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SPECIAL SERIES: MATHEMATICAL ONCOLOGYreview

article

Blackboard to Bedside: A Mathematical
Modeling Bottom-Up Approach Toward
Personalized Cancer Treatments
Sara Hamis, MSc1; Gibin G. Powathil1; and Mark A.J. Chaplain, PhD2

abstract

Cancers present with high variability across patients and tumors; thus, cancer care, in terms of disease
prevention, detection, and control, can highly benefit from a personalized approach. For a comprehensive
personalized oncology practice, this personalization should ideally consider data gathered from various in-
formation levels, which range from the macroscale population level down to the microscale tumor level, without
omission of the central patient level. Appropriate data mined from each of these levels can significantly
contribute in devising personalized treatment plans tailored to the individual patient and tumor. Mathematical
models of solid tumors, combined with patient-specific tumor profiles, present a unique opportunity to per-
sonalize cancer treatments after detection using a bottom-up approach. Here, we discuss how information
harvested from mathematical models and from corresponding in silico experiments can be implemented in
preclinical and clinical applications. To conceptually illustrate the power of these models, one such model is
presented, and various pertinent tumor and treatment scenarios are demonstrated in silico. The presented
model, specifically a multiscale, hybrid cellular automaton, has been fully validated in vitro using multiple cell-
line–specific data. We discuss various insights provided by this model and other models like it and their role in
designing predictive tools that are both patient, and tumor specific. After refinement and parametrization with
appropriate data, such in silico tools have the potential to be used in a clinical setting to aid in treatment protocols
and decision making.

Clin Cancer Inform. © 2019 by American Society of Clinical Oncology

PERSONALIZED MEDICINE: A MULTILEVEL APPROACH

Personalizedmedicine is becoming an increasing part of
modern cancer care.1,2 Patient-specific metrics advise
contemporary clinical procedure in terms of vaccine
recommendations, screening practice,3 and treatment
planning.4 The aim of personalized medicine is to tailor
health care specifically to the individual patient, in
pursuit of optimal treatment outcome and quality of life.
As a strategy, personalized medicine can be highly
beneficial in cancer care, because cancer is a disease
that presents with high variability across incidences. It is
indeed well established that a one-to-fit-all strategy to
prevent, diagnose, and treat cancer is a subpar ap-
proach.5 Ideally, in line with concepts of personalized
medicine, patients should instead be individually eval-
uated and matched with appropriate cancer care
strategies. The personalization of medicine can occur on
various levels, as illustrated in Figure 1. Patient and
tumormetrics gathered frommacrolevel population data
down to microlevel molecular tumor data may aid an-
ticancer decision making in a clinical setting.

On a population level, a population can be categorized
and divided into various subpopulations, which in turn

can be evaluated and risk assessed. Certain sub-
populations express elevated risks of developing
particular cancer types, and likewise certain sub-
populations have a predisposition to aggressive
disease. This categorization can be determined by
inflexible parameters such as age,3,4,6,7genetics,6,8

ethnicity,6 and sex,7 as well as by flexible parameters,
such as smoking habits,9 hormonal exposure,8

obesity levels,10 and socioeconomic factors. The
combination of wide population data and gathered
clinical experience can be used to determine suit-
able, personalized treatment strategies after tu-
mor detection and also to evaluate the need for
cancer screening and vaccine administration.11 For
the individual patient to benefit from screenings,
screening scheduling should be personalized to
enable optimized cancer intervention.9 By deploying
mathematical models, which incorporate biologic
knowledge and evolutionary concepts, optimized
and personalized screening recommendations can
be achieved.9 To more competently consider the
concerns, quality of life and well-being of a patient,
cancer care can be tailored on a patient-specific
level. After cancer detection, lifestyle, personal
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priorities, and economic factors all contribute toward
determination of which treatment strategy is the most
appropriate for the individual patient.6 On this central,
patient-specific level of treatment personalization, the
dialogue between patient and clinician is of the es-
sence,6 and it is important that the patient is well in-
formed by the clinician.

