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Abstract 

 

Recognising the role of dysglycaemia, “ ambient “ hyperglycaemia, « metabolic 

memory » and glycaemic variability as risk factors for macrovascular diseases is 

mandatory for effective diabetes management. Chronic hyperglycaemia referred to as 

« ambient » hyperglycaemia was only fully acknowledged as a risk factor for adverse 

cardiovascular events when the beneficial effects of intensive glucose –lowering 

strategies were consolidated in the extended follow-up (beyond 10 years) of patients 

included in the UKPDS and the DCCT (DCCT/EDIC). These studies have led to the 

concept of the glucose-lowering legacy effect (“metabolic memory”), which depends on 

the duration and magnitude of glucose lowering and not a forever phenomenon as 

demonstrated in the 15 years follow-up of the VADT.  The relatively weak evidence for 

linking long- and short- term glycaemic variability to vascular complications in persons 

with diabetes is mainly due to the reliance on observational and retrospective studies 

and the lack of randomised interventional trials. However, hypoglycaemia may 

contribute an intermediary role to accentuate the link between glycaemic variability and 

vascular events. 

 

Key words: chronic hyperglycaemia; metabolic memory; glycaemic variability; 

macrovascular diseases in diabetes 

 

 

During the latter half of the last century, epidemiologic surveys such as the Framingham 

study [1,2] and the Multiple Factor Interventional Trial (MRFIT) [3] established that, 

everything else being equal, people suffering from diabetes exhibited a 3-to 4-fold 

increase in death rates from cardiovascular events when compared with non-diabetic 

individuals. However, many short-or medium-term randomized interventional trials 

compared intensive with standard management of chronic glucose disorders: the United 

Kingdom Prospective Diabetes Study (UKPDS) [4], Action in Diabetes and Vascular 

disease: preterax and diamicronN modified release Controlled Evaluation  (ADVANCE) 

[5], Action to Control Cardiovascular Risk in Diabetes (ACCORD) [6],Veterans Affairs 

Diabetes Trial  [7] and the Diabetes Control and Complications Trial (DCCT) [8]. All 

these studies failed to demonstrate any clear benefits in terms of macrovascular 
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outcomes, even though intensive therapy delayed the onset and progression of 

microvascular complications such as diabetic retinopathy and nephropathy . 

Fortunately, longer-term evidence-based data were provided in support of the benefit of 

implementing intensive glycaemic control in the extended follow-up of some of the 

aforementioned randomised trials: the extension of the UKPDS [9], the VADT [10] and  

of the DCTT (DCCT/EDIC) [11,12], The findings led to the introduction of the concept of  

the “legacy effect” also referred to as “metabolic memory” of glucose-lowering.   

However, this concept has been recently disputed based on the 15 years data from the 

VADT. Similarly, there is continuing debate on the role of glycaemic variability on 

vascular outcome compounded by the inconsistencies in the definition of glycaemic 

variability [13,14]. Researchers and clinicians are continuing to search for a consensus 

thus permitting a clear cut distinction between short-term glucose variability, which 

corresponds to acute within-or between-day glucose fluctuations and the long-term 

variability of glucose homeostasis, which is usually depicted as monthly or quarterly 

variations in markers of glucose control such as fasting plasma glucose or HbA1c levels 

[15].  Therefore, we need to gain more insight into the respective roles of chronic 

hyperglycaemia, “metabolic memory” and glycaemic variability as risk factors for 

macrovascular diseases in diabetes. To address these controversies this review will 

allocate  “What we know” and “What we comprehend” according to a high, moderate or 

low grade of probability to be correct. 

 

What we know about chronic hyperglycaemia ( “ambient” hyperglycaemia) and 

“metabolic memory” as risk factors of vascular diseases in diabetes 

 

After a long interval of time from the mitigated results of earlier epidemiologic research 

[1-3] the causal relationship between ambient hyperglycaemia, micro- and macro-

vascular complications in both type 1 or type 2 diabetes became progressively evident 

from randomised double blind health policy clinical interventional studies with no 

commercial gain. The design of such randomised clinical trials (RCTs) [16-18] is 

relatively simply based on comparisons between intensive and standard management 

groups which in diabetes means reducing the overall exposure to hyperglycaemia in the 

intensively treated group versus a control group. One of the goals is achieving a stable 

difference in HbA1c levels of approximately 1 to 2% and the selection of appropriate 
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primary or secondary end points for cardiovascular outcomes. RCTs should then 

provide an answer to the question as to whether intensive therapy exerts superiority or 

not compared with standard treatment in terms of protection against atherosclerotic 

complications at different arterial sites. However, we should acknowledge that 

implementing such studies are complex due to several reasons including the need for 

large number of patients to be recruited, selection of medical centres/expertise across 

different countries and the need for careful and consistent monitoring of participants 

over several years. It should also be noted that the pre-specified HbA1c difference of 1 to 

2% is not always attained. In the UKPDS [4] the difference between the intensively 

treated and control groups was less than 1% even though the duration of the “active” 

interventional period was more prolonged (10 years) than in other trials [5-7] (figure 

1). In the population of newly diagnosed persons with type 2 diabetes in the UKPDS [4], 

the intensively managed group benefited having a reduced risk of any diabetes-related 

events (P = 0.029). The achievement over almost 10 years of sustained HbA1c 

differences of 0.9% between the intensive-therapy group (mean HbA1c =7%) and the 

conventional group  (mean HbA1c = 7.9%) was associated with a reduction in the 

incidence of microvascular complications (37%, p = 0.0099) [4]. By contrast, the relative 

risk reduction for myocardial infarction did not reach statistical difference (- 16%, p = 

