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Abstract

Introduction: The aims of this thesis was to explore novel data types in healthcare

that could enhance epidemiology studies in epilepsy and to develop novel methods of

analysing routinely collected linked healthcare data, unstructured free text in hospital

clinic letters and genetic variation.

Method: The SAIL Databank was used to source linked healthcare data for people

with epilepsy across Wales to study the effects of epilepsy and social deprivation,

coding of epilepsy in GP records and the educational attainment of children born to

mothers with epilepsy. Hospital clinic letters from Morriston Hospital in Swansea

were analysed using Natural Language Processing techniques to extract rich clinic

data not typically recorded as part of routinely collected data. An automated pipeline

was developed to predict the pathogenicity of Single Nucleotide Polymorphisms to

prioritize potential disease-causing genetic variation in epilepsy for further in-vitro

analysis.

Results: Incidence and prevalence of epilepsy was found to be strongly correlated

with increased social deprivation, however a 10 year retrospective follow-up study

found that there was no increase in deprivation following a diagnosis of epilepsy,

pointing to deprivation contributing to social causation of epilepsy rather than epilepsy

causing social drift. An algorithm was developed to accurately source epilepsy patients

from GP records. Sodium Valproate was found to reduce educational attainment

in 7 year olds by 12%. A Natural Language Processing pipeline was developed

to extract rich epilepsy information from clinic letters. A pipeline was created to

predict pathogencity of epilepsy SNPs that performed better than commonly used

software.

Conclusion: This thesis presents novel studies in epilepsy using population level

healthcare data, unstructured clinic letters and genetic variation. New methods were

developed that have the potential to be applied to other disease areas and used to

link different data types into routinely collected healthcare records to enhance further

research.
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Chapter 1

Introduction

1.1 Summary of Thesis Themes

This thesis documents research in epilepsy across 3 themes: epidemiology and big data,

natural language processing of clinic letters and predicting pathogenicity of single

nucleotide polymorphisms. The main aim was to describe how different methods and

data types across these themes can be brought together to enhance the opportunity

for epilepsy based research. This chapter introduces relevant studies related to the

three themes of research to support the motivations for this thesis, and chapter two

describes a comprehensive overview of the methods used to carry the work in this

thesis.

Chapter 3 documents the results for 3 longitudinal epidemiological studies in epilepsy

using the SAIL Databank. The SAIL Databank is a research platform for conducting

population level healthcare studies in Wales and specialises in anonymous linked ”Big

Data” across various healthcare services across Wales. The three studies in chapter

3 explore the effects of epilepsy on social deprivation, a validation of GP recorded

epilepsy diagnoses and the effects of exposure to antiepileptic drugs in the womb and

the impact it has on educational attainment in 7 year old children.

Chapter 4 aims to explore how data in unstructured clinic letters can be included

in epidemiology studies by using Natural Language Processing techniques. Only a

proportion of unstructured data such as that in clinic letters, discharge reports or

radiology and examination reports get entered into structure databases and audited

for research purposes, with many rich patient data often missing and not available for

research. Chapter 4 presents a study using NLP techniques to extract rich patient

information from 200 clinic letters from the Morriston hospital epilepsy clinic.
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Chapter 5 explores various techniques to predict pathogencity of a particular type of

genetic mutation called singe nucleotide polymorphisms, or SNPs. There are many

SNPs that have been documented as the cause of various types of epilepsy, but with

over 3 million variants in a person’s genome it is difficult to predict the impact of these

mutations in terms of likelihood of developing a disease. Bioinformatics pipelines

aim to reduce the search space within the human genome to focus on a very small

set of variants for further study. Part of these pipelines involves functional analysis

and there are many programs that specialize in predicting pathogenicity of SNPs, in

which the accuracy of these programs can differ in different disease areas. Chapter

5 aims to incorporate the knowledge from existing systems to build a pipeline that

accurately predict the pathogenicity of epilepsy SNPs.

1.2 Epilepsy

Epilepsy is a disease characterized by unprovoked seizures that can be distinctly

different from other types of seizures such as febrile seizures that occur mainly in

children during a fever and dissociative seizures that occur for psychological reasons.

It effects 1% of the population (600,000 individuals in the UK) [6] [7] and it has been

estimated that over 50 million people worldwide have epilepsy [8]. The International

League Against Epilepsy (ILAE) define epilepsy as any one of the following [9]:

1. Two unprovoked seizures occurring more than 24 hours apart

2. One unprovoked (or reflex) seizure and a probability of further seizures similar

to the general recurrence risk (at least 60%) after two unprovoked seizures,

occurring over the next 10 years

3. A diagnosis of an epilepsy syndrome

Epileptic seizures are treated with anti-epileptic drugs (AEDs) in which patients may

require a combination of AEDs to help control their seizures, and some may not

respond to AEDs at all, known as refractory epilepsy.

1.2.1 Epilepsy types

There are various epilepsy types that can be defined in various ways:

� Type of seizure

� Age at which seizure began

� Causes of seizure
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� The part of the brain involved during a seizure

� Severity and duration of seizures

� EEG electroencephalogram patterns

� Brain imaging

� Mode of inheritance

� Other disorders in additions to seizures

� Patterns of seizures during the day (at day or night)

While there are many syndromes within epilepsy such as Juvenile Myclonic Epilepsy,

Dravet Syndrome and Lennox-Gaut syndrome, epilepsy seizures are also used as a

diagnostic tool in clinical practice and combined with various other factors seizure

type will underpin an epilepsy syndrome. The use of seizures as a diagnostic tool is

useful in terms of choosing AED treatment, where different seizure types have well

defined AED regimes. Seizure categories in epilepsy are broadly defined by two types,

that being generalized or focal seizures.

1.2.2 Generalized seizures

Generalized seizures originate rapidly from bilaterally distributed brain networks

i.e. generalized seizures affect the entire brain [10]. The ILAE recognize generalised

seizures as described in table 1.1. [11]
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Table 1.1: Generalized seizures recognized by the ILAE.

Name Description

Tonic-clonic seizures Initial phase of stiffness (tonic) followed by jerking (clonic) and a

loss of consciousness. Gradual recovery with minute/hours of post

ictal confusion

Clonic seizures Similar to tonic clonic seizures without stiffness

Typical absence seizures Sudden, brief (generally <10s) periods of loss of awareness

with behavioural arrest (staring episodes) with rapid recovery,

occasional eye movements and automatisms

Atypical absence seizures Longer than typical absences and frequently associated with

myoclonic or atonic attacks. Start and finish more gradually,

focal features more prominent, and more retained awareness, than

typical absences

Myoclonic absence seizures Very brief (<1 sec) ‘electric-shock’ muscle contractions with

sudden onset and cessation. Single muscle to generalised jerking.

Consciousness generally not impaired

Tonic seizures Sustained muscular contraction lasting <1 minutes with rapid

recovery

Eyelid myoclonia Quick upward jerk of the eyelids lasting around 3 seconds

Myoclonus Spasmodic jerks or twitches in various muscles (positive) or brief

laspes in concentration (negative)

Atonic seizures Sudden loss in muscle strength causing the patient to drop to floor.

Sometimes called ”drop attacks”

1.2.3 Focal seizures

Focal seizures originate from one hemisphere in the brain in which some types may

cause absences and loss of consciousness. Additionally some types of focal seizures

can spread to the entire brain which are called secondary generalised seizures. The

ILAE recognizes focal seizure types as described in table 1.2.
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Table 1.2: Focal seizures recognized by the ILAE

Name Description

Focal sensory seizures Brief disturbance in taste, touch, smell or sight usually lasting no

more than 2 minutes

Focal motor seizures A seizure with localized motor activity. There may be spasm or

clonus (jerking) of one muscle or a muscle group and this may

remain localized or it may subsequently spread to adjacent muscles

Frontal lobe Frequently occurring during sleep. Brief, rapid onset and

cessation. Prominent motor features, sometimes with posturing

and head version. Frequent bizarre automatisms / behaviours and

vocalisation

Temporal lobe ”Generally longer in duration than frontal lobe seizures. Variety of

sensory disturbances including psychic (d´ej‘a vu , jamaisvu, fear),

gustatory and olfactory hallucinations. Sensation of epigastric

disturbance. Oro-facial automatisms (e.g. chewing, sucking) or

fidgety hand movements. Frequently altered awareness. Auditory

features with lateral temporal lobe involvement”

Gelastic seizures A rare type of seizure that involves a sudden burst of energy,

usually in the form of laughing or crying.

Hemiclonic seizures Entirely 1-sided, unilateral, clonic convulsions

Secondarily generalized

seizures

Focal seizures evolving into generalized seizures, most often with

tonic-clonic convulsions. The partial seizures, which were once

limited to one hemisphere of the brain, progress to encompass the

entire brain bilaterally

1.2.4 Causes of epilepsy

The causes of epilepsy can be broadly defined as either symptomatic where there is

a physically identifiable change in structure of the brain, or genetic where there is

no apparent change in structure of the brain and is therefore assumed to be caused

by a genetic mutation inherited from a person’s parents. Both types of epilepsy

each account for around 50% of all epilepsies respectively. Symptomatic epilepsies

are usually caused by injury to the brain through birth trauma, neurodegenerative

diseases, brain neoplasms, cerebrovascular disease and brain malformations. For

symptomatic epilepsy to be ruled out in the presence of epileptic seizures i.e. genetic

epilepsy, there must be no evidence of structural changes in the brain to be detected.

There exists a grey area over what constitutes symptomatic epilepsy or genetic

epilepsy in that some conditions cause various deficiencies in the supply of glucose to

the brain caused by a known genetic mutation, in which no structural changes are

present in the brain, yet the patient is classified as having epilepsy.
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1.2.5 Genetics of epilepsy

For the 50% of epilepsies that are caused by genetic mutation, the incidence of genetic

epilepsy passed on to first degree relatives have been shown to be up to 4 times that

in the population than those that do not have a first degree relative with epilepsy

[12]. Mutations found in a small amount of genes have been found to cause Idiopathic

Generalized Epilepsy (IGE). Multiple family studies and twin studies have found

that IGE has a common gene origin, but it is likely that some forms of epilepsy

have multi-gene modes of inheritance [13] [14] [15]. There is evidence for different

sets of genes producing different epilepsy syndromes such as Juvenile Myoclonic

Epilepsy (JME) [16] [17]. Currently, mutations on the SCN1A voltage-gated sodium

channel gene account for the largest amount of IGE syndromes [18] [19] with over

150 mutations attributed to infantile and childhood onset epilepsy. In general,

seizure-related syndromes are accounted for by mutations across multiple genes that

code for ion channel proteins, where examples of such proteins are given in table

1.3.

Table 1.3: A list of ion channel domains and proteins and how mutations correlate to
epilepsy phenotypes.

Channel Mutations in Epilepsy

Ion Channel Gene Phenotype Inheritance

Acetylcholine receptor CHRNA2 ADNFLE Single Gene

CHRNA4 ADNFLE Single Gene

CHRNB2 ADNFLE Single Gene

Calcium CACNA1A CPS,GTCS Single Gene

CACNA1H CAE,IGE Complex

CACNB4 IGE Complex

Chloride CLCN2 IGE Single Gene

GABA receptor GABRG2 CAE/GEFS+/FS Single Gene

GABRA1 JME,CAE Single Gene

Potassium KCNQ2 BFNC1 Single Gene

KCNQ1 BFNC1 Single Gene

KCND2 mTLE2 Single Gene

Sodium SCN1A GEFS/SMEI Single Gene

SCN2A BFNIC Single Gene

SCN1B GEFS+ Single Gene

Despite some clear single gene relationships for various epilepsy syndromes there is

also evidence for single gene overlap, and thus the relationship between known genes

in epilepsy appears to be more complex[14]. Many factors determine development

of the disease outside of an observed mutation such as mode of inheritance and
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gene expression, so presence of a mutation that is known to cause epilepsy in one

person, may not cause epilepsy in another. Recruitment of families with an extensive

history of a disease is the first challenge in furthering our understanding of the

complex relationships of genes and disease. Sourcing cohorts of patients comprising

of such families is a lengthy and expensive process - family history needs to be

determined as accurately as possible and blood samples need to be taken to analyse

each persons’ DNA. Processing and analysing DNA is also incredibly expensive, where

most whole genome sequencing is not done within the research department that will

analyse the resulting genome. Whole genome sequencing typically gets outsourced

to dedicated laboratories at a cost per genome. Next Generation Sequencing (NGS)

has revolutionized the process of sequencing a persons whole genome and is now the

leading method that supports whole genome/exome based research.

1.2.6 Epidemiology of epilepsy

Epilepsy prevalence has been measured in various studies [20]-[21] where it ranges

between 0.3-0.8% in developed countries and 0.43-1.4% in developing countries. In

chapter 3 of this thesis a study of epilepsy prevalence in Wales is presented that

estimated the prevalence of epilepsy to be 0.77% of the population, where higher

prevalence is found in more deprived areas (1.13%) than less deprived areas (0.49%),

a trend which is also seen in the incidence of new cases of epilepsy.

Incidence of epilepsy is typically highest in children and the elderly, with lower

incidence between the age of 18-65, and incidence is double in men over 65 than

women over 65 [22]. The majority of incident epilepsy in children are due to genetic

factors, where the incidence of epilepsy later in life is due to symptomatic factors as

the incidence of neurodegenerative diseases, brain neoplasms and stroke also increase

with age. Figure 1.1 presents the ”U-shape” curve that describes epilepsy incidence

across all ages:
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Figure 1.1: Incidence of epilepsy from a study in Iceland showing incidence per 100,000
stratified by age and sex.

1.2.7 Anti-epileptic drugs

Anti-epileptic drugs (AEDs) are a group of drugs that aim to suppress unprovoked

seizures by suppressing the rapid firing of neurons in the brain during a seizure by

binding to specific receptors in the brain and inhibiting voltage dependant sodium

currents [23]. AEDs also aim to prevent the spread of seizures in it’s early phase

to other parts of the brain [24]. Around 50% of patients treated with AEDs have a

25-50% reduction in seizures, with other patients with more modest reduction [25].

While AEDs can be effective, around half of epilepsy patients experience adverse

effects from a first line AED [26] [26]. Prescribing trends in anti-epileptic drugs have

changed in recent years due to evidence of some such side effects of some AEDs.

A study using Welsh GP data held accessed via the SAIL Databank showed that

newer AEDs such as Lamotrigine have been prescribed as a first line AED with

increasing frequency over a ten year a period between 2000 and 2010, and older AEDs

such as Sodium Valproate have seen a reduction in prescribing in women of child

bearing age, probably due to evidence suggesting valproate can produce cognitive

dysfunction if exposed to children inutero [1] [27]. Figure 1.2 shows prescribing trends

of first line AEDs prescriptions in Wales.
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Choice of AEDs to treat seizures doesn’t just include seizure control of the individual.

Well documented side effects of AEDs include behavioural issues, decline in cognitive

function, migraines and psychiatric disorders [28]-[29]. Various AEDs have been

studied in relation to weight gain and loss, in which some drugs such as Levetiracetam

and Sodium Valproate, while some drugs have been shown to cause weight loss,

complicating the issue of AED prescriptions in patients with conditions such as

diabetes mellitus [30]- [31].

AED choice is also important when prescribing in pregnant women. Various studies

have associated inutero exposure to sodium valproate with a variety of effects on

offspring that include reduced IQ, decline in motor and language skills as well as

general decline in cognitive abilities [27]-[32]. Recently a Danish study found that

children exposed to valproate intuero perform worse then their peers in national tests

[33]. Chapter 4 in this thesis presents a study using Welsh Key Stage 1 education

tests and AED prescribing data in pregnant women that found inutero exposure to

sodium valproate and AEDs in combination are associated with decreased educational

attainment in children aged 7 [3].

1.2.8 Burden and impact of epilepsy

The Global Disease Burden Study has estimated that epilepsy contributes to 1%

of all days lost due to ill health and that on average epilepsy forms 0.5% of total

disease burden as measured by the Disability Adjusted Life-Year (DALY) score. [34].

Epilepsy places a huge burden on those who suffer unprovoked seizures on a daily

basis, a burden which is also shared by the relatives and peers of someone with

epilepsy [35].

Epilepsy is a condition associated with a range of co-morbid conditions. Around 40%

of adolescents with epilepsy also have an additional neurological condition and 1 in 4

persons with epilepsy of any age has a learning disability [36]. Behavioural issues are

prevalent in children with epilepsy exhibited both in school and at home [37] [38].

Children with epilepsy are a stigmatized group and are twice as likely to be bullied

at school than their peers [39], and a qualitative study of children with refractory

epilepsy viewed seizures as a barrier to a normal life [40].

Seizures disrupt short term information storage, especially nocturnal seizures when

most memory consolidation takes place. The physical impact of seizures on the brain

is associated with memory loss in people with epilepsy ranging from concentration

issues to chronic forgetfulness [41]. Auras occurring before and during a seizure and

other lapses of concentration contribute to poor recall of which 1 in 4 people cannot

recall experiencing auras or lapses in concentration [42] and people with epilepsy
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fail to document around 50% of recent seizures. Poor memory loss therefore also

contributes to difficulties in learning along with increased risk of being born with

learning difficulties.

Around 80% of epilepsy is prevalent in developing countries in which there exists

not only a barrier to effective care and seizure treatment, but there is an undeniable

trend in epilepsy, social deprivation and social stigma [43] [44]. People with epilepsy

are likely to experience prejudice and discrimination in all walks of life as well as

being at high risk of abuse and violence [45] [46]. Young people with epilepsy are

often discouraged from pursuing their chosen career path [35] and face discrimination

in life ranging from diminished access to various insurance schemes and employment

opportunities [47]. One survey of employers found that 16% felt that they didn’t

have jobs for someone with epilepsy and 21% considered employing someone with

epilepsy as ”a major issue” [48].

Complimentary to the fact that epilepsy is more apparent in developing nations, lower

socio-economic status is a risk factor for epilepsy in adults [49] and the various social

struggles people with epilepsy face is a strong argument for epilepsy causing social

drift. Multiple studies have associated social deprivation with epilepsy in both new

cases of and existing epilepsies [50] [51]. There are two main hypotheses for social

deprivation in epilepsy; social causation and social drift. Social causation in epilepsy

could be explained by factors associated with both deprivation and causes of epilepsy,

namely such as perinatal hypoxic injury, head trauma, and cerebrovascular disease

[21] [52] [53]. Social drift is hypothesised to explain some of the high deprivation seen

in people with epilepsy for various reasons related to social stigma and discrimination

in employment. Chapter 4 presents a study of social deprivation in Welsh patients

with epilepsy and in both newly diagnosed patients and patients with existing

epilepsy.

1.3 Big data and patient records as a resource for

research

In this section, patient records and large linked datasets are presented as a method

for researching the epidemiology and burden of epilepsy for large cohorts. The SAIL

Databank is presented as such a resource that is utilized in this thesis to conduct

population level epilepsy research in Wales.
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1.3.1 Electronic Healthcare Records

Up to 1990 in the UK, patient records were largely paper based. Large scale Electronic

Healthcare Record (EHR) linkage as a research method has grown as a direct result

of embedding computer systems in primary care to make the transition from paper

based records to electronic records. In 1987, two GPs from Egton, Yorkshire Dr

Peter Sowerby and Dr David Stables formed the Egton Medical Information Systems

Group (EMIS) to develop software that could capture paper based records into

electronic format. The result was a commercial rollout of the EMIS software in

1990, and EMIS, as well as many other clinical audit systems that followed, enabled

GPs to capture routinely collected information at point of care and have instant

access to those records at a later time. As thousands of GP practices started to

employ such systems, the resulting records were quickly used to monitor trends and

performance of GP practices [54] and measure outcomes in patient care. After years of

patient interactions with GPs being recorded electronically, large scale retrospective

epidemiological were made possible because access to patient records were much faster

compared to sourcing paper based records.

Using the first EHRs as a form of research was a success mainly because the data

collected by GPs to inform patient care was mutually beneficial to inform public health.

GPs not only recorded patient details important to building a picture of patient care

such as diagnoses and medication, they recorded patient details using clinical coding

systems to summarise their interactions. In 1990 the READ clinical coding system

had matured for 8 years and was considered for use in computerised coding systems

[55]. Developed from the early 1980’s onwards and still being developed today, Dr

James Read built a clinical coding system consisting of 250,000 codes that could be

used to describe the details of a patient’s medical notes. While clinical coding systems

such as ICD have existed for over a hundred years [56], the READ code system was

the first in the UK that could classify disease, symptoms, prescriptions and referrals

in one heirachy. The real advantage of using computerised records and embedding

coding systems such as READ used in GP practices, and ICD-10 used in secondary

care is how EHRs can be queried using computer languages such as SQL. Patient

information can be rapidly accessed and partitioned by these coding structures to

create cohorts of certain disease or medication retrospectively. This is by far more

efficient and reliable than having to process free text such as medical notes manually,

a problem still being solved today through Natural Language Processing - discussed

later on in this chapter. The electronic patient record, when combined with clinical

coding systems are a potential data source for fast, large scale research.

However, a fundamental understanding of the purpose and context of why and

30



how EHRs are recorded must be taken into account if intended for use in research.

Patient records are designed to be collected at point of contact which usually means

a consultant or GP. The records are therefore a reflection of how a patient should

be cared given their presentation at point of contact, and are certainly not designed

for research purposes. For example, a record of a prescription does not necessarily

mean the patient has adhered to a treatment plan, or a diagnosis code used by a

GP could indicate a diagnosis subject to a specialist referral rather than a definite

diagnosis. Even when administrative staff take more of a role in entering details

of patient records, the ability to generate factually correct patient records relies

on communication with consultants or specialized training to translate consultants

finding into clinical codes. While technology moved forward the ability to create

patient records more efficiently, the sources of error remain the same as when paper

records were used. For research purposes this broadly means that any conclusions are

limited by the quality of data entered into patient records, or to put more crudely -

garbage in, garbage out.

Aside from data entry being influenced by how patient records will be used in-house

by medical professionals, incorrect data is ingrained in patient records. Human error

is a factor in any data entry tasks, but data entry in a live healthcare setting is

arguably more difficult than most data entry tasks. Clinical coding is a fast growing

profession within secondary care that requires a strict set of exams to qualify as a

clinical coder. Their job is to sift through consultants, surgeons, junior doctors and

pharmacists notes to build a patient profile and turn them into discrete episodes of

care described by ICD-10 and OPCS-4 codes. This process is detective-like by nature,

often having to piece together conflicting medical opinions, sifting through short-hand

patient notes and assigning a subset of the 16,000 codes ICD-10 codes to describe

disease and morbidity, and OPCS-4 codes to describe operations [57]. The potential

for error is large without the high standard of training and continuous communication

with the various healthcare professionals that are responsible for treating the patients.

In contrast to the use of clinical coders, GPs are expected to enter data into patient

records at point of care. While clinical audit systems such as EMIS aim to help GPs

accomplish this task, it is incredibly difficult for GPs to have a working knowledge of

the 250,000 code list in the READ code system while entering data and caring for

patients in an average consultation time of just 11 minutes. Under these pressures it

is easy to imagine why GPs may be forced to cut corners or omit certain aspects of

coding. This can lead to systematic error in coding such as using codes that do not

accurately describe the patient or limiting their use of READ codes to a very small

subset regardless of what the patient presents with.

The electronic patient record has however become the cornerstone informing medical
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practice through either research or immediate feedback of data at point of care. The

explosion of research based on information in EHRs has no doubt furthered the

case for more emphasis to be placed on accuracy and maintenance of EHRs and

making EHRs as robust as possible. There have been incentives such as the Quality

of Outcomes Frameworks (QOF) that pay GPs to use a wide variety of READ codes

in clinical practice in which the effectiveness of well coded EHRs post-QOF showed

reduction in mortality, hospital admissions and the improvements in the management

of chronic conditions such as diabetes [58] [59].

Consequently, the demand for a patient record for both healthcare and research has

evolved beyond what is recorded in primary and secondary care. Various national

health registers and audits ranging from the Office of National Statistics Deaths and

Births register, Congenital Anomaly Register and Information Service (CARIS) [60],

Welsh Cancer and Intelligence and Surveillance Unit (WCISU) and various biobank

datasets from clinical trials all feed into the patient record. Social care datasets and

tertiary health programs provide useful measures of patient care outside of first and

second line services, as well as administrative and demographic data such as the Welsh

Demographic Service to explore geographical and social deprivation effects on health.

Perhaps the most exciting addition to the patient record is genetic data due to the

potential for deeper understanding inherited disease and the opportunity to develop

personalised medicines. The patient record is beginning to include information that

is not even found in database format or collected via traditional auditing methods

- namely free texts such discharge letters and consultant reports that contain far

richer data than any of the datasets previously mentioned, if it can be processed.

Any dataset that can feed into the patient record is beneficial, especially for research,

a prospect which becomes eve more powerful when such datasets are successfully

integrated together.

1.3.2 The SAIL Databank

The linkage of big data is a corner stone of public health research. The potential to

mine patient profiles from national datasets produces novel research that directly

impacts policy. While randomized control trials are the benchmark for studying

health interventions and drug use, retrospective, longitudinal studies produced from

linked data is much cheaper, faster and statistically more powerful. There are many

established data centers that take advantage of linking routinely collected data, but

the largest government funded initiative for using data linkage in health research in

the UK is the Farr Institute of Health Informatics Research. The Farr Institute was

a collaboration of 21 academic and health institutions in the UK, where the four

main data centers are co-ordinated through The Health e-Research Center at the
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University of Manchester, University College London, University of Dundee and the

SAIL Databank at Swansea University. Since then the Health Data Research (HDR

UK) initiative was set up to continue innovation in big data linkage for research, of

which new centers such as the Sanger Institute are now included as a means to bring

genetic data to the patient record.

The SAIL Databank is a repository for national health datasets in Wales, hosted at

the HDR UK cite at Swansea University, that contains linked anonymised health

records at a patient level [61] [62]. Developed in 2006, the SAIL databank aimed to

take advantage of emerging technologies to capture patient level data and provide

a platform to link datasets on a large scale. National datasets such as primary and

secondary care, mortality and birth records, geographic and socio-economic status

all have routinely collected data that date back 25 years and when linked together

produce research potential greater than the sum of it’s parts. Figure 1.3 shows the

different types of data held in the SAIL databank:

Figure 1.3: The core SAIL datasets. Each dataset can be linked anonymously via an
encrypted NHS number

1.3.3 Anonymous patient records

Datasets held in SAIL are anonymised using a split file procedure. Each data provider

splits their dataset into 2 parts - one containing all demographic data which is sent to

a trusted third party (TTP), and the other containing only clinical data that is sent

directly to SAIL. An internal system ID that bears no relation to the patient ID is

the only field shared between the split files. The TTP, in this case the National Welsh
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Information Service and SAIL each encrypt the split datasets, and are then combined

using a shared encryption key. The result is a completely anonymised dataset that

can be linked to all other datasets within SAIL.

Users can assess the repository through the SAIL gateway - a remote server with

a Graphical User Interface (GUI) front-end. The SAIL databank is powered by

an IBM Blue-C supercomputer which provides extremely fast database queries,

capable of completing queries on databases of millions of records within seconds. The

data is warehoused and made available as a repository of relational databases, in

which the data can be queried using IBM DB2 Structured Query Language (DB2

SQL). As data is anonymised there is no ethical approval needed to query data.

However an independent Information Governance Research Panel (IGRP) consisting

of multi-disciplinary professionals in the field of health care and health care research

exists, to which project studies plans are scrutinized to ensure the research question

is valid and answerable using SAIL data, as well as ensuring that no individuals can

be identified. Once a project is approved, data can be requested out of the SAIL

gateway. An internal team of researchers view all outputs to ensure no sensitive data

leaves the SAIL gateway.

1.3.4 SAIL studies

The SAIL databank has been used in a diverse range of healthcare studies. The main

type of studies conducted are retrospective longitudinal studies that take advantage

of millions of person-years of data across multiple health datasets, although follow up

studies from patient recruitment have also been carried out.

Child Health and Births

The Wales Electronic Cohort for Children (WECC) is an e-cohort of children in Wales

set up to study a range of social and environmental determinants and outcomes of

child health. The WECC cohort is the largest e-cohort for children in health (804,290

children, 375,025 mothers between 1998-2008) and was built from routinely collected

data in the SAIL Databank [63]. Several studies have used the WECC cohort to

research health and social outcomes in children. One study found a 4 fold increase

in hospital admissions for children born at a gestational age of 33 weeks (41.5 per

100 child years) compared to gestational age of 40 weeks (9.8 per 100 child years)

[64]. The impact of skull fractures and inter-cranial injury was associated with poorer

academic performance in Key Stage 1 assessments compared to a control group, and

a higher risk of hospital admission was observed in children with a mental health

disorder or living with parents that had an alcohol misuse problem recorded in GP
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records [65] [66]

The Congenital Anomaly Register and Information Service for Wales (CARIS) dataset

was linked to ONS birth records in the SAIL Databank to estimate the prevalence of

Turner Syndrome to 1 in 4901 female births [67]. An example of bespoke datasets

being linked to the SAIL Databank is a study using data from the Singleton Hospital

Maternity Ward at Swansea University that were linked to primary and secondary

care datasets to study the relationship of BMI during pregnancy and health utilization.

Based on data of 484 pregnancies it was found that healthcare costs during pregnancy

was 37% higher in obese women compared to those with normal weight. Demographic

data was linked to Key Stage 1 education data showing that a clear trend in reduction

of educational attainment was seen with increasing numbers of house moves, even in

children that moved prior to the Key Stage 1 assessment period (< 5 years of age)

[68].

Mental Health

A cohort ascertainment study using GP records in the SAIL Databank specified sets

of READ codes to define anxiety and depression. Using results of the Caerphilly

Health and Social Needs Survey (CHSNS), combinations of depression and anxiety

diagnoses, medication and symptoms showed that high positive predictive value could

be achieved, but it is likely that depression and anxiety are under reported in GP

records[69]. A further analysis of GP recording of depression showed that diagnoses

recorded in GP settings have declined while antidepressant prescribing has increased

in adolescents, indicating GP coding habits change over time and highlights the

importance of understanding reference data for epidemiology studies from routinely

collected healthcare data [70].

The Suicide Information Database Cymru (SID-Cymru) was set up using mortality

and secondary care data in the SAIL databank to identify 2664 cases of suicide in

Wales between 2003-2011 [71]. The SID-Cymru dataset was used to obtain suicides

following alcohol related emergency admissions to hospital which showed that women

were at double the risk of suicide than men and that 10% of suicides took place within

4 weeks of admission [72].

Multiple Sclerosis

The UK MS Register was set up to obtain rich patient and clinically reported

information on patients with MS. Patients can upload their medical data via web

forms and social media, to which they have consented for this information to be used

in healthcare research. All data is hosted by the SAIL Databank and is available
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to be linked to existing datasets in SAIL [73]. Responses from the web-portal were

used to assess how MS patients fair on the Hospital Anxiety and Depression Scale

(HADS), where HADS measures anxiety and depression using a scoring system

(0-7 neither reported, 8-10 mild, 11-14 moderate and 15-21 severe). The results of

4178 respondents showed that the median HADS score was 15.7, with over half of

respondents score ≥ 8 for depression and just under half scoring ≥ for anxiety [74]. A

follow study correlated increasing prevalence of anxiety and depression with increasing

physical disability where anxiety or depression was reported in 38% of people with

mild physical disability, 66.7% with moderate physical disability and 71% with high

disability [75]. Patients in the MS Register also answered a survey to determine their

generic health status from an EQ-5D in which people with MS scored 22% less than

the UK mean of 82% [76]

Diabetes

A study of ONS birth records in the SAIL Databank identified 1250 pregnancies where

the mother had existing diabetes and 1358 gestational diabetes in which contrary to

hypotheses of ”obesity programming” in children born to mothers with diabetes, little

evidence of this effect was found unless the mother was also found to be in the highest

weight tertile during pregnancy [77]. 1577 children between the ages 0-15 with type-1

diabetes from the Brecon Group Register were linked to hospital admissions in SAIL.

The study found a 480% incidence of hospital admissions in which the incidence rate

decreases 15% with each increasing 5 year age band [78].

HbA1c measurements recorded in GP records were compared before and after an

incident stroke in patients with existing type-2 diabetes. 1741 diabetes patients were

identified having HbA1c measurements before or after an incident stroke and were

age and sex matched 1:4 to a control group of patients with diabetes that had not

had a stroke. On average there was a 7.5% decrease in HbA1c measurement after the

incident stroke, indicating increased monitoring post-stroke in patients with diabetes

may result in better glycemic control [79].

Cardiovascular Disease

A study linking hospital records for patients admitted for acute myocardial infarction

(AMI) (n = 30,633), stroke (37,888) and sub arachnoid haemorrhage (SAH) (1753) to

ONS Death certificates in the SAIL Databank explored the effects of social deprivation

on 30 day mortality following admission. Baseline 30 day mortality rates for AMI,

stroke and SAH were 14.3%,21,4% and 35.6% respectively, however a 24%,24% and

32% increase in mortality was observed when comparing the lowest deprived quintile

to the highest [80]. Statin use in patients presenting with incident acute coronary
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syndrome (ACS) to the Cathlab Unit in Morriston hospital was studied to investigate

if guidelines were being taken up to prescribe statins post ACS. 80% of patients were

prescribed statins with simvastatin most common, however only 38% were prescribed

a high dose, leading to the conclusion that statin use post-ACS is under utilized in

Wales [81].

Cathlab data for patients with aortic stenosis was used to show that Transcatheter

Aortic Valve Implantation (TAVI) was more effective than being medically managed

in terms of prospective health utilisation and mortality over a 2 year period. Mortality

rates were half that in the TAVI group (19.2% vs 41.7%) and experienced less hospital

stay length (0.86 vs 1.84% person days per year) and costs within primary and

secondary care was half that than the medically managed group (£6059 vs £11001)

[82]. In contrast to many studies indicating worse health and social outcomes in

people from deprived areas, including many SAIL studies, a study of patients with

coronary artery disease (CAD) found no health utilization or treatment inequality

across Welsh Index of Multiple Deprivation deciles [83].