In parallel, to keep the clinician as well informed as
possible, personalized medicine can be even further
detailed and narrowed down to tumor level.12 After tumor
detection, disease forecasting and treatment decisions
can be informed by tumor-specific data. Because of the
high variability of cancer displayed across disease in-
cidences, previous research indicates that tumor prog-
noses and treatment responses may correlate more with
molecular tumor specifics than with larger-scale factors,
such as anatomic tumor origin1 or metrics quantified on
a patient or population level. Recent advances in bio-
marker handling,13,14 biopsy techniques, and medical
imaging enable tumor assessment15 before and
throughout treatments regimes. However, current biopsy
procedures may in certain cases be infeasible to perform,
and furthermore, tumors are highly evolutive systems that
may rapidly and drastically change after a biopsy. There-
fore, being able to predict tumor evolution, progression, and
treatment response, given tumor-specific input data at an

earlier time point, would present an immensely valuable
tool in clinical treatment planning. Recently, via rigorous
mathematical modeling of cancer tumors, predictive tumor
prognosis is being successfully achieved for virtual tumors.16

The current mission at hand is to bridge the gap between
virtual and physical tumor control so that preclinical and
clinical applications will directly benefit from recent ad-
vances made in the field of mathematical and computa-
tional oncology.

MATHEMATICAL AND COMPUTATIONAL ONCOLOGY

Mathematical and computational oncology has the po-
tential to be especially useful to help personalize clinical
cancer practice,17 because it integrates mathematical and
computational approaches with traditional bench and
clinical experiments. Because of recent advances in im-
aging techniques, the vast accumulation of experimental
and clinical data, and available computational power,
in silico studies have gradually been entering the stage of
medical research over the past decades.18 Cancer is
a highly complex disease, and, although this complexity
presents difficulties in model formulation, variable pa-
rametrization and implementation, this complexity also
infers that there is much biomedical insight to be gained
from mathematical models and corresponding in silico
experiments. Modeling may unveil new, important
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FIG 1. (A) Personalized cancer practice on various levels, namely population, patient, and tumor profile. On
a population macrolevel, a population can be categorized into various subpopulations (eg, according to age, sex,
or smoking habits), which in turn can be evaluated and risk assessed for preventive, detective and corrective
oncology practice. On a central, patient-specific level, cancer care may be tailored to fit the needs, lifestyle, and
priorities of the patient, in pursuit of medicine that optimizes both treatment outcome and the patient’s quality of
life. On a tumor-profile level, tumor-specific data can provide information that may contribute toward disease
prognoses and intelligent treatment decisions. Narrowing down cancer care personalization to the tumor level
allows for a bottom-up approach to personalized tumor treatments. (B) The bench-to-bedside concept depicts
the practice of transferring in vitro and in vivo findings from the laboratory to a clinical setting. The contemporary
mathematician works on both blackboards and computer keyboards; thus, we analogously, present the phrase
blackboard to bedside to describe the action of translating mathematical and computational intelligences to
clinical application.
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information about biologic cancer systems and their sub-
mechanisms19 and thus elucidate underlying tumor
processes. The advantages of mathematical and compu-
tational oncology are multifold. Compared with other types
of experiments, in silico experiments are both cheap and
quick to produce,17 are highly adaptable,17 and are asso-
ciated with few ethical concerns. Theories obtained in
laboratories or clinics can be tested in silico on virtual
tumors before animal testing, so modeling results can be
used to guide in vivo experiments.

Today, there exists a wide array of mathematical models
that are able to capture various phases of tumor pro-
gression and associated mechanisms, such as tumor
growth, invasion and metastasis,20-25 angiogenesis,26-29

and treatment responses.30-36 A comprehensive overview
of the field may be found in the review article by Low-
engrub et al.37 Some of these models have successfully
conferred with both in vitro and in vivo experiments or
clinical observations38-40; consequently, mathematical
tumor modeling is steadily gaining acceptance in the
medical community. Recently, several multiscale models
have been developed to fully capture the spatiotemporal,
multiscale nature of tumor dynamics.41-44 Such models
allow for intratumoral cross-scale integration of intracellular,
extracellular, and intercellular concepts, which provides
comprehensive modeling frameworks to which new bio-
medical information can easily be added.