0.052) with the intensive treatment (figure 2) [4]. A similar lack of significance was 

observed for any event related to macrovascular complications. Such results confirm 

that microvascular complications are more responsive to intensive glucose control than 

macrovascular disease within this time frame. The absence of any significant reduction 

in the incidence of macrovascular events was also a common finding in other studies, 

when intensive and standard cares were compared, including   ADVANCE [5], ACCORD 

[6] and VADT [7] (figure2). In these latter trials, the “active” interventional period was 

approximately half that in the UKPDS: 5 years in ADVANCE [5], 3.6 years in ACCORD [6] 

and 5.6 years in VADT [7] (figure 1). It should also be mentioned that the finding of a 

higher mortality rate in the intensive therapy group of the ACCORD study led the 

investigators to halt the intensive policy earlier than expected [6]. Therefore, from a 

general point of view, all these studies showed disappointing results on primary 

cardiovascular endpoints such as major adverse cardiovascular events (MACE) 

considered as a whole and on secondary end points such as myocardial infarction, 

stroke and heart failure when considered individually. These observations have led a 
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number of clinicians to consider that reducing the overall glucose exposure was not a 

priority relative to controlling blood pressure and cholesterol levels in the management 

of type 2 diabetes. However the beneficial impact of intensive glucose-lowering 

therapies emerged to be likely in terms of protection against occurrence of 

cardiovascular events when studies extending beyond 10 years [9] were published. 

Furthermore, it is necessary to integrate the experience from the DCCT/EDIC [11,12] 

with its extended follow-up even though this trial was conducted exclusively in type 1 

diabetes. Presently the DCCT/EDIC remains the longest follow-up study extending up to 

30 years after the initial intensive interventional period of 6.5 years [12]. When 

considering the time from initial randomisation, patients were assigned to continuous 

follow-up for 9 years in ACCORD (ACCORDION) [19], 10.4 years in ADVANCE 

(ADVANCE-ON) [20], 10 and 15 years in VADT [10], 20 years in the UKPDS [9] and from 

20 to 30 years in the DCCT/EDIC [11,12] (figure 1).  

In these studies, significant reductions in incidence of cardiovascular events occurred 

only when the magnitude of the difference in HbA1c between intensive-and standard-

therapy groups was > 0.9% in the UKPDS [4] and 2% in the DCCT [8] and the duration of 

follow-up exceeded 10 years (UKPDS [9], DCCT/EDIC [11,12]). These observations 

indicate that both the magnitude and duration of the early improvements in overall 

glucose exposure are major determinants of the long-term cardiovascular outcome. 

Figure 3 represents the relationship between the reduction in the incidence of 

cardiovascular events (Y axis) and the overall glucose exposure  (X axis), which was 

estimated from the magnitude of the difference in HbA1c (∆HbA1c) between the 

intensive- and control- treatment groups multiplied by the duration of the “active” 

interventional period. For example in the VADT the difference in HbA1c was 1.5% 

throughout the 5.6-year “active” intervention period [7]. Consequently, the product is 

equal to 8.4% -year. Utilising this formula revealed that the incidence of cardiovascular 

events was not lowered in ADVANCE-ON after 10.4 years of follow-up [20], decreased by 

5% in ACCORDION after 9 years (ns) [19], 17% (p = 0.04) and 9% (ns) in the VADT at 10 

and 15 years, respectively [10], 15% (p = 0.01) in the UKPDS after 20 years [9] and by 

47 and 30% in the DCCT/EDIC at 20 (p = 0.005) and 30 (p =0.016) years, respectively 

[11,12].  These results are in agreement with the concept of the existence of “metabolic 

memory” with a prolonged latency period needed to show cardiovascular benefit from 

early intensive glycaemic control. Although this review article is focused on the role of 
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glucose control it is well accepted that consideration to other risk factors such as 

hypertension, dyslipidaemia, albuminuria and smoking is necessary in the multifactorial 

management of type 2 diabetes in an attempt to limit both micro- and macrovascular 

disease. The Steno-2 study [21], conducted 10 years ago, demonstrated a long-lasting 

reduction in the risk of death and cardiovascular events in a small population of 160 

patients when submitted to a multifactorial risk control regimen. This approach has 

recently been re-affirmed in a much larger cohort of 271,174 patients with type 2 

diabetes followed for 5.7 years [22] where the risk of death, myocardial infarction or 

stroke was similar to the general population when five risk factor were maintained 

within the target ranges, i.e. HbA1c ≤ 7%, systolic and diastolic blood pressure < 140 

and 80 mmHg, respectively, LDL-cholesterol ≤ 97 mg/dL, absence of elevated 

albuminuria and abstinence from smoking. This study also observed that a HbA1c level 

outside the defined target represented the strongest predictor for stroke and acute 

myocardial infarction, confirming that retaining tight glycaemic control safely over a 

prolonged period, with the avoidance of hypoglycaemia, is a major objective in the 

management of persons with diabetes.  