Epilepsy

An algorithm using GP records was developed to identify cases with epilepsy using a

combination of AEDs and epilepsy diagnosis codes. This algorithm was used to study

prescribing trends of first line AEDs in people with epilepsy between 2000-2010. The

study showed a sharp decrease in Sodium Valproate prescribing to women of child

bearing age, and that recent guidelines from the MHRA to prescribe lamotrigine

as a first line AED prescription had been taken up in Wales. [1]. The effects of

sodium valproate, lamotrigine, levetiracetam, topiramate and carbamazepine on

weight change were explored in a cohort 1423 epilepsy patients. Significant weight

gain (+1% body weight) in levetiracetam and significant weight loss (-2.62% body

weight) in topiramate was found, where the other 3 AEDs showed no significant

change in weight [84].

A collaborative study between Manchester University and Swansea University found

that people with epilepsy are twice as likely to die from suicide than people without

epilepsy, are 3 times more likely to die accidentally, are 5 times more likely to die of

accidental medication poisoning and are 3.5 times more likely to die of intentional

medication poisoning [85]. Emergence admissions of patients with epilepsy who had

attended ED for reasons specific to epilepsy were studied in which social deprivation

and living alone were identified as risk factors for ED attendance and of these patients,

and psychiatric co-morbidities and learning disabilities than epilepsy patients who

had not attended ED for epilepsy specific reasons [73].
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1.4 Natural Language Processing: Using clinic

letters as a data source for research

Natural Language Processing (NLP) is a multi disciplinary field of linguistics and

computer science that aims to construct computer algorithms that can automatically

parse unstructured text into more manageable forms. Typically these algorithms

are aimed at unstructured texts reflective of human language such as clinic letters,

and a suitable task for NLP might be to automatically extract letters where a

diagnosis of a certain disease is written in the text. At present, only patient records

stored in structured databases are immediately accessible for healthcare research

and epidemiology. For decades researchers have been able to take advantage of the

codified format of these datasets to make quick gains in epidemiological research.

ICD-10, READ and SNOMED-CT codes can quickly be used to manipulate cohorts

of patients with structured query languages, but other forms of medical information

are slowly starting be adopted into a big data patient record. While huge efforts

go into producing an organised patient record at point of care, a large amount of

patient information is still recorded only by free text. These include consultant

notes, discharge letters, GP correspondence, radiology reports and even structured

databases may contain so fields that store free text. Free text in is seen as a rich

source of patient information not found in the structured patient records. but remains

a challenge to bundle the information into a database format that lends itself to data

manipulation. While there is no agreed way to process free text correctly, a number

of scientific disciplines have come together to address this problem.

Natural Language Processing (NLP) is a discipline that aims to process free text

into easily accessible information, such as a summary or database. NLP draws upon

advances in statistical theory, machine learning, artificial intelligence and computer

science to create programs or models that understand the nuances of human (natural)

language.

Early NLP techniques developed in the 1960’s and 1970’s used rule sets and pattern

matching techniques to infer meaning from text [86],[87],[88]. These early works

focussed on creating extensive hand crafted rules that used the relationships between

text units such as nouns, verbs and adjectives to extract structured items of

information. Using complicated human rule sets to parse language relies solely

on human knowledge of text to predict patterns in advance that would capture items

of interest and the context they are found in. The scale of this problem has required

more sophisticated approaches to be developed. The advent of machine learning in the

1980’s provided ways to parse text not through fixed sentences, but through teaching
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a computer to learn the role of each word in a sentence [89]. Part Of Speech (POS)

tagging abandons highly conceptual human rule sets declared to a computer algorithm

prior to analysis, and analyses the relationships of verbs, adjectives and nouns in

relation to a dictionary of words of interest i.e. medical terminology. Machine learning

allows a ground truth such as phrases known to confirm disease or symptom, be used

to train an algorithm to recognize the patterns between each word in a sentence and

words of interest. This machine learning approach does not rely on complex rules sets,

but rather learns the language used to describe cohort characteristics. Structured

concepts such SNOMED terminology can be ”mined” out of free text, including

information that would go unseen or undefined by prior rule sets. In the methods

chapter various NLP techniques are described and tested to define characteristics

about patients with epilepsy from clinical notes.

1.4.1 Part of Speech Tagging

Part of Speech (POS) Tagging involves assigning word classes such as verbs, nouns,

adjectives as well as more complex classes such as qualifiers, prepositions and adverbs

to tokens in text. This cannot be achieved by a simple lookup because words can be

assigned as different word classes based on context. For example the word haemorrhage

in the phrase ”there is a chance she will haemorrhage” is classed as a verb, but used in

the phrase ”she has had a haemorrhage” it is classed as a noun. Assigning the correct

word class for each token is crucial to NLP tasks such as information extraction where

word classes can be built into rules or machine learning processes as basic building

blocks that help identify concepts within text.

The development of POS tagging has relied on analysing large corpora of many

of documents such as the Brown Corpus [90] and the Cobuild project [91] so that

common data sources can be used to both develop and benchmark POS tagging

algorithms. The Brown Corpus consisted of 1 million words of English prose from

randomly selected scientific publications and was used to develop custom tagsets

to encapsulate detailed tags that extend beyond basic word classes. The Brown

Corpus was manually annotated over many years and served as a target tagset for

computerized algorithms. The first attempt to develop a computerised algorithm

from the Brown Corpus used human logic such as an article followed by a noun can

occur i.e. ”Dr House”, but in general an article followed by a verb does not occur.

This approach yielded an initial accuracy of 70% [92].

Both larger corpora and machine learning approaches were adopted to increase

POS Tagging accuracy. Hidden Markov Models - a probability state classifier was

tested on the Lancaster-Oslo-Bergen Corpus [93] of British English. Hidden Markov
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Models were able to take bi-grams, tri-grams and n-grams as input from the manually

annotated POS tags to calculate the probability of a TAG for each element of an

n-gram. This was a popular method of POS-tagging which used the scalability of

dynamic programming to produce fast and accurate taggers [94], [95], [96]. Some of

the most widely used POS taggers are rule-based. The Brill tagger [97] uses a set of

rules that recursively updates tags during repeated phases. An initial phase is run

generating most likely tags, in which set of conditions are imposed to correct each

tag. This process is repeated until a threshold is met in terms of the proportion of

tags corrected. The Penn Treebank POS tagset project annotated POS tags over a

corpus consisting of 4.5 million American-English words from the Brown Corpus and

the Wall Street Journal using a combination of Church’s PARTs method [94] and

manually correcting any errors, in which this method was measured to be twice as

fast as a fully manual annotation method [98]. While most POS tag studies up to this

point published an automated algorithm for POS tagging, the original Penn Treebank

paper does not describe such a method but provides a widely used benchmark corpus

for training POS taggers (machine learning, rule based or hybrid) for unseen samples

of text. Table 1.4 shows the PENN treebank tags that are commonly used to tag

texts:

Table 1.4: A table of PENN treebank POS tags. https://www.ling.upenn.edu/courses

/Fall_2003/ling001/penn_treebank_pos.html

Tag Description Tag Description

CC Coordinating conjunction PRP$ Possessive pronoun

CD Cardinal number RB Adverb

DT Determiner RBR Adverb, comparative

EX Existential there RBS Adverb, superlative

FW Foreign word RP Particle

IN Preposition or subordinating conjunction SYM Symbol

JJ Adjective TO to

JJR Adjective, comparative UH Interjection

JJS Adjective, superlative VB Verb, base form

LS List item marker VBD Verb, past tense

MD Modal VBG Verb, gerund or present participle

NN Noun, singular or mass VBN Verb, past participle

NNS Noun, plural VBP Verb, non-3rd person singular present

NNP Proper noun, singular VBZ Verb, 3rd person singular present

NNPS Proper noun, plural WDT Wh-determiner

PDT Predeterminer WP Wh-pronoun

POS Possessive ending WP$ Possessive wh-pronoun

PRP Personal pronoun WRB Wh-adverb
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1.4.2 Shallow parsing

Shallow parsing or ” text chunking” is the process of grouping tokens into n-grams

such as sentences, phrases as well as further sub-units commonly known as chunks.

The sentence ”The radiologist was able to observe the tumours visible against the

background” can be split up into five chunks ”The radiologist” ”was able to observe”

”the tumours” ”visible” ”against the background”, in which one chunk usually provides

context to other chunks in close proximity. Chunks are defined as sub-units of text

that contain a ”potential governor” - a handle placed at the rightmost part of a chunk

[99]. The potential governors in the above phrase would be ”radiologist”, ”observe”,

”tumours”, ”visible”, ”background”.

The Brill POS tagger algorithm and PENN treebank tagsets were used as input to

develop a rules based noun phrase chunker that defined noun phrase chunks such as

”she has epilepsy” and ”her seizures are frequent” [100]. Further algorithms were

introduced to classify verb phrases (VP), prepositional phrase (PP), adjective phrases

(ADJP) and adverb phrases (ADVP) [101]. The Conll-2000 shared task [2] defined 13

different chunk types as targets for classifiers to learn by providing a fully annotated

version of the Penn Treebank Corpus. These chunk types are shown in table 1.5.
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Table 1.5: The chunk types defined as part of the CONLL-2000 shared task [2]

Chunk Type Definition Examples

NP
Noun phrase - phrases beginning with a

noun

”Mr Jones”, ”He was”,

”a year”

VP
Verb phrase - phrases beginning with a

verb

”may want to increase”,

”could be a”, ”broke the”

PP
Prepositional phrase - a phrase to place

context to nouns

”at night”, ”because of

”, ”due to”

ADVP
Adverb phrase - pre or post modifier to a

verb or verb phrase

”very well”, ”overdosed

earlier”, ”quickly”

SBAR
Subordinated clause - conjunction between

other phrase types

”so that”, ”even if”,

”until”

ADJP
Adjective phrase - phrases beginning with

an adjective

”upset with her seziures”,

”prolapsed disk”

PRT
Particles - verb/adverb attached to non

inflected words

”look up”, ”on and

off”, ”in and out”, ”get out”

CONJP
Conjunction phrase - multiword

conjuntions to list additional phrases

”as well as”, ”not

only”, ”but also”

INTJ
Interjection - phrase containing an

ubrupt remark

”oh”, ”alas!”,

”good grief!”

LST List marker - denotes a list
”firstly. . . ”, ”1.”,

”lastly”, ”a,b,c”

Eleven algorithms were submitted to the Conll-2000 shared tasks and the most

accurate algorithm achieved an F-score of 93.4% [102]. Shallow parsing algorithms

have usually focussed on employing machine learning and statistical learners such

as Hidden Markov Models, Support Vector Machines, Naive Bayes and Conditional

Random Fields [103], [104], [96], [105].

1.4.3 Named Entity Recognition

Named Entity Recognition (NER) is the process of tagging specific words or phrases

and labelling them into entities and such as persons, addresses, identification numbers,

diseases, symptoms or medication. NER tasks usually involve mapping entities to a

user specified dictionary. NLP tasks focussing on healthcare typically map entities

to medical ontologies such as as MetaMap, The Unified Medical Language System,

SNOMED-CT and ICD-10 [106],[107]. NER has advanced significantly since scientific

events and competitions were set up in the 90’s, with the Messaging Understanding

Conference (MUC-6) [108] set up specifically to bring together groups researching
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NER. Many other annual conferences such as HUB-4 [109], the Information Retrieval

and Extraction Exercise (IREX) conference for Japanese NER [110] and the Automatic

Content Extraction (ACE) [111] conference have since been set up to maintain a

focus on NER and are still running today.

The main challenges for NER tasks are:

� Word ordering - the order of words within a phrase can change the meaning of

entities to be labelled. For example the phrase ”she had a blood pressure check”

identifies that this person has had a blood pressure measurement, but ”to check

her blood pressure” implies this is something that should happen in the future

and not be assumed this person has had a blood pressure measurement at the

current time.

� Inflexions - suffixes and prefixes can change to indicate a different meaning for

a word. For example ”big/biggest”, ”vomit/vomited”, ”informed/uninformed”

etc.

� Homopgraphs - the same words can have different meaning. The word ”fine”

can mean something is normal or it can describe a procedure or wound. Research

in word-sense disambiguation is dedicated to addressing homographs.

� Synonymy - the opposite of homographs in that multiple entities can mean

the same concept i.e. ”Focal seizures/ partial seizures”.

� Negation - certain trigger words such as ”not/no/never/unlikely” indicate

that an entity has not been found, and therefore should not be attributed to a

positive finding in text. It is common to tag entities with negation status.

� Word relationships - and extension of negation. The surrounding words

around an entity dictate it’s context. For example the phrase ”if the results are

positive, prescribe Lamotrigine” suggest a prescription of Lamotrigine is only

positive given the context of a result prior to the word Lamotrigine.

� Temporal qualifiers - describing a temporal feature attached to an entity

involves measuring the proximity and order of trigger words relating to past,

present or future tenses.
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1.4.4 NLP tools and software

Table 1.6: A list of common NLP software

Toolkit Description

Stanford Natural Language

Processing Toolkit [112]

Open source Stanford CoreNLP toolkit. Contains standard

NLP applications (POS taggers, chunker, NER). Developed

by Stanford University.

NLTK [113] Natural Language Toolkit developed in Python

Apache UIMA [114] Open source Java based Unstructured Information

Management Application developed by the Apache Software

Foundation

Apache OpenNLP [115] Open source NLP toolkit adopted by the Apache Software

Foundation and developed by the open source community

Apache cTakes [116] Open source healthcare information extraction system

developed by the Mayo Clinic

GATE [117] The General Architecture for Text Engineering. An open

source NLP architecture developed at Sheffield University.

Contains a variety of standard NLP applications as well as

user contributed plugins. Has a rich GUI and can be run in

embedded systems.

IBM WATSON Content

Analytics [118]

A proprietary NLP product produced by IBM. Makes use of

the UMIA framework and has a rich GUI.

Spacy [119] A python library that supports many NLP tasks including

deep learning and pre-annotated corpora

Open NLP (R package) [120] An R package that interfaces to the Apache OpenNLP tools

written

TM (R package) [121] A text mining framework written in R. Contains many NLP

applications

Apache UIMA RUTA [122] A UIMA framework for executing rule based scripts for NLP

applications

Gensim [123] A python library for vector space modelling of large text

corpora. Developed at Mararyk University

Word2Vec [124] An algorithm to produce words embeddings for topic

modelling. Developed at Google trained on a Google News

corpus.

GloVe [125] An algorithm developed at Stanford University to produce

word embeddings
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1.4.5 Validating NLP algorithms

Any algorithm proposed for an NLP task can be measured against a human annotator,

or multiple annotators. Annual shared tasks such as CoNLL specify a problem

statement as well as providing or using large, annotated corpora to compare against

algorithm submissions. Comparison between a human annotator and an NLP

algorithm on a binary classification results in true positives (target class labelled as

target class by algorithm), false positives (non-target class labelled as target class),

true negatives (non-target class not identified as target class) and false negatives

(target class not identified as target class). By assigning each item identified by both

human annotator and an algorithm as a true positive, true negative, false positive or

false negative, the overall accuracy can be measured in various ways. In NLP tasks

precision, recall and F1-score [126] are widely used and are defined as as:

Precision =
TP

TP ∗ FP

Recall =
TP

TP ∗ FN

F1score =
Precision ∗Recall
Precision+Recall

Recall is a measure of the proportion of all possible target classes identified by the

algorithm, where precision is a measure of the proportion of classes identified by the

algorithm are true. The F1-score is the mean of precision and recall and is usually

reported as the overall accuracy.

NLP algorithms can be compared against multiple annotators by scoring algorithms

against the agreement of multiple annotators, as measured by Cohen’s Kappa statistic.

A Kappa-like statistic was presented by Galton in 1892 as a method of identifying

fingerprints using human raters where a match was identified if a certain percentage

of raters could agree that a unseen sample matched that of a known fingerprint.

Cohen’s Kappa statistic was formally introduced in 1960 [127] and is defined as:

κ = 1− po
pe

where po is the probability of an observed class by multiple raters and pe is the random

chance of observing all possible classes. κ therefore represents the class agreement by

multiple raters normalized by the probability of all classes where the class agreement

45



is 100% when κ = 1. Agreement measures such as Cohen’s Kappa statistic are

employed for inter-annotator agreement for NLP tasks [98]. This is useful to estimate

the relevant difficulty of a task in which some tasks may yield low inter-annotator

agreement and therefore sets a lower expectation for an algorithm’s ability to perform

the task.

Human annotation is time consuming and has been listed as one of the major

challenges in NLP for healthcare applications. Annotation tools such as BRAT[128]

ehost [129] provide a method of rapidly annotating documents in which data files

(xml, custom output) store all the annotations in each document. These output files

are designed to be read into NLP applications to directly compare annotations picked

up by humans annotators and those identified by the algorithm. Thus allows for

computation of accuracy measures to be automated and therefore many NLP models

can be validated automatically.

1.4.6 NLP clinical information applications

There have been extensive studies focussing on creating clinical extraction NLP

systems for specific disease areas. The NLP system developed as part of the Linguistic

String Project (LSP) was one of the first systems to be used for clinical information

extraction [130],[131]. Developed in 1987, a qualitative study first described a system

comparing human annotated notes with an automated extraction system in radiology

reports, reports and discharge summaries [132]. The Medical Language Extraction

and Encoding System (MEDLEE) was developed to detect disease mentions from

radiology reports and was scored against physicians’ interpretations of 230 radiology

reports, achieving 87% recall and 78% precision across all disease mentions [133],[134].

Medlee has also been extended to detect breast cancer from mammogram reports,

as well as forming the basis of the GENIES that extracts molecular pathways from

journal articles [135],[136].

The SymText NLP application [137] was used to detect bacterial pneumonia from chest

X-ray scans. The majority vote of 3 physicians was used to manually score 292 X-ray

reports from the LDS hospital in Utah and compare the annotations to extracted

annotations using SymText. The SymText system uses a syntactical rule-based

approach combined with a Naive Bayes Classifier to extract 76 different radiographic

findings and 89 different diseases from chest x-ray reports [138]. Pneumonia

concepts were split into 4 categories: acute bacterial pneumonia, infiltrate pneumonia,

aspiration pneumonia and support pneumonia. Physician average precision and recall

for acute bacterial pneumonia compared favourably with that of three physicians and

outperformed annotations by lay-persons.
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The i2b2 project used cTAKES and HITex (Health Information Text Extraction) to

extract Crohn’s disease, Ulcerative Colitis, multiple sclerosis (MS), and Rheumatoid

arthritis [139]. A recent study on patients with known MS identified from electronic

healthcare records used NLP techniques to accurately extract attributes specific to

MS, namely: Expanded Disability Status Scale, Timed 25 Foot Walk, MS subtype

and age of onset [140]. A study used clinic letters, available at www.mtsamples.com,

to determine whether sentences containing disease and procedure information were

attributable to a family member using the BioMedICUS NLP system and variety of

phenotype data was extracted from 300 randomly chosen journal titles [141],[142]

There have also been several epilepsy based NLP studies and applications developed.

The rule based Epilepsy Data Extraction and Annotation (EpiDEA) system was

developed to extract epilepsy information from epilepsy monitoring unit discharge

summaries. Categories of information included EEG pattern, past medications

and current medication extracted from 104 discharge summaries from Cleveland

hospital [143]. The rule-based Phenotype Extraction in Epilepsy (PEEP) pipeline was

developed to extract epileptogenic zone, seizure semiology, lateralising sign, interictal

and ictal EEG patterns from epilepsy monitoring discharge summaries as Cleveland

hospital [144]. A machine based learning NLP pipeline was also developed to identify

a rare epilepsy syndrome from discharge summaries and EEG reports [145]

Medication extraction has also been an area of interest for NLP research. The

Medication Information Extraction system (MedEx) was developed to extract

prescription information, including drug name, dosage, strength and frequency. On

a validation set of 50 discharge summaries and 25 clinic notes MedEx was able to

achieve an F-score of 93.2% and 90% respectively. CPRD prescription data was used

to validate 220 prescriptions from anonymised GP records, in which a rule based

system was able to achieve 91% accuracy [146] A rule-based NLP application was

developed and applied to the NHS Scotland Prescribing Information System (PIS)

[147]. On a validation set of 15,593 prescriptions the system achieved 94.7% accuracy

when extracting full prescription information and was able to generate structured

outputs for 92.3% of 458,227,687 dosage instructions in the PIS.

There has been a particular focus on mapping extracted terms from NLP applications

to existing clinical ontologies. This is particularly important for linking extracted

terms to routinely collected data that use ontologies such as SNOMED-CT and

ICD-10. A study using 23 citations in the Annals of Internal Medicine and the expert

opinion of three physicians described a system that mapped 89% of terms identified

by the physicians to MeSH terms [148]. Various studies have focussed on mapping

extracted terms to UMLS concepts for it’s ability to map to many other ontologies such
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as SNOMED-CT, READ and ICD-10. A study evaluated the use of UMLS concepts

as look up terms for congestive heart failure, chronic obstructive pulmonary disease,

acute bacterial pneumonia, neoplasm, pleural effusion without congestive heart failure

compared to manually curated lists by clinicians. This study found that using UMLS

concepts improved retrieval of terms over than of clinician specified terms[149],[106]

and further studies have used a variety of patient information sources such as patient

charts, MEDLINE citations and surgical notes [150],[151],[152]. The MetaMap project

used UMLS codes to retrieve medical terms from Medline citations and compared the

results to the use of NLM MeSH terms. By using UMLS concepts they reported a 14%

improvement on using MeSH terms and is now one of the most widely used algorithms

in the NLP community to patient information to UMLS codes. SNOMED-CT terms

are widely used in patient records and several studies have proposed methods to map

free text to SNOMED-CT. Several studies have used veterans’ patient records as a

source to validate varying accuracy across a variety of conditions including acute

renal failure, venous thromboembolism, pneumonia, myocardial infarction, sepsis

(82%,38%,59%,64% and 89% accuracy respectively).

1.4.7 Genetic Mutation

Single Nucleotide Polymorphisms (SNPs) are the most prevalent type of genetic

mutation in the human genome, with most genes having multiple non-synonymous

SNPs and accounting for around 90 percent of genetic variation [153], [154]. SNPs

appear in both the coding and non-coding region of the genome in which both have

been associated with disease phenotypes. The human genome consists of around 3.2

billion pairs of DNA, with SNPs appearing every 1000-2000 base pairs (between 2-3

million per genome) [155] and on average one person will have 250-300 potentially

damaging SNPs that are directly or indirectly associated with disease [156],[157].

SNPs fall into three broad categories.there Nonsynonymous (or missense) SNPs

represent a mutation in nucleotide base triplets that cause a change in the amino

acid the nucleotides code for. Synonymous SNPs, while containing mutations in

nucleotides, do not cause a change in the resulting amino acid. This is due to the

fact that there are multiple combinations of nucleotide triplets that code for the

same amino acid. Frameshift SNPs involves a deletion or insertion in the amino acid

sequence. Multiple insertions and deletions can also occur, but SNPs are estimated

to contribute to over 90% of all known genetic mutation [154] of which 50% of SNPs

have shown to be common ( 20% of the population have a given SNP) [158].

SNPs can fall anywhere in the genome meaning they are found in regions of DNA that

do not code for protein sequences ( 99% of the human genome) and in coding regions

that do code for proteins, known as the exome. Non coding regions have controversially
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been labelled in the past as ”junk DNA”, where it was assumed that mutations in

non-coding regions of the human genome would not contribute to disease, however

the ENCODE project showed that over 80% of non-coding regions serve some purpose

such as promotors, enhancers and silencers - all important roles in gene regulation

[159]. Despite SNPs in non-coding regions shown to cause diseases such as pancreatic

agenesis [160], juvenile idiopathic arthritis [161] and auto-immune conditions [162],

the majority of genetic mutation research, especially in non-synonymous SNPs has

been focussed on coding regions in the exome as this demographic has been shown to

be responsible for around 50% of human inherited disease [163].

1.5 Pathogenicity of SNPs

Pathogenicity in terms of genetic mutation can be described as the ability of a genetic

mutation to cause disease. The American College of Medical Genetics and Genomics

stated that pathogenic mutations can be determined on two types of evidence: a

variant has been previously reported as the cause of disease, or the variant has not

been reported as the cause of disease but is expected to be declared as such in future

[164]. These categories are broad and problematic for the definition of pathogenicity

as illustrated by a study of 402 published severe disease mutations showing that 27%

of these were either common or lacked direct evidence for pathogenicity [165]. Further

guidelines such as those proposed by The US National Human Genome Research

Institute have suggested 5 categories of mutation associated with causation of disease

[166]:

� Pathogenic: contributes mechanistically to disease, but is not necessarily fully

penetrant (i.e., may not be sufficient in isolation to cause disease).

� Implicated: possesses evidence consistent with a pathogenic role, with a defined

level of confidence.

� Associated: significantly enriched in disease cases compared to matched controls.

� Damaging: alters the normal levels or biochemical function of a gene or gene

product.

� Deleterious: reduces the reproductive fitness of carriers, and would thus be

targeted by purifying natural selection.

These definitions are far more reflective of that fact that genetic mutation and it’s

association with disease can range from single-gene, single-mutation causation of

disease (high penetrance), such as in cystic fibrosis [167] or Huntington’s disease [168]

than can be discovered through familial inheritance studies through to common-disease,
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common-variant associations where multiple mutations common in the population

sum to causative effects (low penetrance) such as Alzheimer’s disease [169] that

require large-scale GWAS studies to identify disease risk. The ClinVar dataset

curates a record of all variants that can be defined as pathogenic, likely pathogenic,

likely benign, benign and uncertain following review of aggregated submissions and

publications [170]. Other databases such as dbSNP [171] and Uniprot/Swissprot also

record pathogenicity/benign status where the entry point in terms of association to

disease meets at least the minimum requirement as set out previously in [166], that

is, a variant deemed as pathogenic at least contributes to a disease phenotype.

1.6 Whole genome sequencing and the need for

SNP prediction paradigms

Frederick Sanger introduced dideoxynucleotide sequencing, or Sanger sequencing of

DNA [172] were manual techniques harnessed to sequence individual genes and cells.

More sophisticated techniques such as shotgun sequencing were introduced in which

bacterial genomes such the influenza genome (2 million DNA base pairs) was able to

be sequenced [173], with the first eukaryote genomes, a strain of yeast - Saccharomyces

cerevisiae ( 12 million base pairs) and a type of worm - nematode elegans (100 million

base pairs) were sequenced [174],[175]. Next Generation Sequencing technologies

were developed to allow high-throughput sequencing of large genomes such as the

common fruitfly - Drosophila melanogaster (135 million base pairs) [176] and finally

in 2001 the human genome (3 billion base pairs), costing an estimated £750 million

US dollars [177]. The cost of whole genome sequencing has vastly decreased since

Craig J Venter sequenced his genome in 2001 as part of the Human Genome Project

from £750 million US dollars to £1000 US dollars today. This remarkable decrease

in cost is owed to advances in sequencing technology over the past 15 years, and

to highlight this, Figure 1.4 shows the decrease in whole genome sequencing when

compared to what the decrease might be if following Moore’s Law.
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Figure 1.4: Decrease in whole genome sequencing since the Human Genome Project
when compared to the expected rate of decrease following Moore’s Law

The relatively low cost of whole genome sequencing has enabled whole genome /

exome cohort projects such as The 1000 Genomes Project [178], The 100,000 Genomes

Project [179], UK Biobank [180], ExAC [181] and aggregation services such as the

Genome Aggregation Database (gnomAD) that contains 15,496 genomes and 123,136

exomes for unrelated individuals. The number of variants processed from whole

genome sequencing outstrips the ability for genetic research to comprehensively study

each and every variant through traditional laboratory techniques [182]. Typically

whole genome sequencing one person will generate 3,000,000 variants and whole

exome sequencing will generate 30-50,000 variants and it is therefore vital to find

ways of focussing on variants likely to impact disease in advance of more thorough

analyses [183].
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1.7 Common features used in prediction of

pathogenicity

There are a variety of hypotheses that help when considering the pathogencity of

SNPs. A study of 561 disease causing SNPs and from the SWISSPROT database

that contained details of 2D and 3D structure found that over 70% of these SNPs

were found in structurally important regions such as binding sites and sites with

low solvent accessibility [184]. The allele frequency on non-synonymous SNPs that

caused disease was found to be lower than that of non-synonymous SNPs, indicating

that nature selects against pathogenic SNPs and that disease causing SNPs may be

found at sites that are conservative [153]. The BLOSUM62 matrix was developed

to produce a system that scored all possible 210 amino acid substitution of the 20

standard amino acids based on an alignment of 500 protein sequences (BLOSUM62

matrix shown in Figure 1.5).

Figure 1.5: The BLOSUM 62 matrix where higher scores indicate higher frequency of
substitution. Each amino acid substitution is scored in accordance to it’s frequency,
where lower frequency substitutions are said to be conserved and potentially selected
against by natural selection.

On average 5 of the possible 19 substitutions for a given amino acid has found to be

non-conservative and is a potential predictor for SNPs associated with disease [153].

A study comparing the distributions of 1169 disease associated non-synonymous

SNPs and 741 neutral SNPs found a significant difference when plotted against

BLOSUM62 scores inferring that lower frequency substitutions are associated with

pathogenicity [185]. The Sifting Intolerant From Tolerant predictor[186],[187] was
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developed from the hypothesis that position specific information of where a SNP is

found might be a predictor of disease/neutral status given that the plasticity of proteins

can change across sequences [188], [189],[190]. To test this, the SIFT study took

datasets that collected variants found in the Laci, HIV-1 and T4 lysozyme proteins

[191],[192],[193],[194] and performed a multiple sequence alignment to other proteins

in their respective families using PSI-BLAST [195] and compared disease/non-disease

SNPs in these proteins to the position of the multiple sequence alignment. The

results showed that the accuracy of SIFT was 66%, 86% and 45% for the SNPs in

each protein respectively and that using position specific information from multiple

sequence alignment was able to correctly identify the disease status of 14% more

SNPs overall when compared to using BLOSUM62 scores. The study showed that

position specific information was however more important in some proteins than

others, in particular the low prediction accuracy of the T4 lysozyme proteins.

Figure 1.6: A multiple sequence alignment of transmembrane proteins from different
species. Conserved regions are in red where alignment of different proteins shows no
difference in amino acids across all proteins in this position. Conserved regions are
therefore hypothesized not to tolerate geneitc variation and are deemed hotspots for
pathogenic mutations.

The PolyPhen-2 prediction server was developed with a range of features that included

multiple sequence alignments and molecular function information [196]. Prominent

features used by PolyPhen was difference position specific scores for both wild type

and mutant based on multiple sequences alignments [197], predictions of functional

region such as transmembranes [198], coils [199] and peptide signals [200] as well as

known 2D and 3D structure from DSSP and PDB [201],[202]. The study used a Naive

Bayesian classifier, a type of machine learning classifier, to take these features as input

and classify into three categories: benign, possibly damaging and probably damaging.
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The HumDiv (3,155 damaging and 6,231 benign SNPs) and HumVar (13,032 damaging

and 8,946 benign SNPs) datasets, datasets annotated with damaging/benign status

from Uniprot, were used for training/testing of the Naive Bayes classifier using a

5-fold cross validation technique where training and testing sub-sets were randomly

sampled. The PolyPhen method was able to achieve 93% and 72% true positive rates

for damaging SNP detection using a 20% false positive rate on the HumVar and

HumDiv datsets respectively [203].

1.7.1 Machine learning classification for SNP

pathogenicity

Machine learning classification is a staple of SNP prediction techniques. They are

used effectively when a large number of SNPs in both benign and pathogenic classes

are used to train a model with features hypothesized to be useful in discriminating

between pathogenic and benign SNPs. Machine learning techniques use the interaction

of every feature against all other features to make a prediction, meaning that even

features not thought to have a strong influence on classification may be useful to

increase accuracy by a small amount overall, or increase accuracy substantially in

subsets of samples that do not adhere to common hypotheses such as position specific

sequence information or structural features.

The PolyPhen server uses a Naive Bayes classifier, but many other machine learning

techniques have been used in SNP prediction as shown in Table 1.7.

Table 1.7: Commonly used SNP prediction programs that utilize machine learning

Algorithm Citation Machine Learning Classifier

DANN [204] Convolutional Neural Network

MetaLR [205] Logistic regression

MutationAssessor [206] SNP prediction application

REVEL [207] Random Forest

FATHMM [208] Hidden Markov Model

PolyPhen [196] Näıve Bayes

CADD [209] Support Vector Machine

MetaSVM [205] Support Vector Machine

VEST3 [210] Random Forest

PHD-SNP [211] Gradient Boosting Learner

PolyPhred [203] Decision Tree
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1.7.2 SNP datasets

A number of databases provide pathogenic/benign status. There are many public

databases that record SNPs from population studies such as the National Center

for Biotechnology Information (NCBI) SNP database, dbSNP [171], ClinVar [212]

and the Human Genome Variation database, HGVBase [213]. Other databases

focus on curating SNPs known to be associated with causing disease (rather than

pathogenicity) such as the Online Mendelian Inheritance in Man (OMIM) [214], the

Genetic Association Database (GAD) [215] and The Human Gene Mutation Database

(HGMD) [216]. One of the most widely used datasets along with HGMD (FATHMM,

REVEL, CADD, DANN) is the humvar dataset https://www.uniprot.org/docs

/humsavar curated by Uniprot, which as of June 2018 contains over 70,000 SNPs

with known status and has been used to train classifiers such as PolyPhen, VEST3,

MetalR, MetaSVM and PHD-SNP.

Currently the REVEL classifier has the highest published accuracy when compared

with other existing scores in two independent test sets, Clinvar and SWISSVAR,

achieving AUC measures of 0.83 and 0.95 respectively. REVEL is perhaps unique in

that it only uses a relatively small set of 13 features, none of which are derived from

protein features such as secondary structure or multiple sequence alignments, but

instead it uses the output of 13 SNPs prediction classifiers and combines the results

using a Random Forest classifier [207]

1.7.3 Bioinformatics software and annotation programs to

obtain SNP features

As well as obtaining SNPs with known pathogenicity status, it is important for machine

learning classifiers to obtain many features such as multiple sequence alignments and

region annotation. There are various bioinformatics pipelines that can help source

these features. There exists many multiple sequence alignment programs that can be

used to obtain conservation measures at each position of a sequence. These include

BLAST [217], PSIBLAST [195], MUSCLE [218], CLUSTAL [219], UBLAST [220]

and HMMER [221]. In addition to multiple sequence aligners for conserved regions

of sequences, there are various tools exist such as GERP (Genome Evolutionary Rate

Profiling) and phyloP [222], phastcons [223] and SiPHy (Site Specific Phylogenetic

analysis) [224] that compute conservation as a function of evolutionary selection over

all positions of protein sequences.

