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ABSTRACT Variability of semiconductor devices is seriously limiting their performance at nanoscale.
The impact of variability can be accurately and effectively predicted by computer-aided simulations in
order to aid future device designs. Quantum corrected (QC) drift-diffusion (DD) simulations are usually
employed to estimate the variability of state-of-the-art non-planar devices but require meticulous calibration.
More accurate simulation methods, such as QC Monte Carlo (MC), are considered time consuming and
elaborate. Therefore, we predict TiN metal gate work-function granularity (MGG) and line edge roughness
(LER) induced variability on a 10-nm gate length gate-all-around Si nanowire FET and perform a rigorous
comparison of the QC DD and MC results. In case of the MGG, we have found that the QC DD predicted
variability can have a difference of up to 20% in comparison with the QC MC predicted one. In case of
the LER, we demonstrate that the QC DD can overestimate the QC MC simulation produced variability by
a significant error of up to 56%. This error between the simulation methods will vary with the root mean
square (RMS) height and maximum source/drain n-type doping. Our results indicate that the aforementioned
QC DD simulation technique yields inaccurate results for the ON-current variability.

INDEX TERMS Drift-diffusion, line edge roughness, metal gate granularity, Monte Carlo, quantum
corrections, nanowire FET.

I. INTRODUCTION

Gate-All-Around (GAA) nanowires (NWs) are showing
arguable promise to be the leading architecture for future
technological nodes adopted by industry [1]-[5], due to their
superior electrostatic control of the channel, thus allow-
ing further scaling of the gate length in comparison with
the currently used Fin Field-Effect Transistor (FinFET)
architecture [6]. However, the devices in the deep nano-
regime suffer from various sources of variability which could
greatly affect their performance and yield [7]-[9]. These
sources of variability are related to either the fabrication
process or material properties. The most significant sources
are: random dopants (RD), oxide thickness variation (OTV),
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metal gate work-function granularity (MGG), and line edge
roughness (LER) [7]-[13]. Therefore, a rigorous study of
all aspects of device performance, including their resistance
against variability sources [3], [4], [14], [15], is critical. This
study is often carried out using computer aided design tools
because they are proven to be an economically efficient way
to do the ground work [15]-[19]. However, choosing the
right simulation tool without appropriate in-sight can be a
cumbersome task.

Generally, three methods are commonly used for
nanoscaled device simulations [16], [17]: (i) quantum cor-
rected (QC) drift-diffusion (DD), (ii) QC Monte Carlo (MC)
and (iii) fully quantum-mechanical Non-Equilibrium Green’s
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Functions (NEGF). The later is the most accurate but also the
most computer intensive method that is generally used for
ultra small nanoscale transistors in which quantum effects are
expected to be significant [16], [17], [20]. Therefore, the use
of NEGF for statistically significant variability studies, where
hundreds of simulations are required, is computationally
prohibitive. The QC MC method is commonly employed
for the investigations of the device ON-region where carrier
scattering and non-equilibrium transport play an important
role [16], [17], [20]. An advantage of the MC over the NEGF
is that the implementation of multiple scattering mechanisms
into the MC simulator is less complex in comparison with
the NEGF method. Finally, the QC DD is the least compu-
tationally expensive method and often used for variability
studies in the sub-threshold region [3], [15], [16], [21],
that involve simulations of thousands of individual devices.
In our case, the QC DD method takes about three times
less computational time than the QC MC method. However,
the QC DD is disadvantaged by a requirement to calibrate
QC parameters against either MC, NEGF or experimental
data [3], [21], [22]. It was previously shown that QC DD
is unable to perform ON-current variability study for planar
MOSFETSs without an underestimation because the QC DD
cannot capture non-equilibrium effects [21], [23]. A sim-
ilar rigorous study for non-planar multi-gate transistors is
missing from the literature. More importantly, the QC DD
method is still being used in state-of-the-art device variability
study [15], [18], [22], [24]-[28] believing that properly cal-
ibrated QC DD simulations will yield to accurate statistical
predictions.

In this paper, we aim to establish how accurate the QC DD
method is when applied to the ON-region variability in com-
parison with the more rigorous QC MC simulation technique.
We compare the results obtained by applying two of the main
variability sources affecting the device reliability, the MGG
and LER, on a state-of-the-art 10 nm gate length Si GAA
NW FET that has been scaled down from an experimental
device [29], [30].