 

 

What we see and try to comprehend 

 

1. Duration of the “metabolic memory”: long or rapidly “evanescent”? 

 

Whereas the concept of “metabolic memory” is strongly supported by the extended 

follow-up of patients included in the UKPDS [9] and DCCT/EDIC cohorts [11,12], there 

remains uncertainty concerning the duration of benefit following a period of intensive 

glucose lowering therapy. The VADT was designed to compare the occurrence of major 

cardiovascular events in 1791 persons with type 2 diabetes recruited among military 

veterans randomised to either intensive or standard glucose control. The participants 

were initially follow-up at the end of 5.6-year period of “active” intervention [7] and 

then at approximately 10 years [10] and 15 years after randomisation .The latest 

updated results of the extended newly follow-up at 15 years were subject to an oral 

presentation at the 2018 annual meeting of the American Diabetes Association held in 

Orlando (USA) (figure 1). As previously mentioned, the mean absolute reduction in 
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HbA1c levels was 1.5% throughout the initial 5.6 years period of intervention in the 

intensive-therapy group (mean HbA1c = 6.9%) as compared with the control group 

(mean HbA1c = 8.4%) [7]. At the end of the first period, there was no significant 

reduction (hazard ratio [HR] = 0.88, 95% confidence interval [CI] = 0.74-1.05, p = 0.14) 

in the primary outcome (composite of myocardial infarction, stroke, death from 

cardiovascular causes, congestive heart failure, surgery for vascular disease, inoperable 

coronary disease, and amputation for ischaemic gangrene) [figure 4] or death from any 

cause [7]. Following the conclusion of the initial clinical trial, the participants were then 

reviewed at regular time-intervals for a further 5 years during which the median HbA1c 

levels rapidly converged (figure 5). The intensive-therapy group achieved a small but 

statistically significant lower risk for the primary outcome compared to the control 

group (HR = 0.83, 95% CI =0.70-0.99, p = 0.04) [10]. However, this statistical difference 

in the primary outcome was no longer evident after another 5- year period, i.e. 15 years 

after randomisation (HR= 0.91, 95% CI = 0.78-1.06). It should be noted that the small 

significant differences in HbA1c between the groups (- 0.2 to -0.3%) observed at 10 

years did not persist after 15 years (figure 5). This observation indicates or at least 

suggests that the “metabolic memory” in the intensive treated cohort is therefore time 

limited.  

Reverting to the results of the UKPDS [9] and the DCCT/EDIC [11,12] a “legacy effect” 

was predominantly observed when the reduction of the overall glucose exposure 

quantified by the derived product of HbA1c decrement and duration of improvement 

during the “active” interventional period was ranging from  -9 to -15 expressed as %-

year (figure 3). This means that a “legacy effect” will be evident only after 10 years when 

the HbA1c decrements from baseline are limited to 1% during periods of intensive 

therapy. Appearance within a shorter period of time would necessitate a greater 

improvement in HbA1c level. In the VADT a decline in “metabolic memory” appears 

evident in persons with type 2 diabetes, the longer the post intervention period [10]. A 

similar trend has been seen in the DCCT/EDIC  [11,12] intensively treated cohort as the 

reduction of any cardiovascular event after initial intensive therapy period fell from -

47% after 20 years to -30% at 30 years (figure 3). The prolonged maintenance of this 

beneficial effect may be due in part to the modest persistent difference in HbA1c (0.4%) 

between the original intensive and conventional treatment groups.  
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The role of other factors should also be considered as the intensive glucose lowering 

therapies were implemented in young adults with recent-onset type 1 diabetes in the 

DCCT [8] and DCCT/EDIC [11,12] and in newly diagnosed type 2 diabetes in UKPDS [4], 

at early stages of the disease when clinical evidence of the atherosclerosis process 

would be unlikely. This remark does not however apply to individuals with older-onset 

type 2 diabetes involved in the VADT [7], ADVANCE [5] and ACCORD [6] studies.  

Macrovascular lesion is a protracted process consisting of increased glycation of the 

protein matrix of arterial walls in response to sustained increases in circulating glucose 

[23-25]. Collagen fibres in vessel walls have a slow turnover rate. Therefore alterations 

in plasma glucose concentrations require several years to result in significant harmful or 

beneficial clinical outcomes. Other mechanisms that involve epigenetic changes have 

also been proposed to explain the “metabolic memory” hypothesis [26]. The findings of 

the VADT after 15 years of follow-up has permitted further insight into the pathogenesis 

of the “metabolic memory” despite the absence of cardiovascular benefit. This finding 

when considered in isolation has led some to conclude that “metabolic memory” does 

not exist in response to intensive glycaemic control. A more detailed analysis has shown 

that the “metabolic memory” is a true entity although it is subject to the time interval 

since the intensive therapeutic intervention. For instance any prolonged discontinuation 

of the efforts made for achieving a satisfactory glycaemic control results in a loss of 

beneficial effects on cardiovascular outcomes. 

 

2. Is glycaemic variability an ancillary or a key player in cardiovascular risks? 

 

As previously reported, glycaemic variability (GV) is defined by fluctuations of glucose 

or other related parameters of glucose homeostasis over a short - or long -time interval 

[13,14].  Short-term glycaemic variability is characterized by sudden and rapid upward 

or downward glucose changes usually within or between consecutive days. The second 

category, long-term variability is determined from markers of glucose homeostasis, 

either serial measurements of postprandial and/or fasting plasma glucose 

concentrations at weekly or monthly frequency or from visit-to-visit determinations of 

HbA1c levels at quarterly or even longer time-intervals [15]. 