Region annotation is useful to detect if a SNP falls with certain functional regions

such as transmembranes or binding sites. While databases such as DSSP and PDB
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exist that catalogue such features, there are many programs that compute or predict

such features. The PSIPRED server can be used to predict if positions in an amino

acid sequence are likely to be in a coil, helix or sheet category of secondary structure

[225], and various programs can predict functional regions such as binding sites [226],

transmembrane regions [198] and protein-protein interaction sites [227].

There are also annotation aggregation services that take a SNP as input (usually

rsID, BED or HGVS format) and query large pre-computed databases to gather a

vast range of features that include multiple sequence alignments, regional annotations,

scores from many prediction software (dbNFSP [228]) and allele frequency measures

computed as part of 1000 genomes, exAC and gnomAD. Three commonly used

aggregation tools are Variant Effect Predictor [229], snpEFF [230] and Annovar [231].

Such tools are available as web services and standalone programs and particularly

useful in SNP annotation because their databases storing many SNP features are

kept up to date, making them a one-stop shop for SNP annotation.

1.8 Chapter Summary

This thesis is summarised as follows:

� Epilepsy is prevalent in 1% of the population and can be caused by inherited

genetic mutation of acquired through lesions in the brain due to injury. Epilepsy

can be presented in many sub-types and seizure types of which many different

types are attributed to inherited genetic mutation in certain genes. Severity of

epilepsy can range in terms of seizure frequency, and various treatment regimes

using anti-consultants exist to control seizures

� The burden of epilepsy can be measured in other ways than seizure frequency.

Patients living with epilepsy are known to have lower socio-economic status

and those with poorly controlled epilepsy perform poorer in education than

their peers.

� Epilepsy research in epidemiology is restricted to using routinely collected

healthcare records that often contain rich data desired for impactful studies

in epilepsy. Large data banks such as the SAIL Databank can provide data

linkage across multiple health and social care datasets, however this still does

not solve the problem of data shortage for people with epilepsy

� Natural Language Processing is an emerging field in healthcare that has benefited

from machine learning and the explosion of big datasets. Natural Language

Processing offers the potential to collect data form clinic letters that does not
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end up in routinely collected datasets.

� The emergence of Next Generation Sequencing has enabled genetic research to

be conducted on a much larger scale and help with genetic discoveries. The

sheer volume of data recorded poses a problem in how to make sense of millions

of variant data per individual. Consequently prediction paradigms are necessary

to prioritise which variants require thorough genetic analysis to make genetic

research cost effective.

� Various prediction techniques have been developed with the aid of machine

learning and adopted for genetic research. Such programs exist as part of larger

pipelines that filter pathogenic variants from benign variants, however many

lack the specificity to prevent large amounts of benign variants being needlessly

analysed in molecular assays.

� Linked data of routinely collected data, clinic letters and genetics will play an

important role in the future of healthcare research, and efforts must be made

to facilitate the linkage of emerging data types at scale.

1.9 Summary of aims and objectives

A summary of the aims and objectives are:

1. Using routinely collected healthcare data stored in the SAIL databank to identify

persons with epilepsy

2. Link primary care records of persons with epilepsy to other datasets within

the SAIL databank to study societal burden of epilepsy and the effects of

antiepileptic drugs

3. Explore the possibilities of incorporating clinical free text into existing patient

records by using NLP techniques. Target information will consist of data that

is difficult to obtain or non-existent within the SAIL databank

4. Investigate various methods of determining or predicting pathogenicty of SNPs,

in particular to study SNPs found within epilepsy associated genes.

5. Create an algorithm that accurately predicts pathogenicity for missense SNPs in

epilepsy to aid SNP prioritisation for downstream structure/functional analysis

57



Chapter 2

Methods

The following chapter describes the methods and materials used to mine health

trends in data from the SAIL databank, extract information from unstructured

clinic letters using NLP building a pipeline for assessing the impact of SNPs, with

a focus on how the outputs of NLP and SNP analysis could potentially enrich data

audited from routinely collected healthcare records. The SAIL databank holds a large

all-Wales database of routinely collected electronic healthcare records that can be

potentially be enriched by linking bespoke datasets, such as clinic letters (unstructured

text) and whole genome/exome (NGS) data. Patient records at the SAIL databank

anonymous - specifically by use of an encrypted NHS number, so that these records

can be linked anonymously across different datasets i.e. GP records and hospital

admissions. The NLP methods described in this chapter and chapter 4 are intended

to be used to extract information from clinic letters using an automated computer

algorithm in which the results could be linked to the SAIL databank and provide

rich patient information that doesn’t exist in SAIL. Similarly, the SNP pipeline

described in this chapter and chapter 5 is designed to take in SNP information,

filter it on various criteria and output the data in a format that can be linked to

patient data in the SAIL Databank. Much of the code underpinning the methods

is written in SQL, R, perl, bash for calling open source bioinformatics programs, as

well as an array of UNIX/GNU programs such as sed and awk. Complete code is

found at www.github.com/https://github.com/arronlacey/Epilepsy-GATE-app

(Chapter 3).

2.1 The SAIL Databank

The SAIL databank holds many routinely collected electronic healthcare databases,

where a person’s records can be identified and linked between datasets by an encrypted
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NHS number called an ALF (Anonymous Linking Field). Figure 2.1 shows the

anonymisation and linkage process that ensure SAIL uses encrypted NHS numbers or

Anonymous Linking Fields (ALFs) to perform linkage.

Figure 2.1: SAIL Databank split file procedure. Data is split at source into identifiable
data and clinic data. The identifiable data sent to The NHS Wales Information Service
where each NHS number is encrypted before being sent to the SAIL Databank. The
clinic data is sent directly to the SAIL Databank, and is joined to the encrypted
identifiable data by an internal system ID that is present in both datasets.

2.1.1 Ethics and Governance

All proposed SAIL projects undergo a review process by an IGRP (Information

Governance Review Panel) for approval. Researchers must complete an IGRP form

that details the scope of the project and what datasets are required. Approved

projects must be deemed feasible and present no risk to patient identification. While

all NHS numbers are encrypted in SAIL, it may be possible for Clinicians, without

taking data out of the SAIL databank to identify a patient with a rare combination

of information in their medical records e.g. a 35 year old man living in the ABMU

health board area that has Becker’s muscular dystropy, focal seizures with secondary

generalisation and being prescribed multiple anti-epileptic drugs for multiple seizures

per day. SAIL does not allow individual level data to be taken out of the gateway

and must be summarized so that it conforms to small number disclosure rules of

never reporting on groups with less than 5 persons. Data must be requested out and

reviewed by the SAIL Analyst Team to enforce these rules.

2.1.2 Assessing the burden of disease using the SAIL

Databank

The work of this thesis focuses largely on how to identify disease phenotypes, their

effects on quality of life and how to treat and manage the disease. The Wales
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Epilepsy Research Network (WERN) at Swansea University has conducted world

class research into epilepsy genetics, and has both clinical and research expertise in

the field of epilepsy. The SAIL databank presents an ideal opportunity to further our

understanding of the burden of epilepsy in health care. Where exome analysis can

identify the exact cause and mechanisms of epilepsy, patient records within SAIL can

answer questions on social outcomes, health utilisation and drug efficacy for patients

with epilepsy. Being a member of WERN and integrating into the wide variety of

researchers has helped form novel and important questions for this thesis.

2.1.3 Forming Research Questions

In 2008 a group survey conducted on behalf of the DUETs (Database of Uncertainty

about the Effects of Treatments) and James Lind Alliance brought together patients,

clinicians, patient carers and researchers to address questions regarding treatment

of conditions, including epilepsy www.library.nhs.uk/duets. In addition, all the

Neurology Consultants across Wales were asked to contribute research questions that

SAIL may or could answer. Many of the items highlighted form the research basis for

this thesis involving SAIL data, with an emphasis on:

1. Research into better treatments and seizure control

2. Research into ensuring current treatments are as effective as possible

3. Research into stigma associated with epilepsy

4. Research into epilepsy and other medical conditions

5. Research into patient information

These questions set many challenges when using data in the SAIL databank and

were considered to prioritise the studies described in chapter 3 of this thesis. The

first problem is to correctly identify epilepsy phenotypes within routinely collected

primary care data, and the second is to obtain treatment and social status of those

with epilepsy. A scoping exercise was carried out to identify datasets that would

contain the required data build an epilepsy patient profile within SAIL data. Four

core datasets were identified within the SAIL databank to obtain epilepsy metrics -

General Practice dataset, Secondary care dataset (PEDW), the Welsh Demographic

Service dataset and the Office of National Statistics (ONS) Deaths dataset.
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2.2 SAIL Datasets

The following section describes the core datasets in SAIL, including those used in

this thesis.

2.2.1 GP dataset

Each GP practice in Wales uses a clinical information system to capture patient

records. The Primary Care IM& T Programme developed a piece of software called

Audit+ that is provided free of charge to all Welsh GPs. It was designed to facilitate

the capture and transfer of GP data to external sources. A SAIL module is built into

Audit+ that automatically two data extracts: file 1 contains demographic data and

file 2 contains clinical data, where an internal system ID is shared between both files.

Both files are securely transferred to SAIL and are anonymised via the encryption

process outlined in [61]. Each GP practice in Wales has been invited to participate,

where only those consenting have their data transferred into SAIL. Over length of

study of this thesis, SAIL GP participation has increased from 40% of Welsh GP

practices to 75%.

The dataset contains two unique identifiers: patient ID (encrypted NHS Number)

and GP ID (also encrypted). Demographic data available includes week of birth, sex

and dates of the beginning/end of registration with a given GP practice. Clinical

information includes reason for attendance via version 2 READ codes, date of

attendance and any laboratory result such as blood pressure. There are over 300,000

READ codes that can be used to define diseases, drug prescriptions, symptoms,

referrals to specialists and laboratory results. A subset of READ codes were used to

define:

1. Epilepsy diagnosis

2. Anti-epileptic drugs (AEDs)

Using a combination of these two categories, a diagnosis of epilepsy in the SAIL

dataset is defined as a patient that has a diagnosis code for epilepsy followed by a

repeat anti-epileptic drug prescription within 6 months. A repeat AED prescription is

used as a pre-cautionary measure to prevent suspected, unconfirmed epilepsies being

used in any epilepsy cohorts generated. The reasoning behind this is that epilepsy

and treatment plans are confirmed by a specialist, not in a GP setting. It is possible

a GP may use a diagnosis code for epilepsy to denote suspected epilepsy as well as

a code to refer to a specialist. The repeat prescription is indicative of that patient

being seen by a specialist and prescribed a AEDs beyond a potential trial period.
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Defining epilepsy in the GP dataset held within SAIL is useful because it can be used

to build up a patient profile of epilepsy at first point of health care in Wales, as well

as link to other datasets.

2.2.2 Secondary Care dataset

The SAIL databank receives an annual extract of all Welsh inpatient hospital data.

This dataset is processed using the same split file procedure where the National Wales

Information System (NWIS) acts as a TTP and processes the extract useable within

SAIL called PEDW. PEDW contains all hospital admissions in Wales from 1998 and

uses the ICD-10 coding system to record admissions to inpatients. Each hospital

employs teams of clinical coders to records the reason for admission as determined

from consultation of doctors’ notes, as well as any operations and costs associated

with the admission. Other variables included within PEDW are date of admission,

length of stay and consultation speciality. Date recorded in PEDW is designed to

reflect the care pathway of an admission to secondary care, and with careful use

of ICD-10 code selection, it is possible to identify patients that are admitted to

secondary care and the reason for being admitted. In particular there are ICD-10

codes for seizures and status epilepticus, as well as other common outcomes associated

with epilepsy such as seizures and stroke.

2.2.3 Welsh Demographic Service

The Welsh Demographic Service (WDS) was introduced in 2009 to manage

administrative and demographic data for NHS patients in Wales. It contains

address information as recorded by a patients’ GP, which is mapped to Lower

Super Output Area (LSOA), Middle Super Output (MSOA) and Local Health

Board (LHB) by the address postcode. These are geographical units with LSOA’s

accounting for between 5-10 postcodes and can be mapped to The Welsh Index of

Multiple Deprivation (WIMD) to measure social deprivation. The Welsh Government’s

official measure of deprivation is the Welsh Index of Multiple Deprivation (WIMD)

http://wales.gov.uk/topics/statistics/theme/wimd/?lang=en and is readily

available in the SAIL databank for any person registered with a Welsh GP. It

comprises of 8 domains:

1. Income

2. Employment

3. Health

4. Education
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5. Access to Services

6. Community Safety

7. Physical Environment

8. Housing

where a deprivation score can be obtained for each domain or combined into one score.

The WIMD is therefore one way of measuring social deprivation to some degree in

those living with epilepsy. An explanation of how the WIMD score is calculated is

given in Figure 2.2.

Figure 2.2: Flow chart of how the WIMD score is calculated from 8 different domains.
Taken from http://webarchive.nationalarchives.gov.uk/20150505155421/http://gov.wa

les/docs/statistics/2011/110831wimd11summaryen.pdf
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2.2.4 ONS deaths

SAIL contains both annual and monthly extracts from the ONS database. This

dataset contains date of death, primary and secondary causes of death, location of

death (LSOA), place of death (hospital,home etc) and age of death. ONS deaths

contains all deaths in Wales from 2003 onwards. Causes of mortality are not well

understood in epilepsy related deaths, and death certificate information alone can

only provide so much evidence. For example Sudden Unexpected Death in Epilepsy

(SUDEP), an uncommon outcome of epilepsy rarely gets recorded in death certificates

due to the cause of death not being clear, and so the amount of people dying from

SUDEP is thought to be underestimated in the epilepsy population. In some cases

it is thought to be preventable, however the risk factors are not well understood

and there is currently no genetic explanation for SUDEP, and as such a research

priority in epilepsy. The work in this thesis hypothesizes that linking death certificate

information from ONS into GP and secondary care records can provide further insights

into risk factors associated with SUDEP.

2.3 Data Linkage

2.3.1 Structured Query Language

SQL (Structured Query Language) queries use set theory to join multiple datasets

together and aggregate individual records into groupings for statistical analysis.

Unique identifiers are present in all datasets within SAIL, this is usually the encrypted

NHS number of a patient called an Anonymous Linking Field, ALF. For example,

consider the two tables and SQL code used to join them by the ALF:

## ALF_E GNDR_CD DRUG GP_DATE GP_PRACTICE

## 1 20000001 M LTG 2001-01-01 SW1

## 2 20000001 M VPA 2001-04-02 SW1

## 3 20000002 F CBZ 2001-04-10 NEA

## 4 20000003 M CBZ 2001-11-04 NEA

## 5 20000004 F VPA 2001-01-31 CAF4

## 6 20000005 F LTG 1999-04-06 POW2

## ALF_E HOSP_DATE HOSP_ID

## 1 20000001 2001-05-10 7AE

## 2 20000003 2001-11-11 ONA

## 3 20000004 2001-02-14 9DN

## 4 20000005 2007-03-04 G4K

## 5 20000006 2009-03-15 7AE
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1 s e l e c t d i s t i n c t gp . ALF E , gp .GNDR CD, gp .DRUG, gp .GP DATE,
2 hosp .HOSP ADMIS, hosp .HOSP DATE
3

4 FROM
5 SAILGP gp inner j o i n SAILHOSP hosp
6

7 on gp . ALF E = hosp . ALF e
8 where hosp .HOSP DATE between gp .GP DATE and gp .GP DATE + 3 months

Figure 2.3: A simple SQL script to return encrypted patient identifiers along with the
gender and date of birth of the patient where the patient must be female and born
after the 1st of January 1990.

The first table is GP data containing prescriptions for anti-epileptic drugs, and the

second table is hospital admissions for seizures. It is possible to find persons who have

been admitted to hospital for a seizure within 3 months of a drug prescription. The

code in figure 2.3 demonstrates how to join the GP data and hospital data together,

and the results are shown in figure 2.3.1.

## ALF_E GNDR_CD DRUG GP_DATE HOSP_ADMIS HOSP_DATE

## 1 20000001 M LTG 2001-01-01 N NULL

## 2 20000001 M VPA 2001-04-02 Y 2001-05-10

## 3 20000002 F CBZ 2001-04-10 N NULL

## 4 20000003 M CBZ 2001-11-04 Y 2001-11-11

## 5 20000004 F VPA 2001-01-31 Y 2001-02-14

Once a basic data linkage is established amongst SAIL datasets the aim is to filter

the linked datasets down to a ”final” dataset ready for statistical analysis.

2.3.2 Quality checking routinely collected data

It is important to note that routine healthcare datasets were not designed for research

purposes, rather collected at point of care for costing purposes or to supplement

decision making processes. With this in mind, any routinely collected healthcare

dataset requires careful consideration of how to interpret the data and understand the

limitations. The majority of the data is entered manually by trained professionals,

but there is still the potential for human error in data entry in which it is impossible

for some error to be rectified by retrospectively cleaning the data.

Data cleansing refers to removing or transforming data so that is is meaningful when

used in statistical analysis. For example, blood measurements such as cholesterol can

be expressed in millimoles per litre (mmol/L) or milligrams per decilitre mg/dL.
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In the UK it is usually the case that the former is used to record cholesterol, however

this is not always the case and the units are not attached. Limits of normality must

be defined to determine if a reading is likely to expressed in certain units or not

by looking at the value recorded. While there is an obvious difference in the values

recorded within different units it is possible for two extreme measurements of each

of the scale of different units to have a similar value. Some values may even appear

outside of any limits of normality of any units of measurement and might require

from the study.

Cleansing on measurement values are relatively more straightforward than making

assumptions on how other items of data are recorded. Two examples of this are the

dates GP records are documented and the reason for admission to secondary care. In

the first example you assume that a recording of a prescription in a GP database was

made on that date appearing in the records. However this could have been entered

by administrative staff retrospectively, or even entered by both the GP and staff

where it appears that the same prescription was made on two separate days. Many

diagnosis codes for epilepsy appear before electronic records were even integrated into

healthcare systems, suggesting that historical information is entered by GPs where

the date appearing in the records is an approximation of when someone was first

diagnosed with epilepsy.

In the second example, ICD-10 codes are used to record episodes of care in secondary

care. For each episode 14 ICD-10 codes may be entered to record the details of care

required. This can lead to some interesting codes being used at point of admission as

it may be in the interest of hospital staff to include background information about

patients to tailor their care through an inpatient stay. Chronic conditions such as

diabetes or asthma often get recorded even if they are unrelated to the admission.

A distinction has to be made because codes that are entered to detail care required

does not directly translate to reason for admission. These 14 diagnostic positions are

ordered by priority of care, however this leads to many of the high priority positions

being taken up by generic symptoms such as ”chest pain” or ”out of breath”, and

for complicated episodes of care there could be multiple valid reasons for admission.

There is clearly no ”one-size fits all” approach into which positions are used as a

proxy for reason for admission as the actual reason for admission is not known. This

rules out an opportunity to conduct a sensitivity analysis to determine how many

positions are included.

Finally, some other obvious errors appear in large datasets that are common and

well known, but nevertheless have to be taken into account. These are errors such as

men appearing to be pregnant (incorrect gender code assigned), patients seeing their
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GP after they have died (incorrect date of death) and people still alive longer than

the known human life span (incorrect date of birth). A particularly painful error to

identify in large datasets are when NHS numbers are incorrectly entered at point of

care. For example there are records in SAIL that suggest one person has seen two

different GPs in different health boards on the same day, where this behaviour can

be traced back for numerous years. While it isn’t impossible for this to be happen, it

is most likely that the multiple persons are sharing an NHS number due to a mistake

at the point of registration. In this instance cross checking with other datasets may

help determine which person the NHS number truly belongs to, and therefore which

set of records to exclude.

All of these cleansing considerations were taken into account for the various studies

in this thesis when using the SAIL databank.

2.3.3 Statistical Analysis

The SAIL gateway contains various software packages to analyse linked datasets in

SAIL. Studies in this thesis use the open source R statistical software language to

produce statistics and figures. SAIL has strict guidelines on what data is allowed to

be taken out of the secure gateway and be included in publications. The results of

statistical analysis must not contain data that could potentially identify a person,

even from anonymous data. Therefore number of persons in group outputs may

not be reported below 5 persons as persons in this group could potentially be

identified through linking many datasets together and building a detailed patient

profile. Individual level data is therefore restricted from being reported as part of

any statistical analysis.
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2.4 Natural Language Processing

To construct NLP algorithms and validate their ability to extract important items of

text from clinic letters, clinic letters were sourced from Morriston Hospital 1. Patients

with known epilepsy were sourced form clinic letters held in the Swansea Epilepsy

Database that stores patient data from the Epilepsy unit in Morriston hospital, and

patients without epilepsy were sourced from general neurology clinics. All letters

were de-identified by replacing identifiable information with fake information. These

letters were then made available to aid constructing an automated NLP algorithm

to extract epilepsy specific information from the clinic letters. The clinic letter in

Figure 2.4 is representative of the clinic letters used in this study.

Figure 2.4: A example clinic letter. The letter contains real patient data, but all
identifiable information has been anonymized

2.4.1 Software

The open source GATE v8.4.1 (General Architecture for Text Engineering) https:

//gate.ac.uk/ framework was used to construct an algorithm to extract epilepsy

specific information from clinic letters, as other details such as clinic date, patient

NHS number and date of birth. GATE allows users to build rule sets by combining

custom gazetteers (user defined dictionaries) with mechanisms form specifying word

1performed by Ms Beata Fonferko-Shadrach
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ordering by writing JAPE (Java Annotation Pattern Engine) scripts. GATE also

provides plugins to perform common NLP tasks such as POS (Part-of-Speech) tagging,

NER (Named Entity Recognition) and phrase identification, while also allowing the

user to put together such plugins as modules in a pipeline. A GATE pipelines are

constructed with a provided GUI (Graphical User Interface).

2.4.2 Part of Speech tagging

POS tagging formed the basis of information extraction for this study. Words in

text are classified into grammatical units such as verbs, adjectives and nouns. The

following phrase:

Mary has focal epilepsy and has been taking Lamotrigine for five years

can be tagged in the following way:

Mary—NNP has—VBZ focal—JJ epilepsy—NN and—CC has—VBZ

been—VBN taking—VBG Lamotrigine—NNP for—IN five—CD

years—NNS

where tags are in red. The ANNIE POS Tagger is used to POS tag clinic letters used

in the epilepsy NLP algorithm, in which the possible tags are given in table 2.1.
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Table 2.1: ANNIE POS tags and their descriptions

POS tag Description

CC coordinating conjunction: ’and’, ’but’, ’nor’, ’or’, ’yet’, plus, minus, less, times

(multiplication), over (division). Also ’for’ (because) and ’so’ (i.e., ’so that’).

CD cardinal number

DT determiner: Articles including ’a’, ’an’, ’every’, ’no’, ’the’, ’another’, ’any’, ’some’, ’those’.

EX existential ’there’: Unstressed ’there’ that triggers inversion of the inflected verb and the

logical subject; ’There was a party in progress’.

FW foreign word

IN preposition or subordinating conjunction

JJ adjective: Hyphenated compounds that are used as modifiers; happy-go-lucky

JJR adjective comparative: Adjectives with the comparative ending ’er’ and a comparative

meaning. Sometimes ’more’ and ’less’.

JJS adjective superlative: Adjectives with the superlative ending ’est’ (and ’worst’). Sometimes

’most’ and ’least’.

LS list item marker: Numbers and letters used as identifiers of items in a list.

MD modal: All verbs that don’t take an ’s’ ending in the third person singular present: ’can’,

’could’, ’dare’, ’may’, ’might’, ’must’, ’ought’, ’shall’, ’should’, ’will’, ’would’.

NN noun singular or mass

NNP proper noun singular: All words in names usually are capitalized but titles might not be.

NNPS proper noun plural: All words in names usually are capitalized but titles might not be.

NNS noun plural

NP proper noun singular

NPS proper noun plural

PDT predeterminer: Determiner like elements preceding an article or possessive pronoun such as

’all/PDT his marbles’, ’quite/PDT a mess’.

POS possessive ending: Nouns ending in ”s’ or ”’.

PP personal pronoun

PRP possessive pronoun,such as ’my’, ’your’, ’his’, ’his’, ’its’, ’one’s’, ’our’, and ’their’.

RB adverb: most words ending in ’ly’. Also ’quite’, ’too’, ’very’, ’enough’, ’indeed’, ’not’, ’n’t’,

and ’never’.

RBR adverb comparative: adverbs ending with ’er’ with a comparative meaning.

RBS adverb superlative

RP particle: Mostly monosyllabic words that also double as directional adverbs.

STAART start state marker (used internally)

SYM symbol: technical symbols or expressions that aren’t English words.

TO literal ”to”

UH interjection: Such as ’my’, ’oh’, ’please’, ’uh’, ’well’, ’yes’.

VBD verb past tense: includes conditional form of the verb ’to be’; ’If I were/VBD rich...’.

VBG verb gerund or present participle

VBN verb past participle

VBP verb 3rd person singular present

VB verb base form: subsumes imperatives, initiatives and subjunctives.

VBZ verb 3rd person singular present

WDT ’wh’ determiner

WPH possessive ’wh’ pronoun: includes ’whose’

WP ’wh’ pronoun: includes ’what’, ’who’, and ’whom’.

WRB ’wh’ adverb: includes ’how’, ’where’, ’why’. Includes ’when’ when used in a temporal sense.

2.4.3 Gazetteers

The GATE framework makes extensive use of dictionaries, or gazetteers to tag words

with higher level information than simple grammatical units. The Bio-YODIE plugin

for GATE was used to find biomedical references in the clinic letters. Bio-YODIE
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Table 2.2: UMLS representation of a subset of epilepsy terms. The CUI (Concept
Unique Identifier) is a code assigned to biomedical concepts. The source column
represents the original coding system the term exists in, and the SCUI column is the
source code used within a particular system. For example ”Epilepsy” exists in both
ICD10 and READ coding systems, but map to the same CUI in UMLS despite having
unrelated SCUIs.

CUI Term SCUI Source

C0014544 Epilepsy G40 ICD10
C0014544 Epilepsy F25 READV2
C0014549 Tonic-Clonic Epilepsy F2510 READV2
C0014558 Other Epilepsy G40.8 ICD10
C0477371 Progressive myoclonic epilepsy F1321 READV2
C1827284 Intractable occipital lobe epilepsy 425054007 SNOMEDCT US
C1827878 Refractory localization-related epilepsy 422724001 SNOMEDCT US
C1827284 Refractory occipital lobe epilepsy 425054007 SNOMEDCT US
C1827691 Intractable frontal lobe epilepsy 425237009 SNOMEDCT US
C1827974 Refractory parietal lobe epilepsy 425349008 SNOMEDCT US
C1827974 Intractable parietal lobe epilepsy 425349008 SNOMEDCT US

which the UMLS (Unified Medical Language System) - 600 healthcare coding systems

such as ICD-10, READ and SNOMED CT combined into a unified coding system -

to form the basis of a gazetteer that maps any text found in a document to a UMLS

code.

The Bio-YODIE plugin scans all text in a document, and where it finds a match to

a term the text is tagged and assigned a CUI code (mapping shown in Table 2.2).

Custom gazetteers were also defined to incorporate information such as certainty

levels (”likely”,”probably”,”doubtful”....) or hypothetical modifiers (”to see”,”we

may”,”to determine”...) to help define the context to which UMLS mappings are

found.

2.4.4 Context Algorithm

The Context algorithm developed by Harkema et al [232] was used to determine if

terms are negated e.g. ”Mary does not have epilepsy” or if they are attributed to

someone other than the patient, such as a family member. The Context algorithm also

tags symptoms in terms of their temporal context such as historical or hypothetical.

The GATE plugin implements the Context algorithm through multiple gazetteers

that contain trigger words for various contexts, such as pre and post negation

terms, temporal triggers and triggers for family members. These triggers are related

to biomedical terms found in the text by writing rules in the JAPE scripting

language.
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2.4.5 JAPE rules

Implementing POS tagging and gazetteer mapping provides information ranging from

simple grammatical units to meaningful biomedical concepts and contextual terms.

The JAPE scripting language was used to weave together sequences of tagged terms

to form rules. After tagging, a phrase containing prescription information might look

like:

He is taking Lamotrigine 250 mg twice a day

PRP VBZ VBG NNP CD NN RB DT NN

person current DRUG number unit word-num temporal

patient C0064636 quantity quantity calendar

where each word has been assigned multiple tags by mapping to various user defined

gazetteers. Further context can be built by combining words, for example ”250” and

”mg” is a unit of measurement that could be annotated and used for downstream

processes.

He is taking Lamotrigine 250 mg twice a day

PRP VBZ VBG NNP CD NN RB DT NN

person current DRUG number unit word-num temporal

patient C0064636 quantity quantity calendar︸ ︷︷ ︸
Measurement

︸ ︷︷ ︸
Frequency

A JAPE script that could create this rule is shown would be:

In general, larger rules are built by layering smaller rules. For example, if Measurement

and Frequency have previously been defined by JAPE rules, those annotations can

be used in further JAPE rules.

He is taking Lamotrigine 250 mg twice a day

PRP VBZ VBG NNP CD NN RB DT NN

person current DRUG number unit word-num temporal

patient C0064636 quantity quantity calendar︸ ︷︷ ︸
Measurement

︸ ︷︷ ︸
Frequency︸ ︷︷ ︸

Prescription
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1 # this is a comment that is ignored when running the script

2

3 Phase: Measurement

4 # phase to be run in larger pipeline

5 Input: Number Unit

6 # Input type i.e. read in gazetteers for Number and Unit

7 Options: control=appelt

8

9 /*

10 * Find measurements from combining numbers and units

11 * i.e. 250 mg

12 */

13 Rule: find_measurement

14 # when Number and Unit appear consecutively

15 (

16 ({ Number }):num

17 ({Unit}):unit

18 ):match

19 -->

20 # create new annotation called "Measurement" containing the following information

21 :match.Measurement = { Rule = findMeasurement ,

22 Quantity = :num.String ,

23 Unit = :unit.String # Unit i.e. mg

24 }

Figure 2.5: A JAPE script to annotate measurements. Gazetteers are used as input
to the JAPE script, and depending on the order of words tagged by a gazetteer, a rule
can be triggered and create a ”Measurement” annotation.

1 # this is a comment that is ignored when running the script

2

3 Phase: Prescription

4 # phase to be run in larger pipeline

5 Input: Drug Measurment Frequency

6 # Input type i.e. read in gazetteers for Number and Unit

7 Options: control=appelt

8 /*

9 * Find prescriptions from combining numbers and units

10 * i.e. Lamotrigine 250 mg once per day

11 */

12 Rule: find_prescription 1

13 # combination of annotations for prescription

14 (

15 ({Drug}):drug

16 ({ Measurement }):measure

17 # Frequency is optional - denoted by ?

18 ({ Frequency }?):frequency

19 ):match

20 -->

21 # create new annotation called "Prescription" containing the following information

22 :match.Measurement = { Rule = findPrescription , # rule reference

23 Drug = :drug.Name # Drug name

24 Quantity = :measure.Quantity ,

25 Unit = :measure.unit ,

26 Num_Dose = :frequency.num ,

27 Frequency.period = :frequency.calendar

28 }

Figure 2.6: A JAPE script to annotate prescriptions. Previous annotations writtin in
JAPE rules can be directly used as input to build larger rules.
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The are additional operators than can be used such as the ? operator used in figure

2.6.

Table 2.3: List of JAPE operators than can be applied to any annotation

Operator Description

? optional

* zero or more

+ one of more

! any other than specified annotation

[x] exact length of annotation

[x,y] range length of annotation

| OR

, AND

== exact match

!= not equal to

==∼ partial match via regex

!=∼ not equal to regex

contains annotation contains specified annotations

!contains annotation doesn’t contain other specified anotations

within annotation exists with specified annotation

!within annotation does not exist within specifided annotation

2.5 Predicting functional impact of Single

Nucleotide Polymorphisms

2.5.1 Pipeline to determine the effect of SNPs

The SNP pipeline aims to determine the effect of SNPs and their impact on

presentation of a disease phenotype, in this case if the SNP is implicated in disease

or not. This largely revolves around collecting and processing data that builds a

final dataset of protein features for any given SNP, often called annotation. Machine

learning methods are applied on the final datasets to predict whether a SNP has the

potential to be pathogenic and candidates for disease causality.

2.5.2 Data sources

The prediction of functional impact of SNPs largely relied on obtaining biological

annotations from publicly available reference data. The main type of data required

are meta-data for a given SNP, such as the protein affected, the region that the SNP
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is expressed and the conservation score at the position of the SNP. The following list

of databases were used to source SNP features:

� University of California Santa Cruz (UCSC) Genome Browser -

provides protein level reference data from chromosomal SNP co-ordinates.

Datasets used were snp144, kgXref and knownGene. - https://genome.ucsc.

edu/.

� Uniprot - Stores various reference data on proteins, in particular the FASTA

sequence files - http://www.uniprot.org

� Humvar - a set of SNPs used to train the machine learning algorithms in the

pipeline - http://www.uniprot.org/docs/humsavar

2.5.3 Obtaining Protein Features

Figure 2.7 describes the various steps in the pipeline to collect the necessary data to

make a prediction for a SNP. Given a list of SNPs in chromosomal format each SNP

goes through the following pipeline architecture. At each point various cleaning and

data wrangling are performed and fed into downstream programs, each accumulating

protein features that are useful with regards to protein annotation, but also important

for predicting the effects of SNP in terms of disease.
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Input SNP

VEP Uniprot

R script PSIPREDCombine

R script

Annotate SNP Amino acid sequence

Secondary structureSelect features

Machine Learning

Figure 2.7: A flow chart of the pipeline. Purple nodes are databases and green nodes
are processes. The user can specify SNPs in chromosomal format as input to the
pipeline. The end result is the SNP data with protein level data that includes indexes
generated by downstream programs and database annotation.

SNP format

SNPs are expressed as chromosomal co-ordinates when called from NGS pipelines.

However many protein annotation, prediction and filtering programs require SNPs to

be expressed in protein co-ordinates, with various meta-data also included such as

gene name and protein ID. The first step of the pipeline is to make this conversion.