Although advances in cancer research are being made in
parallel across many disciplines, multidisciplinary col-
laborations have the potential to accelerate the process of
translating cancer research into successful clinical ap-
plication. To this end, McGuire et al45 provide an
implementable pipeline for the interdisciplinary devel-
opment of cancer therapies. They illustrated how to
structure the workflow among clinicians, biologists, and
researchers from science, technology, engineering, and
mathematics in an optimal, feasible manner. The work-
flow demonstrates how multidisciplinary research should
alternate between performance in parallel and sequen-
tially. It also incorporates refining, iterative processes
and an outlined order of operations that act to bring
new cancer protocols to the clinic as quickly and safely
as possible. The concept and workflow proposed by
McGuire et al45 acknowledges, yet transcends, practical
limitations, because it allows for collaboration across dis-
ciplines, distances, and institutes.

A MULTISCALE MODEL OF SOLID TUMOR DYNAMICS

To demonstrate the great potential of mathematical tumor
models, an established hybrid, multiscale model46 capable
of simulating spatiotemporal tumor dynamics under various
conditions is presented here in brief. Using this multiscale
model, which is implemented with a high performance
computational framework, virtual cell populations, or tu-
mors, can be created and various clinical, or preclinical,

scenarios can be studied in silico. A handful of selected
such scenarios are discussed in the remainder of
this paper.

MODEL OVERVIEW AND INTRATUMORAL HETEROGENEITY

The mathematical model presented here is a multiscale,
hybrid cellular automaton in which a cancer cell population
was simulated on a three-dimensional lattice. It allows for
spatiotemporal dynamics and intratumoral heterogeneity
and is summarized in Figure 2.43,46 The model was
implemented in an in-house framework based on C++, and
cell maps were visualized using ParaView (Kitware, Clifton
Park, NY).47 For a more extensive model description, see
previous works by Powathil et al.43,46 On an intracellular
level, each cell was modeled individually to integrate
subcellular molecular mechanisms and phenotypical
variations among cancer cells. Intracellular cell-cycle
progression was modeled by a system of ordinary dif-
ferential equations on the basis of a regulatory molecular
network. The model incorporated extracellular regula-
tions, such as oxygen and drug delivery across the lattice,
by mechanistic partial differential equations.

Many cancers are derived from one cancerous seeding
cell, which by detection time has produced a tumor with
subclonal diversity that displays a few dominant sub-
clones.50 It has been observed that cells collected from the
same tumor may display different subclonal50 and spa-
tiotemporal features influenced by intracellular, extra-
cellular,51 and intercellular mechanisms. Consequently,
a multitude of tumor metrics will vary within a tumor
mass,14 and this diversity may not be captured by current
diagnosis tools.50 However, in silico experiments provide
a platform on which to conveniently study implications of
spatiotemporal heterogeneities within a tumor, which thus
allows us to study what is not empirically feasible by other
methods.

IMPLICATIONS OF INTRATUMORAL OXYGEN PROFILES ON
RADIOTHERAPY OUTCOMES

Hypoxic cancer cells express reduced sensitivity to anti-
cancer treatments, such as radiotherapy and some che-
motherapeutic drugs.52 Thus, hypoxia has an adverse
effect on treatment delivery and may significantly affect
clinical outcome. Consequently, it is important to consider
spatiotemporal oxygen dynamics during study, or imple-
mentation, of treatment delivery.49 Accordingly, a previous
in silico study by Enderling et al53 deployed an agent-based
model, which accounted for variations in stemness among
cancer cells, to emphasize the impact that cancer cell
morphology and spatiotemporal heterogeneity has on
radiotherapeutic response and hence on success and
treatment optimization. Another in silico experiment that
considered the hierarchy of tumor-initiating cells was
presented by Scott et al54; they investigated phenotypic
tumor-infiltrating cell features and extrinsic effects on tumor
growth using a hybrid cellular automaton. A recent, spatially
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resolved mathematical study by Lewin et al55 demonstrated
how radiotherapy-induced cell kill alters the intratumoral
cell and oxygen composition and, consequently, how
a certain tumor’s radiotherapy response will vary across
a series of administered fractions. In their study, avascular
spherical symmetrical tumor growth was modeled by an
integrodifferential equation that was coupled with a re-
action-diffusion equation that governed oxygen distribu-
tion. Radiotherapy response was modeled using the well-
established linear-quadratic (LQ) model.