Reverting to short-term glycaemic variability, its assessment can be calculated using 

either self-monitoring of plasma glucose (SMPG) [27,28] or continuous interstitial 
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glucose monitoring (CGM) [29-33]. However, CGM has many advantages due to the fact 

that this technology permits measurements at 5-min time-intervals, i.e. 288 per day, 

thus providing a more comprehensive view compared with SMPG. Many indices are 

proposed for estimating short-term glucose variability but for routine practice two 

metrics seem to be most useful, and which can be obtained by simple computation. For 

the within-day glucose variability, the most reliable index seems to be the coefficient of 

variation for glucose (%CV = [SD of glucose/mean glucose] x 100), which has the 

advantage of being adjusted on the 24-h mean glucose concentration. A cut-off value of 

36%, has been established as a threshold that separates stable from labile glucose 

control [30], and recently adopted by the international consensus on the use of 

continuous glucose monitoring [29]. For between-day glucose variability, the Mean Of 

Daily Difference (MODD) is calculated by averaging the absolute differences between 

two glucose values at the same time on two consecutive days [34]. There is evidence to 

suggest that a value of 60 mg/dL appears able to separate stable from unstable control 

[13]. 

Therefore, it is important to recognise the difference between short-and long-term 

variabilities, which are sometimes wrongly included as a single entity. 

 

a) Short-term glycaemic variability 

 

At present, due to the lack of interventional trials, there is no hard evidence that short-

term glycaemic variability is an independent factor for the risk of adverse 

cardiovascular events [14]. The possible role of acute glucose fluctuations as risk factor 

for cardiovascular diseases is based on laboratory and observational studies that have 

demonstrated that oxidative stress and inflammatory cytokines , which are key players 

for diabetic complications [24,25], is activated by glycaemic variability [35]. Oscillating 

glucose concentrations is more deleterious to vascular endothelial cell function than 

continuous hyperglycaemia in both healthy subjects and non-insulin treated type 2 

diabetes [36]. Others have failed to reproduce a similar relationship in type 1 diabetes 

[37]. In a cross-sectional study we have shown that the activation of oxidative stress in 

insulin-treated patients with either type 2 or type 1 diabetes remained within the 

normal range while those with type 2 diabetes treated only with oral antidiabetic agents 

exhibited higher urinary excretion rates of isoprostanes, a marker of oxidative stress 
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[38].  These findings strongly suggest that insulin per se exerts an inhibitory effect on 

the activation of oxidative stress. The FLAT SUGAR trial [39] was designed to test 

whether adding exenatide in contrast to prandial insulin when added to ongoing basal 

insulin therapy reduces short-term glycaemic variability and improves the level of 

biomarkers for cardiovascular disease in persons with insulin-requiring type 2 diabetes 

and an already elevated cardiovascular risk. Glycaemic variability was slightly improved 

in participants who received add-on therapy with exenatide, but the inflammatory and 

cardio-metabolic risk markers did not differ between the active and control groups. 

These neutral findings could be due to the inhibitory action of insulin on inflammation, 

thrombosis and activation of oxidative stress in both arms of the study [40].  

Another consideration is to hypothesize that hypoglycaemia is an inherent link within 

the pathophysiological sequence commencing with excess glycaemic variability and 

ending with cardiovascular diseases. At present, the contribution of short-term 

variability to the risk of hypoglycaemia, is well recognized, especially when the mean 

blood glucose concentration is low [8,41-43]. We have recently been able to established 

that there exists a relationship between the frequency of all types of hypoglycaemia 

when considered as a whole (symptomatic or silent) and the coefficient of variation for 

glucose (%CV) in persons with type 1 and type 2 diabetes [30].  The participants were 

ranked into groups ranging from type 2 diabetes treated with diet and/or oral 

antidiabetic agents such as insulin sensitizers, theoretically devoid of hypoglycaemic 

risk (group 1), DPP-4 inhibitors (group 2) to those requiring sulfonylureas (group 3) or 

insulin (group 4) and type 1 diabetes (group 5). The frequency of hypoglycaemia 

increased exponentially, i.e. none in groups 1 and 2, once weekly in groups 3 and 4, and 

once daily in group 5 which was associated with increasing glycaemic variability 

(median %CV ) of 18.1; 18.6; 23.7; 27.8 and 37.2% in groups 1, 2, 3, 4 and 5, respectively 

[13,30]. However, the mean glucose levels in the different groups were found to be 

similar.  In support of these findings, the CONCEPTT [44], DIAMOND [45] and two other 

studies [46,47] have shown that the use of a continuous glucose monitoring (CGM) for 

prolonged periods of time can improve short-term glycaemic variability and also 

reduces the frequency of hypoglycaemic episodes in either type 1 [44-46] or insulin-

treated type 2 [47] diabetes. 