There are various methods to do this however the conversion was performed on many

thousands of SNPs without human interaction. The University of California Santa

Cruz (UCSC) genome browser hosts an online database that can be queried with

MYSQL scripts. With the chromosome number, position, wild type and mutation

nucleotides it was possible to search for the protein co-ordinates and gene information

using the code in figure 2.8.

An important piece of data for this pipeline are the raw amino acid sequences in the

form of FASTA files. The protein IDs in the previous script can be used in conjunction
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1 mysql --user=genome --host=genome -mysql.cse.ucsc.edu -A hg19 -D hg19 -e

2 "select distinct substr(S1.chrom ,4,2) as chrom ,

3 S1.chromStart ,

4 S1.chromStart ,

5 substr(S1.observed ,1,1) as wild ,substr(S1.observed ,3,1) as snp

6 X.geneSymbol ,X.spID ,S1.class ,

7 S1.bitfields ,S1.name

8 from snp144 as S1, knownGene as K, kgXref as X

9 where X.geneSymbol = '"$1"'

10 and K.chrom = S1.chrom and X.kgID = K.name

11 and S1.chromStart >= K.cdsStart

12 and S1.chromStart < K.cdsEnd and S1.class = '"$2" ';"

Figure 2.8: MYSQL script to retrieve protein descriptors from chromosomal position.

1 // #!/bin/bash

2

3 // download fasta seqs given file of uniprot ids

4

5 // file name is first parameter of command

6 file=$1

7

8 // protein IDs are contained in first column

9 ids=($(cat ${file} | awk '{print $1}'))

10

11 // loop through IDs and get fasta using uniprot API

12 for i in "${!ids[@]}" ; do

13 curl -sS "http ://www.uniprot.org/uniprot/"${uniqids[i]}".fasta"

14 >> $file.out.fasta ;

15 done

Figure 2.9: FASTA file retrieval using the Uniprot API. SNPs are substituted into
each sequence and passed onto downstream programs

with the Uniprot web interface to retrieve FASTA files. These can essentially be

accessed via a unique uniprot URL i.e. http://www.uniprot.org/uniprot/P23415.

fasta. These can either be typed into an internet browser or programmatically

retrieved using webscraping tools such as GNU cURL. Figure 2.9 shows how cURL

can be implemented via a bash script to download fasta sequences from the Uniprot

API.

This again allows automation and no human interaction - providing that the protein

IDs are passed on from previous programs. Using the Uniprot web interface also does

not require storage of FASTA files on a local computer, where each FASTA file is

downloaded in a few seconds. Later on in the pipeline a GNU AWK program is used

to programmatically substitute the mutant SNP in place of the wild type. This is

particularly useful for structural modelling where higher dimensional structures are

built from raw amino acid sequences.
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Protein annotation with Variant Effect Predictor

Variant Effect Predictor (VEP) https://www.ensembl.org/Tools/VEP was used to

annotate SNPs. VEP accepts SNPs in chromosomal format, bed format or dbSNP

rsID and can scan 35 publicly available datasets ranging from SNPs reported in

national GWAS studies, functional prediction scores, binding site locations and

regional sub-sequences within proteins. The following features (dataset name) are

collected using VEP and used for functional prediction in the pipeline:

� Conserved genomic elements (phastCons,siPhy,GERP)

� Binding sites

� Cytogenic band

� Variants disrupting microRNAs

� Variants disrupting binding sites

� Reported structural variants

� SNP predictions from existing tools

� 1000 genomes frequency annotations

� ExAC frequency annotations

� gnomAD frequency annotations

The last 3 items are used to filter SNPs - frequency based filtering from 1000 Genomes

and ExAC allow common SNPs, rare SNPs and unseen SNPs to be separated,

where SNPs found in DbSNP contain any published links to clinically observed

pathogenicty.

Existing prediction programs

The scores of existing programs for a given SNP is used for both comparison against

the algorithm developed as part of this thesis, but also used as input features to

the classification process. Many of these programs provide bespoke protein features

used with each algorithm and vary between higher sensitivity and specificity and so

are useful to include as input features. The Variant Effect Predictor algorithm was

used to annotate SNPs against the dbNSFP https://sites.google.com/site/jp

opgen/dbNSFP and table 2.4 lists all of the existing SNP prediction software used as

features in the SNP pipeline.
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Table 2.4: List of popular SNP prediction software

Name Website

Polyphen2 http://genetics.bwh.harvard.edu/pph2

SIFT http://sift.jcvi.org/

FATHMM http://fathmm.biocompute.org.uk/

Provean http://provean.jcvi.org/index.php

MetaSNP http://snps.biofold.org/meta-snp/

LRT http://www.genetics.wustl.edu/jflab/index.html

MutationTaster http://www.mutationtaster.org/

MutationAssessor http://www.mutationtaster.org/

FATHMM http://fathmm.biocompute.org.uk/

MetaSVM http://wglab.org/research

MetaLR http://wglab.org/research

VEST - http://karchinlab.org/apps/appVest.html

CADD http://cadd.gs.washington.edu/

GERP++ http://mendel.stanford.edu/SidowLab/downloads/gerp/

DANN https://cbcl.ics.uci.edu/public_data/DANN/

fitCons http://compgen.cshl.edu/fitCons/

Phylop http://ccg.vital-it.ch/mga/hg19/phylop/phylop.html

SiPhy http://portals.broadinstitute.org/genome_bio/siphy/index.html

REVEL https://sites.google.com/site/revelgenomics/

Predicting secondary structure using PSIPRED

There are many secondary structure prediction servers that accurately predict which

amino acids in a sequence belong to certain types of secondary structural folds, namely

beta sheets, alpha coils and helices. The Critical Assessment of protein Structure

Prediction (CASP) [233] is a community driven initiative to enhance knowledge of

structural prediction. Held bi-annually from 1994, many open source applications

have been developed and tested for comparison, where the PSIPRED structural

prediction server [225] has regularly featured as one of the most accurate programs of

predicting secondary structure from amino acid sequences. PSIPRED is used in the

pipeline to predict the difference in secondary structure change between wild type

amino acid sequences and sequences with a SNP substituted in. Due to the relatively

long processing time (between 15-30 minutes per sequence), the part of the pipeline

where PSIPRED is run is hosted on the HPC Wales cluster. This reduces running

time to a few minutes per sequence, where sequences can also be run in parallel across

the many compute nodes within the HPC Wales cluster.

PSIPRED uses PSIBLAST alignments of proteins with know secondary structure
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Figure 2.10: PSIPRED algorithm: multiple sequence alignments of known protein
structures are built up from an input sequence. Position specific scoring matrix is
used to train a neural network to predict the secondary structure of novel proteins.

and then trained with a two-step artificial neural network [234]. For a given protein

sequence, PSIBLAST efficiently finds similar sequences via string matching and aligns

all the sequences where a scoring matrix is calculated to determine the similarity

of each position of each sequence. These position specific scores are used as input

to the two stage neural network, along with the ground truth of known secondary

structure. The most likely predicted secondary structure fold at each point along the

multiple sequence alignment is then assigned by the output of the neural network. It

is important to note that the predicted secondary structure at each amino acid in

the sequence is determined by which proteins are assigned to the multiple sequence

alignment by PSIBLAST. Because PSIBLAST searches on sub-sequences of proteins

before building up the alignment, SNPs have the potential to source a small set of

proteins not found in an alignment built from the wild type. This small set of proteins

can make a difference (albeit small) in the final prediction.

PSIPRED requires amino acid protein sequences in FASTA file format. To compare

the output of wild type protein sequences and sequences containing a SNP, the AWK

script in figure 2.12 was written to automatically substitute in the SNP to the wild
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Figure 2.11: PSIPRED output comparing the predicted secondary structure of a
wild type GLRA2 sequence with the same sequence having a clinically benign SNP
at position 355 of the sequence. The secondary structure prediction is normalised
between coil, helix and sheet, where the absolute difference between the wild type and
SNP are calculated in the three rightmost columns. The red line indicates the SNP,
where other lines are neighbouring amino acids and predictions. It can be seen that
while the predicted secondary structure doesn’t change, the amino acids closer to the
SNP have a larger change in the raw score than those further out from the SNP.

1 BEGIN { FS="_" }

2 /^>/ {

3 id=$1;p=$2; wild=$3;subs=$4; c=$NF; next

4 }

5 {

6 s=1

7 e=length($0)

8 print id"_"p"_"wild"_"subs" >\n"substr($0,s,p-1) c substr($0,p+1,e)

9 }

Figure 2.12: An AWK script to substitute a SNP in place of a wild type amino acid
within a FASTA sequence. The script takes in 4 parameters that can be read from a
text file in the form of 4 columns (protein ID, position of the SNP, amino acid of the
wild type, P, and the amino acid of the SNP. These are then used tho subsitute the
wild type in the position of the SNP with the SNP of the amino acid whilst preserving
the original protein flanking either side of the SNP)

type sequence. The fasta header is also modified in this step to contain SNP position,

wild type and reference for easy comparison between the wild type and SNP secondary

structure output files.

2.5.4 Predicting SNP Impact Using Machine Learning

The R programming language was used to train various machine learning models

to classify a SNP as either pathogenic or benign using protein features. A ground

truth dataset was established by obtaining protein from the Clinvar ftp://ftp.ncbi

.nlm.nih.gov/pub/clinvar/ database for epilepsy SNPs and the Humvar https:

//www.uniprot.org/docs/humsavar database for disease non-specific datasets that

contain information on a SNP known to cause disease or is benign. These datasets

were then annotated using the methods described previously..

The following machine learning algorithms shown in Table 2.5 were used and tested
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on both datasets:

Table 2.5: Machine learning algorithms used in SNP prediction in chapter 5

Classifier R package CRAN link

Random Forest randomForest https://cran.r-project.org/web/packages/randomForest/randomForest.pdf

C45 Decision Tree rpart https://cran.r-project.org/web/packages/rpart/rpart.pdf

Support Vector Machine e1071 https://cran.r-project.org/web/packages/e1071/index.html

Logistic Regression base r NA

Artifical Neural Networks nnet https://cran.r-project.org/web/packages/nnet/nnet.pdf

Näıve Bayes naivebayes https://cran.r-project.org/web/packages/naive-bayes

2.5.5 Training and testing

The machine learning process was split into 2 phases: training and testing. The

training phase used 75% of the humvar data to train each classifier with the remaining

25% used as an unseen test set to predict pathogenicty status. A sampling method

called cross validation was used where the 75-25% split is selected randomly, in

this case 5 times so that 5 unique models are generated on 5 unique training-test

sets.

2.5.6 Receiver Operator Curves

Receiver Operator Curves (ROC) are used as a means to validate the accuracy of

each classifier. Figure 5.11 shows a ROC curve for multiple classifiers:
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Figure 2.13: ROC curve comparing the classifier from this thesis (black) to scores from
other classifiers when predicting disease/benign status on the humvar test set

ROC curves are useful in that each point in the curve plots the sensitivity vs specificity

of an algorithm at discrete scoring thresholds. The result is a curve in which the ideal

sensitivity vs specificity point can be read off ( i.e. 95% sensitivity or 95% specificty)

and reproduced for unseen samples with the associated threshold value. Two other

interesting properties of ROC curves are the Area Under the Curve measure - a

measure of accuracy of the classifier, and the two diagonal lines indicating the line of

chance (bottom left to top right) and the line of accuracy (bottom right to top left).

Classifiers can easily be compared to the line of chance to see how better it performs

than random choice, and the section of the ROC curve that intersects with the line

of accuracy is the point denoting the highest accuracy achievable by the algorithm.

A ROC curve approaching the top left of the graph indicates a perfect score.

2.6 Chapter Summary

� The SAIL Databank was used to carry out retrospective longitudinal studies in

people with epilepsy

� SQL queries were used extensively to link datasets together within the SAIL
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databank and extract data in a format ready for statistical analysis

� The R programming was used to carry out statistical analysis

� 240 epilepsy clinic letters from Morriston hospital were used to conduct an NLP

study for extracting epilepsy specific information from clinic letters

� The open source GATE application was used as a framework for NLP

development. The main concepts behind algorithm development was the

inclusion of dictionaries used for tagging terms of interest, such as UMLS

codes and writing JAPE scripts that declare rule sets to produce annotations

based on tagged terms. Standard NLP applications are also used as part of

GATE such as tokenization, POS tagging and chunking

� An epilepsy clinician reviewed 200 test letters and these were compared against

the algorithm

� Two SNP datasets were used to test a bespoke SNP classifier for

pathogenic/benign status. The Humvar data contains over 70,000 disease

non-specific SNPs that were used to trian the classifier, and the Clinvar dataset

was used to obtain epilepsy SNPs

� Various open source bioinformatics programs were used for SNP annotation data.

The Varaint Effect Predictor was used to annotate SNPs with conservation and

frequency data as well as existing SNP prediction scores. PSIPRED was used

to calculated the difference in secondary structure prediction between wild type

sequences and mutation sequences

� Machine learning was used to test various classifiers, of which this was

programmed in R. These were compared against existing scoring software

obtained from dbNSFP annotations from VEP
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Chapter 3

Results: Analysing Routinely

Collected Healthcare Records for

Epilepsy Research

The first of the three results chapters show how epilepsy and its impact on health

and social factors can be studied using routinely- collected health records in the SAIL

databank. Using Welsh GP records an algorithm was created to determine people

with robustly-confirmed epilepsy. By comparing GP records in SAIL to patient details

in the paediatric neurology department in Morriston Hospital , the algorithm is able

to categorise 85% of patients as having epilepsy while excluding nearly all cases where

a lack of clinical evidence confirms the absence of an epilepsy diagnosis . Antiepileptic

drugs (AEDs) are studied in terms of how GPs prescribing habits have changed over

time, as well adverse effects of AEDs including weight gain and cognitive decline in

children born to mothers prescribed AEDs during pregnancy. The relationship of

social deprivation and epilepsy is explored where people diagnosed with epilepsy tend

to come from areas of higher social deprivation. This chapter presents the strengths

and limitations of studying the impact of epilepsy using routinely-collected data.

Each study formed the basis of a published paper, in which footnotes are used to

account for any specific work undertaken by co-authors.

3.1 Prevalence, Incidence and the Social

Deprivation Profile of Epilepsy in Wales

The aim of this retrospective study was to determine if prevalence and incidence of

epilepsy is due to social drift or social causation by using GP records and demographic
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data between 2004-2010. The first objective was to identify people with epilepsy

within SAIL. The GP dataset in SAIL (see 3.1) contains READ codes pertaining an

interaction with a GP that was recorded in a patient’s GP record. Various codes can

be entered such as diagnoses, prescriptions, symptoms, laboratory tests and medical

advice. This dataset was used to query codes for both diagnosis codes for epilepsy as

well as anti epileptic drug prescriptions (AED). In discussion with clinicians within

the Swansea Neurology Research Group, an appropriate method discussed to extract

epilepsy cases was to use a combination of repeat AED and epilepsy diagnosis codes.

This would pick people with unresolved epilepsy while also excluding people with

AED prescriptions exclusively for mental health disorders and pain management. The

use of a repeat AED prescription was also included to exclude uses of diagnosis codes

used as a way to recorded suspected diagnoses that require follow up.

Table 3.1: SAILWGPV.EVENT ALF E is a table in the SAIL Databank that stores
GP patient records.

Field name Description

PRAC CD E Encrypted General Practice code

ALF E Anonymous linking field representing an encrypted NHS number

WOB Week of Birth - defaults to Monday of week of birth

GDNR CD Gender code 1=male, 2=female, 9=unknown

LOCAL NUM Local number identifier - a unique patient number

EVENT CD VRS Determines code type such as READ v2, SNOMED etc

EVENT CD Recorded clinical information during the event

EVENT VAL The value associated with the recorded event

EVENT DT Date of the event

EPISODE Denotes if event is due to ongoing care or first recording of diagnosis

SEQUENCE The number of records for a specific event

The EVENT CD column was queried with a list of READ codes that defined AED

prescriptions and epilepsy diagnosis, and the WOB column was used to define week

of birth for splitting patients into age bands, particularly between adults and children

as a child’s social deprivation is unlikely to be effected by an epilepsy diagnosis.

3.1.1 Defining Epilepsy in the SAIL Databank

The Quality of Outcomes Framework (QOF) https://www.nice.org.uk/standards-

and-indicators/qofindicators aims to encourage GPs to keep patient records as

complete as possible. By providing a paid incentive to use certain READ codes

to record patient details, finding patients with diseases such as epilepsy should be
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possible by querying GP records. The usage of READ codes used to record details of

patients with epilepsy was explored to determine if it is possible to select people with

known epilepsy.

Figure 3.1: Table 1 of 2 defining QOF codes for recording information on epilepsy in
patient records. Table taken from https://www.epilepsy.org.uk/sites/epilepsy/files

/primary-care-resource/A18-Tool.pdf
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Figure 3.2: Table 2 of 2 defining QOF codes for recording information on epilepsy in
patient records.Table taken from https://www.epilepsy.org.uk/sites/epilepsy/files/p

rimary-care-resource/A18-Tool.pdf

Using the READ codes tables in figures 3.1 and 3.2 an algorithm based on the presence

of an epilepsy diagnosis code and a repeat AED prescription was used to determine if

a person is known to be living with epilepsy on a given day by querying their GP

records. Figure 3.3 depicts a timeline of how a combination of AED prescriptions and

epilepsy diagnosis code entered into a GP record and are used to identify epilepsy,

and figure 3.4 provides SQL code to implement the process.
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Figure 3.3: Visual explanation of the algorithm used to capture epilepsy diagnoses. All
AED prescriptions are first found using GP records (D1), in which AED prescriptions
pairs within 6 months after the initial prescription are classed as a repeat AED
prescription (D2). Epilepsy diagnosis codes appearing in GP records 12 months either
side of the first prescription of each of the AED pairs are queried, and where there is
a match a person is classified by the algorithm as having an epilepsy diagnosis at the
time of the first AED in the pair.

The SQL query in figure 3.4 was looped through the years 2004-2010, where for

those who had a new diagnosis in a given year, all previous years were checked for

absence of a diagnosis (incident cases). Those with both new and known epilepsy

from previous years that satisfy the extraction criteria in later years contribute to

the prevalent population of people with a diagnosis of epilepsy.

The SQL query in 3.4 was also used to determine prevalence and incidence of epilepsy,

where prevalence is defined as the number of people with known epilepsy divided by

the number of people in the population, and incidence is defined as the number of new

cases of epilepsy in a given year divided by the number of people in the population.

Annual prevalence between 2004 and 2010 was calculated by identifying the number

of people with known epilepsy living in Wales on the 1st of January of a given year

and dividing by the total number of people living in Wales on the same day. Annual

incidence of epilepsy was also calculated by identifying all newly diagnosed patients

in a given year, divided by the total number of persons registered as living in Wales

in the same year.
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1 -- first AED D1

2 SELECT DISTINCT D1.ALF_E , MIN(D1.EVENT_DT) AS FIRST_AED FROM

3 (SELECT DISTINCT ALF_E , EVENT_DT FROM SAILWLGPV.EVENT_ALF

4 WHERE EVENT_CD LIKE 'dn\%'

5 OR EVENT_CD LIKE 'do\%'

6 -- READ codes beginning with dn/do are AEDs

7 AND EVENT_DT BETWEEN '2000-01-01' AND '2000-31-12'

8 -- find first AED prescription in a given year

9 ) \textbf{D1}

10

11 INNER JOIN

12

13 -- repeat AED D2

14 (SELECT DISTINCT ALF_E , EVENT_DT FROM SAILWLGPV.EVENT_ALF

15 WHERE EVENT_CD LIKE 'dn\%'

16 OR EVENT_CD LIKE 'do\%'

17 AND EVENT_DT BETWEEN '2000-01-01' AND '2001-06-01'

18 -- find potential repeat AEDs up to 6 months after first AED

19 ) \textbf{D2}

20 ON D1.ALF_E = D2.ALF_E

21 -- match ALF_E in tables D1 and D2

22 AND D2.EVENT_DT BETWEEN D1.EVENT_DT AND D1.EVENT_DT + 6 MONTHS

23 -- search up to 6 months after first AED

24

25 INNER JOIN

26 -- epilepsy diagnosis code

27 (SELECT DISTINCT ALF_E , EVENT_DT FROM SAILWLGPV.EVENT_ALF

28 WHERE EVENT_CD LIKE 'F25\%'

29 -- READ codes beginning with F25 is an epilepsy diagnosis

30 AND EVENT_DT BETWEEN '1999-06-01' AND '2001-06-01'

31 -- allow 6 months before and after possible repeat

32 -- AED windows (i.e. suspected epilepsy)

33 ) \textbf{EP}

34 ON D1.ALF_E = EP.ALF_E # match ALF_E in tables D1 and EP

35 AND EP.EVENT_DT BETWEEN D1.EVENT_DT - 6 MONTHS AND D1.EVENT_DT + 6 MONTHS

36 -- search up to 6 months before/after first AED

37 }

Figure 3.4: An SQL query to extract epilepsy cases using a combination od diagnosis
and AED READ codes. In this example, the first known confirmation that a person
has epilepsy in 2000 is given by the first AED prescription in their GP record, while
also having a repeat AED within 6 months as well as an epilepsy diagnosis up to 6
months either side of the first identified repeat prescription window
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3.1.2 Social deprivation

The Welsh Demographic Service dataset was used to obtain social deprivation, which

contains WIMD score that are assigned to 1896 geographical Lower Super-Output

Areas (LSOAs) in Wales, each with around 1,500 people. Each LSOA is ranked from

most deprived to least deprived according to its corresponding WIMD score and

then grouped into deciles, with decile 1 being the most deprived and decile 10 the

least deprived. For this specific study, WIMD 2011 deciles were used to measure

an individuals’ social deprivation where for each person in the study it was possible

to query their demographic records to determine what LSOA code they live within

on any day of the year, in which the 1st of January was chosen for each study year.

Tables 3.2 and 3.3 were used to obtain a person’s address and link it to their WIMD

score by linking the LSOA CD between both tables:

Table 3.2: The SAILWDSDV.AR PERS table in the SAIL Databank holds individuals
address, provided as the address when registering with a GP. Each address is
also assigned to a Lower Super Output Area (LSOA) which is a geographical area
comprising of around 1500 individuals.

Field name Description

PERS ID E Encrypted Person Identifier

RALF E Encrypted Residential address sourced from address given

at GP registration

LSOA CD Lower Super Output Area code - approx 1500 person per

area

FROM DT Day resident started living at address

TO DT Day resident stopped living at address

Table 3.3: The SAILREFRV.WIMD2008 OVERALL INDEX table in the SAIL
Databank contains a link between an LSOA code and various Welsh Index of Multiple
Deprivation measures.

Field name Description

LSOA CD Lower Super Output Area code ∼1500 people

LSOA DESC Name of geographic area

SCORE Raw score comprising of 8 indicators

RANK LSOA rank based on raw score. 1=most deprived

DECILE Decile LSOA belongs to. 1=most deprived

QUNTILE Quintile LSOA belongs to. 1=most deprived

For each ALF E in the study it was possible to determine the WIMD Decile at the
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1 select distinct arp.alf_e , w.wimd2008_QUINTILE

2 -- Get ALF_E from Welsh Demographic Service dataset

3 from SAILWDSDV.AR_PERS

4 inner join SAILWDSDV.AR._PERS arp

5 on arp.pers_id_e = argp.pers_i d_e

6 -- Get address data

7 join SAILWDSDV.AR_PERS_add AR

8 on arp.pers_id_e = ar.pers_id_e

9 -- Get WIMD quintile at 1st January 2004 i.e. census date

10 join sailx031v. LSOA_refr w

11 on w.lsoa_cd = ar. lsoa_cd

12 and '2004-01-01' between AR.from_dt and AR.to_dt

13 -- ensure ALF_e is in contibuting SAIL gp practices

14 join SAILWLGPV.PATIENT_ALF_CLEANS ED GP

15 on ARGP.prac_cd_e = GP.prac_cd_E

16 }

Figure 3.5: An SQL query to link an ALF E to their address in the Welsh Demographic
dataset in SAIL, and how to linke the WIMD quintile to the address on a given day
i.e. 1st January 2004

start of each year on the study window using the SQL query in Figure 3.5 and was

used to compare the prevalence and incidence epilepsy across WIMD quintiles:

Sex and age were included as covariates where age groups were categorized as 0-5; 6-12;

13-21; 22-45; 25-45; 46-64, and 65 years or over in relation to their age in the study

year. Figure 3.6 shows a summary flowchart of how the cohort was selected and Table

3.4 compares the study population in 2010 with that of the Welsh population.

Figure 3.6: Flow chart of cohort selection. GP records were used to identify
people with epilepsy (and therefore those that did not have epilepsy). The Welsh
Demographic Service dataset was then used to sample age bands, sex and WIMD
deciles on the first of January in each study year. For every unique combination of
covariates, incidence and prevalence was calculated.
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Table 3.4: Study population characteristics in 2010 as compared to the Welsh
population (measured by the 2011 WIMD data). Table taken from [4]

Study population in

2010

Wales

population

Total Number 1,178,558 3,169,594

Sex Male 588,476 (49.9%) 1,582,144 (49.9%)

Female 590,082 (50.1%) 1,587,446 (50.1%)

Age (years) 0-5 73,716 (6.3%) 206,148 (6.5%)

06-12 86,809 (7.4%) 235,681 (7.4%)

13-21 142,333 (12.1%) 367,981 (11.6%)

22-45 374,090 (31.7%) 999,254 (31.5%)

46-64 290,612 (24.7%) 793,247 (25.0%)

>64 210,998 (17.9%) 567,282 (17.9%)

Deprivation

(WIMD decile)

1 109,703 (9.3%) 318,275 (10.0%)

2 122,291 (10.4%) 315,689 (10.0%)

3 91,478 (7.8%) 315,983 (10.0%)

4 124,033 (10.5%) 317,000 (10.0%)

5 121,894 (10.3%) 313,995 (9.9%)

6 127,573 (10.8%) 325,662 (10.3%)

7 101,077 (8.6%) 309,675 (9.8%)

8 113,994 (9.7%) 324,457 (10.2%)

9 124,752 (10.6%) 307,093 (9.7%)

10 141,763 (12.0%) 321,954 (10.2%)

Over the study period, the mean epilepsy prevalence was 0.77% (95% CI 0.76 to

0.79%) and there were 2,390 incident cases of epilepsy, giving a mean incidence

rate of 29.5/100,000 per year (95% CI 28.3 to 30.7). A breakdown of prevalence

and incidence for each year is given in Table 3.5. Given that the sensitivity

of the epilepsy algorithm in the validation study was 84% and the prevalence

of epilepsy in the UK in 2011 was reported to be 0.97% by the Joint Epilepsy

Council (http://www.epilepsyscotland.org.uk/pdf/Joint_Epilepsy_Council

_Prevalence_and_Incidence_September_11_%283%29.pdf), the mean prevalence

of 0.77% seems reasonable.
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Table 3.5: Breakdown of epilepsy prevalence and epilepsy incidence by WIMD decile. Table taken from [4]

Deprivation

(WIMD decile)

Mean epilepsy prevalence 2004-2010 Epilepsy incidence 2004-2010

Number of cases Mean

population

Mean

prevalence

(%)

Number of

cases

Patient years

at risk

Incidence/100,000/year

1 1211 107,464 1.13 304 752,250 40.41

2 1164 119,990 0.97 305 839,931 36.31

3 845 89,671 0.94 228 627,696 36.32

4 969 121,421 0.8 270 849,944 31.77

5 989 119,345 0.83 257 835,416 30.76

6 911 125,983 0.72 247 881,878 28.01

7 712 99,640 0.71 186 697,479 26.67

8 742 111,456 0.67 197 780,195 25.25

9 734 122,153 0.6 208 855,069 24.33

10 684 140,053 0.49 188 980,374 19.18

94



Figure 3.7 shows that the mean prevalence of epilepsy is double in most deprived

(1.13%) compared to least deprived (0.49%), and the mean incidence of epilepsy is

also double in most deprived (40.41 per 100,000) compared to least deprived (19.18

per 100,000), identifying a strong trend that epilepsy is associated with increased

social deprivation.

Figure 3.7: Plots of (A) epilepsy prevalence and (B) epilepsy incidence by WIMD
(deprivation) decile. Error bars indicate 95% confidence intervals. Figure taken from
[4]

The mean prevalence and incidence was calculated for each WIMD decile

together with confidence intervals using binomial and Poisson models,

respectively. The LSOA WIMD decile data for prevalence and incidence

of epilepsy aligned with a 2001 LSOA shape file from the Office of

National Statistics https://data.gov.uk/dataset/fa883558-22fb-4a1a-8529-

cffdee47d500/lower-layer-super-output-area-lsoa-boundaries to produce a

geographical representation of deprivation, epilepsy prevalence, and epilepsy incidence

in Figure 3.8 1. Geographical areas were excluded where GP information was not

available for at least 5% of the population of that area.

It is possible to see a correlation of deprived areas (dark blue) with areas that have

a high prevalence and incidence of epilepsy. Due to densely populated urban areas

skewing deprivation on an LSOA level, it can be seen in enlarged portions of the

map (Swansea, Cardiff and Newport) that while it is possible to see the correlation

1With assistance from Dr Joanne Demmler
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Figure 3.8: Maps of Wales showing each LSOA (areas with population of around 1,500); Yellow areas represent with low data coverage (¡5%
of the population) and are not shown. (A) Deprivation measured by WIMD decile, (B) epilepsy prevalence, and (C) epilepsy incidence.
Enlarged areas represent the densely populated areas of the cities of Swansea, Cardiff, and Newport (left to right). Figure taken from [4]
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between social deprivation, prevalence and incidence of epilepsy, the correlation is not

as clear when viewing Wales as a whole. Odds and incident rate ratios are presented

in Table 3.6 for WIMD deciles, sex and age bands, where a WIMD decile of 1, males,

and age band 0-5 are used as a reference where ORs and IRs were calculated using

multiple logistic regression and Poisson regression models respectively 2. It can be

seen that even after adjusting for WIMD deciles, there is still a significant effect of

epilepsy prevalence and incidence.

Table 3.6: Variable Adjusted epilepsy prevalence odds ratio Adjusted epilepsy
incidence rate ratio The odds and incidence rate ratios for deprivation (second row of
the table) are given per WIMD decile when compared to the population in decile 1,
for example, the odds ratio of epilepsy prevalence in WIMD decile 3 = 0.922 x 0.94
when compared to the population in decile 1. Table taken from [4]

Variable Adjusted prevalence odds

ratio

Adjusted incidence rate

ratio

Deprivation (per

WIMD decile)

0.922 (0.920 to 0.925; p <0.001) 0.936 (0.923 to 0.950; p <0.001)

Sex

Male 1.0 (ref) 1.0 (ref)

Female 0.981 (0.966 to 0.997; p = 0.018) 0.853 (0.787 to 0.924; p <0.001)

Age (years)

0-5 1.0 (ref) 1.0 (ref)

6-12 2.572 (2.372 to 2.792; p <0.001) 0.999 (0.828 to 1.207; p = 0.993)

13-21 3.419 (3.169 to 3.694; p <0.001) 0.950 (0.799 to 1.134; p = 0.565)

22-45 5.570 (5.183 to 5.994; p <0.001) 0.573 (0.488 to 0.676; p <0.001)

46-64 6.371 (5.928 to 6.859; p <0.001) 0.567 (0.479 to 0.673; p <0.001)

>64 6.778 (6.304 to 7.300; p <0.001) 1.098 (0.935 to 1.296; p = 0.261)

3.1.3 Follow up cohort

A cohort of adults aged older than 18 years with a new diagnosis of epilepsy between

January 1, 2000 and December 31, 2002 was selected as a follow up cohort to measure

any difference in WIMD decile 10 years after their diagnosis. Only adults were

selected, as a child’s deprivation status is determined by their parents’ deprivation

status and children move with their parents. For each person in this cohort who

remained within the study population, a comparison of WIMD decile between time

of diagnosis and either 10 years after diagnosis or time of death was used to test

the hypothesis that social drift plays a role in increased deprivation for people with

epilepsy.

2Statistical Analysis performed by Dr Owen Pickrell
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Table 3.7: Summary of follow up statistics for 10 year follow up cohort. Table taken from [4]

Number Mean length of

follow-up in years

(SD)

Mean length of

follow-up in years

(SD)

(Mean change in WIMD

Decile (p-value)

All 582 52.42 (20.2) 7.9 (3.3) 0.04 (p = 0.85)

Alive 352 42.96 (16.4) 10 (0.0) -0.02 (p = 0.83)

Younger than 41 years at diagnosis 172 28.85 (6.4) 10 (0.0) 0.05 (p = 0.87)

41 years or older at diagnosis 180 56.44 (10.7) 10 (0.0) -0.08 (p = 0.56)

Died 230 66.91 (16.7) 4.7 (3.3) 0.13 (p = 0.62)
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613 new cases of epilepsy were identified in adults between January 1, 2000 and

December 31, 2002. Thirty-one patients (5%) had moved out of the study population.

Of the remaining 582 cases: 352 (60%) remained alive and were followed for 10 years;

230 (40%) died and were followed for a mean of 4.7 years (standard deviation [SD]

3.3 years). A Wilcoxon signed-rank test was used in the cohort study to test the null

hypothesis that there was no significant change in WIMD decile following diagnosis.

Table 3.7 summarizes the cohort population and figure 3.9 shows a graph of the

change in WIMD decile.

Figure 3.9: Changes in WIMD decile over 10 years for with incident epilepsy diagnosed
between January 1, 2000 and December 31, 2002. Figure taken from [4]
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3.2 Validating epilepsy status from electronic

healthcare records

The previous study used an SQL algorithm to determine an epilepsy diagnosis from

GP records and compare those identified as having epilepsy with patients in the

Cardiff Epilepsy database. However, it was not possible to measure the specificity

of the algorithm due to a lack of a comparison cohort of people that definitely did

not have epilepsy. This study aimed to validate the accuracy of algorithms using GP

records to identify people with epilepsy from anonymised, linked, routinely-collected

Welsh healthcare data contained within the SAIL databank.

3.2.1 Study population

To validate epilepsy status through the use of READ codes in the SAIL GP records, a

”gold standard” dataset of patients with known epilepsy was sourced using the Swansea

Epilepsy Database within Morriston Hospital 3. A comparison cohort of patients

without epilepsy was sourced from general neurology clinics in Morriston Hospital.