Il. METHODOLOGY AND DEVICE DESCRIPTION
In this work, we employ a well established in-house sim-
ulation toolbox [31]-[33] that includes 3D DD and MC
transport models which use the finite element (FE) method
for accurate mesh description of a simulation domain. The
accurate description of the device nanoscale dimensions is of
great importance for accurate simulations in the deep nano-
regime because quantum-mechanical confinement in a device
channel can significantly affect transport at nanoscale [34].
As mentioned before, the DD approach requires calibra-
tion for the simulations. In this study, we use the readily
available MC simulation toolbox to guide the calibration
of the QC DD. The model used by the DD simulator is
the Caughey-Thomas doping dependent low-field electron
mobility model [35], together with perpendicular (critical
electric field) and lateral (saturation velocity) electric field
models [36]. The calibration parameters used with the DD
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simulator are found in [33]. The MC toolbox accounts for all
relevant electron scattering mechanisms in the silicon transis-
tor: acoustic and non-polar optical phonons (intra- and inter-
valley) [37], [38], ionised impurity scattering using the third
body exclusion by Ridley [39], [40], and interface roughness
(IR) scattering using Ando’s model [41]. The electron screen-
ing in the electron-ionised impurity scattering uses a static
screening model [42] with Fermi-Dirac statistics in which the
Fermi energy and electron temperature are calculated self-
consistently in a real space of device simulation domain.

We have already argued that quantum confinement effects
will play a significant role in transport at nanoscale dimen-
sions. Therefore, we use 3D density-gradient (DG) QCs in
the DD simulations and 2D Schrddinger based equation cor-
rections (SCH) in the MC. The former has the disadvantage
that it requires fitting against the MC data, as aforesaid, mean-
while the later QC approach is calibration free. In case of the
DG method, we use electron effective masses as calibration
parameters to account for the quantum capacitance (shift of
the threshold voltage). The fitting parameters used with the
DG method are found in [43]. More details about the QC DD
simulation methodologies can be found in [44] and [45] and
about the QC MC in [32], [46], and [47].

Finally, the in-house simulation toolbox can account for the
following sources of variability: OTV, MGG, LER, gate edge
roughness (GER), and RD [31]. In this work, we will focus
on the two most influential ones [7] for GAA NW FET: MGG
and LER as illustrated in Fig. 2. Note that the same random
profiles are used in both simulation techniques, the QC DD
and QC MC, for a fair comparison of each variability study.
Moreover, the QC DD calibration parameters are not adjusted
for each of the profiles but use the values calibrated for
the ideal device as this is the standard approach. The 2D
Schrodinger equation in the QC MC simulations is solved
for each random profile of a device as this method does not
require additional calibration.

In case of the MGG variability, we use the Poisson-
Voronoi diagrams approach [48] to create the metal grains
for the metal gate contact of the simulated device. This
method is believed to mimic more accurately the realistic
metal gates [48] than the square grains approach [49], [50].
Furthermore, the MGG profile is characterized by a grain
size (GS) and by a work function value (WFV) [48]. For
the current study, we have chosen the titanium nitride (TiN)
which is commonly used as a gate material [S1]. The metal
has experimentally observed WFVs of 4.6 eV and 4.4 eV with
a probability of 60% and 40% formation, respectively [52].

In case of the LER variability, we create the uncorre-
lated profiles using Fourier synthesis with Gaussian auto-
correlation approach [53]. These are characterized by the
correlation length (CL) and the root mean square (RMS)
values [43], [53]. The current study is limited to a CL of
20 nm and to experimentally observed RMS heights, ranging
between 0.3 and 1.0 nm [11], [29].

A device used in this study is based on a 10 nm gate
length GAA NW FET that was scaled down from an exper-
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FIGURE 1. (i) Schematic for the 10 nm gate length GAA NW [30] and

(ii) Gaussian doping profiles along the transport direction for three
concentrations of Np. (right) Cross-sectional view of the channel for the
(b) ideal device and two cases when the Fin height was (a) elongated and
(c) shortened.

Drain

7.17 nm

N, [cm 3]

5.17 nm

z-axis

—
4.4 4.6
Work Function Value (eV)

FIGURE 2. Schematic for the 10 nm gate length GAA NW [30] affected by
LER and MGG variability sources. The LER profile is projected along the
transport direction (x-axis) and affects the dimension of only the z-axis.
The MGG profile with different work function is projected to the gate
area [52].

imental device [29] following the ITRS [54] guidelines as
shown in [30]. The device schematic and dimensions are
shown in Fig. 1(i). It has a uniformly p-type doped channel
(1 x 10" cm™3), a Gaussian n-type doping, with a maximum
Np (see Fig. 1(ii)) and a lateral straggle (o) of 3.23 nm, and
an EOT of 0.8 nm. Finally, it has an elliptical channel cross-
section with dimensions of 7.17 nm and 5.7 nm as shown
in Fig. 1(b).