In the presented modeling framework, oxygen dynamics
and corresponding consequences were incorporated
on multiple scales. Oxygenation status affects a cell’s
proliferation rate; furthermore, cellular response to ra-
diotherapy is considered to be a function of oxygenation
status, cell-cycle advancement, and radiation dosage.31,46

Figure 3 illustrates how two different virtual tumors
(tumor A and tumor B) with different oxygen profiles
evolved and responded to radiotherapy. Both tumors
stemmed from three identically located seeding can-
cer cells and were simulated on equisized, three-

dimensional lattices. On the lattice that contains tu-
mor A, oxygen was produced on all extracellular lattice
points that were not occupied or enclosed by cancer
cells. On the second lattice, which correspondingly
contains tumor B, oxygen was produced only in one
octant of the lattice, as demonstrated in Figure 3. It can
be seen that tumor A was significantly more oxygenated
than tumor B; consequently, the in silico experiment
demonstrated a few key differences between the dy-
namics of the two tumors. First, the well-oxygenated
tumor proliferated faster than the poorly oxygenated
tumor, because hypoxia impeded cell-cycle progression.
Second, the two tumors displayed different distributions
of cellular oxygen levels. Last, radiotherapy was more
effective in the well-oxygenated tumor than in the poorly
oxygenated tumor. These results demonstrate how
useful it can be to consider a detailed tumor profile
before treatment planning starts.

CLINICAL RELEVANCE OF RADIATION BYSTANDER EFFECTS

At low radiation doses, the direct effects of delivered ra-
diation are considered relatively low; consequently, the
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FIG 2. Fundamental mathematical components of the multiscale model. Cell-cycle dynamics are modeled by a system of ordinary differential equations
composed of six dependent variables, specifically five protein concentrations and cell mass. Oxygen dynamics obey a mechanistic partial differential
equation (PDE). Various treatment regulations are incorporated in the model. Chemotherapy dynamics are modeled by a mechanistic PDE, and ra-
diotherapy response follows the linear-quadratic model. The cellular survival probability S(x, t) after radiation depends on oxygenation status and cell-cycle
progression. See Powathil et al48,49 for additional details.
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nontargeted effects of radiation play an important role in the
determination of cellular radiation response.48,56,57 In most
cases of clinical radiation delivery, the majority of normal
tissue adjacent to the targeted tumor is exposed to low-dose
radiation in an effort to maximize the dose delivered to the
tumor but minimize the damage to surrounding normal
structures.57 Hence, it is important to study the impact of
nontargeted effects in clinical radiation therapy and their
role in radiation effectiveness and potential radiation-
induced carcinogenesis.57

Examples of such nontargeted effects include the
phenomena known as bystander effects, in which
signals produced by irradiated cells influence the be-
havior of nonirradiated cells.48,56,58 It is difficult to study
these effects independently of direct effects, and,
moreover, mediators and targets for bystander signals
are poorly understood even after several experimental
studies.49,57,59-64 Recently, several modeling attempts
have been made to study and understand radiation
bystander effects.65,66

In one of these attempts, Powathil et al66 used a multi-
scale mathematical modeling framework (Fig 2) to study
the impact of radiation and radiation-induced bystander
effects on both normal and tumor cells. Here, bystander
effects are considered to be produced by bystander
signals that diffuse through the medium/microenviron-
ment.48,59 Radiated and nonirradiated cells that are

exposed to these signals are assumed to respond
probabilistically, in which varying outcomes, such as cell
death, repair delay, and mutation, depend on localized
signal intensity. Figures 4A and 4B show the survival
fraction of the cells after radiation, with and without
bystander-induced cell kill, for two cases of dose delivery.66

In Figure 4A,66,67 tumor cells are fully exposed to the
given radiation dose, but the surrounding normal cells
receive gradients of the dose. In Figure 4B, tumor cells
are fully exposed to the given radiation dose, but the
surrounding normal cells are spared completely. The
plots show that, at low doses (, 0.5 Gy), bystander ef-
fects contribute to a higher cell kill than do direct effects.
This indicates that bystander effects might play a role in
low-dose radiation hypersensitivity, as observed in
multiple experimental studies, such as one shown in
Figure 4C (which compares curves for the LQ model and
the LQ model with bystander effects). These in silico
results are also confirmed with experiments by Fernandez
et al.59