There were 918 patients from the Swansea Epilepsy Database with known epilepsy

(283 (29%) generalised epilepsy, 510 (53%) focal epilepsy, 125 (13%) unclassifiable

epilepsy and 42 (4%) with an uncertain diagnosis), of which 100 adults and 50 children

were randomly selected to form the validation set of known epilepsy. A further 300

letters from general neurology clinic letters were manually reviewed to exclude those

with known epilepsy, and 100 adults and 50 children were randomly selected to form

the validation set of non-epilepsy patients. The 300 person cohort was then linked to

their corresponding GP records in the SAIL databank.

3.2.2 Algorithm validation

Three different algorithms were tested to identify people with epilepsy within the

SAIL Databank. Using a READ codes within GP records, diagnosis codes for epilepsy

as well as AEDS were used in the following way

� A) individuals with an epilepsy diagnosis code and two consecutive anti-epileptic

drug (AED) prescription codes within 12 months of diagnosis

� B) individuals with an epilepsy diagnosis code only

� C) individuals with two consecutive AED prescription codes only.

For a full list of READ codes used to define epilepsy please see the code list in

3Data sourced by Beata Fonferko-Shadrach
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the appendix item 1. 145 of the 150 reference cases with epilepsy (97%) and 143

of the 150 reference cases without epilepsy (95%) were registered with a SAIL GP.

True positive (TP) cases had a hospital diagnosis of epilepsy and were identified

within SAIL as having epilepsy; true negative (TN) cases did not have epilepsy as

confirmed by hospital records and were not identified as having epilepsy within SAIL;

false positive (FP) cases did not have epilepsy as confirmed by hospital records and

were identified as having epilepsy within SAIL; and false negative (FN) cases had a

hospital diagnosis of epilepsy and were not identified as having epilepsy within SAIL.

Positive predictive value (PPV) was defined as TP/(TP+FP); sensitivity TP/(TP

+ FN); specificity TN/(TN+FN) and false positive rate (FPR) as FN/(FN+TN).

Youden’s index (J) was then calculated using sensitivity plus specificity, as a measure

of the accuracy of the algorithms. J ranges from -1 to 1 (J=1 for a perfect test)[235].

Confidence limits were calculated using the exact binomial method. The sensitivity,

specificity, positive predictive value, false positive rate and accuracy of each of the

three algorithms are shown in Table 3.10.
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Figure 3.10: The accuracy of algorithms A,B and C in being able to determine epilepsy status from GP records. Table taken from [5]
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The results show that anonymised GP records can be used to accurately identify

patients with epilepsy diagnosed by a hospital specialist in the UK. Since maximizing

specificity was most important, while aiming to keep sensitivity as high as possible,

algorithm A (specificity 99%, sensitivity 84%) is best suited to identify epilepsy from

GP records, where algorithm C could be exclusively used for children(specificity 98%,

sensitivity 98%). Algorithm B shows that using a diagnosis code for epilepsy alone

also achieves a high level of accuracy in adults (specificity 98%, sensitivity 88%),

which is a 1% increase in specificity over algorithm A, but when combining adult and

children it has lower specificity than algorithms A and C respectively. These results

compare well to other epilepsy validation studies conducted in Australian, Italian and

American healthcare systems that report similar accuracy (specificity 100%, 99.8%,

94% and sensitivity 85.9%,81%,82%) [236–238], and this study is the first epilepsy

validation study using gold standard patient records accuracy in the UK.

There is a clear difference in epilepsy reporting in GP records between adults and

children. It appears that GPs record a diagnosis code for a lower proportion of

children than adults, resulting in only 79% sensitivity for children using algorithm

A, but this is likely due to the many years required to determine a clear diagnosis

of epilepsy in children. There is a large difference in specificity between adults and

children for algorithm C (61%-98%) where it is likely conditions other than epilepsy

in adults (e.g. migraine, mental health disorders and neuropathic pain) are classified

as having epilepsy by the algorithm, but AEDs are rarely prescribed for anything

other than epilepsy in children in the UK [239].

There was little difference in performance between algorithms A and B. Algorithm A

(epilepsy + a repeat prescription) had slightly higher specificity than algorithm B

(epilepsy diagnosis only) and algorithm A had slightly higher sensitivity, but their

overall accuracy was comparable as seen by their Youden’s Index measurement. From

this study, it seems that GP diagnosis codes for epilepsy could be used on their own

to identify people with epilepsy form GP records in the UK, which can be explained

in that an epilepsy diagnosis should be made in secondary care by a specialist in the

UK, and then recorded by GPs in GP records [240].
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3.3 Educational attainment of children born to

mothers with epilepsy

There are currently many AEDs used for seizure control, but some methods of

seizure control during pregnancy can have effects on the unborn child. Valproate

is the most effective drug for treating genetic generalized epilepsy,[26] but recent

prospective psychometric studies have demonstrated cognitive impairment and

neurodevelopmental disorders in 30-40% of children exposed to valproate inutero,[241,

242] as well as a significant decrease in intelligence quotient(IQ)[27, 243]. Women

with epilepsy who have satisfactory control with valproate and are planning a

family therefore have a difficult decision to make. In the United Kingdom the

Medicines and Healthcare Products Regulatory Agency (MHRA), issued stringent

guidance for all clinicians prescribing valproate to women of child-bearing potential

in 2015. An International League Against Epilepsy (ILAE) task force made seven

recommendations, the first of which is where possible, valproate should be avoided

in women of childbearing potential. Women with epilepsy who are taking AEDs are

presently advised to continue them throughout pregnancy, primarily because of the

risks of convulsive seizures to mother and her unborn child.

To be able to counsel mothers adequately about the risks of uncontrolled seizures

during pregnancy and cognitive outcomes for their children, it is important to know

whether the psychometric differences demonstrated in research conditions translate

to children in the community. This study was conducted to investigate the effect of

AED exposure inutero on the educational attainment of children born to mothers

with epilepsy using anonymised, routinely-collected healthcare records and the results

of a standard national educational assessment.

3.3.1 Cohort selection

The Child Health dataset in the SAIL databank was used to select encrypted identifiers

for children as well as a linked ID to the mother. Gestational age, maternal age were

also extracted as covariates used for control matching between mothers with epilepsy

at time of birth and those without. All fields in the Child Health dataset are given in

table 3.8.
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Table 3.8: SAILCHDV.CHILD is a table in the SAIL Databank that contains birth
records and relates each child’s NHS number to their mother.

Field Name Description

CHILD ID E Internal child ID

ALF E Encrypted NHS number of child

MAT ALF E Encrypted NHS number of mother

MAT WOB Week of Birth of mother

WOB Week of Birth of child

BIRTH WEIGHT Weight of the child at birth.

BIRTH WEIGHT CAT Derived variable. Classes for birth weights.

BIRTH TM Time of birth

GNDR CD Sex of child

APGAR 1 APGAR score taken at 1 minute

APGAR 2 APGAR score taken at 5 minutes

GEST AGE Best estimate of gestation at time of delivery

TOT BIRTH NUM Number of deliveries for multiple births

BIRTH ORDER Order of deliveries for multiple births, by ALF E

MAT AGE Age of mother in years at delivery

PROV SITE CD Hospital provider site code

STILLBIRTH FLG Stillbirth flagged only in case of stilbirth

DOD Date of death of child

LHB CD Local healthboard code

DEL CD Delivery code indicating type of delivery

LABOUR ONSET CD Method of labour onset

MOTHER CARE CD Type of maternity care allocated for mother

BREASTFEED BIRTH FLG Breastfeeding at birth

BREASTFEED 8 WKS FLG Breastfeeding at 8 weeks

LSOA CD Lower Super Output Area containing mother’s address

For each birth record, the mother’s data was linked to their social deprivation as

described in the social deprivation study earlier in this chapter. WIMD quintiles

at the time birth were used as an additional covariate during the control matching

procedure. These data were then linked to the GP dataset in SAIL using algorithm A

from the epilepsy validation study (epilepsy diagnosis + repeat AED prescription) to

determine if the mother had known epilepsy during the pregnancy. A control group

was created (with 4:1 matching) matched for maternal age, week of gestational age,

and WIMD decile at the time of birth between mothers who had known epilepsy

during pregnancy and those that did not have epilepsy.
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3.3.2 Education dataset

Educational attainment data for Key Stage 1 from the Department for Children

Education, Lifelong Learning and Skills (DCELLS) dataset was available in the SAIL

databank between the years 2003-2008. The DCELS dataset contains attainment

for children in mathematics, language (English or Welsh) and science in which each

subject is awarded a level between 1 (lowest) and 3 (highest). In certain circumstances

children may obtain an unclassified or working towards meaning that they do not

achieve the required grade to pass the year. The core subject indicator (CSI) is

defined as the proportion of children achieving a minimum standard in all three KS1

subjects, that being a level 2 or higher in each subject. Given that KS1 results (taken

at the age of 7) were only available within SAIL for the years 2003-2008, SAIL GP

records were queried for women with epilepsy who gave birth between 1996 and 2001.

Table 3.9 shows all field available within the Key Stage 1 dataset:
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Table 3.9: SAILDCELV.PRE16 KS1 is a table in the SAIL Databank contains
all-Wales education data between 2003-2008 for Key Stage 1. Three subjects
(Maths,Science,Engish/Welsh) as well as a Core Subject Indicator are provided to
indicate the level of attainment per child

Field name Description

BATCH NUM Batch number

LEA Local education Authority code

ESTAB E Encrypted educational establishment code

PUPIL IRN E Internal pupil reference number

CSI Core Subject Indicator

EN1 English teacher assessment 1

EN2 English teacher assessment 2

EN3 English teacher assessment 3

ENSUB English teacher assessment subject level

MA1 Maths teacher assessment 1

MA2 Maths teacher assessment 2

MA3 Maths teacher assessment 3

MASUB Maths teacher assessment subject level

SC1 Science teacher assessment 1

SC2 Science teacher assessment 2

SC3 Science teacher assessment 3

SC4 Science teacher assessment 4

SCSUB Science teacher assessment subject level

CY1 Welsh teacher assessment 1

CY2 Welsh teacher assessment 2

CY3 Welsh teacher assessment 3

CYSUB Welsh teacher assessment subject level

YEAR Census year

URN Internal school reference number

NEWBES Pupils from non English/Welsh education system

Each child who was born to mothers with known epilepsy during pregnancy was

then linked to their education data and compared to those children not born to

mothers with epilepsy. Figure 3.11 shows each step of the cohort ascertainment and

linkage:
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Figure 3.11: Flow chart of cohort ascertainment. 4 datasets were queried: General
Practice, ONS Births, Welsh Demographic Service and Welsh Education Dataset.

3.3.3 Results

A total of 440 children were identified with KS1 results available between 2003

and 2008 who had mothers with epilepsy diagnosed before their pregnancy, and

the mothers were stratified into five groups based on AED prescription during

pregnancy (carbamazepine, lamotrigine, sodium valproate, multiple AEDs or no

AEDs prescription) - see table 3.12. Only prescription information was available, but

it is not expected that adherence differs across different AED prescriptions.

The proportion of children in each group achieving at least a level 2 in each subject

is shown in figure 3.13.
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Figure 3.12: Descriptive statistics of the study cohort. The control group comprised of a 1:4 match on maternal age, gestational age and
Welsh Index of Multiple Deprivation (WIMD) quintile. WIMD quintiles are a measure of deprivation (see method) with quintile 1 being
the most deprived and quintile 5 being the least deprived. sd=standard deviation. *p-values are for comparisons between each group within
the ”Mothers with Epilepsy” group with the control group. Table taken from [3]
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Figure 3.13: Key Stage 1 results stratified by subject and study groups. Each group
was compared to the matched control group. Significant differences in attainment (*
p ¡ 0.05, ** p ¡ 0.005) between each group and the matched control are shown. The
p-values have been Bonferroni corrected for multiple testing (see Methods section).
The All Wales group is shown as a regional comparator only and not used to test for
significance. Figure taken from [3]

These results show that children born to mothers with epilepsy being prescribed

sodium valproate during pregnancy have a significantly lower level of achievement in

KS1 tests across all indicators, with fewer children achieving the minimum standard

when compared to the matched control group by (CSI = -12.7% less than the control

group, mathematics = -12.1%, language = -10.4%, science = -12.2%). Also fewer

children born to mothers with epilepsy being prescribed multiple AEDs during
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pregnancy achieved the national standard in KS1 tests when compared to the

matched control group by (CSI = -20.7% less than the control group, mathematics

= -21.9%, language = -19.3%, science = -19.4%). There was no significant decrease

in attainment in children born to mothers with epilepsy that were not prescribed

an AED during pregnancy according to their GP records. Excluding children with

epilepsy and mothers who were recorded as smoking during pregnancy did not change

the significance of these results.

3.4 Chapter summary

This chapter has presented various epidemiological studies in epilepsy using linked,

anonymized healthcare data in the SAIL Databank. A study of GP coding of epilepsy

was undertaken by comparing epilepsy diagnoses in GP records held in the SAIL

databank to a gold standard dataset in Morriston hospital of patients with and

without an epilepsy. The results showed that using a repeat AED prescription as well

as an epilepsy diagnosis code is important in capturing epilepsy patients with high

specificity, while also maintaining good sensitivity. Using this algorithm the incidence

and prevalence of epilepsy in Wales was linked to social deprivation using the Welsh

Index of Multiple Deprivation and showed that in more deprived areas there is both a

higher incidence and prevalence of epilepsy. In a follow up study of newly diagnosed

epilepsy patients, there appeared to be no increase in social deprivation leading to the

conclusion that social deprivation in epilepsy is due to social causation rather than

social drift. Finally, the effects of AEDs prescribed during pregnancy on children’s

Key Stage 1 educational attainment was explored. Children born to mothers that

were prescribed sodium valproate or multiple AEDs in combination perform worse

than a control group and has important cognitive outcomes for pharmaco-exposed

children.
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Chapter 4

Using Natural Language

Processing techniques to extract

clinical information from

unstructured text

This chapter aims to explore the potential of extracting rich information from epilepsy

clinic letters using NLP techniques. The motivation for extracting information from

clinic letters when routinely collected information is already available for research

purposes, is that the information available is often limited in detail. For example, in

all of the studies presented in the previous chapter they each lack specific epilepsy

and seizure type, dosage details for prescribed drugs as well as finer details such

as results from EEG and MRI scans. These data are available in other sources of

information, namely free texts in healthcare settings. Manually reading through clinic

letters to obtain rich information is time consuming, and so an automated method

would be desirable to extract this data. The results in this chapter present an NLP

method to extract rich epilepsy information from clinic letters stored in Morriston

hospital and the Swansea Epilepsy Database.

4.1 Clinic letters

The Swansea Epilepsy database was used to source patients with epilepsy that

had clinic letters written by epilepsy specialists at Morriston hospital. Such letters

contain very detailed information regarding a patient’s epilepsy such as seizure type,

seizure frequency and results of examinations and investigations, and even contains

information where a patient experiences symptoms similar to epilepsy that is in fact
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due to non-epileptic attack disorder. Permission to use clinic letters from the Swansea

Epilepsy database was given under the condition all patient details were psuedo

anonymized, where validation of any algorithm was undertaken by a clinician. 240

clinic letters were manually de-identified hospital clinic letters and used to build and

test the algorithm 1. 40 letters were used for training purposes to build rule sets, and

a validation set of 200 letters to test the accuracy of the algorithm. The validation

set contained letters originating from various outpatient clinics (145 adult epilepsy, 37

paediatric epilepsy, and 18 general neurology), from first and follow-up appointments,

and written by eight different clinicians.

4.2 A rule based NLP approach to extract

epilepsy information from clinic letters

Two approaches were considered when developing the NLP pipeline - machine learning

and manually constructing rule sets. Machine learning based approaches require

vast amounts of training data for the algorithm to achieve high accuracy where rule

sets can take advantage of human knowledge when constructing rules. Given that

only 240 letters were available for this study, this limitation was considered when

deciding between a rule based and machine learning based NLP approach to analyse

these letters. Due to the very large training datasets required for machine learning

purposes (tens of thousands), a rule based approach in which human knowledge could

be quickly built into logical rules and processed by a computer program was favoured.

Therefore a rule based NLP approach was used to build an epilepsy clinical extraction

pipeline that could capture data within epilepsy clinic letters.

4.2.1 The General Architecture for Text Engineering

The General Architecture for Text Engineering (GATE) framework was used to build a

rule based NLP pipeline. Two open source applications freely available and configured

for GATE were used - the biomedical named entity linking pipeline (Bio-YODIE

plugin) and the South London and Maudsley medication application (SLaM). The

main focus was to map clinical terms found in text to the Unified Medical Language

System (UMLS) concepts so that a structured dataset could be constructed, much

like the datasets that exist within the SAIL Databank. The ANNIE pipeline was

used for basic POS tagging and sentence boundary detection, and the JAPE scripting

language was used to program various rule sets using items of information tagged

using Bio-YODIE, SLaM, ANNIE as well as custom dictionaries defined to supplement

1De-identification performed by Beata Fonferko-Shadrach
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these plugins. Figure 4.1 shows a flow chart of the various pipeline components:

Figure 4.1: Overview of the GATE pipeline and the various components used to
generate annotations

A list of predefined categories specified by a neurologist 2 formed the basis of the

important information to be extracted from the clinic letters:

2List provided by Dr Owen Pickrell
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Table 4.1: Definitions of each category intended to be extracted

Category Details

Clinic date The date the patient visited the clinic.

Date of Birth The patient’s date of birth.

Epilepsy

diagnosis

Items of information which confirmed a diagnosis of epilepsy e.g.

”this lady has a diagnosis of focal epilepsy” or ”... has recurrent

unprovoked generalised tonic-clonic seizures”. Frequently there is

diagnostic uncertainty in epilepsy clinic letters e.g. ”this lady probably

has frontal-lobe epilepsy” or ”I am uncertain whether the blackouts are

epileptic”; and so we defined five levels of certainty (1=no diagnosis,

2=unlikely, 3=uncertain, 4=likely, 5=definite) to each information item

associated with an epilepsy diagnosis. We specified that the epilepsy

diagnosis must be attributable to the patient (e.g. not a family member);

and did not include items of information that described epilepsy clinic

attendance, or a discussion about epilepsy in general, as confirmation of

an epilepsy diagnosis.

Epilepsy type Whether the patient had focal or generalised epilepsy or an epilepsy

syndrome where epilepsy type could be inferred. For example generalised

epilepsy if the letter confirmed juvenile myoclonic epilepsy. This was

based on the UMLS CUI extracted with the epilepsy diagnosis information.

We only used explicit mentions of epilepsy types or syndromes within

the clinic letters, and did not use other information, such as seizure type

or investigation results, to infer epilepsy type.

Seizure type Specific seizure types e.g. ”focal motor seizures” or ”absence seizures”.

Seizures types were categorized into focal seizures or generalised seizures

at the validation stage.

Seizure

frequency

The number of seizures in a specific time period e.g. ”two seizures per

day”, ”seven seizures in a year”, or ”seizure free since last seen in clinic.”

Medication An identifiable drug name with a quantity and frequency e.g.

”Lamotrigine 250mg bd”.

Investigations The type of investigation and classification of results (normal or

abnormal). UMLS CUI codes were used to assign a normal / abnormal

value to investigation results, using the simplified abnormal outcomes

gazetteers. We categorised the investigation results into CT, MRI, and

EEG results at the validation stage.

4.2.2 Defining rules

The following sections demonstrates the specifics of how the rules for each category

were built using the components in 4.1.
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1 Phase: Dates

2 # accept TIMEX3 and Lookup2 annotations

3 # Lookup2 are user defined Lookups desgined to signify keywords

4 Input:TIMEX3 Lookup2

5 Options: control=appelt

6

7 Rule: ClinicDate

8

9 ( #includes words such as "clinic", "hospital", "outpatient" etc

10 ({ Lookup2.majorType == "organization", Lookup2.minorType == "health_term"})

11 # followed by a TIMEX3 annotation where date is explicit i.e. full date

12 ({TIMEX3.foundByRule == "date_r1b-explicit"}|

13 {TIMEX3.foundByRule == "date_r0h-explicit"})

14

15 ):match

16 -->

17 # create new annotation "ClinicDate"

18 :match.ClinicDate = {rule = ClinicDate1, value = :match.TIMEX3.timexValue}

Figure 4.2: JAPE script to obtain clinic datae given an input of TIMEX3 and customs
annotations relating to clinic visits (LOOKUP2)

4.2.3 Clinic date and date of birth

Within each letter there were various dates pertaining to different items of information

such as referring to previous clinic visits, date of scans and prescriptions, as well as

clinic date, date of birth and date the letter was typed up by administrative staff.

The TIMEX plugin available within GATE was used to extract dates written in a

variety of ways (01/01/2001 or 1st of January 2001 etc.) that were also found within

the context of words/phrases suggesting clinic visits defined by custom gazetteers.

The JAPE script in figure 4.2 was used to extract clinic dates.

Similarly date of birth was captured by combining TIMEX3 annotations that specify

full dates i.e. day/month/year with strings such as ”D.O.B”, ”DOB:” and ”Date of

birth”.

4.2.4 Epilepsy diagnosis, epilepsy type and seizure type

Rules were built to capture phrases related to an epilepsy diagnosis attributed to a

patient. Some sample phrases, where only the first two phrases would be considered

to have a confirmation of epilepsy using the algorithm developed in this chapter

are:

I suspect he has generalized epilepsy

She was diagnosed with focal epilepsy

She doesn’t have epilepsy, but has non-epileptic attacks

I saw this gentleman regarding epilepsy

The first step was to identify words within phrases that indicate a mention of
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1 select distinct CUI ,STR ,SAB ,CODE from mrconso where STR = "epilepsy";

2 +----------+----------+-------------+-----------+

3 | CUI | STR | SAB | CODE |

4 +----------+----------+-------------+-----------+

5 | C0014544 | Epilepsy | ICD10 | G40 |

6 | C0014544 | Epilepsy | MTH | NOCODE |

7 | C0014544 | Epilepsy | SNOMEDCT_US | 267698007 |

8 | C0014544 | Epilepsy | SNOMEDCT_US | 84757009 |

9 +----------+----------+-------------+-----------+

10 4 rows in set (0.00 sec)

Figure 4.3: MySQL script used to query the UMLS RRF files. The table MRCONSO
contains a list of all CUIs that encompass various different coding systems such as
ICD 10 and SNOMED CT. By searching the STR column for the word epilepsy, the
corresponding CUI is given

epilepsy. The Bio-YODIE plugin was used to map any term found in a document

to a medical concept as part of the UMLS ontology, defined as a Lookup. To

look specifically at epilepsy concepts, a gazetteer of epilepsy terms was built by

specifying CUI codes relating to epilepsy and used to filter all Lookups within a

document. Using an installation of the UMLS Metathesaurus Rich Release Format

(RRF) files https://www.nlm.nih.gov/research/umls/licensedcontent/umlskn

owledgesources.html the following MySQL scripts were used to query the UMLS

relationship datasets for sub codes of epilepsy:

The mysql script in figure 4.3 finds all possible CUIs for the description ”epilepsy” of

which there is one CUI (C0014544) that unifies other existing coding systems that

also describe epilepsy. This CUI was then used in script 4.4 to find child codes, or

sub codes of epilepsy using the relationship file MRREL:

The script example in 4.4 shows an example list, limited to 15 items (out 2532 in total)

of UMLS concepts and CUIs that are children of the epilepsy CUI by linking UMLS

concepts in the MRCONSO table to the MRREL relationship table. These CUIs were

used to build a Flexible Gazetteer which functions as a filter for annotations produced

by the Bio-YODIE plugin. Once a subset of epilepsy terms found by Bio-YODIE has

been produced, the terms found require further context to form a diagnosis. Each

Bio-YODIE Lookup annotation has multiple attributes, of which the following were

used to write a diagnosis annotator:

� Negation (Context plugin) - if the term has a negative context i.e. does not

have epilepsy

� TUI/Unique Identifier Type (UMLS) - each concept within UMLS is
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1 select distinct a.CUI1, a.CUI2, b.STR as child from mrrel a #relationship file

2 -- join relation dataset to mrconso

3 inner join mrconso b

4 -- on the parent CUI = the child CUI

5 on a.CUI2 = b.CUI

6 -- join child CUIs to mrconso

7 inner join mrconso c

8 -- on child CUI = child CUI

9 on a.CUI1 = c.CUI

10 -- specify parent as epilepsy

11 where c.CUI like "C0014544%" and REL = "CHD"

12 -- get first 15 rows only

13 limit 15;

14 +----------+----------+----------------------------------------------------+

15 | CUI1 | CUI2 | child |

16 +----------+----------+----------------------------------------------------+

17 | C0014544 | C0014544 | Epilepsy |

18 | C0014544 | C0014544 | Epilepsy NOS |

19 | C0014544 | C0014544 | Epilepsy , NOS |

20 | C0014544 | C0270850 | Idiopathic generalized epilepsy |

21 | C0014544 | C0270850 | Idiopathic generalised epilepsy |

22 | C0014544 | C0270850 | Idiopathic generalized epilepsy , NOS |

23 | C0014544 | C0494475 | Tonic -clonic seizures |

24 | C0014544 | C0494475 | Tonic -clonic seizure |

25 | C0014544 | C0494475 | Tonic - clonic seizures |

26 | C0014544 | C0477371 | Other epilepsy |

27 | C0014544 | C0477370 | Other generalized epilepsy and epileptic syndromes |

28 | C0014544 | C0014553 | Absence Epilepsy |

29 | C0014544 | C0494474 | Special epileptic syndromes |

30 | C0014544 | C2584947 | Anoxic epileptic seizure |

31 | C0014544 | C2919602 | Witnessed epileptic seizure |

32 +----------+----------+----------------------------------------------------+

Figure 4.4: MySQL script used to query the UMLS RRF files and find all child codes
of epilepsy

attributed to a semantic type e.g. ”Disease or Syndrome”, ”Procedure”, ”Sign

or Symptom” or ”Clinical Drug” with each assigned a TUI code.

� Experiencer (Context plugin) - if the term is referenced to the primary person

within the text, i.e. the patient or other such as family members

There are many components other than finding the word ”epilepsy” that determine if

an epilepsy diagnosis has been confirmed. Custom gazetteers were created to search

for terms such as ”Diagnosis:” found in structured elements of clinic letters, and

custom gazetteers were also created to specify 5 levels of certainty (5 being most

certain) of a term to differentiate phrases such as ”it is doubtful that she has epilepsy”

and ”this is probably a case of complex partial seizures” 3. Table 4.2 shows a list

of terms and their certainty levels that was used to attach a certainty level to any

Lookup:

3With assistance from Dr Owen Pickrell
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Table 4.2: A gazetteer of terms used to determine 5 levels of certainty attached to an
epilepsy diagnosis. A confirmed diagnosis must have a value of 4 or 5.

Term Level Term Level Term Level

ruled out 1 possibility of 3 suspected 4

unlikely 2 ? 3 suggestive 4

doubtful 2 uncertain 3 treated as 4

doesn’t 1 might 3 treating this as 4

doubt 2 potential 3 probably 4

unsure 2 potentially 3 suspicion 4

unclear 2 further clarification 3 I think 4

not convinced 2 further investigation 3 impression is 4

remote 2 to be confirmed 3 sounds like 4

improbable 2 to be sure 3 sound like 4

not likely 2 to see if 3 suspect 4

?? 2 could be 3 suspicious 4

remote possibility 2 to see whether 3 certain 5

unusual 2 likely 4 definite 5

possible 3 probable 4 are dealing with 5

The JAPE script in Figure 4.5 is one example of how potential diagnoses was

captured.

The UMLS CUI codes (767 in total) from running the mysql query in Figure 4.4 were

used to filter out non-epilepsy related Lookups. Figure 4.6 shows a screenshot from

GATE of the features attributed to a Lookup. These features were used to determine

if a Lookup was negated, its certainty level, type and it’s UMLS CUI code and can

be used for further downstream annotations such as only including Lookups with a

certainty level greater than 3 as a confirmed diagnosis.
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1 Phase: Diagnosis

2 Input: Lookup Sentence

3 Options: control=all

4

5 Rule: getDiagnosis

6 (

7 ({ Lookup.PREF == "Diagnosis"} | {Lookup.PREF == "Diagnosed"} |

8 {Lookup.label == "suffers"})

9 (

10 {Lookup.STY == "Disease or Syndrome"} |

11 {Lookup.STY == "Sign or Symptom", Lookup.PREF != "Fit NOS"} |

12 {Lookup.STY == "Mental or Behavioral Dysfunction"} |

13 {Lookup.STY == "Congenital Abnormality"} |

14 ({ Lookup.STY == "Diagnostic Procedure"} |

15 {Lookup.Temporality == historical })?

16 )* # allow for further/nested diagnoses within a phrase

17 (

18 {Lookup.STY == "Disease or Syndrome"} |

19 {Lookup.STY == "Sign or Symptom", Lookup.PREF != "Fit NOS"} |

20 {Lookup.STY == "Mental or Behavioral Dysfunction"} |

21 {Lookup.STY == "Congenital Abnormality"} |

22 ({ Lookup.STY == "Diagnostic Procedure"} |

23 {Lookup.Temporality == historical })?)?

24 ):item

25 ):label

26 -->

27 :item.Diagnosis = { rule = "getDiagnosis", PREF = :item.Lookup.PREF ,

28 CUI = :item.Lookup.inst ,

29 STY = :item.Lookup.STY , Negation = :item.Lookup.Negation ,

30 Experiencer = :item.Lookup.Experiencer ,

31 Temporality = :item.Lookup.Temporality ,

32 # store certainty for later i.e. >4 = diagnosis

33 Certainty = :item.Lookup.Certainty}

Figure 4.5: JAPE script to extract diagnosis using various contexts such negation,
semantic types and certainty terms
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Figure 4.6: A Lookup for the phrase ”possible complex partial seizures”. The
”Certainty” features was added through development of custom gazetteers and JAPE
rules. The rest of the features come as default from the BIO-Yodie plugin in GATE,
and the ”Negation” feature was produced by modifying the Context plugin in GATE
to add more stop words.

4.2.5 Seizure frequency

Seizure frequency was annotated by extracting the following items of information

within text: mention of a seizure (subject to negation and certainty), number or

range of seizures and the time period over which the seizures occurred. Some example

phrases, of which the first four provide a measure of the number of seizures over a

period of time are:

She is having 5-10 seizures per week.

He describes what are probably focal seizures. These happen

at least once per day.

Since last April he has had 5 seizures.

He has had more than 20 episodes since his last visit.

She was diagnosed with epilepsy after having 5 seizures.

The approach taken was that seizure frequency can be split into three parts: mention
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1 Phase: PartialDate

2 # Token as input ensures any other annotation type stops rule from firing in between

3 # input annotations i.e. strictly day of month , followed by month , followed by year.

4 Input: DayDate Month Numeric Token

5 Options: control=appelt

6

7 Rule: partialDate

8 (

9 #gazetteer for "1st", "2nd", "3rd" etc

10 ({ DayDate })?

11 # gazetteer for months

12 {Month}

13 #any number , logically this will always be a year

14 ({ Numeric })?

15 ):match

16 -->

17

18 :match.PartialDate = {rule = partialDate ,

19 # record the day of month

20 day=:match.DayDate.value ,

21 # record the month

22 month=:match.Month.month ,

23 # record the year

24 year=: match.Numeric.value

25 }

Figure 4.7: JAPE script to define all possible ways of specifying a date including
partial ”April 25th” and full ”April 25th 1992”

of a seizure, a time period, and number of seizures. Gazetteers and JAPE rules

were written to reflect these three components. Initially seizures were filtered from

all Lookups identified by the BIO-Yodie plugin, but during the development of the

algorithm it was found that seizure mentions aren’t often specified formally e.g. ”2-4

complex partial seizures per day” but rather colloquially by both patient and clinician

e.g. ”20 episodes since his last visit” (see example 4 above) or ”15 events every

morning”. A custom gazetteer of terms was created to reflect this, but to preserve

specificity and to distinguish ”episodes” as seizures from other episodes such as

episodes of depression or anxiety, a JAPE rule was written to only associate colloquial

terms as seizures where a formal seizure type, such as complex partial seizure, is

mentioned elsewhere in the letter.

Two approaches were taken to annotate time periods. The first was to create a JAPE

rule for inferring implicit time references such as ”Since April she has had around 20

seizures” where given the clinic date, a time period could be calculated. This involved

capturing calendar references that span from month names i.e. April, to full date

references i.e. 1st April or 1st April 2005. The Jape script in Figure 4.7 show how all

of these forms are captured in a single rule using the Kleene operator for optional

arguments.

The second approach was to annotate explicit mentions of a time period such as ”10
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per week”. Custom gazetteers for temporal terms such as ”since”,”in the last” ,”per

week”, ”a day” were created with attributes for each. Table 4.3 show a sample of the

gazetteer used to define explicit time periods:

Table 4.3: A sample of phrases used to define explicit time periods.

Item Number Time Unit When

a year 1 year

a year 1 year

b.d 2 day

b.d. 2 day

b.i.d. 2 day

bd 2 day

in the evening 1 day evening

every morning 1 day morning

in the morning 1 day morning

daily 1 week

every day 1 week

in a day 1 day

in a single week 1 day

in a week 1 week

per day 1 day

o.d. 1 day

at night 1 day night

a month 1 month

The JAPE script in 4.7 and the gazetteer in Table 4.3 were used to reference various

points in time and combined with seizures mentions to annotate seizure frequency as

well the individual components to calculate the frequency:

4.2.6 Medication

The SLaM (South London and Maudsley) medication application for GATE [244]

was used and modified to annotate documents with prescription information that

include drug name, tablet size, unit of measurement and frequency. The SLaM

application comes with custom gazetteers for drugs derived from BNF code lists,

units and frequency terms which are then used as input to various JAPE rules. The

drugs annotated with the SLaM application did not contain any code reference such

as UMLS or READ, so the BNF gazetteer was swapped with the UMLS gazetteer
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1 Phase: SeizureFrequency

2 Input: NumberRange timePeriods Lookup3 Sentence startList Split

3 Options: control=all

4

5 # define one of may rules in JAPE script

6 # i.e. seizureFrequency0a, seizureFrequency0b ...