In contrast, the second sequential step in the catenary chain, i.e. the potential causal link 

between hypoglycaemic episodes and the risk of chronic cardiovascular diseases/events 
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has never been clearly established. The ACCORD Study [6] showed that intensive 

therapy was associated with an increased frequency of hypoglycaemia and risk of 

cardiovascular death, although a causative relationship between the hypoglycaemic 

episodes and chronic cardiovascular diseases has not been established [48]. Post-hoc 

analyses of the ADVANCE data base [49] has led to a similar conclusion suggesting that 

hypoglycaemia is more likely a marker of cardiovascular vulnerability than a causative 

factor for adverse vascular outcomes. However, there is increasingly convincing  

evidence that hypoglycaemic events are responsible for acute vascular events by 

inducing harmful pro-arrhythmic cardiac disorders [52-54] and enhancing platelet 

aggregation [50,51]. Therefore, presently, the relationship between hypoglycaemic 

episodes and chronic cardiovascular complications may be considered the weakest link 

for completing the proposed catenary chain from short-term glycaemic variability to 

chronic cardiovascular events. Nevertheless, it is currently advocated that stringent 

glucose-lowering strategies should be avoided in vulnerable patients [55-58] partly 

based on the fact that when glycaemic fluctuations are excessive there is an increased 

risk of hypoglycaemia [14,30,42]. 

 

b) The long-term variability 

 

The impact of long-term variability in glucose homeostasis has been extensively 

reviewed in two recent reviews [14,15]. Despite the abundant literature devoted to the 

adverse effects of long-term variability interpretation should be viewed with caution. 

The first concern is that variability in overall glycaemic control represented by HbA1c 

may only serve as an “umbrella” for heterogeneous glycaemic disorders [59]. An 

analysis of the DCCT data based on quarterly fluctuations of HbA1c, found a weak 

association between HbA1c variability and the development of diabetic retinopathy 

[60]. The same investigators failed to find any association with quarterly 7-point 

glycaemic profiles recorded over 3 consecutive days [61]. Therefore, long- and short-

term glucose variability represent different aspects of dysglycaemia. A meta-analysis 

involving persons with type 1 diabetes (7 studies) and type 2 diabetes (13 studies) 

showed that long-term variability based on quarterly HbA1c was positively correlated 

with HbA1c (r = 0.55) [60], thereby representing poor overall glycaemic control and 

perhaps resulting from a loose adherence to dietary and pharmacologic measures  
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[62,63].  One of the most recent analysis of the VADT data has suggested the existence of 

a relationship between long-term glycaemic variability and cardiovascular risk [64]. 

However, this relationship was only observed in the intensively treated group, leading 

the investigators to imply that those exhibiting a satisfactory overall glycaemic control 

are more sensitive to fluctuations of glucose homeostasis than those less well controlled. 

However, the results of this study does not help to clarify whether long-term variability 

is a simple biomarker or a risk factor for cardiovascular disease due to the lack of any 

association between HbA1c measures and cardiovascular risk regardless of the group 

considered (intensive- or standard-therapy group).  

 

Concluding remarks 

 

In summary (figure 6), the role of different elements of dysglycaemia as risk factors for 

macrovascular diseases in persons with diabetes appears to be evident but there is a 

relative disparity in clinical expression, which is listed as follows: 

- The decrease in cardiovascular risk requires long-lasting periods of intensive therapy 

resulting in good glycaemic control (clear evidence) 

- When the magnitude of HbA1c decrements is suboptimal a longer duration of 

exposure to reduced plasma glucose concentrations is required  (clear evidence). 

- The concept of metabolic memory is one possible mechanism that explains the 

reduction of macrovascular diseases in both type 1 and type 2 diabetes (clear 

evidence). However its “legacy effect” is lost if the duration of good glycaemic 

control is inadequate (supportive evidence) 

- Glycaemic variability exerts either a direct or indirect influence on cardiovascular 

disease according to whether we consider its short- or long -term components. The 

benefit of a reduced short-term variability can be mediated via a reduction in the 

frequency of hypoglycaemic episodes (supportive evidence), which in turn results in a 

lower risk for adverse cardiovascular events (low evidence).  Long-term variability on 

the other hand may simply reflect the overall glucose exposure because an 

association between these two glycaemic disorders cannot be excluded (low 

evidence).  



 13 

References 
 
 
 
 

[1] Kannel WB, Dawber TR, Kagan A, Revotskie N, Stokes J. Factors of risk in the 
development of coronary heart disease -six-year follow-up experience: the Framingham 
Study. Ann Intern Med 1961;55:33-50 
 
[2] Mahmood SS, Levy D, Vasan RS, Wang TJ. The Framingham Heart Study and the 
epidemiology of cardiovascular diseases: a historical perspective. Lancet  2014; 383: 
999–1008 
 
[3] Stamler J, Vaccaro O, Neaton JD, Wentworth D, for the Multiple Risk Factor 
Intervention Trial Research Group. Diabetes, other risk factors, and 12-yr cardiovascular 
mortality for men screened in the Multiple Risk Factor Interventional Trial. Diabetes 
Care 1993;16:434-444 
 
[4] UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with 
sulphonylureas or insulin compared with conventional treatment and risk of 
complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837-853 
 
[5] The ADVANCE Collaborative Group. Intensive blood glucose control and vascular 
outcomes in patients with type 2 diabetes. N Engl J Med 2008;358:2560-2572 
 
[6] The Action to Control Cardiovascular Risk in Diabetes Study Group. Effect of 
intensive glucose lowering in type 2 diabetes. N Engl J Med 2008;358:2545-2559 
 
[7] Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, et al., for the 
VADT Investigators.  Glucose control and vascular complications in veterans with type 2 
diabetes. N Engl J Med 2009;360:129-139 
 