DRUG RESISTANCE AND DRUG RESPONSE

After chemotherapy, tumor recurrence is a prevalent
clinical problem, and reappearing cancers are often ob-
served to be increasingly drug resistant. Cancer cells may
possess, acquire, and communicate drug-resistant traits,
which enable them to survive under otherwise lethal
conditions, after exposure to chemotherapeutic drugs. The
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efficacy of chemotherapy treatments is significantly
influenced by drug-resistant traits expressed by the
targeted tumor.

Tumor dynamics in cancer cell populations that display
drug-resistant traits, derived from inheritance or mutations,
which are spontaneous, drug-induced or communicated
via exosomes, can be studied in silico.68 The coexistence of
drug-resistant and drug-sensitive cells yields a competition
between subpopulations, and the evolution and ecology of
cancer cell populations obey Darwinian rules.69 It has been
demonstrated that drug-resistant subpopulations are more
fit to survive in the presence of drugs, whereas drug-
sensitive cells are more fit to survive in the absence of
drugs. This is in accordance with the argument that cells
may indeed acquire drug resistance as a survival endeavor;
however, by doing so, other cellular driving mechanisms
are compromised.69 To study these concepts in silico, we
here investigated tumor growth and chemotherapy re-
sponse of a tumor composed of two subpopulations, one of
which was sensitive to drugs and one of which was drug
resistant. The drug-resistant subpopulation was immune to
drug effects but had reduced proliferation ability, specifi-
cally a cell-cycle length of roughly twice that of the sensitive
subpopulation. At the start of the in silico experiment, one
drug-sensitive and one drug-resistant cell were placed on
the lattice. As is clearly demonstrated in Figure 5, the
sensitive subpopulation dominated in size before drug
administration because of its higher proliferation rate.

Drugs, specifically cisplatin, were administered at 700 and
800 hours in a single or double dosage. The results
demonstrated how the choice of drug dosage influences
the outcome of chemotherapy. Although a higher drug
dosage killed more cancerous cells, it also altered the
composition of sensitive-to-resistant cells in favor of the
drug-resistant subpopulation. Repeated use of such
chemotherapy administration would quickly render the
tumor uncontrollable by chemotherapy. This conceptu-
ally shows that suboptimal chemotherapy administration
may contribute toward drug resistance. In other words,
chemotherapy that does not kill a tumor may make it
stronger.68

Traditionally, the goal of clinical chemotherapy has been to
reduce the tumor size as much as possible with minimal
toxicity. However, Hamis et al68 recently demonstrated that
chemotherapy treatments, in terms of dosage adminis-
tration and scheduling, should be tumor specific to si-
multaneously suppress tumor size and drug-resistant
tumor features.68 A treatment strategy backed up by
mathematical modeling is adaptive chemotherapy,69 which
takes advantage of the competition between drug-sensitive
and drug-resistant subpopulations in an effort to improve
treatment outcomes. This promising, and mathematically
validated, strategy does however imply breaking free from
the clinically traditional set-dosage, set-schedule practice.
This shows that mathematical models, such as the one
described here, can be useful to motivate, develop, and
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guide personalized treatment protocols informed by
available data.

HYPOXIA-ACTIVATED PRODRUGS

Because of recognized implications of hypoxia, multiple
strategies to combat hypoxia have been explored.70

Hypoxia-activated prodrugs (HAPs) present a means to
not only combat, but better yet, exploit hypoxia in anticancer
therapies.52 HAPs comprise bioreductive prodrugs that reduce
to active cytotoxins upon reaching hypoxic regions.64,71,72

Because tumors, as a rule, express levels of hypoxia of
higher severity than do other relevant tissues in the host
system, tumors can be targeted. HAPs may thus operate as
trojan horses, which are essentially harmless until they are
converted in targets—in other words, hypoxic tumors re-
gions. Combination treatments of HAPs and ionizing ra-
diation have produced optimistic preclinical results,72 but,
despite the conceptual promise of HAPs, clinical trials of
HAPs have produced mixed outcomes. Mathematical
modeling can help elucidate the (somewhat disheartening)
results of clinical HAP trials.