7 Rule: seizureFrequency0a

8 (

9 # could be a number or range pertaining to seizure quantity

10 ({ NumberRange }):X1

11 {Lookup3.Negation == Affirmed}

12 i.e. terms such as "since", "during"

13 {timePeriods.period ==yes}

14 # number of days/month defining a time period

15 ({ NumberRange }):X2

16 ):match

17 -->

18 :match.SeizureFrequency = { SeizureType =:match.Lookup3.PREF ,

19 rule = seizureFrequency0a,

20 PREF = "Fit Frequency",

21 CUI = "C0149775",

22 seizureNum = :X1.NumberRange.value ,

23 seizureLower = :X1.NumberRange.N1,

24 seizureUpper = :X1.NumberRange.N2,

25 timeNum = :X2.NumberRange.value ,

26 timeLower = :X2.NumberRange.N1,

27 timeUpper = :X2.NumberRange.N2,

28 period = :match.timePeriods.time -unit

29 }

Figure 4.8: JAPE script to extract certain ways of experessing seizure frequency

used by BIO-Yodie and the JAPE scripts that came with the SLaM application were

modified to accept Bio-YODIE annotations.

Other JAPE rules were also modified and supplemented with custom gazetteers to

capture further details about prescriptions, such as if a prescription mention was

historical, or if a prescription were to be made pending further follow up. This made

it possible to select current prescriptions only. The JAPE script in figure 4.9 shows

how custom gazetteers for words such as ”pending”, ”may”, ”try”, ”previously” etc.

were used to pad out prescriptions with further context:

During development of the algorithm, a common way of expressing directions to take

a prescription multiple times a day was found to include times of day:

Lamotrigine︸ ︷︷ ︸
Drug

250mg in the morning︸ ︷︷ ︸
Direction 1

, 200mg at night︸ ︷︷ ︸
Direction 2

Where both directions must be captured to sum to a daily dose of 550mg of Lamotrigine

per day. The JAPE script in figure 4.10 uses Kleene operators to accommodate

multiple directions when appearing consecutively without a Lookup (usually a drug

given this pattern) in between them:
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1 Phase: DrugStatus

2 Input: Measurement DoseFrequency Lookup Numeric ContextPrescription NewLine

3 Options: control=appelt

4

5 Rule: doseMatch0

6 (

7 # optional (?) gazetteer of terms such as "descreased ","continue","try"

8 ({ ContextPrescription })?

9 # drug tagged in Bio -YODIE or measurement

10 # i.e. Lamotrigine 200mg or 200mg Lamotrigine

11 ({ Lookup.STY=="Pharmacologic Substance"} | {Measurement })

12 # Repeat again i.e. if drg was picked up in first line

13 # logically measurement should be picked up in second , vice -a-versa

14 ({ Lookup.STY=="Pharmacologic Substance"} | {Measurement })

15 # twice a day , once in the morning etc

16 {DoseFrequency}

17 # another optional context i.e. prescribe <Presription > if.....

18 ({ ContextPrescription })?

19 ):match

20 -->

21 :match.Prescription0 = { rule = doseMatch0, drug = :match.Lookup.PREF ,

22 CUI = :match.Lookup.inst ,

23 dose -val = :match.Measurement.quantity ,

24 dose -unit =: match.Measurement.units ,

25 dose -frequency = :match.DoseFrequency.frequency ,

26 time -unit = :match.DoseFrequency.time -unit ,

27 dose -interval = :match.DoseFrequency.interval ,

28 Context = :match.ContextPrescription.context}

Figure 4.9: JAPE script to extract prescriptions

4.2.7 Investigations - CT, MRI and EEG scans

Two attempts were made to capture details of CT, MRI and EEG scans. The first

attempt used CUI subsets in a similar way to how Bio-YODIE annotations were

filter for epilepsy specific annotations, however terms relating to scan result were

too specific to map directly to language used within clinic letters. Table 4.4 shows a

sample of how UMLS concepts related to EEGs are highly specific in terms of string

matching to phrases within a text:
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1

2 Phase: LazyPrescription

3 Input: Measurement Token Lookup

4 # Pick up all possible mentions , rather than longest match.

5 Options: control=all

6

7

8 # JAPE rules for when multiple doses are repeated off for just one drug

9 # maximum three does per prescription are captured

10 # don 't need to worry about b.d., twice a day etc

11

12 Rule: lazyMatch

13 Priority: 100

14 (

15 # Get drug mention

16 ({ Lookup.STY=="Pharmacologic Substance"} | {Lookup.STY=="Clinical Drug"})

17 # Get first measurement (quantity and unit)

18 # Don 't need how many times per day , explicitly says "in the morning"

19 ({ Measurement }):m1

20 # Allow a toke that isn 't a Lookup ...i.e. a comma or "and"

21 ({Token ,! Lookup })?

22 # Get second measurement (quantity and unit)

23 # Don 't need how many times per day , explicitly says "at night"

24 ({ Measurement }):m2

25 ({Token ,! Lookup })?

26 # Optional further dose

27 ({ Measurement }):m3

28

29 ):match

30 -->

31 :match.Prescription = { rule = lazyMatch ,

32 drug = :match.Lookup.PREF ,

33 CUI = :match.Lookup.inst ,

34 dose -val1 = :m1.Measurement.quantity ,

35 dose -val2 = :m2.Measurement.quantity ,

36 dose -val3 = :m3.Measurement.quantity ,

37 dose -unit1 =:m1.Measurement.units ,

38 dose -unit2 =:m2.Measurement.units ,

39 does -unit3=:m3.Measurement.units ,

40 # hardcoded i.e. each unique directions will

41 # be assgned once per day

42 dose -frequency = "1", time -unit = "day"}

Figure 4.10: JAPE script to extract multiple prescription directions.
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Table 4.4: A sample of UMLS terms and the important information within each.
UMLS terms such as these shown are difficult to map directly to text within clinical
texts, where the terms of interest from within each UMLS term are much easier to
map.

UMLS term Term of interest

EEG shows generalized, bilateral, synchronous,

symmetrical discharge

symmetrical discharge

EEG with hyperventilation-induced focal epileptiform

discharges

focal epileptiform discharges

EEG with hyperventilation-induced generalized

epileptiform discharges

generalized epileptiform

discharges

MRI shows leukoencephalopathy with cavitation leukoencephalopathy +

cavitation

MRI shows congenital abnormalities of the posterior

fossa

congenital abnormalities

MRI shows short, thick corpus callosum abnormal corpus callosum

Diffuse cerebral atrophy on CT and MRI cerebral atrophy

Aplasia of posterior semicircular canal on CT scan aplasia

Low density white matter on CT scan low density white matter

In table 4.4 the UMLS terms in column 1 only get mapped to terms in text if the

exact term is found, but due to the length and specificity of some terms there was

low sensitivity in picking up investigations. Therefore custom gazetteers that use

smaller terms categorised as normal (CUI:C0560017) or abnormal (CUI:C0151611)

were produced to maximize to maximize sensitivity of investigation outcomes that

preserve what is important i.e. normal or abnormal results 4. Table 4.5 shows a list

of terms used to identify possible investigation findings:

4with assistance from Dr Owen Pickrell
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Table 4.5: A list of custom terms used to indicate a possible EEG finding

Custom term Derived

UMLS

concept

Custom term Derived

UMLS

concept

abnormal C0151611 normal C0560017

abnormal EEG C0151611 normal EEG C0560017

abnormalities C0151611 photosensitive C0151611

abnormality C0151611 photosensitive C0151611

burst suppression C0151611 photosensitivity C0151611

clear C0560017 polyspike C0151611

did not capture any

events

C0560017 poly-spike C0151611

dysrhythmic C0151611 polyspike and wave C0151611

EEG normal C0560017 right side slowing C0151611

epileptic C0151611 sharp C0151611

epileptiform C0151611 spike C0151611

epileptogenic C0151611 spike and wave C0151611

failed to alter C0560017 spikes C0151611

focal slowing C0151611 spike-wave C0151611

focus C0151611 temporal slowing C0151611

generalised slowing C0151611 unremarkable C0560017

irregular C0151611 unstable C0151611

left side slowing C0151611

Once terms were identified within the text, the JAPE rule in figure 4.11 was written

to associate them to investigation names using strings such as ”EEG”, ”MRI” and

”CT” as long as they were found after the investigation name and within the same

paragraph:

4.2.8 Validation of Algorithm

After developing the pipeline, 200 unseen letters were used to validate accuracy against

a clinician 5. For each category of information, the scope of what was expected to

be extracted or not extracted was discussed with the clinician. The clinician then

annotated every letter for each category, including multiple mentions from the same

category. Separately, the pipeline was run against the 200 test letters and annotated

5performed by Dr Owen Pickrell
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1 Phase: Investigations

2 # Investigation are Investigation types i.e. EEG

3 # InvestigationFinding are outcomes i.e. lesion

4 # p is paragraph to ensure

5 Input: Investigation p InvestigationFinding

6 Options: control=brill

7

8 Rule: getInvestigationsOutcomes

9 (

10 # get investigation type i.e. EEG

11 ({ Investigation }):invest

12 # followed by outcomes (+ means one or more)

13 (({ InvestigationFinding }):outcome)+

14 ):match

15 -->

16 :match.Investigations =

17 { rule = getInvestigationsOutcome1,

18 #store type

19 INVESTIGATION = :invest.Investigation@string ,

20 #store outcome

21 Outcome = :outcome.InvestigationFinding@string ,

22 # store outcome CUI

23 CUI = :outcome.InvestigationFinding.CUI ,

24 #store negation status

25 Negation = :outcome.InvestigationFinding.Negation}

Figure 4.11: JAPE script to extract investigation outcomes

for each category and the results of the clinician and pipeline were reviewed, where

all disagreements were manually reviewed.

Precision, recall and F1-score were used as measures to determine the accuracy of

the pipeline and are defined as:

Precision =
TP

TP ∗ FP

Recall =
TP

TP ∗ FN

F1score =
Precision ∗Recall
Precision+Recall

True positives were defined as both the pipeline and clinician identifying a positive

finding such as confirming an epilepsy diagnosis, false positives were defined as the

pipeline identifying a positive finding where the clinician did not, and false negatives

were defined as the algorithm failing to identify a positive finding where the clinician

was able to. To resolve any mention where there was a disagreement, either the

disagreement remained after manual review, or in small proportion of cases where the

clinician had made a mistake, the clinicians record was corrected. Results are given

in table 4.6 where a ”per item” score is based on every possible mention within the

categories, and a ”per letter” score assumes that identification of one true positive
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within a given category is a true positive for that category as a whole i.e. if there are

3 mentions of an epilepsy diagnosis, if the pipeline was able to identify just one, the

per letter score for epilepsy diagnosis would be a true positive.
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Table 4.6: Precision, recall and F1-score are calculated across 9 epilepsy specific categories as well as clinic date and date of birth. Two
approaches have been considered - the first measures the algorithm’s accuracy for every mention (N=1925) across all categories as identified
in the manual review by the clinician, and the second approach aggregates results from multiple mentions per category, per letter i.e. if
there are multiple true mentions regarding confirmation of epilepsy in a single letter, we assign a single true positive providing the algorithm
picks up at least one of these mentions, with the same logic used to determine false positives, true negatives and false negatives.

Variables Per item performance Per letter performance

N items Precision % Recall % F1 score % N letters Precision % Recall % F1 score %

Clinic Date 191 98.9 97.4 98.2 186 100 97.3 98.6

Date of Birth 201 100 98 99 199 100 98 99

Epilepsy Confirmed 383 88.1 99 88.5 150 94.1 94.1 94.1

Epilepsy Type 89 89.9 79.8 84.5 70 91 87.1 89.1

Focal Seizures 145 96.2 69.7 80.8 69 96.7 83.1 89.4

Generalised Seizures 151 88.8 52.3 65.8 76 89.7 68.4 77.6

Seizure Frequency 153 86.3 53.6 66.1 119 92.2 59.7 72.4

Medication 316 96.1 94 95 157 98.6 91.1 94.7

CT Scan 17 55.6 58.8 57.1 16 76.9 62.5 69

MRI Scan 109 82.4 68.8 75 66 86.7 78.8 82.5

EEG 170 81.5 75.3 78.3 79 86.6 89.9 88.2

All 1925 90.6 80.8 85.4 1187 96.6 87.2 91.7
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The pipeline obtained an overall precision, recall and F1-score of 91%, 81% and

85% on a per item basis, where high scores were obtained in prescription (F1=95%),

confirmation of an epilepsy diagnosis (93%), epilepsy type (84%) and presence of

focal seizures (81%). The algorithm was less accurate in identifying CT (57%), MRI

(75%) and EEG results (78%), seizure frequency (66%) and generalised seizure terms

(66%) given the complexity and high variance in expressing these concepts in clinic

letters. The pipeline achieved even higher overall scores for precision, recall, and

F1-score (96%, 87%, 91%) on a per letter basis, in which given how the final data is

to be used for further research purposes, a decision for each category can be made

accurately across measures such as epilepsy diagnosis, epilepsy type, seizure type and

prescriptions.

4.3 Chapter Summary

A gold standard dataset of de-identified clinic letters was used to build and test an

NLP pipeline, that was found to accurately extract novel information about epilepsy

when compared to manual review by a clinician. The use of UMLS terminologies,

in particular the ability to map findings to CUI codes can be powerful in curating

structured datasets that can be linked to other routinely collected data such as GP

and hospital patient records, where these data can be processed programmatically

rather than via manual review. Some categories such as diagnosis of epilepsy, epilepsy

type and prescriptions can be extracted with high accuracy, but some concepts such

as EEG/MRI/CT investigations and seizure frequency remained difficult to extract

and further improvements are necessary for further research purposes. However, the

information that the pipeline can extract well would improve the richness of data

such as GP records that are held within the SAIL databank.

While gold standard letters have been used, the pipeline was tested on a relatively

small number of letters sourced from one Health-board with a limited number of

writing styles and letter structures, therefore the generalizability of the pipeline may

be limited and would benefit from a larger test set. The pipeline does not however

rely on the structure of clinic letters and is designed to use free text without relying on

dedicated sections in the letters. A ”per item” and ”per letter” score was calculated

to validate both the accuracy of the pipeline, but also to validate how information

within letters can be used practically for further research by summarising all items in

a clinic letter and giving a decision boundary on the category as a whole.
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Chapter 5

Predicting functional impact of

Single Nucleotide

Polymorphisms

The aim of this chapter was to investigate the best method for indicating that a Single

Nucleotide Polymorphism (SNP) is a pathogenic consideration for epilepsy/neurology

phenotypes. Given that an exome contains 30-40 thousands SNPs it is important

to prioritise those that may contribute to disease so that they can be studied in

downstream functional validation and link to observable clinical outcomes. Various

machine -learning techniques were explored to identify the most accurate method of

classifying disease (pathogenic) and benign SNPs. These techniques were compared

to existing prediction software when tested on a disease non-specific dataset of

SNPs as well as epilepsy specific SNPs. The humvar dataset was identified from

an extensive literature review to be a commonly-used training dataset for machine

learning classification of SNPs. It contains over 70,000 pathogenic and benign SNPs

obtained from published studies. These SNPs were used to train various machine

learning algorithms which were then compared to existing prediction algorithms

widely-used in the literature. A set of SNPs found in genes associated with epilepsy

were also scored using the trained algorithm. All code used in this chapter can be

found at the following Github repository https://github.com/arronlacey/PhD-

Chapter5.

5.1 Features

An automated feature extraction pipeline was built so that for each mutation in the

humvar dataset, the pipeline obtains 30 protein features which are all used to train
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and test various machine learning algorithms. The pipeline consists of bash and

R scripts to pull data from multiple websites, public databases and derive further

features with downstream processing. Figure 5.1 shows a flowchart of the main

processes in the feature extraction pipeline:

Figure 5.1: Pipeline of SNP data collection. The data is used to train a classifier that
can be used to predict disease/benign status of a SNP.

The pipeline was built to accommodate chromosomal or amino acid co-ordinates in

BED and HGVS formats, as well as rsid format. Sections 5.1.1 - 5.1.3 document how

each process in the feature extraction pipeline was built.

5.1.1 Variant Effect Predictor

The humvar dataset rsids were used as input to the Variant Effect Predictor (VEP)

annotating system to obtain conservation scores and existing prediction software

scores for each SNP. Table 5.1 describes the 38 features collected to be used as part

of the training data for machine learning.
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Table 5.1: Features obtained from VEP

Feature Description

DANN score Deep learning SNP prediction score [204]

GM12878 fitCons score Fitness conservation score for lymphoblastiod cells [245]

GM12878 fitCons score rankscore Rankscore for lymphoblastoid cells [245]

GenoCanyon score rankscore Prediction score for non-coding function regions [246]

H1NAhESC fitCons score rankscore Fitness conservation score for human embryonic stem cells [245]

HUVEC fitCons score rankscore Fitness conservation score for umbilical vein epithelial cells [245]

MetaLR score SNP prediction score using 9 existing SNP software, trained with

logistic regression [205]

MutationAssessor score rankscore SNP prediction application for cancer variants [206]

REVEL score SNP prediction aggregation score using 8 SNP prediction software

for predicting pathogenicity of rare variants [207]

fathmmNAMKL coding score SNP prediction score using Hidden Markov Models [208]

integrated fitCons score Combined fitcons score

integrated fitCons score rankscore Combined fitcons rank score

PolyPhen score SNP prediction score using a Näıve Bayes classifier [196]

SIFT score SNP prediction score using protein conservation methods [187]

CADD raw rankscore Combined Annotation–Dependent Depletion SNP prediction score

[209]

DANN rankscore DANN converted rankscore [204]

EigenNAPCNAraw rankscore SNP prediction score using unsuperivsed learning [247]

FATHMM converted rankscore FATHMM converted rankscore

GERP.. RS rankscore Conservation score in humans based on 1,092 genomes [248]

MetaLR rankscore MetaLR rankscore

MetaSVM rankscore SNP prediction score using 9 existing SNP software, trained with

SVM [205]

MutationTaster converted rankscore Mutation taster rankscore

PROVEAN score SNP prediction in non-coding regions [249]

REVEL rankscore REVEL rankscore

SiPhy 29way logOdds rankscore SIte-specific PHYlogenetic analysis [224]

VEST3 rankscore Variant Effect Scoring Tool [210]

fathmmNAMKL coding rankscore FATHMM coding rankscore

phastCons100way vertebrate rankscore Evolutionary conservation (ranked) scores in vertabrae [223]

phastCons20way mammalian rankscore Evolutionary conservation (ranked) scores in mammals [223]

phyloP100way vertebrate rankscore Score predicting non-neutral substitution rates in vertebrae [222]

phyloP20way mammalian rankscore Score predicting non-neutral substitution rates in mammals [222]

Reliability index Reliability index as calculated by SNAP2

GERP.. NR Conservation score in humans based on 1,092 genomes [248]

SiPhy 29way logOdds SiPhy log odds score

phastCons20way mammalian Evolutionary conservation scores in mammals [223]

gnomAD Genome aggregation SNP frequency in population combined

exomes and genomes

gnomAD exomes Genome aggregation SNP frequency in population in exomes

gnomAD genomes Genome aggregation SNP frequency in population in genomes
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Table 5.2: Amino acid attributes with three group classification. Each classification
is given by a unique set of amino acids. Table reproduced with permission from
https://cran.r-project.org/web/packages/protr/vignettes/protr.html

Atrribute Group 1 Group 2 Group 3

Hydrophobicity Polar Neutral Hydrophobicity
R, K, E, D, Q, N G, A, S, T, P, H,

Y
C, L, V, I, M, F,
W

Normalized van der
Waals Volume

0-2.78 2.95-4.0 4.03-8.08

G, A, S, T, P, D,
C

N, V, E, Q, I, L M, H, K, F, R, Y,
W

Polarity 4.9-6.2 8.0-9.2 10.4-13.0
L, I, F, W, C, M,
V, Y

P, A, T, G, S H, Q, R, K, N, E,
D

Polarizability 0-1.08 0.128-0.186 0.219-0.409
G, A, S, D, T C, P, N, V, E, Q,

I, L
K, M, H, F, R, Y,
W

Charge Positive Neutral Negative
K, R A, N, C, Q, G, H,

I, L, M, F, P, S, T,
W, Y, V

D, E

Secondary Structure Helix Strand Coil
E, A, L, M, Q, K,
R, H

V, I, Y, C, W, F,
T

G, N, P, S, D

Solvent Accessibility Buried Exposed Intermediate
A, L, F, C, G, I,
V, W

R, K, Q, E, N, D M, S, P, T, H, Y

5.1.2 CTD Descriptors

CDT (Composition/Transition/Distribution) descriptors were used to assign

physiochemical attributes to each SNP [250]. The protr R package contains a

function that calculates the global distribution of amino acid attributes classed into 3

categories as a percentage of all amino acids in a given sequence. These attributes

and categories are shown in Table 5.2

The protr R function was modified to output the attributes and categories for every

amino acid in a sequence so that data on both a wild type and a SNP could be

obtained and the differences compared. The modified function is shown in Figure

5.2
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1 extractCTDCraw = function(x) {

2 k<-as.numeric(x[,2])

3 prot <-as.character(x[,1]) # protein identifier

4 pos <-as.numeric(x[,2]) # SNP position

5 wild <-as.character(x[,3]) # wild type amino acid

6 sub <-as.character(x[,4]) # sub is the mutation

7

8 group1 = list(

9 'hydrophobicity ' = c('R', 'K', 'E', 'D', 'Q', 'N'),

10 'normwaalsvolume ' = c('G', 'A', 'S', 'T', 'P', 'D', 'C'),

11 'polarity ' = c('L', 'I', 'F', 'W', 'C', 'M', 'V', 'Y'),

12 'polarizability ' = c('G', 'A', 'S', 'D', 'T'),

13 'charge ' = c('K', 'R'),

14 'secondarystruct ' = c('E', 'A', 'L', 'M', 'Q', 'K', 'R', 'H'),

15 'solventaccess ' = c('A', 'L', 'F', 'C', 'G', 'I', 'V', 'W'))

16 group2 = list(

17 'hydrophobicity ' = c('G', 'A', 'S', 'T', 'P', 'H', 'Y'),

18 'normwaalsvolume ' = c('N', 'V', 'E', 'Q', 'I', 'L'),

19 'polarity ' = c('P', 'A', 'T', 'G', 'S'),

20 'polarizability ' = c('C', 'P', 'N', 'V', 'E', 'Q', 'I', 'L'),

21 'charge ' = c('A', 'N', 'C', 'Q', 'G', 'H', 'I', 'L',

22 'M', 'F', 'P', 'S', 'T', 'W', 'Y', 'V'),

23 'secondarystruct ' = c('V', 'I', 'Y', 'C', 'W', 'F', 'T'),

24 'solventaccess ' = c('R', 'K', 'Q', 'E', 'N', 'D'))

25 group3 = list(

26 'hydrophobicity ' = c('C', 'L', 'V', 'I', 'M', 'F', 'W'),

27 'normwaalsvolume ' = c('M', 'H', 'K', 'F', 'R', 'Y', 'W'),

28 'polarity ' = c('H', 'Q', 'R', 'K', 'N', 'E', 'D'),

29 'polarizability ' = c('K', 'M', 'H', 'F', 'R', 'Y', 'W'),

30 'charge ' = c('D', 'E'),

31 'secondarystruct ' = c('G', 'N', 'P', 'S', 'D'),

32 'solventaccess ' = c('M', 'S', 'P', 'T', 'H', 'Y'))

33 xSplitted = substr(x[1,5],pos ,pos)

34

35 # Get groups for each property & each amino acid

36 g1 = lapply(group1 , function(g) which(xSplitted %in% g))

37 names(g1) = paste(names(g1), '1.', sep = '.')

38 g2 = lapply(group2 , function(g) which(xSplitted %in% g))

39 names(g2) = paste(names(g2), '2.', sep = '.')

40 g3 = lapply(group3 , function(g) which(xSplitted %in% g))

41 names(g3) = paste(names(g3), '3.', sep = '.')

42 }

Figure 5.2: R function modified from the protr package to obtain CTD amino acid
groups and categories for each position of a protein sequence
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5.1.3 Secondary structure prediction

The pipeline uses the open source program PSIPRED to predict the secondary

structure state (coil, helix, sheet) at each amino acid position for both the wild

type and the variant protein sequences. For each SNP the protein sequence was

downloaded using the Uniprot API, where the SNP was swapped into the sequence.

In total 21,094 wild type sequences and 74,393 SNP sequences were processed with

PSIPRED on the HPC Wales cluster. For each SNP the probability change between

each state of the position containing the SNP and the corresponding wildtype states

were used as well as the overall predictions to produce 5 features for the final training

data. The following bash script loads SNP co-ordinates from the humvar dataset into

the uniprot API to retrieve protein sequences for each SNP:

1

2 #!/bin/bash

3

4 #download fasta seqs given file of uniprot ids

5

6 # SNP input file

7 file=$1

8 # Output file name minus extension

9 name=$2

10

11 # assign 4 columns in SNP input file to variables: protien ID, position , and alleles

12

13 ids=($(cat ${file} | awk '{print $1}'))

14 pos=($(cat ${file} | awk '{print $2}'))

15 wild=($(cat ${file} | awk '{print $3}'))

16 sub=($(cat ${file} | awk '{print $4}'))

17

18

19 # get ref fasta for each line in file , with custom header attached

20 # use cURL to retrieve from the uniport REST URL

21

22 for i in "${!ids[@]}" ; do

23 echo "#${ids[i]}_${pos[i]}_${wild[i]}_${sub[i]}";

24 curl -sS "http ://www.uniprot.org/uniprot/"${ids[i]}".fasta";

25 done |

26 sed '/^>/ d' |

27 sed -r 's/[#]+/ >/g' |

28 perl -npe 'chomp if ($.!=1 && !s/^>/\n>/)' > $name.snp.fasta

Figure 5.3: Bash script to retrieve fasta sequences for a file given in SNP format.

The awk script in figure 5.4 replaces the wild type amino acid at the SNP position

with the mutated amino acid.

The sequences containing the wild type and the SNPs were then processed using
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1 # field separator defined as _ i.e. fasta headers

2 BEGIN { FS="_" }

3 # get fasta headers and store components into array

4 /^>/ {

5 id=$1;p=$2; wild=$3;subs=$4; c=$NF; next

6 }

7 {

8 # start of sequence

9 s=1

10 e=length($0) #end of sequence

11 #substring up to mutation , substitution , substring after mutation

12 print id"_"p"_"wild"_"subs" >\n"substr($0,s,p-1) c substr($0,p+1,e)

13 }

Figure 5.4: An AWK script that replaces the wild type amino acid with the mutation

1 #!/bin/bash

2 #SBATCH --job -name psipred -array # name of job as appears in queue

3 #SBATCH --time 01-21:00 # length of time for each job to run

4 #SBATCH -o psibatchout.$I # standard output of job

5 #SBATCH -e psibatcherr.$J # error log

6 #SBATCH --array=1061-1080 # job array i.e. parallel process multiple jobs

7 #SBATCH --mem -per -cpu=4000 # memory per cpu

8 #SBATCH --ntasks=128 # number of nodes

9 #SBATCH --mail -user=user@mail.com # notify job is complete via email

10 module load compiler/gnu/4.8.0 # compiler

11 module load R/3.2.3 # external dependencies

12

13 # psipred code

14 code=${HOME}/Phd/script_dev/rfpipeline.sh

15

16 # input sequence file

17 data_file="humvarids_${SLURM_ARRAY_TASK_ID }.fasta"

18 # declare the file about to be used

19 echo ${data_file}

20 # run psipred on input file

21 ${code} ${data_file}

Figure 5.5: A SLURM job script run on the HPC Wales Portal that calls the psipred
commandline facility. The script logs a job in a queue containing any other jobs users
submit across HPC clusters, where parameters such as compiler, number of cores and
how long the script should be allowed to run for. It takes 45 hours (time parameter
01-21:00) to process 300 sequences of varying length.

PSIPRED. Each sequence took on average 20 minutes to process on a standard

desktop, therefore this task was completed by running PSIPRED on the HPC Wales

cluster which reduced the time taken to 2-3 minutes. The SLURM script in 5.5 is

the SLURM job schedule script that specifies a variety of parameters needed such as

number of cores, run time and memory required to run psipred. The fair usage limit

on the HPC Wales cluster allowed for a scheduled job to run up to 48 hours, which is

the equivalent of processing 300 sequences, therefore the 21,094 wild type sequences

and 74,393 SNP sequences were split into 318 jobs.

Each PSIPRED output file for a given SNP was compared to it’s corresponding wild

type protein using the bash script in figure 5.6. A sample comparison is given in

Figure 5.7 which shows how the secondary structure prediction changes not only at
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1 # Create index of all faster headers in humvar files

2 for i in *.fasta; do

3 IFS=_ read -ra arr <"$i"

4 mv $i `echo "${arr[0]}_${arr[1]}_$i" | sed -e 's/>//g'`

5 done

6

7

8 # get protein name , snp position and file id number from filename

9 IFS=$'\n' fa=( $(ls *.fasta | awk -F'[_.-]' '{print $1" "$2" "$5}' ) )

10

11 # use file id number to find .ss file (secondary structure file)

12

13 for i in "${fa[@]}" ; do

14 echo "$i" | xargs -n 3 bash -c 'cat *-$2.fasta.ss |sed "s/$/ $0 $1 $2/" | nl -v $2'

15 done > master.ss

16 # Extract SNP line where amino acid positions are equal in both files

17 awk '$2 == $9' master.ss | sed 's/ \{1 ,\}/,/g' | sed 's/^,//' > master.csv

Figure 5.6: A bash script to process output of psipred.

the SNP position, but also in neighbouring SNPs. This is due to the underlying

PSIBLAST alignment used when processing the wild type sequence and the mutated

sequence, where a proportion of candidate protein sequences used in the secondary

structure prediction in both cases will differ, however the largest changes are generally

at the SNP position or next to it.

Figure 5.7: Comparison of two sample PSIPRED output files, where the left shows
predictions for the wild type protein and the right shows the same sequence with
the SNP is inserted. Lines are colour coded by increasing difference in prediction
probabilities between the wild type and SNP sequence, where red depicts the largest
difference and yellow the smallest.
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5.1.4 Results

After feature extraction the humvar dataset contained 14,266 pathogenic and 29,154

benign SNPs with all feature data. A 5-fold cross validation was performed in which

for each fold 75% of the SNPs were randomly selected to form a training set, and the

remaining 25% were used as an unseen test set on the trained classifiers. 6 classifiers

were built using the training data: Random Forest, Decision Tree, Logistic Regression,

Artificial Neural Network, Naive Bayes and Support Vector Machine (SVM). The R

code in figure 5.8 shows the functions used to train and test each classifier.

Table 5.3 shows the results of each fold for each classifier and figure 5.9 shows a Receiver

Operator Curve (ROC) plotting the sensitivity vs specificity of each classifier for it’s

mean scoring model in terms of accuracy across all scoring thresholds (normalized

between 0 and 1 ) generated by the model. Figure 5.10 shows the importance of each

feature when used in the Random Forest model to discriminate between pathogenic

SNPs and neutral SNPs. The importance is measured by the difference in accuracy

when excluding a feature and re-running the model compared to the model with all

features used.
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1 # Train Random Forest , Logistic Regression , Support Vector Machine

2 # Artificial Neural Network , Decision Tree and Naive Bayes classifiers

3

4

5 # Random Forest

6 # load Random Forest package

7 require(randomForest)

8 # Train the model

9 rf.mdl <- randomForest(label ~.,data=train ,importance=TRUE)

10 # Predict probability belong to each class

11 rf.prob <-predict(rf.mdl , test ,type = "prob")

12 # Give prediction output: Disease or Polymophism

13 rf.pd<-predict(rf.mdl , test)

14

15

16 # Logistic Regression

17 # glm function is in base R

18 # Use glm function with family = "binomial" for logistic regression

19 lr.mdl = glm(label ~ ., data=train , family = binomial("logit"))

20 # Give prediction based on LG response

21 lr.prob <-predict(lr.mdl , test[,2:ncol(test)],type="response")

22

23

24 # C45 Decision Tree

25 # Load the rpart R package

26 library(rpart)

27 # Train decision tree

28 dt.mdl <- rpart(label ~ .,method="class", data=train)

29 # Give prediction

30 dt.prob <-predict(dt.mdl , test[,2:ncol(test)],type="prob")

31

32

33 # Support Vector Machine

34 # Load e1071 R package

35 library(e1071)

36 # Train SVM model

37 svm <- svm(label ~ ., data = train)

38 predict(svm , test[,2:ncol(test)], type = "class")

39

40

41 # Neural Network

42 # load the nnet R package

43 library(nnet)

44 # Train Neural Network

45 nn<-nnet(label ~ ., data = train , size = 3, rang = 0.1,

46 decay = 5e-4, maxit = 200)

47 # Give prediction

48 nn.prob <-predict(nn, test[,2:ncol(test)])

49

50

51 # Naive Bayes

52 # load the e1071 R package

53 library(e1071)

54 # Train Naive Bayes

55 nb <- naiveBayes(label ~ ., data = train)

56 # Give prediction

57 predict(nb, test[,2:ncol(test)], type = "class")

Figure 5.8: R script used to train and test a Random Forest classifier
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Table 5.3: 5 fold cross-validation of the 6 classifiers.

