this thesis only covers 2D analysis, only 2D CFD models are examined.

Analysing the structure in the middle after a 40 m/s 3 second gust. The

geometry model is shown in Figure 9.19 for three adjacent buildings. Figure 9.20

represents the surface mesh around the buildings. A standard mesh with equal

sized elements was used, for simplicity. Figure 9.21 shows the forces on all the

Figure 9.19: Geometry model for three adjacent buildings

building walls for the third structure.

Figure 9.22 shows the vorticity, velocity, turbulence kinetic energy and the

dynamic pressure contours.

Figure 9.24 shows the deflection of the frame subject to the 3 second gust

wind speed of 40 m/s while being affected by neighbouring structures.
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Figure 9.20: Mesh for three adjacent buildings

(a) (b)

(c) (d)

(e)

Figure 9.21: Forces on all the walls for the third building with 3 second gust wind
40m/s

207



9.3. LOADS FROM SURROUNDING STRUCTURES

(a) Vorticity (b) Velocity

(c) Turbulence (d) Dynamic Pressure

Figure 9.22: Vorticity, velocity, turbulence and dynamic pressure contours of
three adjacent buildings with 40 m/s wind speed
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Figure 9.23: Displacement velocity and acceleration for the third building at 40
m/s 3 second gust
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Figure 9.24: Frame deflection subject to 40 m/s wind; effect of neighbouring
buildings
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9.4 Conclusion

The analysis of structures subject to wind loading conditions was performed in

this chapter. The wind analysis is performed in FLUENT, where there is a

velocity inlet that presents the desired wind speed for analysis. The structure

undergoes the wind analysis for 3 seconds to replicate the 3 second gust. At

each time step an average force from each wall is recorded. The forces are then

applied to the frame in the MATLAB code, to perform the deflection analysis of

the structure using the Gaussian springs based AEM.

The purpose of using FLUENT to emulate the wind behaviour is to obtain

relatively realistic wind loads from 3 second gust behaviours, and not to analyse

how the wind should behave. Also it is simply used to demonstrate different

applications of loads to be included in the AEM analysis.

Although only 3 second gusts were used to analyse the structures, longer

periods of time can easily be modelled. The same models will be used, except

they will be run for longer. It was simply for demonstration purposes and the

scope of this thesis that 3 second wind gusts are chosen for analysing structures

under extreme weather conditions.

It is also important to mention that the FLUENT and Matlab code are not

directly coupled, because during the Ansys analysis, it is expected that the struc-

ture should deform after being subject to the extreme wind. However, this is not

the case. In Ansys the walls are completely rigid, and the forces obtained are

based on the original configuration of the frame, not its deformed shape.

The results from this chapter showed successful modelling of the collapse of

structures subject to extreme wind loading.
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Chapter 10

Concluding Remarks

10.1 Conclusions

Based on a comprehensive review of computational methods used for modelling

the progressive collapse of structures, the AEM is deemed to be one of the simplest

schemes with acceptable accuracy.

The AEM is implemented as a discretisation of structural elements into rect-

angular rigid bodies that are connected along the edges of the elements with pairs

of shear and normal springs. The material behaviour of the structural elements

are modelled through the springs stiffness. Various advantages arise from the use

of springs between elements. Firstly, when a spring exceeds a specific yield strain

and is considered to have failed then the spring can be easily removed from the

system to represent the discontinuity between elements. Another advantage is

the capability of defining unique material properties to specific springs at specific

locations. This grants a straightforward implementation of multiple materials

within the same element, such as modelling reinforced concrete. The AEM also

exhibits a good advantage in adequately modelling both the continuum and dis-

crete elements behaviour. Before any element separation occurs the structural

system behaves as a continuum, while as springs start to fail and elements detach,

discrete element behaviour is considered.

The deflection and internal stresses of several structural beams are assessed

using the conventional AEM and it is evident that the computational efficiency

of the method is inadequate since a sizable amount of elements and springs per
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element is required to achieve a specific level of accuracy.

In this thesis, a modification to the AEM has been presented, where the

number of springs between elements is optimised using the Gaussian quadrature

to locate the optimal location of springs. The findings of the application of the

Gaussian AEM to simple structures for linear and nonlinear material behaviour

are presented in the following section.

10.1.1 Linear and Nonlinear Gaussian AEM

As mentioned earlier, the Gaussian AEM utilises Gaussian quadrature weights

and locations for defining spring locations across a pair of rigid elements.

Linear Gaussian AEM

In the linear elastic case structural beams were subject to a point load. The

expected normal stress along a rectangular beam cross-section is a linear line

with a value of zero at the neutral axis. Using the Gaussian springs it was found

that exactly 2 gaussian springs were needed to significantly improve the analysis

and reduce the computational cost. This simple change showed that using the

Gaussian AEM significantly less springs were required for attaining an acceptable

level of accuracy.

Nonlinear Gaussian AEM

Nonlinear material behaviour was then implemented in the analysis. The material

nonlinearity was represented by a 1D Hardening plasticity algorithm. Based

on the yield criteria springs were classified as elastic or elasto-plastic and the

corresponding spring stiffness were calculated. A cantilever beam was analysed

using the Gaussian AEM and the FEM solution from ANSYS, and the results

showed good accuracy.

In the case of a rectangular cross-section undergoing elasto-plasticity, the

stress along the cross-section is expected to experience plasticity at the top and

bottom fibres of the cross-section and elasticity along the middle of the cross-

section. Hence, the stress along the cross-section is split into three parts (plastic-

elastic-plastic). 10 Gaussian springs were used to appropriately capture the tran-
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sition between the plastic and elastic regions along the rectangular cross-section.