Previous mathematical studies have already contributed to
the overall understanding of HAPs. Work by Foehrenbacher

et al73 quantified bystander effects elicited by the HAP PR-
104 using a Green’s function method, in customized form,
and pharmacokinetic/pharmacodynamic modeling. Similar
mathematical concepts were used in a later study to
compare class I HAPs with class II HAPs and to determine
optimal properties for class II HAPs.74 TH-302 is a HAP that
has been tested for an array of cancers in clinical trials.
Using a stochastic model, Lindsay et al75 studied TH-
302–erlotinib monotherapies and combination therapies
to conclude that a combination therapy of the two drugs
impedes the uprising of drug resistance. HAPs bioreduce to
activated form under hypoxic conditions, so a previous
study by Wojtkowiak et al76 investigated, and conceptually
validated, the strategy of deliberately exacerbating intra-
tumoral hypoxia using exogenous pyruvate to amplify TH-
302 activity. Their study combined metabolic profiling and
electron paramagnetic resonance imaging with mathe-
matical modeling, in which HAP dynamics was modeled
using reaction-diffusion/convection equations coupled with
fluid-structure interactions.

Here, we extended the multiscale framework summarized
in Figure 2 to study HAP dynamics and appropriate tumor
conditions for HAP success. In the model, HAPs were
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assumed to follow similar dynamics as that of chemo-
therapy, in which HAPs bioreduced to activated form (ie,
AHAPs) after they were on a sufficiently hypoxic lattice
point. Cells that were hypoxic enough to activate the pro-
drug are called activators, and other cancer cells are by-
stander cells. Both activators and bystander cells may be
euthanized by the DNA linking effect of AHAPs. Figure 6
illustrates an in silico experiment in which two tumor
spheroids, tumor A and tumor B, are subjected to HAPs.
Both tumors consisted of 20% activator cells. In tumor A,
the activator cells were concentrically located in the center
of the tumor spheroid, but the activator cells in tumor B
were scattered in clusters. The results indicate that, despite
the fact that tumor A and tumor B contained the same
number of activator and bystander cells, HAPs were more
effective in tumor B than in tumor A. This demonstrates that
not only the hypoxic tumor fraction but also the spatio-
temporal distribution of hypoxic cells may influence HAP
efficacy. Tumor-specific treatment personalization is,
again, of the essence, because the results demonstrate that
the successfulness of HAP treatments strongly correlates
with tumor-specific features. This indicates that, in a clin-
ical setting, patients might need to be carefully selected for
HAP treatments via sufficiently comprehensive tumor
assessments.

DISCUSSION

Mathematical modeling has chronologically tailed clinical
implementation of tumor treatment strategies. Historically,
this time lag is validated in the early era of modern cancer
care practice, which preceded advanced technology.
However, with current imaging and biopsy technologies;
sophisticated in vitro and in vivo laboratories; accumulating
data from experiments and clinics; available computational
power18; and biologic, medical, and mathematical knowl-
edge, mathematical oncology today constitutes an up-to-
date complement to traditional cancer research. Modeling
has the potential to both optimize currently available
anticancer protocols and contemporaneously aid pre-
clinical developments of new anticancer therapies. Thus,
the time lag between clinical applications and mathematical
modeling is conceptually being eliminated. However, to
comprehensively transfer insights from blackboard to
bedside, actualized collaboration between clinicians and
mathematicians, as well as between biologists and ex-
perimentalists, is key.77

In this article, we demonstrated how mathematical tumor
models can be used to study pertinent treatment
scenarios in silico. Once validated, data driven, predic-
tive mathematical models can eventually help plan
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personalized treatment protocols by acting as in silico
test bases. For a more complete translation of intelli-
gence from blackboard-to-bedside, there exists a need
to integrate tumor-host interactions mathematically.

However, cell population models, such as those de-
scribed here, constitute a crucial stepping stone to re-
alization of a bottom-up approach toward personalized
medicine.
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