Algorithm Fold Disease Neutral TP FP FN TN TPR FPR Accuracy

Random Forest 1 4137 5426 3778 257 359 5169 93.63 93.51 93.56

2 4045 5518 3687 249 358 5269 93.67 93.64 93.65

3 4127 5436 3813 269 314 5167 93.41 94.27 93.9

4 4125 5438 3791 265 334 5173 93.47 93.93 93.74

5 4155 5408 3806 250 349 5158 93.84 93.66 93.74

Logistic Regression 1 4211 5352 3692 343 519 5009 91.5 90.61 90.99

2 4109 5454 3593 343 516 5111 91.29 90.83 91.02

3 4195 5368 3725 357 470 5011 91.25 91.42 91.35

4 4154 5409 3680 376 474 5033 90.73 91.39 91.11

5 4153 5410 3685 371 468 5039 90.85 91.5 91.23

Neural Network 1 4179 5384 3682 353 497 5031 91.25 91.01 91.11

2 4077 5486 3587 349 490 5137 91.13 91.29 91.23

3 4141 5422 3742 340 399 5082 91.67 92.72 92.27

4 4133 5430 3681 375 452 5055 90.75 91.79 91.35

5 4162 5401 3701 355 461 5046 91.25 91.63 91.47

Näıve Bayes 1 4744 4819 3717 318 1027 4501 92.12 81.42 85.94

2 4652 4911 3614 322 1038 4589 91.82 81.55 85.78

3 4746 4817 3755 327 991 4490 91.99 81.92 86.22

4 4676 4887 3702 354 974 4533 91.27 82.31 86.11

5 4769 4794 3773 283 996 4511 93.02 81.91 86.63

SVM 1 4241 5322 3775 260 466 5062 93.56 91.57 92.41

2 4128 5435 3640 296 488 5139 92.48 91.33 91.8

3 4220 5343 3768 314 452 5029 92.31 91.75 91.99

4 4190 5373 3742 314 448 5059 92.26 91.86 92.03

5 4239 5324 3769 287 470 5037 92.92 91.47 92.08

C45 Decision Tree 1 4333 5230 3685 350 648 4880 91.33 88.28 89.56

2 4165 5398 3590 346 575 5052 91.21 89.78 90.37

3 4370 5193 3715 367 655 4826 91.01 88.05 89.31

4 4308 5255 3689 367 619 4888 90.95 88.76 89.69

5 4353 5210 3706 350 647 4860 91.37 88.25 89.57
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Figure 5.9: Feature importance ranked by the mean decrease in accuracy when each
feature is excluded from the Random Forest model

144



Figure 5.10: Feature importance ranked by the mean decrease in accuracy when each
feature is excluded from the Random Forest model

5.1.5 Comparison of Random Forest to other classifiers

Random Forest was the most accurate classifier in every fold (93.56-93.9% accuracy)

and was chosen to be compared against existing classifiers. The model used in the

3rd best fold was used (fold 3 or 4 both had 93.74 % accuracy) as this represented

the mean accuracy in terms of all 5 Random Forest models. The results for the test

set for each of these classifiers was collected as part of the feature extraction pipeline.

The score for each classifier, for each SNP in the test set was compared to the class

probability given by Random Forest and used to generate the ROC curve in Figure

5.11.
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Figure 5.11: ROC curve comparing the classifier from this thesis (black) to scores from
other classifiers when predicting disease/benign status on the humvar test set

Random Forest performed better than any of the other classifiers. Figure 5.12 shows

the specificity of each algorithm when the sensitivity is set to 95% (for algorithms

that could attain 95% sensitivity).
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Figure 5.12: Specificity plot of each algorithm when sensitivity is set to 95%. Only
algorithms that could achieve 95% sensitivity are presented

5.2 Functional Analysis of SNPs associated with

Epilepsy

The Clinvar dataset was queried for all SNPs found in genes that contain mutations

known to cause Epilepsy. Using the Clinvar clinical significance guidelines https://

www.ncbi.nlm.nih.gov/clinvar/docs/clinsig/, query terms ”Benign” were used

to identify non-pathogenic SNPs, and ”Pathogenic” were used to identify pathogenic

SNPs. In total 251 pathogenic and 50 benign SNPs were identified. Table 5.4 shows

which genes were selected when querying Clinvar.
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Table 5.4: Frequency table of genes associated with epilepsy sourced from Clinvar

Gene Count Gene Count Gene Count

SCN1A 153 CPA6 3 STX1B 2

KCNQ3 14 EPM2A 3 CACNA1H 1

EFHC1 13 PLPBP 3 CLN8 1

LGI1 10 POLG 3 DDHD2 1

CHRNB2 9 PRICKLE1 3 GABRA1 1

SCN9A 9 SCN1B 3 GABRB3 1

ALDH7A1 8 SPATA5 3 GAL 1

RELN 7 CHRNA2 2 GLDC 1

SLC2A1 6 CNTNAP2 2 KCNC1 1

CHRNA4 5 GABRG2 2 MRI1 1

MEF2C 5 KCNMA1 2 NACC1 1

SCARB2 5 KCNQ2 2 PRDM8 1

ST3GAL5 5 KCNT1 2

NHLRC1 4 SCN8A 2

Each SNP was used as input to the pipeline to collect they required features for

classification using the Random Forest classifier trained using the humvar dataset.

Each SNP was scored using Random Forest and figure 5.13 shows that Random

Forest achieved higher accuracy (92% accuracy, 93.2% sensitivity, and 86% specificity)

when compared to other commonly used prediction scoring algorithms. Figure 5.14

shows the specificity of each classifier when set to 95% sensitivity (for classifiers that

achieved at least 95% sensitivity), the confusion matrix in table 5.5 shows the overall

predicted results and table 5.6 how many pathogenic SNPs were predicted for each

gene.
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Figure 5.13: ROC curve comparing the classifier from this thesis (black) to rankscores
from other classifiers when predicting disease/benign status for SNPs found in genes
associated with epilepsy
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Figure 5.14: Specificity plot of each algorithm when sensitivity is set to 95%. Only
algorithms that could achieve 95% sensitivity are presented

Table 5.5: Confusion matrix for Random Forest classifier showing the number of
observed vs predicted classifications in 301 SNPs found in genes associated with
epilepsy.

Predicted

Observed Disease Polymorphism

Disease 236 15

Polymorphism 7 43

5.3 Summary of Results

Predicting the effect of SNPs is an essential part of bioinformatics analysis that allows

researchers to prioritize which SNPs should be analyzed using downstream processes in

a laboratory setting. Many existing prediction scoring systems achieve high accuracy,

but few offer both high sensitivity and specificity, as seen when comparing scoring

systems on the humvar dataset. Scoring systems are mostly built from machine

learning processes that use a variety of relevant protein features to train models, and

as such some systems specialize in predicting the effect or certain SNPs, such as
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Table 5.6: Comparison of true pathogenic SNPs and predicted pathogenic SNPs in
each gene

Gene True
Pathogenic

Predicted
Pathogenic

Gene True
Pathogenic

Predicted
Pathogenic

SCN1A 150 149 SCARB2 2 2
LGI1 10 10 SCN1B 2 2
ALDH7A1 8 7 STX1B 2 2
CHRNB2 7 7 CLN8 1 2
RELN 7 6 DDHD2 1 1
SLC2A1 6 6 EFHC1 1 1
MEF2C 5 5 EPM2A 1 1
CHRNA4 4 4 GABRA1 1 1
NHLRC1 4 3 GABRB3 1 1
SCN9A 4 3 GAL 1 1
CPA6 3 3 GLDC 1 1
PLPBP 3 3 KCNC1 1 1
POLG 3 3 KCNQ2 1 1
PRICKLE1 3 2 MRI1 1 1
SPATA5 3 2 NACC1 1 1
ST3GAL5 3 2 PRDM8 1 1
GABRG2 2 2 SCN8A 1 0
KCNMA1 2 2 CACNA1H 0 0
KCNQ3 2 2 CHRNA2 0 0
KCNT1 2 2 CNTNAP2 0 0

ultra-rare SNPs or SNPs found in certain regions such as ion channels.

The approach taken in this chapter incorporates as much knowledge from existing

scoring systems and commonly used features, as well as bespoke features derived with

the use of various bioinformatics software. The aim is to train a classifier to achieve

both high sensitivity and specificity in the capability to predict pathogenic SNPs. An

automated feature extraction pipeline was built to allow ease of use when processing

a large number of SNPs, as demonstrated during the classifier training process of

this chapter. Multiple machine learning techniques were explored and compared to

14 other commonly- used prediction software, in which the Random Forest classifier

trained in this study was able to achieve the highest accuracy amongst all prediction

software.

A comparison of existing prediction software and the Random Forest classifier was

also conducted for epilepsy specific SNPs, where an even larger increase in accuracy

over the existing software was seen. Various other disease specific studies report

reduced accuracy in SNP prediction using existing prediction software, which is

hypothesized to be the use of non-disease specific training sets used to train classifiers.

The results in this chapter show that epilepsy SNPs are also difficult to classify and

show reduced accuracy when compared to the humvar dataset. However, the large

increase in accuracy when compared to other software may be due to the inclusion of
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many different features from prediction software that may specialize in certain areas.

This could also possibly due to the inclusion of structural features in the training

set, where various SNPs that cause epilepsy occur in transmembrane proteins. In

conclusion, the classifier trained in this chapter performs better than commonly used

SNPs prediction software in a large non-disease specific SNP dataset, and performs

even better than prediction software in epilepsy specific SNPs.
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Chapter 6

Discussion

6.1 SAIL studies

The case studies presented in the first results chapter demonstrate the ability to

conduct powerful population level retrospective healthcare studies. Linkage of national

datasets such as those held within the SAIL Databank can be used to facilitate novel

studies in diseases such as epilepsy, where it is possible to measure the burden of

epilepsy in terms of both health and social outcomes. The most important aspect

of these results is the ability to define an accurate epilepsy cohort within the SAIL

databank so that further downstream research can take place. The validation study

to determine people with Epilepsy from GP records shows that data in SAIL can

be compared to gold standard external datasets to achieve higher sensitivity, and

arguably more importantly very high specificity to ensure only people with epilepsy

are used for further studies, and a clear control group can also be defined.

While much research in epilepsy rightly focusses on seizure control, the SAIL databank

can be used effectively to measure the social impact of living with epilepsy. It has

long been thought that people living with epilepsy often suffer in terms of social

deprivation because of factors such as employment and being able to hold a driving

license. These results were able to measure the prevalence and incidence of epilepsy

across all deciles of WIMD scores to which a strong trend of social deprivation and a

diagnosis of epilepsy was found. Importantly, the results were able to address the

question of social deprivation in terms of social drift or social causation by comparing

social deprivation at time of diagnosis to a 10 year follow up period in which it could

not be concluded that there is a strong trend in social drift following a diagnosis of

Epilepsy. It is findings such as these that can be valuable to patients with a new

diagnosis of epilepsy by giving some assurance that their diagnosis will not make
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much difference in terms of social status, while highlighting that extra support is

needed given the existing deprivation profile of people with epilepsy.

It is also possible to link electronic healthcare records held within SAIL to

administrative data sets such as the Department for Children, Education, Lifelong

Learning and Skills in Wales to measure not just the social impact of someone who has

epilepsy, but the educational outcomes of children born to mothers with epilepsy. The

results in this chapter show that mothers being prescribed sodium valproate during

pregnancy are observed to have children that have poorer attainment in national

school tests when compared to a control cohort. This result emphasizes why seizure

control is such a large research focus in epilepsy, but why it must also take into

account situations not limited to effective seizure control. Other UK studies and

audits have found that while sodium valproate prescribing is declining in women

of child bearing age, it still remains high given the already known risks of reduced

IQ and cognition of offspring exposed to sodium valproate inutero. These results

also add the social impact of epilepsy in school results of children born to mothers

with epilepsy, where it is clear these should be an increased focus on limiting sodium

valproate prescriptions for women thinking of having children.

There are however clear limitations in all of these studies, which mainly entail

important information not available form electronic health care records or linked

data, rather than small sample sizes. For example it is not possible to determine

the severity of epilepsy in the SAIL databank as it is often not recorded formal in

GP records, and while it is possible to ascertain what antiepileptic drug has been

prescribed to a patient, the exact daily dose is not recorded. The lack of some of

these variables means it is not possible explore the effects of poor seizure control

during pregnancy on cognitive outcomes of children, or to meausre the variance in

social deprivation of people with epilepsy in terms of their seizure control. Even

the definition of epilepsy found in GP records does accurately describe the type

of epilepsy, such as focal or generalised epilepsy, and so it is not possible to study

outcomes within sub-groups of people with epilepsy. To strengthen the impact of

linked healthcare data in epilepsy research, these data gaps must be addressed in

order to answer more nuanced research questions.

6.1.1 Social deprivation and epilepsy

The aim of this study was to investigate the relationship between social deprivation

of people diagnosed with epilepsy, in particular if high levels of deprivation of chronic

diseases such as epilepsy are due to social drift of social causation.

8,100,232 person years of healthcare records were used to calculated the prevalence
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and incidence of epilepsy in Wales and link them to the Welsh Index of Multiple

Deprivation. The overall epilepsy prevalence using a combination of epilepsy diagnosis

codes and AED prescriptions was 0.77% and incidence of 29.5/100 000 per year,

which is comparable with other studies in developed countries [253], [51], [254], [49].

By comparing the prevalence of epilepsy in each WIMD decile, a strong association

was shown between increased social deprivation as well as higher incidence of epilepsy.

Both prevalence and incidence are doubled in the most deprived population decile

compared to the least deprived decile (see table 3.5.

The increase in epilepsy incidence with increasingly deprived WIMD deciles initially

suggested that the cause of higher epilepsy prevalence in more deprived deciles would

be due to the movement from less deprived areas to more deprived areas following an

epilepsy diagnosis. However, the follow up cohort study supports the hypothesis that

the increased epilepsy prevalence in deprived areas is likely due to social causation

rather than social drift (see table 3.7). While the higher prevalence of parents with

epilepsy in deprived areas will inevitably produce more children with epilepsy, it

is possible that acquired or symptomatic may play a larger role than epilepsy of a

genetic origin in more deprived areas. It is difficult to obtain the cause of epilepsy in

the SAIL Databank (either genetic or acquired), but given that more deprived areas

have increased rates of risk factors for acquired epilepsy, such as perinatal hypoxic

injury, head trauma, and cerebrovascular disease [21, 52, 53] it is possible that living

in more deprived areas leads to an increased risk of developing epilepsy.

Similar results have been reported in both the UK and internationally. A retrospective

study in Wales found more patients with epilepsy living in deprived wards of residence

as measured by the Townsend index [50], and the incidence of epilepsy in a prospective

study across 20 GP practices in London and the South-East of England identified a

strong association between epilepsy incidence and deprivation when comparing the

Carstairs score between deprivation fifths, although the association was weaker inside

London [51]. Another prospective study using adults in Iceland found that poorer

socio-economic status is a risk factor for epilepsy [49].

Area level deprivation measures such as WIMD, Townsend and Carstairs score

have limitations in both geographical granularity, and modelling all possible factors

associated with social deprivation. As seen in the weaker deprivation effects found

in London and the the weaker correlation in the geographical representation of

major cities in Wales, area level deprivation is not entirely suitable to measure social

deprivation, and individual level deprivation scores would benefit these types of

studies. For example, it is possible in this study for two people living in the same

area to have the same deprivation score, but in reality they would have different
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”individual deprivation,” when considering more than geographic location, such as

ease of access to services and employment. Similarly for people developing epilepsy

in densely populated areas such as major cities, we might not expect to see much

movement and therefore the effects of social drift may appear weaker.

These results add further evidence to support the argument that social causation,

rather than social drift, could be responsible for an increase in higher social deprivation

of people with epilepsy. This provides the opportunity to identify risk factors for

epilepsy that could be targeted in areas of higher deprivation, as well as providing

further evidence of the health impact of living in socially deprived areas.

Further work remains however. The WIMD score is based on an LSOA level, and it

would be useful for future studies to study the effects of epilepsy on deprivation at

an individual basis. For example, two people living in the same LSOA will clearly

have different levels of social deprivation. There is potential however to link patient

records to earnings, benefits and tax records using the Administrative Data Research

Center https://adrn.ac.uk, which was set up to help researchers link healthcare

records with administrative data such as those held in the Department of Work and

Pensions. These data could potentially allow researchers to study how deprivation

changes following a diagnosis of epilepsy in more detail.

While it was possible calculate a measure of sensitivity 90.5% for the algorithm used

to determine epilepsy when comparing to patients in the Cardiff epilepsy register,

it was not possible calculate the specificity due to lack of a control group. The

prevalence of 0.77% provides an estimate of specificity, however a further work would

validate this algorithm by using a control group of people that are known to definitely

not have epilepsy. It would also be interesting to study the effects of epilepsy severity

on social deprivation. Epilepsy severity is not well recorded in GP records, and so

there needs to be a focus on enriching datasets routinely collected healthcare records

with more detailed information on disease status.

6.1.2 Validation of epilepsy algorithm using a gold standard

dataset

This study aimed to validate different algorithms for selecting people with epilepsy

using anonymous GP patient records. The previous deprivation study used

an algorithm that took into account epilepsy diagnosis codes and repeat AED

prescriptions which cases identified as epilepsy by the algorithm were compared

to the an epilepsy register with a gold standard diagnosis. This study used epilepsy

patients and patients that definitely did not have a diagnosis of epilepsy sourced from
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Morriston hospital to perform a sensitivity/specificity analysis of three algorithms:

Epilepsy diagnosis codes only, epilepsy diagnosis codes with a repeat AED prescription

and an AED prescription only.

The results showed that by using both epilepsy diagnosis codes with a repeat AED,

anonymised GP records can be used to accurately identify patients with epilepsy.

This algorithm achieved sensitivity and specificity 84%, 87%, 79% and 99%, 98%,

100% for all patients, adults and children respectively. These figures are comparable

with sensitivities and specificities from other epilepsy validation studies in different

healthcare systems e.g. Australian, Italian and American studies achieved sensitivities

of 82-90% and specificities of 94-100% [236], [237], [238]. The results also showed that

using a repeat AED prescription only may be the best approach when identifying

children with epilepsy as it achieved 98% for both sensitivity and specificty. This

algorithm would not be suitable for use on adults as it only achieved a specificity of

61%. This can be explained by the widespread use of AEDs for indications other than

epilepsy in adults (e.g. migraine, mood disorders and neuropathic pain). AEDs are

seldom prescribed for indications other than epilepsy in children in the UK [239].

There was little difference in performance between using just an epilepsy diagnosis

and both an epilepsy diagnosis and a repeat AED other than adding AEDs results

in slightly higher specificity / lower sensitivity. GP diagnosis codes for epilepsy

therefore seem reliable in their own right. Although this is expected, given that

epilepsy diagnosis should be made in secondary care in the UK and later transcribed

into the primary care record by GPs https://www.nice.org.uk/guidance/cg137,

this has not been described in the literature and is an important result for future

research involving GP epilepsy diagnosis codes. It would however be desirable to use

an algorithm that maximizes specificity when selecting patients from anonymized GP

records as it is a priority to be as certain as possible that someone identified with

epilepsy does indeed have epilepsy, especially so if a cohort of epilepsy patients were to

be compared against a control group for further study. Therefore using a repeat AED

in addition to an epilepsy diagnosis is the preferred algorithm for identifying epilepsy

in SAIL. Various reasons might include certain disorders such as non-epileptic attack

disorder that present almost identical symptoms to that of an epileptic seizure which

require detailed EEG examination to tell the difference. For EEGs to be accurate it

requires a seizure to occur during an examination, and so it is difficult to conduct

a thorough analysis, especially if seizures are infrequent, leading to some patients

taking years to have a confirmation of non-epileptic attacks while being treated with

AEDs.

The strengths of this study was that a gold standard dataset of patients with know
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epilepsy diagnosed by an epilepsy specialist was available as well as carefully selected

patient records for patients that definitely did not have epilepsy. These data provided

a robust validation of the three algorithms which could immediately be used to identify

many epilepsy cases from the 2.8 million people with an anonymized GP patient

record in SAIL. Although the reference population was of gold standard, it was a

relatively small population due to the resources needed to manually check medical

records and test results. Also, these results are specific to primary care records in

Wales and are not applicable to other healthcare systems or methods of ascertaining

epilepsy cases (for example hospital discharge summaries). Other parts of the UK

do have similar healthcare systems and although the results may be generalizable

to the remainder of the UK further work needs to be done to prove this. Currently

there is no facility to include EEG and imaging data within SAIL and so we could

not include these in our ascertainment algorithms. Additionally it is impossible to

identify people with epilepsy who do not attend their GP or have not been seen by a

hospital specialist.

The reference epilepsy cohort was obtained from a secondary care epilepsy database

which may have provided a bias towards people with more severe epilepsy, and

thus more likely for an epilepsy diagnosis to be recorded in GP records. Also the

group of people without epilepsy were sourced from patients who had attended

general neurology clinics as a control group. This group therefore does not represent

the ’general’ population without epilepsy. However, this group of patients may

be considered as a ’better test’ of ascertainment algorithms as patients with other

neurological conditions may be more likely to be incorrectly coded as having epilepsy

than the general population. Conversely it is also possible (although unlikely in

our opinion) that neurologists would not record a diagnosis of epilepsy in a general

neurology clinic appointment with a different focus (e.g. headache).

6.1.3 Educational attainment of children born to mother’s

with epilepsy

This study aimed to compare the educational attainment of children born to mothers

with epilepsy to a control group, with a particular focus on which AEDs mothers

took during pregnancy. This study used Key Stage 1 results for mathematics, science

and English/Welsh, a national school assessment for 2,196 children (440 with epilepsy,

1,756 control) at 7 years of age between 2003 and 2008 academic years.

The results showed an association between poorer school attainment and children

exposed to valproate or AEDs in combination inutero. Compared with a matched

control group, fewer children with mothers being prescribed sodium valproate during
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pregnancy achieved the national minimum standard in CSI (-12.7% less than the

control group), mathematics (-12.1%), language (-10.4%) and in science (-12.2%).

Even fewer children with mothers being prescribed multiple AEDs during pregnancy

achieved a national minimum standard: CSI (by -20.7% less than the control group),

mathematics (-21.9%), language (-19.3%) and science (-19.4%)

The results support previous studies that provide consistent evidence that inutero

exposure to sodium valproate and AEDs in combination are linked to adverse

neurodevelopmental outcomes. In contrast there was no difference seen in children

exposed to carbamazepine, lamotrigine or mothers that did not take drugs during

pregnancy, however it is impossible to accurately test for significance in the lamotrigine

group as the sample size is small. While mothers not prescribed any AED during

pregnancy do not appear to give birth to children that have decreased educational

attainment, it is possible that this group of women have less frequent seizures,

thus reducing the risks to the unborn child associated with exposure to seizures

inutero.

Other studies have also studied the effect of intuero exposure to sodium valproate

and the effect on children’s IQ. The NEAD study found a 9-point decrease in IQ in

children at 3 and 6 years old who were born to mothers taking sodium valproate during

pregnancy [27, 243] as well as decreased motor, emotional and behavioural/adaptive

functioning in children at 3 years old [255]. Studies based on the UK Epilepsy and

Pregnancy Register have associated sodium valproate with a decrease in cognitive

development and early cognitive delay that suggests children are at a disadvantage

well before school age [32, 256]. While this study finds a statistically non-significant

trend in language at KS1, other studies have shown decreased language and verbal

skills at early infant stage [257, 258]. Some of the studies mentioned have found

that increased AED dosage plays a part in cognitive impairment, however due to a

lack of dosage information in the SAIL databank this could not be explored. While

some of the mentioned studies associate exposure to carbamazepine with some forms

of cognitive impairment, there are also studies that suggest carbamazepine has no

effect on intelligence; these results supports the latter with no evidence of decreased

educational attainment at school age [259].

The strength of this study is the ability to select a large cohort of 440 children with

national test results without major recruitment bias and compare to a large control

group. Using a standardized national assessment as a measure of performance ensures

that each child has the opportunity to be assessed based on the same curriculum,

and as such these results would closer reflect the learning experience of children at

this age compared to an IQ test. The main limitation of these results are not being
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able to use maternal intelligence quotient (IQ) as a covariate as in [27, 243], which

are not recorded in the SAIL databank.

The SAIL Databank also lacks information on various other potential covariates such

as epilepsy severity and seizure frequency during pregnancy which may effect cognitive

function of unborn child, or if the mother was taking folic acid during pregnancy

as this is available ”over the counter”. The AED data was based on prescriptions,

and so it is impossible to comment on adherence, however there is no reason to

suspect that adherence differs greatly between different AEDs. It is also possible that

mothers with poorly controlled seizures may have an effect on their child’s education

in terms of parental support outside of school settings, but this information is difficult

to ascertain and is not available to any comprehensive standard within the SAIL

databank. Another limitation of this study is that we are unable to report on AED

dosage, although other studies have reported significant cognitive impairment even at

low dosages of sodium valproate.

While these results highlights the risk of cognitive effects in the children of mothers

prescribed sodium valproate or multiple AEDs, it is important to acknowledge that

some epilepsies are difficult to treat without these treatment regimes. Despite this,

these results add to the growing evidence that inutero exposure to certain AEDs can

cause developmental problems in children, to which sodium valproate has recently

been banned for use in women of child bearing age unless a pregnancy prevention

programme is in place https://www.gov.uk/guidance/valproate-use-by-women-

and-girls.

6.2 Natural Language Processing of epilepsy

clinic letters

This study aimed to validate an NLP algorithm developed to extract epilepsy specific

information from unstructured clinic letters. A rules-based system was built using

an open source NLP framework to extract details of epilepsy diagnosis, seizure type,

seizure frequency, status of EEG, MRI and CT investigations. The main purpose of the

NLP algorithm is to enrich routinely collected data sets such as those demonstrated

in the previous chapter using the SAIL databank.

The algorithm was able to extract epilepsy information from a corpus of 200 clinic

letters, written by 6 different clinicians, with an overall precision, recall and F1

score of 91%, 81% and 85% on a per item basis. As expected, the algorithm

performed best in extracting clinic date and date of birth (F1 scores of 98% and
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99%) given that these fields consist of fixed format dates which are relatively easily

to extract. In terms of epilepsy-specific information the algorithm performed best

for medication (F1=95%), confirming a diagnosis of epilepsy (93%), epilepsy type

(84%) and presence of focal seizures (81%). These items are frequently mentioned

and presented in a relatively standard format e.g. medication is usually stated as

drug name-strength-unit-frequency, and diagnosis appears at the top of letters in

structured lists with or in text with clear references to the patient such as ”she has

focal epilepsy” or ”her current medication is” within the main text.

For example, a letter may confirm temporal lobe epilepsy three times but only one

mention of temporal lobe epilepsy is required to correctly classify that person’s

epilepsy. In this context extracting only one mention of temporal lobe epilepsy is just

as useful as extracting all three. In the ”per letter” test we, therefore, aggregated

multiple mentions within a category in each letter to a binary decision based on the

algorithm’s ability to extract at least one true positive mention. In the above example

if the algorithm had only correctly identified one of the three mentions of temporal

lobe epilepsy we would have scored it as having a recall of 100% on a per letter basis

but only 33% (1/3) on a per item basis. For the medication annotation, in the per

letter approach, only a full list of the drugs prescribed with the respective doses was

considered to be a positive outcome.

The algorithm was less accurate in identifying CT (57%), MRI (75%) and EEG

results (78%), seizure frequency (66%) and generalised seizure terms (66%). The two

main reasons for not picking up such terms were due to mapping issues to UMLS, or

the highly varied ways these terms are reported in clinic letters. For example, UMLS

contains terms such as, ”EEG with irregular generalized spike and wave complexes”,

however, it is often the case that when reported in text there are variety of words

between the EEG and the finding e.g. ”EEG was found to show generalized spike

and wave complexes” or ”There was no evidence of generalised spike-wave complexes

when reviewing her EEG”, and so this problem was approached by creating custom

gazetteers that map to smaller terms such as ”spike and wave” or ”EEG”, and writing

JAPE rules to associate the finding with the EEG. Similarly the reporting of seizure

frequency is highly varied e.g. ”she had 5 seizures since March last year” or ”1-2

focal seizures every evening”. Seizure frequency is also often reported with terms

such as ”events” and ”episodes” rather than defined seizure types, hence additional

JAPE rules were built to accommodate such terms as part of seizure frequency in the

presence of an epilepsy diagnosis.

Although every item in a letter was compared to that of a clinician, it is practical to

provide a binary decision for some categories. If epilepsy is confirmed 3 times in a
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letter, the important information is that epilepsy is confirmed. For this reason the

”per letter” score was developed where if 1 true positive for a epilepsy confirmed,

epilepsy type, seizure type or abnormal/normal investigation, then the ”per letter”

score was given a true positive finding by the algorithm. The basis for this decision

boundary is based on the high precision of the ”per item” score, where there is high

confidence a positive identified by the algorithm is a true positive. The ”per letter”

score achieved higher scores for precision, recall, and F1-score (96%, 87%, 91%) on a

per letter basis. The ”per letter” approach for categories containing multiple mentions

could be used with higher confidence than on an individual mention basis, as well as

providing a practical way to summarise information from clinic letters. Additionally

a ”per person” measure (results summarised over several letters) could be used to

determine epilepsy status as there will normally be several letters per person over a

period of time.

Other studies demonstrate that NLP is being increasingly used for clinical information

extraction purposes [260]. Performance of specific phenotype extraction algorithms

developed as part of the i2b2 project using cTAKES (Apache clinical Text Analysis

and Knowledge Extraction System) and HITex (Health Information Text Extraction)

showed that for an NLP approach high PPV (precision) and sensitivity (recall)

was achieved for extracting the following phenotypes; Crohn’s disease (98%,64%),

Ulcerative Colitis (97%,68%) , MS (94%,68%), and Rheumatoid arthritis (89%,56%)

[139]. As we aimed to extract epilepsy specific information other than a confirmed

diagnosis, a recent study on patients with known MS identified from electronic

healthcare records used NLP techniques to extract attributes specific to MS with high

PPV and sensitivity, namely EDSS (Expanded Disability Status Scale) (97%,89%),

T25FW (Timed 25 Foot Walk) (93%,87%), MS subtype (92%,74%) and age of onset

(77%,64%) [140]. This study took into account items attributable only to the patient,

as opposed to family members, which is an important distinction and interesting area

of study in terms of identify potential risk factors for disease development. A study

used clinic letters available at www.mtsamples.com to determine whether sentences

containing disease and procedure information were attributable to a family member

using the BioMedICUS NLP system, which achieved and overall precision, recall and

F1-score of 91%, 94% and 92% [141].

There are however only a few published studies of clinical epilepsy information

extraction systems. Cui et al developed the rule based Epilepsy Data Extraction

and Annotation (EpiDEA) system which extracts epilepsy information from epilepsy

monitoring unit discharge summaries. EpiDEA achieved an overall prevision, recall

and F1 score of 94%, 84% and 89% when extracting EEG pattern, past medications

and current medication from 104 discharge summaries from Cleveland, USA [143].
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Cui et al also developed the rule-based Phenotype Exaction in Epilepsy (PEEP)

pipeline [144]. PEEP extracted epileptogenic zone, seizure semiology, lateralising

sign, interictal and ictal EEG pattern with an overall precision, recall and F1 score

of 93%, 93% and 92% in a validation set of 262 epilepsy monitoring unit discharge

summaries from Cleveland, USA. Sullivan et al used a machine based learning NLP

pipeline to identify a rare epilepsy syndrome from discharge summaries and EEG

reports in Phoenix USA and achieved a precision, recall and F1 score of 77%, 67%

and 71% respectively.

The main strength of this study was the use of a gold standard dataset of de-identified

clinic letters to accurately extract novel data types from free texts that are not well

populated in electronic healthcare records. The algorithm was built using open source

technology so that the algorithm is easily shareable and can be run on potentially

millions of letters as NLP tasks can be parallelism. The algorithm was able to make

use of two open source plugins that have been used for information extraction tasks

previously, as well as widely used medical ontologies that produce easily interpretable

annotations that can be adopted for healthcare research [261] [244]. The algorithm

was developed to extract epilepsy specific information, however this aim was met

by filtering out non-disease specific information. It is possible that the algorithm

could be adapted for other diseases with relative ease and many rules were built to

capture language rules in general, not just medical item tagging. These rules could be

adapted for more nuanced tasks such as finding frequency of events such as depressive

episodes or migraines. Another advantage was that all rules are programmed in a

relatively simple scripting language (JAPE) where other NLP systems rely heavily on

the ability to program in more complicated languages such as Java. For this reason it

is possible that clinicians themselves are more likely to participate in writing their

own rules and embed medical expertise more readily into the algorithm or algorithms

developed in future, for example adding in custom dictionaries for colloquial terms or

coding a particular phrase that is meaningful when reported in clinic letters.

The main limitation of this study was the sample size of letters used to develop and test

the algorithm. This is a limitation across many NLP tasks that focus on information

extraction as it is labour intensive to manually annotate letters in the detail required

to develop information extraction systems. Most information extraction systems

typically use hundreds of letters rather than thousands. However even though this

study only used 200 letters to test the accuracy of the algorithm, 1925 individual

items were compared to those of an epilepsy specialist. Another limitation was the

use of one specialist to annotate the letters used for comparison, where it is possible

that annotations are affected by reviewer fatigue, and it was not possible to produce

an inter-annotation agreement score if multiple clinicians annotated the letters. The
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address this a review of all letters that contained a disagreement between the human

annotations and the algorithm annotations (174 letters out of the 200 letters) was

conducted. The review showed that indeed the human annotator errors tended to be

missing true positive items, which at first lead to a higher number of false positives

produced by the algorithm where the human annotator corrected their annotations.

In future multiple specialists are recommended for information extraction tasks.

While existing medical ontologies were used to tag items in the clinic letters, and

rules were built to arrange which particular order of tagged terms describes a concept,

medical ontologies such as UMLS, SNOMED-CT, READ and ICD were not built

to aid information extraction from clinical free texts. Many descriptions of codes

in these ontologies are too structured to reflect the language used in clinic letters

and thus reduces recall in information extraction tasks. It is however important

to produce annotations that adhere to existing medical ontologies, and so future

work to address this would include developing methods to add some flexibility when

matching terms in clinic letters to ontology descriptions. Much work has been done

in so called ”fuzzy matching” where sequences of words called ”n-grams” are mapped

to each other using word-vectorization and similarity measures [125] [262] [263]. Also

it would be interesting to incorporate machine learning classification tasks where

detailed information extraction is not needed. For example it might be possible to

use machine learning to classify EEG reports as either normal or abnormal, without

worrying about extracting every item that may indicate abnormalities.

6.3 Predicting pathogenicity of SNPs for large

datasets

This study aimed to understand the different approaches for predicting pathogenicity

of SNPs and to build a pipeline that sources a variety of SNP annotation and scoring

data that is used to build an accurate classifier for SNPs. Many existing software have

significantly better sensitivity that specificity, or vice-a-versa, and some specialize in

capturing rare pathogenic variants or variants found within certain protein domains

such as transmembrane regions. Most classifiers are non-disease specific, but some

studies have shown that the accuracy reported on non-disease specific test sets are

not matched in some disease only test sets. As well as building a non-disease specific

SNP classifier, the classifier was also built to accurately classify epilepsy SNPs.