[8] The Diabetes Control and Complications Trial Research Group. The effect of intensive 
treatment of diabetes on the development and progression of long-term complications 
in insulin-dependent diabetes mellitus. N Engl J Med 1993;329:977-986 
 
[9] Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW. 10-year follow-up of 
intensive glucose control in type 2 diabetes. N Engl J Med 2008;359:1577-1589 
 
[10] Hayward RA, Reaven PD, Wiitala WL, Bahn GD, Reda DJ, Ge L, et al, for the VADT 
Investigators. Follow-up of glycemic control and cardiovascular outcomes in type 2 
diabetes. N Engl J Med 2015;372:2197-2206 
 



 14 

[11] The Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes 
Interventions and Complications (EDIC) Research Group. Intensive diabetes treatment 
and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 
2005;353:2643-2653 
 
[12] The Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes 
Interventions and Complications (EDIC) Study Research Group. Intensive diabetes 
treatment and cardiovascular outcomes in type 1 diabetes. The DCCT/EDIC Study 30 
year follow-up. Diabetes Care 2016;39:686-693  
 
[13] Monnier L, Colette C, Owens DR. The application of simple metrics in the 
assessment of glycaemic variability. Diabetes Metab 2018;44:313-319 
 
[14] Ceriello A, Monnier L, Owens D. Glycaemic variability in diabetes: clinical and 
therapeutic implications. Lancet Diabetes Endocrinol. Published Online August 
13,2018.http//dx.doi.org/10.1016/S2213-8587(18)30136-0 
 
[15] Gorst C, Kwok CS, Adam S, Buchan I, Kontopantelis E, Myint PK, et al. Long-term 
glycemic variability and risk of adverse outcomes: a systemic review and meta-analysis. 
Diabetes Care 2015;38:2354-2369 
 
[16] Newhouse JP, Normand S-LT. Health policy trials. N Engl J Med 2017;376:2160-
2167 
 
[17] Murray DM, Varnell SP, Blistein JL. Design and analysis of group-randomized trials: 
a review of recent methodology development. Am J Public Health 2004;94:423-432 
 
[18] Bothwell LE, Greene JA, Podolsky SH, Jones DS. Assessing the gold standard -lessons 
from the history of RCTs. N Engl J Med 2016;374:2175-2181 
 
[19] The ACCORD Study Group. Nine-year effects of 3.7 years of intensive glycemic 
control on cardiovascular outcomes. Diabetes Care 2016;39:701-708 
 
[20] Zoungas S, Chalmers J, Neal B, Billot L, Arima HH, Monaghan H, et al. Follow-up of 
blood pressure lowering and glucose control in type 2 diabetes. N Engl J Med 
2014;371:1392-1406 
 
[21] Gaede P, Lund-Andersen H, Parving H-H, Pedersen O. Effect of a multifactorial 
intervention on mortality in type 2 diabetes. N Engl J Med 2008;358:580-591 
  
[22]  Rawshani A, Rawshani A, Franzén S, Sattar N, Eliasson B, Swensson A-M, et al. Risk 
factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. N Engl J 
Med 2018;379:633-644 



 15 

[23] Lyons TJ, Jenkins AJ. Glycation, oxidation and lipoxidation in the development of the 
complications of diabetes: a carbonyl stress hypothesis. Diabetes Rev 1997;5:365-391 
 
[24] Brownlee M. Biochemistry and molecular cell biology of diabetic complications. 
Nature 2001;414:813-820 
 
[25] Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. 
Diabetes 2005;54:1615-1625 
 
[26]  Reddy MA, Zhang E, Natarajan R. Epigenetic mechanism in diabetic complications 
and metabolic memory. Diabetologia 2015;58:443-455 
 
[27] Schnell O, Hanefeld M, Monnier L. Self-monitoring of blood glucose: a prerequisite 
for diabetes management in outcome trials. J Diabetes Sci Technol 2014;8:609-614 
 
[28] Garg SK, Hirsch IB. Self-monitoring of blood glucose. Diabetes Technol Ther 
2015;17 (Suppl 1): S3-S11 
 
[29] Danne T, Nimri R, Battelino RM, Bergenstal RM, Close KL, DeVries JH et al. 
International consensus on use of continuous glucose monitoring. Diabetes Care 
2017 ;40 :1631-1640 
 
[30] Monnier L, Colette C, Wojtusciszyn A, Dejager S, Renard E, Molinari N, et al. Toward 
defining the threshold between low and high glucose variability in diabetes. Diabetes 
Care 2017;40:832-838 
 
[31] Borot S, Benhamou PY, Atlan C, Bismuth E, Bonnemaison E, Catargi B, et al. Practical 
implantation, education and interpretation guidelines for continuous glucose 
monitoring: a French position statement. Diabetes Metab 2018;44:61-72 
 
[32] Petrie JR, Peters AL, Bergenstal RM, Holl RW, Fleming CA, Heinemann L. Improving 
the clinical value and utility of CGM systems: issues and recommendations. A joint 
statement of the European Association for the Study of Diabetes and the American 
Diabetes Association Diabetes Technology Working Group. Diabetes Care 2017; 
40:1614-1621 
 
[33] Edelman SV, Argenta NB, Pettus J, Hirsch IB. Clinical implications of real-time and 
intermittently scanned continuous glucose monitoring. Diabetes Care 2018;41:2265-
2274 
 
[34] Molnar GD, Taylor WF, Ho MM. Day-to-day variations of continuously monitored 
glycaemia: a further measure of diabetic instability. Diabetologia 1972;8:342-348 



