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ABSTRACT

The growing use of complex and irregularly shaped components for safety-critical applications has increasingly
led to the adoption of X-ray CT as an NDE inspection tool. Standard X-ray CT methods require thousands of
projections, each distributed evenly through 360° to produce an accurate image. The time consuming acquisition
of thousands of projections can lead to significant bottlenecks. Recent developments in medical imaging driven by
both increasing computational power and the desire to reduce patient X-ray exposure have led to the development
of a number of limited view CT methodologies. Thus far these limited view algorithms have been applied to basic
synthetic data derived from simple medical phantoms. Here, we use experimental data to rigorously test the
capability of limited view algorithms to accurately reconstruct and precisely measure the dimensional features of
an additive manufactured sample and a turbine blade. Our findings highlight the importance of prior information
in producing accurate reconstructions capable of significantly reducing X-ray projections by at least an order of
magnitude. In the turbine blade example a dramatic reduction in projections from 5000 to 24 was observed while
still demonstrating the same level of accuracy as standard CT methods. The findings of the study also suggest the
importance of sample complexity and the presence of sparsity in the X-ray projections in order to maximise the
capabilities of these limited algorithms. With the ever increasing computational power, limited view CT algo-
rithms offer a method for reducing data acquisition time and alleviating manufacturing throughput bottlenecks

without compromising image accuracy and quality.

1. Introduction

Modern engineering is increasingly utilising complex components.
Turbine blades, for example, feature complex cooling channels and
highly optimised curved surfaces, and the rise of additive manufacturing
has given huge potential for extremely complex shapes. Such shapes
present significant inspection challenges to traditional NDE techniques,
as these features can obscure defects or manufacturing errors. X-ray
computational tomography (CT) is one of the few technologies capable of
non-destructively measuring both the external and internal features of a
component [1]. Numerous CT approaches exist, but within industry they
commonly consist of a static X-ray source and a movable detector which
is perpendicular to the source. The sample to be CT scanned is placed on a
movable disk which rotates through 360° allowing multiple X-rays pro-
jections to be captured. Standard X-ray CT methods require thousands of
projections, each regularly and evenly distributed through 360° to pro-
duce an accurate image [2,3]. Once an accurate tomographic image is
generated it can be used to assess the specimen for flaws, quality control
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and undergo dimensional analysis by comparison with CAD e.g., [1].

One of the major downsides of X-ray CT is the time consuming data
acquisition process which can lead to significant bottlenecks. To alleviate
these bottlenecks in throughput, companies may be forced to purchase
additional X-ray CT capability at great cost or reduce individual X-ray
exposure times lowering the signal-to-noise rato and image quality.
Spurred by the ever increasing power of computers and the increasing
flexibility of graphics cards for general purpose computing [4], a variety
of limited view tomographic techniques capable of generating high
quality images with less data have been developed for medical purposes
e.g., [5-13]. Although much theoretical work has been conducted over
the past decade on limited view tomography the algorithms developed
have been tested on simple synthetic examples (e.g., Shepp - Logan
phantom [2]) typically with parallel ray geometry, which poorly mimics
true industrial applications where ray path geometries and noise are
an issue.

Routine medical X-ray CT applications are limited to disease or
trauma detection and the precise measurements are often not required as
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other, higher resolution and targeted, diagnostics methodologies (e.g.,
MRI) may be applied. In contrast, industrial CT requires precise high
resolution and high contrast images to provide meaningful dimensional
measurements for quality control purposes. These differences in the ob-
jectives of medical and industrial X-ray CT may prevent the direct
transfer of the newly developed imaging algorithms. Here we survey and
quantify the performance of limited view tomographic algorithms
developed for medical applications to reconstruct and precisely measure
the dimensional features of a turbine blade and a simple additive man-
ufactured sample using industrial X-ray data and setup.