Ill. IDEAL GAA NW FET

Even though GAA NWs are considered to be major con-
tenders for future technology nodes, they might be unable to
deliver a large enough ON-current (Ion) [33], [55] in circuits,
which may be one of the main limiting factors for the adapta-
tion of the technology. One way to overcome this issue could
be by increasing the maximum Np of the S/D region. For
this reason we have increased the reversed engineered n-type
doping concentration of Np from 5 x 10 that provided a
perfect match to the experimental I-V curve [30] to 1 x 10%°
and to 1.5 x 1029 cm=3. Note that the o was kept constant as
shown in Fig. 1(ii). We have found that, compared to Np =
5 x 10" ¢cm™3, Ion has increased by 40 % and 60 % for Np
of 1 x 10?2 and 1.5 x 10%° cm ™3, respectively. Note that Ion
is Ip at Vg = Vpp+VT, where Vr is the threshold voltage
and Vpp = 0.7 V. Both the QC MC and the well calibrated
QC DD simulated Ip-Vg characteristics are shown in Fig. 3
for the aforementioned cases. Note that the calibration of
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FIGURE 3. Simulated Ip-Vg characteristics for the 10 nm gate length GAA
NW [30] at Vp = 0.7 V with a channel orientation of (110). Three different
doping concentrations are presented for Np: 5 x 10'%, 1 x 1020 and

1.5 x 1020 cm—3. Full lines correspond to 3D QC MC simulations, while
dashed lines refer to calibrated (against the QC MC) 3D QC DD
simulations.

the QC DD is achieved by adjusting the mobility model and
QC parameters as described in detail in [43]. To assess the
validity of the calibration for the QC DD simulator, two
extreme cases of channel height for the NW were chosen
as shown in Fig. 1(a) and (c). In each case, the height is
increased/decreased symmetrically by 1 nm for an Np of
1.5 x 10%° cm™3, without changing any of the calibration
parameters. It was found that the QC DD results produce a
negligible error, up to 3 %, for both modified devices when
compared to the results obtained from the QC MC.

IV. MGG VARIABILITY

We have generated 300 random profiles with GSs of 3, 5
and 7 nm [52] for a meaningful statistical study of the MGG
induced variability. These profiles were also applied to three
maximum doping concentrations Np to extensively inves-
tigate the capabilities of the QC DD and QC MC models.
Note that the same MGG profiles are used in both simulation
techniques, the QC DD and QC MC, for a fair comparison.

200 QC MC-GS[nm] QCDD-GSI[nm]
—_ —— 30 —@— 30
E]-SO'—'.-- 7.0 —"-- 7.0 5%
3‘ 7 % __—=====.
S 100; _-=¥F=~
= 3% == .
(e} -
° ] :/: 15/%
19(%
0.4k : |
5e19 1e20 1.5e20
Np [cm™3]

FIGURE 4. olgy due to MGG vs Np from the QC DD and the QC MC
simulations using 300 profiles. The difference between the QC DD and QC
MC simulation results are indicated in percentage.

Fig. 4 shows the standard deviation (o) of the Ion against
the maximum Np. Both simulation methods show an increas-
ing olpn with an increasing Np. However, the difference
between the olon (indicated by percentage in the figure)
predicted by both simulation methods is dependent on both
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FIGURE 5. Scatter plots compare the simulations with

Np = 1.5 x 1022 cm~3 and 1 x 102° cm—3 against Np =5 x 10'? cm~—3
obtained from (a) QC DD and (b) QC MC. The GS is 7 nm.
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FIGURE 6. olgy due to MGG vs GS for a Np = 1 x 1020 cm~3 obtained
from the QC DD and the QC MC simulations. The difference between QC
DD and QC MC are indicated in percentage.

the doping value and the grain size. For instance, for a Np of
1 x 10%Y cm™3, the error in the predicted values by QC DD
when compared to QC MC ones range from 7 % (7 nm GS)
to 19 % (3 nm GS). Fig. 5 compares Iony at Np = 5 X
1019 against Iony at Np = 1 x 10?9 and 1.5 x 102 cm™3
obtained from the (a) QC DD and (b) QC MC simulations.
There is a large correlation, as indicated by the correlation
coefficients (CCs), between the Ion values produced by both
simulation methods. This means that the same profiles pro-
duce a similar variability even when the Np is increased.
Finally, investigation of the effect of the GS is shown in Fig. 6.
Both simulation methods predict an increasing olon with
an increasing GS. However, the QC DD method leads to an
overestimation of the MGG variability of around 20 % for
GSs equal or lower than 5 nm. Furthermore, analysis of the
mean (A) Ion showed a negligible difference between the QC
DD and QC MC methods.