 16 

[35] Monnier L, Mas E, Ginet C, Michel F, Villon L, Cristol J-P, et al. Activation of oxidative 
stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in 
patients with type 2 diabetes. JAMA 2006;295:1681-1687 
 
[36] Ceriello A, Esposito K, Piconi J, Ihnat MA, Thorpe JE, Testa R, et al. Oscillating 
glucose is more deleterious to endothelial function and oxidative stress than mean 
glucose in normal and type 2 diabetic patients. Diabetes 2008;57:1349-1354 
 
[37] Wentholt IM, Kulik W, Michels RP, Hoekstra JB, DeVries JH. Glucose fluctuations and 
activation of oxidative stress in patients with type 1 diabetes. Diabetologia 2008;51:183-
190 
 
[38] Monnier L, Colette C, Mas E, Michel F, Cristol JP, Boegner C. Regulation of oxidative 
stress by glycaemic control: evidence for an independent inhibitory effect of insulin 
therapy. Diabetologia 2010;53:562-571 
  
[39] FLAT-SUGAR Trial Investigators. Glucose variability in a 26-week randomized 
comparison of mealtime treatment with rapid-acting insulin versus GLP-1 agonist in 
participants with type 2 diabetes at high cardiovascular risk. Diabetes Care 
2016;39:973-981 
 
[40] Monnier L, Colette C, Owens DR. Comment on the FLAT-SUGAR Trial Investigators. 
Glucose variability in a 26-week randomized comparison of mealtime treatment with 
rapid-acting insulin versus GLP-1 agonist in participants with type 2 diabetes at high 
cardiovascular risk. Diabetes Care 2016;39:973-981. Diabetes Care 2016 ;39 :e186-187 
 
[41] Murata GH, Hoffman RM, Shah JH, Wendel CS, Duckworth WC. A probabilistic model 
for predicting hypoglycemia in type 2 diabetes mellitus. The diabetes outcomes in 
veterans study (DOVES). Arch Int Med 2004;164:1445-1450 
 
[42] Monnier L, Wojtusciszyn A, Colette C, Owens D. The contribution of glucose 
variability in asymptomatic hypoglycemia in persons with type 2 diabetes. Diabetes 
Technol Ther 2011;13:813-818 
 
[43] Gimenez M, Tannen AJ, Reddy M, Moscardo V, Conget I, Oliver N. Revisiting the 
relationships between measures of glycemic control and hypoglycemia in continuous 
glucose monitoring data sets. Diabetes Care 2018;41:326-332 
 
[44] Feig DS, Donovan LE, Corcoy R, Murphy KE, Amiel SA, Hunt KF, et al. Continuous 
glucose monitoring in pregnant women with type 1 diabetes (CONCEPTT): a multicentre 
international randomised controlled trial. Lancet 2017;390:2347-2359 



 17 

[45] Beck RW, Riddleworth T, Ruedy K, Ahmann A, Bergenstal R, Haller S, et al. Effect of 
continuous glucose monitoring on glycemic control in adults with type 1 diabetes using 
insulin injections. The DIAMOND randomized clinical trial. JAMA 2017;317:371-378 
 
[46] Bolinder J, Antuna R, Geelhoed-Duijvestijn P, Kröger J, Weitgasser R. Novel glucose-
sensing technology and hypoglycaemia in type 1 diabetes: a multicenter, non-marked, 
randomized controlled trial. Lancet 2016;388:2254-2263 
 
[47] Haak T, Hanaire H, Ajjan R, Hermanns N, Riveline JP, Rayman G. Flash glucose-
sensing technology as a replacement for blood glucose monitoring for the management 
of insulin-treated type 2 diabetes: a multicenter, open-label randomized controlled trial. 
Diabetes Ther 2017;8:55-73 
 
[48] Bonds DF, Miller ME, Bergenstal RM, Buse JB; Byinton RP, Cutler JA, et al. The 
association between symptomatic severe hypoglycemia and mortality in type 2 diabetes: 
retrospective epidemiological analysis of the ACCORD Study. BMJ 
2010;340:b4909.doi:10.1136/bmj.b4909 
 
[49] Zoungas S, Patel A, Chalmers J, de Galan BE, Li Q, Biostat M, et al., for the ADVANCE 
Collaborative Group. Severe hypoglycemia and risks of vascular events and death. N Engl 
J Med 2010;363:1410-1418 
 
[50] Monnier LH, Lachkar H, Richard J-L, Colette C, Borgel D, Orsetti A, et al. Plasma β-
thromboglobulin response to insulin-induced hypoglycemia in type 1 diabetic patients. 
Diabetes 1984;33:907-909 
 
[51] Kahal H, Aburima A, Spurgeon B, Wraith KS, Rigby AS, Sathyapalan T, et al. Platelet 
function following induced hypoglycaemia in type 2 diabetes. Diabetes Metab 
2018;44:431-436 
 
[52] Nordin C. The case for hypoglycaemia as a proarrythmic event: basis and clinical 
evidence. Diabetologia 2010;53:1552-1561 
 
[53] Stahn A, Pistrosch F, Ganz X, Teige M, Koehler C, Bornstein S, et al. Relationship 
between hypoglycaemic episodes and ventricular arrhythmias in patients with type 2 
diabetes and cardiovascular diseases: silent hypoglycemia and silent arrhythmias. 
Diabetes Care 2014;37:516-520 
 