The Newton Raphson iteration scheme was implemented in the Gaussian AEM

with rate dependent Hardening plasticity. Remarkably a quadratic convergence

in the analysis was observed.

Adaptive Gaussian AEM

Since each part of the elasto-plastic material behaviour can be represented lin-

early, 2 Gaussian springs are enough to explicitly represent each region. The

exact number of springs needed to represent the stresses along a cross-section is

known, an adaptive technique was formulated to exploit this, where only 6 springs

were required for the nOnlinear analysis. The adaptive scheme is as follows. At

each load increment, the first NR iteration has an initial number of 10 Gaussian

springs. After the first iteration the strain and stress of each spring is computed

from the deflection obtained. Based on the yield criteria, springs are classified

as elastic or elasto-plastic. If all the springs between a pair of elements were

elastic, then the number of springs were changed from the initial 10 springs to 2

Gaussian springs. However, if the springs were found to be elasto-plastic, then

the number of springs between an element was changed to 6. The exact location

at which the stress changes from elasto-plastic to linear is calculated by obtaining

the intersection of the two lines. Those intersection points were referred to as

transition points. For the remaining NR iterations, the new springs configuration

is used. At the next load increment the initial number of springs is returned to

10 and the process is repeated again. Using the transition springs and the adap-

tive technique significantly reduced the computational cost since the number of

springs in the whole system was reduced at each time step. Since the linear and

nonlinear material behaviour was successfully modelled using the Gaussian AEM

and the springs distribution was optimised, modelling the material damage was

then considered.

The novel use of the Gaussian springs shows a phenomenal revelation since

the size of the model significantly decreases, and therefore optimising the number

of springs required per element. Only 2 Gaussian springs are required for linear

elements, and 6 Gaussian springs for nonlinear elements.
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10.1.2 Modelling Damage Fragmentation and Progressive

Collapse in AEM

In this thesis, damage was considered as a type of softening material behaviour.

A return mapping algorithm for the softening material behaviour was developed

to predict and correct the stress based on a strain increment. First, the strain

softening algorithm was verified to show that the return mapping behaviour works

correctly then it was implemented to the Gaussian AEM code.

Since the material model was produced, fracture was then considered. If a

spring exceeds its failed limit, then the spring stiffness is set to zero so as to

"remove" the failed spring from the system. The problem is that having failed

springs in the system results in having zeros in the global stiffness matrix. This

resulted in no convergence in the NR due to the singularity of the stiffness ma-

trix. Also, the eigen values for the system are negative after the failed point is

surpassed. A solution to these problems is using a dynamic model for analysis.

Different time-stepping methods were compared for finding the most appropri-

ate method for use in modelling the damage and progressive collapse of structures.

The Newmark-Beta method, the linear acceleration method and the Central dif-

ference method were compared. The CDM was chosen as the most appropriate

method for this scope since it is explicit, and no iterative procedure is required

because all the constitutive variables are available from computations at previous

time steps. The drawback is the requirement of a small increment of time step.

However, the damping matrix and mass matrix were diagonal, and the stiffness

matrix did not need to be inverted at every time step since there was no NR

iteration required, so ultimately even though the number of total time steps is

larger, the overall computational cost is still considered smaller.

Since the softening model can represent both linear and nonlinear material

properties, then implementing the softening model to the CDM allowed to pro-

duce a code with both linear and nonlinear material behaviour. A modification

to the algorithm was required however, since the dynamic model did not require

the calculation of the stiffness matrix in every iteration, rather only the internal

forces were needed. Secondly, since the CDM was used no NR iteration scheme
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was needed for nonlinear analysis.

The damage and fragmentation model was then used for application of frames

subject to earthquake loads, and to extreme wind gusts. The progressive collapse

of each of those structures due to the earthquake loads, and sometimes including

external horizontal loads to simulate effect of nearby objects or impact, were

analysed, and the progressive collapse of the structures were clearly represented.

Frames were then subject to 3 second wind gust loads. The 3 second wind

was first simulated using CFD in ANSYS Fluent. The analysis for different wind

speeds and different structures was performed. After the analysis was complete,

the forces that were generated on the walls were exported to the MATLAB code,

where the structure would then be analysed for the external forces. The progres-

sive collapse of the structures was successfully shown in the cases that the wind

speed was very large.

10.2 Concluding Remarks

Based on the findings in this thesis, the following final remarks can be made:

1. The efficiency and the accuracy of the AEM is successfully improved by
using the Gaussian distribution for optimising the springs locations.

2. Only 2 linear Gaussian springs, and 6 nonlinear Gaussian springs are needed
between a pair of elements.

3. An adaptive springs procedure is implemented to distribute element springs
based on current state of material behaviour (elastic or elasto-plastic) for
an overall reduced computational cost.

4. A softening return mapping algorithm is developed for representing damage
in materials .

5. A time integrating technique is required when elements in structures exceed
their failed limits and separation occurs. The element separation causes
stiffness matrix singularity.

6. The progressive collapse of structures is successfully modelled using the
Gaussian-AEM and softening material behaviour, with implementation to
structures subject to earthquakes and extreme wind loads.
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10.3 Recommendations for further research

• Include contact between elements. Including the contact between el-

ements can give more realistic results when the collapse occurs, and espe-

cially if effect of collapse of surrounding structures are considered.

• Implementation to 3D AEM. The Gaussian AEM should be expended

to application of 3D elements, this can allow 3D models of frames to be

analysed for collapse.

• Flow past buildings in 3D. Based on the extreme wind application chap-

ter, it is interesting to model the effect of wind due to surrounding structures

from all directions.
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