A Fluctuation Sensitivity Map (FSM) [56] that analyzes
the spatial effect of the MGG variability in key figure of
merits (FoMs) (e.g. Ion) is employed in order to reveal the
most sensitive regions of the studied device to the MGG.
The procedure is as follows: (i) a single synthetic profile is
created, which has a WFV localized in a small strip wrapped
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FIGURE 7. The schematic of the GAA NW FET gate area (a) with a single
synthetic profile strip wrapped around the gate. The FSM for the Igy are
simulated assuming n-type source/drain concentration (Np) of

1 x 1020 cm—3 using (a) QC DD and (b) QC MC techniques. 100 synthetic
gate profiles with a width of 0.1 nm are simulated.

around the gate (see example in Fig. 7(a)), (ii) this profile is
then swept along the transport direction and the profile related
to Ion is extracted, and (iii) all the simulated profiles and their
corresponding Ipn are used to create a 2D FSM as shown
in Figs. 7(b) and (c) for the QC DD and QC MC simulations,
respectively.

Thanks to the FSM technique, we are able to identify that
fora 10 nm gate length GAA NW the most sensitive region of
the gate is away from the centre of the gate, close to the gate-
source junction. However, for the QC MC the maximum value
is centered at around —1.8 nm while the QC DD predicts
the maximum value at around —1.2 nm. Moreover, the QC
DD predicts the highest sensitive effective area to be smaller
than that shown by the QC MC results. Thus, we know that a
change in the WFV in the aforementioned region will play a
significant role in the o lgn values.

V. LER VARIABILITY

Section III has shown that the QC DD calibrated to the QC
MC simulations can predict the same Ion for the NW FET.
This ability has important implications for a LER induced
variability study because the LER causes a fluctuation in the
channel dimension along the transport direction. However,
what is the accuracy of the QC DD produced variability when
the channel cross-section dimension fluctuates? To answer
this question, we generate 300 random LER profiles assum-
ing a correlation length (CL) of 20 nm for four experimentally
observed RMS heights [11], [29], [30] and three maximum
doping concentrations Np. The same LER profiles are used
for both simulation techniques, the QC DD and QC MC, for
a fair comparison.
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FIGURE 8. olgy due to LER vs N from the QC DD and the QC MC
simulations using 300 profiles. The LER characteristic values are: CL =
20 nm and RMS heights of 1.0 and 0.5 nm. The difference between the
QC DD and QC MC simulation results are indicated in percentage.

Fig. 8 shows the standard deviation (o) of the Ion against
the maximum Np. The predicted olpon by the QC DD and
QC MC simulation techniques has very similar values, with
a difference of up to 7 %, for the devices with a Np of
5 x 10" ecm™3. Yet, the error in the estimation given by the
QC DD simulations increases with Np reaching a staggering
56% difference when compared to the results from QC MC
simulations for a Np of 1.5 x 1020 ¢cm—3. Finally, note that
olon is practically constant with dependence on Np when
obtained from the QC MC simulations, whereas the QC DD
results predicts an increasing olpn with Np. Note that the
difference in the predicted behaviour lays in the implemen-
tation of quantum correction methods as well as the different
models, classical DD vs. semi-classical MC. The Schrodinger
based quantum corrections in the QC MC simulations are
able to accurately capture the physics when some modifica-
tion in the device architecture occurs, for example, doping,
LER, MGG, etc. However, the simulation approach using
density gradient quantum corrections would require adjusting
the calibration parameters for each of the aforementioned
modifications against a more complex simulation model.
Furthermore, the MC method accounts for non-equilibrium
electron transport as well as the inclusion of the important
scattering models, which the DD model is not capable of.
Further analysis of this behaviour is shown in Fig. 9 that
compares Igny at Np = 5 x 10" against Ioy at Np = 1 X 10%0
and 1.5 x 10?2 ¢cm™3. The correlation between the Ion values
produced by the LER profiles from the QC DD simulations
(Fig. 9(a)) is lower than for the QC MC ones (Fig. 9(b))
as indicated by the correlation coefficients (CCs). Finally,
observe that the regression lines (red lines in Fig. 9) are
shifted by a constant value for the QC MC obtained results
and yet, for the QC DD ones, they also change the slope. The
investigation of the effect of RMS height is shown in Fig. 10.
The QC DD results give up to 22 % overestimation of a
predicted olpn from the QC MC simulations. Additional
analysis of the Algn showed a negligible difference between
the QC DD and QC MC methods.