2. X-ray CT theory

Traditionally X-ray tomographic reconstructions are computed using
the filtered back-projection approach or its cone beam equivalent the
FDK method [2,3]. The main advantages of the filtered back-projection
method are its speed of computation, since it relies on the computation of
the Fast Fourier Transform and its inverse, and the low computational
memory requirements. Despite these advantages the filtered back pro-
jection approach does suffer from a number of drawbacks primarily
associated with the data acquisition, where many hundreds or thousands
of projections that are uniformly distributed over 360° are required to
produce accurate reconstructions [2]. The incorporation of prior
knowledge (e.g., material properties and geometry) to aid in the recon-
struction is usually available in NDE applications but is often difficult to
accomplish.

An alternative method to filtered back-projection imaging is to relate
the measured projection data to a set of unknown image pixels via a set of
algebraic equations [2,10,16]. The measured amplitude of a mono-
chromatic X-ray through an object is given [2] by

I=1Iyexp(— [ u(x,y)ds), )

where I is the measured X-ray intensity at the detector, I is the intensity
of the monochromatic X-ray source and [, u(x,y) ds is the ray-path in-
tegral through the object with radiographic attenuation u(x,y). Equation
(1) maybe discretised and re-written as

I n
—1081— = Z QUi 2
0 i=1

where i indicates the pixel number, g; is the weighting of each pixel based
on the length of the X-ray raypaths crossing each pixel and v is the
attenuation value of the pixel. For m observations (2) may be put into
matrix form b = Ax where be R™ are the X-ray projections, Ac R™" is a
matrix of pixel weights that relates the image to the data projections and

Detector

Source

Fig. 1. Illustration of a single ray-path (A;,) passing through a 5 x 5 pixel image array and
recorded on the i detector bin.
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is often called the projection matrix and x€ R" are the image pixels
(Fig. 1). These systems of equations are usually contaminated by noise,
underdetermined and singular and therefore must be solved in a least
squares sense [2,10].

The main advantage of formulating the tomographic reconstruction
as a least squares inverse problem over the more routinely used filtered
back-projection method is its flexibility if large numbers of uniformly
sampled data over 360° are unavailable from which to produce an
adequate reconstruction [2]. In addition, prior knowledge such as posi-
tivity (x > 0) or the minimum and maximum values of each pixel
(a <x <b) may be easily incorporated as constraints. The major
downside of the algebraic reconstructions are their relatively slow
compute times and solution convergence. However, with the ever
increasing power of computers and the advent of graphic card processors
the application of least squares inversion for X-ray tomography is rapidly
becoming viable, particularly if the acquisition time is reduced by
obtaining fewer projections e.g., [5].

2.1. Algebraic tomographic imaging

The system of equations to be solved in CT tomographic imaging are
typically large (n = 262144 for 512 x 512 pixel image) so iterative least
squares methods must be used to effectively solve the problem [2,10,16].
A series of algebraic reconstruction methods have been developed over
the years which iteratively solve the least squares the problem (for
example see Refs. [2,16] for a review). Here, we shall consider two
routinely applied reconstruction techniques, the Algebraic Reconstruc-
tion Technique (ART) and the Simultaneous Iterative Reconstruction
Technique (SIRT), which solve the iterative least squares problem by a
series of forward- and back-projections.

The ART method is a row action method where the k™ iteration of the
image is estimated by sweeping through each row of the matrix A and
projecting the solution onto orthogonal hyperplanes e.g., [2,16]. These
hyperplanes are defined as b; — alx" ") where b; is the i component of
the data vector b, q; is the ith row of A written as a column vector and
x*EDI is the image vector from the k("1 iteration. The update to the
image vector is computed by orthogonally back-projecting the hyper-
plane by multiplying it by a; Practically, the process corresponds to
calculating a residual between the measured and the estimated projec-
tion made from forward modelling through the current image, then back-
projecting this residual to update the image. A single iteration xtk®1 jg
completed once the solution has been updated for all rows of A. After
each row iteration its prior constraints on the solution such as positivity
may be applied. The ART algorithm has been shown to have a conver-
gence history which initially improves the solution to better approxi-
mations of the true image but at later iterations diverges away from this.
This convergence history is known as semiconvergence and has been
shown in the ART case to be very fast obtaining a solution in just a few
iterations (Algorithm 1 [16]).