The results in this study showed that by using a mixture of common SNP annotations

such as conservation scores, existing software scoring systems and bespoke features

such as secondary structure prediction, the Random Forest classifier was able to
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score higher than all of the highest performing software currently available on both a

non-disease specific dataset as well as showing a further increase in accuracy when

using an epilepsy dataset. The classifier also achieved both high sensitivity and

specificity, which some classifiers achieved high sensitivity or specificity. Constructing

a ROC curve and using the class probability of predictions allowed the Random

Forest classifier to be compared at different sensitivity thresholds to compare the

corresponding specificity across all other classifiers, in which at a sensitivity threshold

of 95%, the Random Forest classifier achieved 97% specificity which was higher than

the closest classifier, REVEL (92% specificity). Six different classifiers were compared

during the development phase using a 5-fold cross validation coupled with feature

selection techniques to try and improve the accuracy of each algorithm. Internal

parameters of the classifiers were also tuned to achieve higher accuracy, although this

did not have much of an effect. It was interesting that aside from using the Naive

Bayes classifier, many of the algorithms showed higher accuracy than any of the other

existing classifiers used for comparison. This suggests that the samples in the training

set and the features used in the training process many have play more of a role in

classification accuracy than a difference in choosing different classifiers.

Prediction accuracy of new software as presented in their original publications state

high accuracy in non-specific disease datasets such as Humvar, but often vary in

accuracy when used for a particular disease. Given that researching a specific disease

is a common use case of research groups, it is important to know that the accuracy

stated for an algorithm is not expected to be reproduced in other datasets. A study

that compared the prediction accuracy of 17 different classifiers on SNPs in limb-girdle

muscular distrophy (LGMS) showed that the Polyhen Humvar classifier achieved just

70.2% accuracy where in the Polyphen paper an accuracy of 86% is stated, with a

similar trend for the majority of the other classifiers used in the comparison [264]. A

study that selected 23 genes associated with immunity compared PolyPhen2, SIFT,

MutationAssessor, Panther, CADD, and Condel classifiers in which only 20% of

pathogenic SNPs were predicted as such, and over 45% of neutral SNPs were classified

as pathogenic [265]. A larger non-disease specific study using 40,000 variants from

the Phencode and dbSNP databases found that accuracy ranged from 15-65% across

MutPred, nsSNPA-nalyzer, Panther, PhD-SNP, PolyPhen, PolyPhen2, SIFT,SNAP,

and SNPsGO [266].

There have been various studies which have explored creating disease specific classifiers

that have reported higher accuracy than non-disease specific classifiers. A cancer

specific machine learning based classifier was developed using common SNP annotation

for 6326 missense SNPs that are known to be drivers for various subtypes of cancer,

achieving 93% accuracy [267]. Machine learning classifiers that dominate SNP

165



prediction require large datasets with many features, in which there are not enough

pathogenic SNPs in the majority of individual disease areas to train a classifier by

using only damaging SNPs in the disease of interest. This is certainly true for epilepsy,

and as such the approach taken was to include many features other than traditional

conservation scores. Some of the prediction scores used in the classifier include

features that specify which protein domain a SNP is found in such as transmembrane

or ion channel regions as well as incorporating the predicted secondary structure of

the SNP location as well as modelling the difference in predicted secondary structures

between sequences containing the wild type and the SNP. Many pathogenic SNPs in

genes associated with epilepsy such as SCN1A are located in ion channels, where any

structural change in these channels can effect cellular excitability and induce seizures

[268]. It is possible that some features used in the RF classifier are able to contribute

towards improving classification accuracy in epilepsy related SNPs.

6.3.1 Use of existing predictors as features

Including the prediction and scores of existing software as a feature for machine

learning purposes is not a novel idea. Earlier attempts to improve classification

accuracy when relatively few prediction software existed involved combining these

scores and weighting them into a single score using a statistical approach. The

Combined Annotation scoRing toOL (CAROL) normalizes polyphen and SIFT scores

by their standard normal deviations to achieve a 1% increase on that of their respective

scores using a test set of 1,959 pathogenic and 9,691 neutral SNPs [269].

6.3.2 Use of physiochemical properties and predicted

secondary structure

Most SNP prediction programs that use secondary structure as features obtain this

information from known protein databases and uses the secondary structure status

where the SNP is located as reported in the wild type protein. Querying secondary

structure in this manner produces many missing data as only a proportion of proteins

have been studied and had their secondary structure profile reported. This study

used secondary structure prediction to obtain a predication of the secondary structure

for every SNP, and modelled the difference in prediction between wild type and SNP

sequences. These differences were reported as the percentage change across three

secondary structure domains, in which they were ranked as the 5th, 9th and 10th

most important features (out of 47 features) used in the Random Forest model.

It is difficult to define ”difference in secondary structure” between a wild type sequence,

and a sequence containing a SNP. The secondary structure of both sequences are
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predicted, not measured in a laboratory. The only thing that can be measured using

PSIPRED is the likelihood of a single amino acid falling into the three categories of a

beta sheet, alpha coil or helix. While this may be useful, particularly in some strict

complexes of a protein, it is actually not important to this pipeline to determine what

the effect of a SNP may have on a predicted secondary structure category. Firstly

this is because it is not feasible to determine such a change for a SNP via prediction

only, but mainly that the underlying methodology to secondary structure prediction

is similar to sequence homology and evolutionary analysis of proteins - methods that

already play a prominent role in functional prediction programs. Secondary structural

prediction programs are extensions of multiple sequence alignments, where known

secondary structures are incorporated later as a ground truth to assess structure

based on these alignments. It is this inference between multiple sequence alignments

and the disparity in structural prediction between a wild type sequence and a SNP

sequence that is important.

6.4 Future Work

The SAIL case studies in this thesis showed that epilepsy patients can accurately

be determined from GP records. The algorithm developed could be used to create

an epilepsy register within the SAIL databank to facilitate further epilepsy research

and be used in multiple studies. These studies have shown that socio-economic and

national education datasets can be linked to epilepsy patients. One future project

would be to link the educational outcomes of children who have epilepsy compared to

a control group or other neurological conditions. It could be possible to study sub

groups of children by taking into account what prescriptions they were taking during

the school year.

There are limitations, however to the SAIL databank. Rich information found in

clinic letters were largely absent from rountinely collected healthcare records. The

next step would be to use the validated NLP application developed in chapter 4

to link rich epilepsy data from clinic records to the SAIL databank. This would

require producing a version of the NLP application that could run on distributed

systems. The lack of clinic letters available for NLP studies due to patient identifiers

present is a major limitation that is not reflected with the SAIL databank. Forming

a governance model to analyse identifiable patient data would be an important future

project to help facilitate NLP research. Another barrier is not only the lack of clinic

letters, but the lack of letter annotation by a clinician. Every NLP algorithm needs

to be scored against a human annotator, and generating annotated training sets

requires a lot of time. With crowd sourcing becoming popular it may be possible
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to open up annotation tasks to a wider participation group through crowd sourcing

platforms.

Some categories of information from the NLP chapter were difficult to obtain

accurately. Seizure frequency is an important piece of information that provides a

level of severity of epilepsy, and would be an important covariate in an epilepsy study.

The language describing seizures frequency and investigation reports remain to varied

to capture all of the nuances with a rule based approach. Machine learning is one way

to add flexibility into capturing these categories, and one immediate improvement

would be to create methods of matching short phrases and slang terms to UMLS

concept descriptions so that NLP applications aren’t relying on exact phrase matching.

Much work has been done on word embeddings to infer semantic similarity of words,

however some future work in this area could expand this to phrases.

SNP prediction tools are numerous and show effectiveness in different disease areas.

The pipeline developed in chapter 6 successfully incorporated existing SNP prediction

tools as features alongside bespoke protein features to produce higher accuracy than

all common SNP scoring tools in a disease non-specific dataset as well as epilepsy

specific SNPs. With advances in technology powering big data, accurate tools will

become an increasingly important tool in prioritising which SNPs warrant further

research/ Future work would be to set up the pipeline developed as a web service

to be used freely for research. This could help laboratories focus on building assays

for a smaller group of SNPs. The pipeline could also be used to prioritise SNPs

that may be linked to the SAIL databank. The ability to identify patients with

certain conditions and co-morbidities and link them to SNPs may allow researchers

to discover associations between SNPs and disease. Future work will include linking

exomes and genomes from Welsh patients collected as part of the Wales Epilepsy

Research Network to the SAIL databank. These patients have well defined epilepsy

genotypes and it would be interesting to explore any potential trends in co-morbidities

within subgroups of epilepsy syndromes such as exploring if different SNPs for the

same epilepsy syndrome have a a higher propensity form experiencing co-morbidities

such as migraines.

6.5 Conclusions

Epilepsy is a common disease that can have an impact on health and social well

being. Epilepsy can also affect family members such as children born to parents with

epilepsy. Advances in big data have provided the opportunity to explore the impact

of epilepsy on at population levels to uncover trends in healthcare data for people

with epilepsy where insufficient data previously existed.
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The SAIL Databank not only provides national healthcare datasets, but it also

socio-economic and administrative datasets that can all be linked anonymously. Data

linkage is a powerful tool that allows datasets to be aligned to produce novel research,

and the ability to do so anonymously speeds up research in terms of using a governance

model that is exempt from ethical approval. A study using 8.1 million person-years of

data was used to identify a strong trend between increased social deprivation and the

incidence and prevalence of epilepsy. The study found that increased deprivation was

likely to due to social causation rather than social drift. This finding was contrary to

other studies that suggest chronic conditions such as epilepsy cause social drift after

diagnosis.

A study of GP coding habits showed that it is possible to use GP records as a data

source for identifying patients with epilepsy to be used for epidemiology studies. An

algorithm was developed that found a combination of repeat AED prescriptions and a

diagnosis of epilepsy was the most effective way to identify epilepsy from GP records,

which gave 88% sensitivity and 98% specificity. This algorithm was used to select

mother’s with epilepsy who had children with Key Stage 1 education data to compare

attainment between a large control group. This study found that for children exposed

to sodium valproate or a combination of AEDs inutero there was a 12.7% and 19.8%

decrease in attainment when compared to the control group.

Each SAIL study showed that there were various limitations in the data i.e. not having

epilepsy type or AED daily dose. The Natural Language Processing study showed

that there is potential to source rich patient information that is typically missing

from routinely collected data. A validation of 200 epilepsy clinic letters showed that

a rule-based NLP application can accurately identify patients with epilepsy (88.5%),

epilepsy type (84.5%) and prescriptions (95%). Other categories such as seizure

frequency and investigation outcomes were more difficult to capture, however high

specificity is reported across all categories. Aggregating all mentioned per category per

letter achieved even higher accuracy and would be a practical approach to analysing

large volumes of letters.

A SNP prediction pipeline was developed using the Random Forest machine learning

classifier to determine the pathogenicity of SNPs. Validation on a large disease

non-specific SNP dataset showed that the Random Forest classifier produced more

accurate results than all other commonly used SNP prediction software, and was able

to achieve 95% sensitivity with a specificity of 92%. The classifier also achieved the

highest accuracy on a dataset of 301 SNPs reported in epilepsy genes, and confirms

findings in other studies than disease specific SNP datasets can pose a more difficult

challenge in terms of predicting SNP pathogenicity.
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Appendices

Appendix item 1: Read codes used for epilepsy definition

Table 6.1: Read codes used to signify a diagnosis of epilepsy.

Code Description Code Description

F25B. Alcohol-induced epilepsy F25y2 Localisation related epilepsy
F25y4 Benign Rolandic epilepsy F25D. Menstrual epilepsy
F2545 Complex partial epileptic seizure F2511 Neonatal myoclonic epilepsy
F25y3 Complex partial status epilepticus 667B. Nocturnal epilepsy
F25y0 Cursive (running) epilepsy F25y. Other forms of epilepsy
F25C. Drug-induced epilepsy F25yz Other forms of epilepsy NOS
F259. Early infant epileptic encephalopathy

wth suppression bursts
F251y Other specified generalised convulsive

epilepsy
F25.. Epilepsy F250y Other specified generalised

nonconvulsive epilepsy
1O30. Epilepsy confirmed F25y5 Panayiotopoulos syndrome
F25z. Epilepsy NOS F254. Partial epilepsy with impairment of

consciousness
F2544 Epileptic automatism F254z Partial epilepsy with impairment of

consciousness NOS
F2503 Epileptic seizures - akinetic F255. Partial epilepsy without impairment of

consciousness
F2502 Epileptic seizures - atonic F255z Partial epilepsy without impairment of

consciousness NOS
F2512 Epileptic seizures - clonic F255y Partial epilepsy without impairment of

consciousness OS
F2513 Epileptic seizures - myoclonic F2500 Petit mal (minor) epilepsy
F2514 Epileptic seizures - tonic F252. Petit mal status
F25y1 Gelastic epilepsy F25F. Photosensitive epilepsy
F251. Generalised convulsive epilepsy F258. Post-ictal state
F251z Generalised convulsive epilepsy NOS F2541 Psychomotor epilepsy
F250. Generalised nonconvulsive epilepsy F2542 Psychosensory epilepsy
F250z Generalised nonconvulsive epilepsy NOS F2501 Pykno-epilepsy
F2510 Grand mal (major) epilepsy F2561 Salaam attacks
F2516 Grand mal seizure F2551 Sensory induced epilepsy
F253. Grand mal status F2556 Simple partial epileptic seizure
F2560 Hypsarrhythmia F2552 Somatosensory epilepsy
F256z Infantile spasms NOS F25E. Stress-induced epilepsy
F2504 Juvenile absence epilepsy F2515 Tonic-clonic epilepsy
F25A. Juvenile myoclonic epilepsy SC200 Traumatic epilepsy
F257. Kojevnikov’s epilepsy F2555 Unilateral epilepsy
F2505 Lennox-Gastaut syndrome F2553 Visceral reflex epilepsy
F2543 Limbic system epilepsy F2554 Visual reflex epilepsy

Code Description Code Description

dn3e.* ARBIL MR 200mg m/r tablets dnp7. LYRICA 300mg capsules

dn3f. *ARBIL MR 400mg m/r tablets dnp2. LYRICA 50mg capsules

dn2.. *BECLAMIDE dnp3. LYRICA 75mg capsules

dn2z. *BECLAMIDE 500mg tablets dn6.. METHYLPHENOBARBITAL

dnc1. *CLOBAZAM SLS 10mg capsules dn6z. METHYLPHENOBARBITONE 200mg

tablets
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Table 6.2 AED Read codes — Continued . . .

Code Description Code Description

do1z. *DIAZEPAM 20mg/4mL injection dn6x. METHYLPHENOBARBITONE 30mg

tablets

do1B. *DIAZEPAM 20mg/5mL RecTubes dn6y. METHYLPHENOBARBITONE 60mg

tablets

dn53. *EMESIDE 250mg capsules dna1. MYSOLINE 250mg tablets

dn3A. *EPIMAZ 100mg tablets dna2. MYSOLINE 250mg/5mL oral

suspension

dn3B. *EPIMAZ 200mg tablets dna3. MYSOLINE 50mg tablets

dn3C. *EPIMAZ 400mg tablets dnj4. NEURONTIN 100mg capsules

dn51. *ETHOSUXIMIDE 250mg capsules dnj5. NEURONTIN 300mg capsules

dn52. *ETHOSUXIMIDE 250mg/5mL elixir dnj9. NEURONTIN 300mg capsules/600mg

tablets titration pack

dn5y. *ETHOSUXIMIDE 250mg/5mL elixir dnj6. NEURONTIN 400mg capsules

dn79. *GARDENAL 200mg/1mL injection dnj7. NEURONTIN 600mg tablets

dn7a. *LUMINAL 15mg tablets dnj8. NEURONTIN 800mg tablets

dn7b. *LUMINAL 30mg tablets dng2. NOOTROPIL 1.2g tablets

dn7c. *LUMINAL 60mg tablets dng3. NOOTROPIL 33

dn21. *NYDRANE 500mg tablets dng1. NOOTROPIL 800mg tablets

dnba. *ORLEPT 200mg e/c tablets dnbA. ORLEPT 200mg/5mL sugar free liquid

dnbb. *ORLEPT 500mg e/c tablets dnb9. ORLEPT STARTER PACK 200mg e/c

tablets x10

do52. *PARALDEHYDE injection 10mL dnm.. OXCARBAZEPINE

do51. *PARALDEHYDE injection 5mL dnmx. OXCARBAZEPINE 150mg tablets

dn98. *PENTRAN 100mg tablets dnmy. OXCARBAZEPINE 300mg tablets

dn97. *PENTRAN 50mg tablets dnmz. OXCARBAZEPINE 600mg tablets

dn63. *PROMINAL 200mg tablets dnmw. OXCARBAZEPINE 60mg/mL sugar

free oral suspension

dn61. *PROMINAL 30mg tablets do5.. PARALDEHYDE

dn62. *PROMINAL 60mg tablets dn7.. PHENOBARBITAL

do13. *STESOLID 20mg/4mL injection dn74. PHENOBARBITAL 100mg tablets

dn3H. *TERIL CR 200mg m/r tablets dn71. PHENOBARBITAL 15mg tablets

dn3I. *TERIL CR 400mg m/r tablets dn7d. PHENOBARBITAL 15mg/5mL elixir

dn55. *ZARONTIN 250mg capsules dn78. PHENOBARBITAL 200mg/1mL

injection

dn1y. ACETAZOLAMIDE [EP] 250mg tablets dn72. PHENOBARBITAL 30mg tablets

dn1z. ACETAZOLAMIDE [EP] 500mg

injection

dn73. PHENOBARBITAL 60mg tablets

dn1x. ACETAZOLAMIDE [EP] 500mg m/r

capsules

dn77. PHENOBARBITONE 15mg/10mL

elixir

dn1.. ACETAZOLAMIDE [EPILEPSY] dn75. PHENOBARBITONE SODIUM 30mg

tablets

do41. ATIVAN [EP] 4mg/mL injection dn76. PHENOBARBITONE SODIUM 60mg

tablets

dn3J. CARBAGEN SR 200mg m/r tablets dn8.. PHENYTOIN
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Table 6.2 AED Read codes — Continued . . .

Code Description Code Description

dn3K. CARBAGEN SR 400mg m/r tablets dn92. PHENYTOIN 100mg tablets

dn3.. CARBAMAZEPINE dn8y. PHENYTOIN 30mg/5mL suspension

dn3y. CARBAMAZEPINE 100mg chewable

tablets

dn83. PHENYTOIN 50mg chewable tablets

dn31. CARBAMAZEPINE 100mg tablets dn91. PHENYTOIN 50mg tablets

dn3z. CARBAMAZEPINE 100mg/5mL sugar

free liquid

dn8z. PHENYTOIN 90mg/5mL sugar free

suspension

dn3v. CARBAMAZEPINE 125mg

suppositories

dn9.. PHENYTOIN SODIUM

dn3x. CARBAMAZEPINE 200mg chewable

tablets

do6.. PHENYTOIN SODIUM [STATUS

EPILEPSY]

dn3a. CARBAMAZEPINE 200mg m/r tabs dn9z. PHENYTOIN SODIUM 100mg

capsules

dn32. CARBAMAZEPINE 200mg tablets do6z. PHENYTOIN SODIUM 250mg/5mL

injection

dn3w. CARBAMAZEPINE 250mg

suppositories

dn9x. PHENYTOIN SODIUM 25mg caps

dn3b. CARBAMAZEPINE 400mg m/r tabs dn9w. PHENYTOIN SODIUM 300mg

capsules

dn33. CARBAMAZEPINE 400mg tablets dn9y. PHENYTOIN SODIUM 50mg capsules

dnc.. CLOBAZAM [EPILEPSY ONLY] dng.. PIRACETAM

do3.. CLOMETHIAZOLE EDISYLATE

[CENTRAL NERVOUS SYSTEM USE]

dng5. PIRACETAM 1.2g tablets

do3z. CLOMETHIAZOLE EDISYLATE

8mg/mL intravenous infusion

dng6. PIRACETAM 333.3mg/mL oral

solution

dn4.. CLONAZEPAM [EPILEPSY

CONTROL]

dng4. PIRACETAM 800mg tablets

do2.. CLONAZEPAM [STATUS EPILEPSY] dnp.. PREGABALIN

dn4w. CLONAZEPAM 0.5mg/5mL sugar free

oral solution

dnpv. PREGABALIN 100mg capsules

do2z. CLONAZEPAM 1mg/1mL injection dnpw. PREGABALIN 150mg capsules

dn4z. CLONAZEPAM 2mg tablets dnpu. PREGABALIN 200mg capsules

dn4x. CLONAZEPAM 2mg/5mL sugar free

oral solution

dnps. PREGABALIN 225mg capsules

dn4y. CLONAZEPAM 500microgram tablets dnpz. PREGABALIN 25mg capsules

dn... CONTROL OF EPILEPSY dnpt. PREGABALIN 300mg capsules

dnh1. CONVULEX 150mg e/c capsules dnpy. PREGABALIN 50mg capsules

dnh2. CONVULEX 300mg e/c capsules dnpx. PREGABALIN 75mg capsules

dnh3. CONVULEX 500mg e/c capsules dna.. PRIMIDONE

dnh7. DEPAKOTE 250mg e/c tablets dnay. PRIMIDONE 250mg tablets

dnh8. DEPAKOTE 500mg e/c tablets dnaz. PRIMIDONE 250mg/5mL oral

suspension

dns1. DIACOMIT 250mg capsules dnax. PRIMIDONE 50mg tablets
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Table 6.2 AED Read codes — Continued . . .

Code Description Code Description

dns3. DIACOMIT 250mg/sachet powder for

oral suspension

dni2. PRO-EPANUTIN 750mg/10mL

injection concentrate

dns2. DIACOMIT 500mg capsules dnv.. RETIGABINE

dns4. DIACOMIT 500mg/sachet powder for

oral suspension

dnv8. RETIGABINE 100mg tablets

dn12. DIAMOX [EP] 250mg tablets dnv9. RETIGABINE 200mg tablets

dn13. DIAMOX [EP] 500mg injection dnvA. RETIGABINE 300mg tablets

dn11. DIAMOX [EP] 500mg m/r capsules dnvB. RETIGABINE 400mg tablets

do11. DIAZEMULS [EP] 10mg/2mL injection dnv7. RETIGABINE 50mg tablets

do1.. DIAZEPAM [EPILEPSY USE] dnvC. RETIGABINE 50mg+100mg tablets

initiation pack

do1y. DIAZEPAM 10mg/2.5mL rectal

solution

do21. RIVOTRIL 1mg/1mL injection

do19. DIAZEPAM 10mg/2.5mL RecTubes dn42. RIVOTRIL 2mg tablets

do1v. DIAZEPAM 10mg/2mL emulsion

injection

dn41. RIVOTRIL 500micrograms tablets

do1w. DIAZEPAM 10mg/2mL injection dnr.. RUFINAMIDE

do1t. DIAZEPAM 2.5mg/1.25mL rectal

solution

dnrz. RUFINAMIDE 100mg tablets

do1A. DIAZEPAM 2.5mg/1.25mL RecTubes dnry. RUFINAMIDE 200mg tablets

do1u. DIAZEPAM 20mg/5mL rectal solution dnrx. RUFINAMIDE 400mg tablets

do1x. DIAZEPAM 5mg/2.5mL rectal solution dne4. SABRIL 500mg powder sachets

do18. DIAZEPAM 5mg/2.5mL RecTubes dne2. SABRIL 500mg tablets

dn54. EMESIDE 250mg/5mL syrup dnb.. SODIUM VALPROATE

do61. EPANUTIN [EP] 250mg/5mL injection dnbv. SODIUM VALPROATE 100mg

crushable tablets

dn95. EPANUTIN 100mg capsules dnbo. SODIUM VALPROATE 100mg/sachet

m/r granules

dn93. EPANUTIN 25mg capsules dnbJ. SODIUM VALPROATE 150mg m/r

capsules

dn96. EPANUTIN 300mg capsules dnbN. SODIUM VALPROATE 1g/10mL

solution for injection

dn81. EPANUTIN 30mg/5mL suspension dnbM. SODIUM VALPROATE 1g/sachet m/r

granules

dn94. EPANUTIN 50mg capsules dnbw. SODIUM VALPROATE 200mg

crushable tablets

dn82. EPANUTIN 50mg Infatabs dnb7. SODIUM VALPROATE 200mg e/c

tablets

dnb1. EPILIM 100mg crushable tablets dnbr. SODIUM VALPROATE 200mg m/r

tablets

dnb2. EPILIM 200mg e/c tablets dnby. SODIUM VALPROATE 200mg/5mL

sugar free liquid

dnb4. EPILIM 200mg/5mL sugar free liquid dnbz. SODIUM VALPROATE 200mg/5mL

syrup

173



Table 6.2 AED Read codes — Continued . . .

Code Description Code Description

dnb5. EPILIM 200mg/5mL syrup dnbp. SODIUM VALPROATE 250mg/sachet

m/r granules

dnb3. EPILIM 500mg e/c tablets dnbK. SODIUM VALPROATE 300mg m/r

capsules

dnbc. EPILIM CHRONO 200 m/r tablets dnbs. SODIUM VALPROATE 300mg m/r

tablets

dnbd. EPILIM CHRONO 300 m/r tablets dnbE. SODIUM VALPROATE 300mg/3mL

solution for injection

dnbe. EPILIM CHRONO 500 m/r tablets dnbu. SODIUM VALPROATE 400mg/4mL

injection

dnbQ. EPILIM CHRONOSPHERE

100mg/sachet m/r granules

dnb8. SODIUM VALPROATE 500mg e/c

tablets

dnbU. EPILIM CHRONOSPHERE 1g/sachet

m/r granules

dnbt. SODIUM VALPROATE 500mg m/r

tablets

dnbR. EPILIM CHRONOSPHERE

250mg/sachet m/r granules

dnbx. SODIUM VALPROATE 500mg tablets

dnbS. EPILIM CHRONOSPHERE

500mg/sachet m/r granules

dnbL. SODIUM VALPROATE 500mg/sachet

m/r granules

dnbP. EPILIM CHRONOSPHERE

50mg/sachet m/r granules

dnbn. SODIUM VALPROATE 50mg/sachet

m/r granules

dnbT. EPILIM CHRONOSPHERE

750mg/sachet m/r granules

dnbq. SODIUM VALPROATE 750mg/sachet

m/r granules

dnb6. EPILIM IV 400mg/4mL injection do... STATUS EPILEPTICUS DRUGS

dnbF. EPISENTA 150mg m/r capsules do12. STESOLID [EP] 10mg/2mL injection

dnbO. EPISENTA 1g/10mL solution for

injection

do15. STESOLID 10mg/2.5mL rectal solution

dnbI. EPISENTA 1g/sachet m/r granules do14. STESOLID 5mg/2.5mL rectal solution

dnbG. EPISENTA 300mg m/r capsules dnsw. STIRIPENDOL 500mg/sachet powder

for oral suspension

dnbD. EPISENTA 300mg/3mL solution for

injection

dns.. STIRIPENTOL

dnbH. EPISENTA 500mg/sachet m/r granules dnsz. STIRIPENTOL 250mg capsules

dnbB. EPIVAL CR 300mg m/r tablets dnsx. STIRIPENTOL 250mg/sachet powder

for oral suspension

dnbC. EPIVAL CR 500mg m/r tablets dnsy. STIRIPENTOL 500mg capsules

dnu.. ESLICARBAZEPINE dn3c. TEGRETOL 100mg chewable tablets

dnu2. ESLICARBAZEPINE ACETATE

800mg tablets

dn34. TEGRETOL 100mg tablets

dn5.. ETHOSUXIMIDE dn37. TEGRETOL 100mg/5mL sugar free

liquid

dn5x. ETHOSUXIMIDE 250mg capsules dn3D. TEGRETOL 125mg suppositories

dn5z. ETHOSUXIMIDE 250mg/5mL syrup dn3d. TEGRETOL 200mg chewable tablets

dni.. FOSPHENYTOIN SODIUM dn35. TEGRETOL 200mg tablets
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Table 6.2 AED Read codes — Continued . . .

Code Description Code Description

dni1. FOSPHENYTOIN SODIUM

750mg/10mL injection concentrate

dn3E. TEGRETOL 250mg suppositories

dnj.. GABAPENTIN dn36. TEGRETOL 400mg tablets

dnj1. GABAPENTIN 100mg capsules dn38. TEGRETOL RETARD 200mg m/r tabs

dnj2. GABAPENTIN 300mg capsules dn39. TEGRETOL RETARD 400mg m/r tabs

dnjx. GABAPENTIN 300mg capsules/600mg

tablets titration pack

dnl.. TIAGABINE

dnj3. GABAPENTIN 400mg capsules dnl2. TIAGABINE 10mg tablets

dnjy. GABAPENTIN 600mg tablets dnl3. TIAGABINE 15mg tablets

dnjz. GABAPENTIN 800mg tablets dnl1. TIAGABINE 5mg tablets

dnl5. GABITRIL 10mg tablets dn3F. TIMONIL RETARD 200mg m/r tablets

dnl6. GABITRIL 15mg tablets dn3G. TIMONIL RETARD 400mg m/r tablets

dnl4. GABITRIL 5mg tablets dnk5. TOPAMAX 100mg tablets

do31. HEMINEVRIN [CNS] 8mg/mL

intravenous infusion

dnk6. TOPAMAX 200mg tablets

dnr1. INOVELON 100mg tablets dnk8. TOPAMAX 25mg tablets

dnr2. INOVELON 200mg tablets dnk4. TOPAMAX 50mg tablets

dnr3. INOVELON 400mg tablets dnkB. TOPAMAX SPRINKLE 15mg capsules

dno5. KEPPRA 100mg/mL s/f oral solution dnkC. TOPAMAX SPRINKLE 25mg capsules

dno3. KEPPRA 1g tablets dnkE. TOPAMAX SPRINKLE 50mg capsules

dno1. KEPPRA 250mg tablets dnk.. TOPIRAMATE

dno2. KEPPRA 500mg tablets dnk2. TOPIRAMATE 100mg tablets

dno6. KEPPRA 500mg/5mL solution for

injection

dnk9. TOPIRAMATE 15mg beads in capsules

dno4. KEPPRA 750mg tablets dnk3. TOPIRAMATE 200mg tablets

dnt.. LACOSAMIDE dnkA. TOPIRAMATE 25mg beads in capsules

dntA. LACOSAMIDE 100mg tablets dnk7. TOPIRAMATE 25mg tablets

dntB. LACOSAMIDE 150mg tablets dnkD. TOPIRAMATE 50mg beads in capsules

dnt8. LACOSAMIDE 15mg/1mL sugar free

liquid

dnk1. TOPIRAMATE 50mg tablets

dntC. LACOSAMIDE 200mg tablets dnm1. TRILEPTAL 150 tablets

dnt7. LACOSAMIDE 200mg/20mL solution

for injection

dnm2. TRILEPTAL 300 tablets

dnt9. LACOSAMIDE 50mg tablets dnm3. TRILEPTAL 600 tablets

dnf9. LAMICTAL 100mg dispersible tablets dnm4. TRILEPTAL 60mg/mL sugar free oral

suspension

dnf4. LAMICTAL 100mg tablets dnv2. TROBALT 100mg tablets

dnfD. LAMICTAL 200mg tablets dnv3. TROBALT 200mg tablets

dnf8. LAMICTAL 25mg dispersible tablets dnv4. TROBALT 300mg tablets

dnf6. LAMICTAL 25mg tablets dnv5. TROBALT 400mg tablets

dnfJ. LAMICTAL 2mg dispersible tablets dnv1. TROBALT 50mg tablets

dnf3. LAMICTAL 50mg tablets dnv6. TROBALT tablets initiation pack

dnf7. LAMICTAL 5mg dispersible tablets do16. VALIUM [EP] 10mg/2mL injection
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Table 6.2 AED Read codes — Continued . . .

Code Description Code Description

dnfF. LAMICTAL MONOTHERAPY 25mg

starter pack

do17. VALIUM [EP] 20mg/4mL injection

dnfH. LAMICTAL NON-VALPROATE

ADD-ON 50mg starter pack

dnh.. VALPROIC ACID

dnfG. LAMICTAL VALPROATE ADD-ON

25mg starter pack

dnh4. VALPROIC ACID 150mg e/c capsules

dnf.. LAMOTRIGINE dnhz. VALPROIC ACID 250mg e/c tablets

dnfC. LAMOTRIGINE 100mg dispersible

tablets

dnh5. VALPROIC ACID 300mg e/c capsules

dnf2. LAMOTRIGINE 100mg tablets dnh6. VALPROIC ACID 500mg e/c capsules

dnfE. LAMOTRIGINE 200mg tablets dnhy. VALPROIC ACID 500mg e/c tablets

dnfB. LAMOTRIGINE 25mg dispersible

tablets

dne.. VIGABATRIN

dnf5. LAMOTRIGINE 25mg tablets dne3. VIGABATRIN 500mg powder sachets

dnfz. LAMOTRIGINE 2mg dispersible

tablets

dne1. VIGABATRIN 500mg tablets

dnf1. LAMOTRIGINE 50mg tablets dnt4. VIMPAT 100mg tablets

dnfA. LAMOTRIGINE 5mg dispersible

tablets

dnt5. VIMPAT 150mg tablets

dno.. LEVETIRACETAM dnt2. VIMPAT 15mg/1mL sugar free liquid

dnov. LEVETIRACETAM 100mg/mL s/f oral

solution

dnt6. VIMPAT 200mg tablets

dnox. LEVETIRACETAM 1g tablets dnt1. VIMPAT 200mg/20mL solution for

injection

dnoz. LEVETIRACETAM 250mg tablets dnt3. VIMPAT 50mg tablets

dnoy. LEVETIRACETAM 500mg tablets dn56. ZARONTIN 250mg/5mL syrup

dnou. LEVETIRACETAM 500mg/5mL

solution for injection

dnu1. ZEBINIX 800mg tablets

dnow. LEVETIRACETAM 750mg tablets dnq6. ZONEGRAN 100mg capsules

do4.. LORAZEPAM [EPILEPSY] dnq4. ZONEGRAN 25mg capsules

dnp4. LYRICA 100mg capsules dnq5. ZONEGRAN 50mg capsules

dnp5. LYRICA 150mg capsules dnq.. ZONISAMIDE

dnp6. LYRICA 200mg capsules dnq3. ZONISAMIDE 100mg capsules

dnp8. LYRICA 225mg capsules dnq1. ZONISAMIDE 25mg capsules

dnp1. LYRICA 25mg capsules dnq2. ZONISAMIDE 50mg capsule
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