FSM [43] introduced in Section IV is also used to ana-
lyze the spatial effect of the LER variability induced by
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FIGURE 9. Scatter plots compare the simulations with

Np = 1.5 x 1022 cm~3 and 1 x 102° cm—3 against Np = 5 x 10'? cm—3
obtained from (a) QC DD and (b) QC MC simulations, respectively. The
RMS height is 1 nm.
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FIGURE 10. olgy due to LER vs RMS height for a Np = 1 x 1020 cm—3
obtained from the QC DD and the QC MC simulations. The difference
between QC DD and QC MC are indicated in percentage.
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FIGURE 11. The GAA NW FET schematic (a) is scaled to the Igy FSM (b).
100 synthetic profiles with a width deformation are simulated for Np of
1.5 x 1020 cm—3 using QC DD and QC MC techniques as indicated.

Ion. The procedure is similar to the one used for the MGG
variability: (i) a single synthetic profile is created, which has
a Gaussian vertical deformation localized in a small region
of the device (see Fig. 11(a)), (ii) the profile is then swept
along the transport direction and a profile related to Igy is
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extracted, and (iii) each profile and the corresponding Iy are
used to create a 1D FSM as shown in Fig. 11(b). Note that
a synthetic deformation for the LER can lead to an increase
(negative sensitivity) or decrease (positive sensitivity) of the
Ion. Therefore, the normalized scale from —1 to 1 is used.
Fig. 11 shows that the QC MC technique predicts the most
sensitive regions to the LER variability closer to the source-
gate junction than the locations predicted by the QC DD
technique. Notice that there is not only a shift between the QC
DD and QC MC largest absolute sensitive areas, but also the
magnitude of the sensitivity is different. Finally, we can say
that if a change in the diameter of a NW FET occurs near the
middle of the gate or around the source-gate junction, it will
heavily impact the Ion, as shown by the FSM. However,
changes in other parts of the NW FET dimensions will only
have a negligible influence in the Ipn.

Vi. CONCLUSION

We have demonstrated that using more accurate simulation
tools such as a QC MC is critical to make a correct estimate of
the ON-current variability in nanowire transistors at nanoscale
when a dimension of the device is varied.

The findings for simulations of variability induced by the
MGG can be summarized as:

« the difference in the predicted olpgn values by the QC
DD and QC MC method are dependent on GS, for
example with a GS of 7 nm it is 7 %, yet for 3 nm it
increases to 19 % at a Np of 1 x 1020 cm_3;

« the difference between the QC DD and QC MC pre-
dicted olpn does not show a clear dependence on the
Np values;

o both the Np and GS related o Ipn obtained from the QC
DD simulations predict a similar behaviour to the QC
MC results;

« the most sensitive region of the device to the MGG vari-
ability is wrongly predicted by the QC DD as compared
to the QC MC simulations.

The findings for the simulation of the LER induced vari-

ability are different:

o the QC DD technique largely overestimates olpon for
large Np values (up to 56 % error) and RMS heights (up
to 22 % error);

o the Np related olgyn obtained from the QC MC simula-
tions predicts a constant variability, whereas the QC DD
results in an increasing of o Ipn;

« the most sensitive region of the device to the LER vari-
ability is wrongly predicted by the QC DD as compared
to the QC MC simulations.

Furthermore, the Alpy in both cases showed a negligible
difference between the QC DD and QC MC methods. More-
over, the difference between results obtained from the QC
DD and QC MC simulations of the LER cannot be predicted
and the error between the two may be significant, which
could lead to misleading predictions in the resistance against
variability sources of future novel devices. We therefore warn
against the use of purely classical techniques for variabil-
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ity studies that involve the variation of the channel cross-
section in the ON-region regardless their calibration against
reliable data. This is because the QC DD method has
fixed calibration parameters which are ‘“device dimension
specific” while the QC MC uses the calibration free 2D
Schrodinger equation to account for the actual quantum-
mechanical confinement effect.
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