[54] Pistrosch F, Ganz X, Bornstein SR, Birkenfeld AL, Henkel E, Hanefeld M. Risk of and 
risk factors for hypoglycemia and associated arrythmias in patients with type 2 diabetes 
and cardiovascular disease: a cohort study under real-world conditions. Acta Diabetol 
2015;52:889-895 



 18 

[55] Frier B, Schernthaner G, Heller SR. Hypoglycemia and cardiovascular risk. Diabetes 
Care 2011;34:S132-S137 
 
[56] Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. 
Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach. 
Update to a position statement of the American Diabetes Association and the European 
Association for the Study of Diabetes. Diabetes Care 2015;38:140-149 
 
[57] American Diabetes Association. Pharmacologic approaches to glycemic treatment: 
Standards of Medical Care in Diabetes-2018. Diabetes Care 2018;41 (Suppl 1):S73-S85 
 
[58]  Davies MJ, D’Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G. 
Management of hyperglycemia in type 2 diabetes 2018. A consensus report by the 
American Diabetes Association (ADA) and the European Association for the Study of 
Diabetes (EASD). Diabetes Care online October 2018.https//doi.org/10.2337/dci18-
0033 
 
[59] Noyes JD, Soto-Pedre F, Donelly LA, Pearson ER. Characteristics of people with high 
visit-to-visit glycaemic variability in type 2 diabetes. Diabetic Med 2018;36:262-269 
 
[60] Kilpatrick ES, Rigby AS, Atkins SL. HbA1c variability and the risk of microvascular 
complications in type 1 diabetes: data from the Diabetes Control and Complications 
Trial. Diabetes Care 2008;31:2198-2202  
 
[61] Kilpatrick ES, Rigby AS, Atkins SL. The effect of glucose variability on the risk of 
microvascular complications in type 1 diabetes. Diabetes Care 2006;29:1486-1490 
 
[62] Halimi S. Type 2 diabetes: Therapeutic adherence with the new antidiabetic drugs. 
Médecine des maladies Métaboliques 2018;12:487-495 
 
[63] Edelman SV, Polonsky WH. Type 2 diabetes in the real world: the elusive nature of 
glycemic control. Diabetes Care 2017;40:1425-1432 
 
[64] Zhou JJ, Schwenke DC, Bahn G, Reaven P, for the VADT Investigators. Glycemic 
variations and cardiovascular risk in the Veterans Affairs Diabetes Trial. Diabetes Care 
2018;41:2187-2194 
 
 

Legends of figures 

 



 19 

Figure 1: Durations of “active” interventional and post interventional periods of 

extended follow-up in the following randomised controlled trials (RCTs): ACCORD 

(ACCORDION), ADVANCE (ADVANCE-ON), VADT, UKPDS and DCCT/EDIC. 

 

Figure 2: Hazard Ratios (HR) and 95% Confidence Intervals (95% CI) (intensive 

therapy vs standard therapy) of a composite of Major Adverse Cardiovascular Events in 

the following RCTs: ACCORD, VADT, ADVANCE and UKPDS, at the end of the “active” 

interventional period. In the UKPDS, cardiovascular events are limited to myocardial 

infarctions. The ΔHbA1c corresponds to the differences in the HbA1c levels between the 

intensive-and standard-therapy groups. 

 

Figure 3: Relationship between: (i) reduction in incidence of adverse cardiovascular 

events during the long-term extensions of the ADVANCE (ADVANVE-ON), ACCORD 

(ACCORDION), VADT, UKPDS and DCCT/EDIC studies (Y axis) and (ii) reduction in the 

overall chronic exposure to glucose throughout the “active” interventional periods (X 

axis). This exposure was assessed using the product: [magnitude of the differences in 

HbA1c levels between the intensive and standard arms during the “active” 

interventional period] multiplied by [the duration of the interventional period]. The 

result of the product is expressed as percentage-year and as negative units because the 

differences in HbA1c levels (ΔHbA1c) are always negative. The time elapsed from 

randomisation (years) is indicated on the horizontal oblique axis. The reduction in 

incidence of cardiovascular events is expressed on the Y axis, using negative units. The 

higher the columns, the greater the reduction in the risk of cardiovascular events. 

Reductions are statistically significant in the VADT at 10 years (P = 0.04), the UKPDS (P 

= 0.01) and in the DCCT/EDIC at 20 and 30 years (P = 0.005 and P = 0.016). 

 

Figure 4: Hazard ratios (HR) and 95% Confidence Intervals (95% CI) (intensive therapy 

vs standard therapy) of a composite of Major Adverse Cardiovascular Events in the 

VADT at end point of the “active” interventional period (5.6 years) and at 10 and 15 

years after randomisation during the extended follow-up. 

 

Figure 5: Changes in median HbA1c levels according to year since the start of the VADT. 

Open circles: standard-therapy group. Close circles: intensive-therapy group. 
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Figure 6: Respective roles of glycaemic disorders (ambient hyperglycaemia, “metabolic 

memory” and short- or long-term variability) on the risk of cardiovascular (CV) events. 

Effects are depicted according to whether they are direct (spokes in a wheel) or indirect 

(links in a chain). Solid thick, solid thin and broken arrows represent the effects/actions 

with clear, supportive and low evidence, respectively. 

 

 