Algorithm 1 Algebraic Reconstruction Technique (ART)

1: ”L[O] =0

2: for k=1, ..., K do
3: fori=1,...,Mdo

" 20T — kD) #u

5: > Optional positivity (z > 0) or box constraint = € [c, d]
6: if pos = True then

7 if 2Pt < 0 then zFH1] =0

8: else if box = True then

9: if 2"t < ¢ then zlF1 = ¢

10: else if z**1 > d then zlFt1 = ¢

1 glerl = k)
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The second reconstruction procedure considered is SIRT which
performs the k™ update to image vector by simultaneously using all
projection data (Algorithm 2). The procedure is similar to the ART
approach where the k™ solution is projected onto a series of hyper-
planes b — Ax'®, which act to regularise the solution [2]. The image
vector is updated by orthogonal back-projection of the projected
solution x*®!. The back-projection is weighted by the diagonal
matrices C and R with ¢; = 1/21 Ay and r; = I/Zj Ay which

compensate for the number of rays that cross each image pixel. The
SIRT algorithm converges to the solution in many more iterations
than ART but has the advantage of better multi-core parallelism. The
implementation of SIRT in the manuscript assumes positivity
throughout.

Algorithm 2 Simultaneous Iterative Reconstruction Technique (SIRT)
1zl =0
2: for k=1, ..., K do
3 gl =gl L CATR(b — AxlM)

4: > Optional positivity (z > 0) or box constraint z € [c, d]
5: if pos = True then
6: if 2"t < 0 then 21 =0
T else if box = True then
8: if 2(F+1 < ¢ then 2lF+1 = ¢
9: else if z/**1 > d then zFt1 = 4
2.2. Total variation regularisation

Total variation (TV) reconstructions were first introduced in the
image processing literature to the problem of image denoising [11]. The
method is based on the principle of compressed sensing whereby an
understanding of the signal sparsity may be exploited to perfectly
reconstruct the signal of interest with fewer samples than those required
by the Shannon-Nyquist theorem [14,15]. A TV reconstruction assumes
that the gradient of the signal is sparse making the method ideally suited
to reconstructing signals which have sharp edges. The TV of a function
f(x) is defined as e.g., [10,16]:

TV(f(x)) = [olVf(x)|dx. 3)

For the tomographic reconstruction problem we reorder the vector of
image pixels x such that it now represents a 2D array i.e., the image
xe R™° where r and c are the total numbers of row and column pixels
respectively. The TV norm of the discretised image may therefore be
defined as e.g., [10,12,15]:

Ixl =" \/|xi./ = xiyl* + iy = xig
7

4

where,i=1...randj=1...c.

Numerous algorithms have been developed in the recent years which
minimise the TV of an image e.g., [4,6-13]. However, many of these
algorithms are dedicated to denoising or debluring an image where the
forward operator A has a specific structure which is efficiently exploited
(e.g., identity matrix) [9]. For CT tomographic reconstructions in
general, the matrix A has no exploitable structure and the large nature of
the problem to be solved means that a number of the methods developed
for TV minimisation are unsuitable for this problem. Iterative gradient
descent based methods provide an attractive approach of CT tomo-
graphic reconstruction with TV minimisation. The gradient of Equation
(4) with respect to each pixel is undefined and thus the following smooth
approximation must be used [9,10,12]:

100
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(i = xim1y) + (v = xi1)

\/5 + (v = x1y) + (o = xi)?

V[ xllrv

Xit1j — Xij )
2 2
\/5 + (i1y = %)+ (i1 — Xivrj)
Xij+1 — Xij

\/5+ (xij+l - xij)z + (xi,/'+l - xi—l,/+l)2

where § > 0 is small. The selection of § is vital for an accurate recon-
struction where values too large lead to smooth reconstructions, and too
small a value may result in convergence problems [10]. The value of § is
typically estimated via trial and error for each TV algorithm and appli-
cation. In this article we shall consider the TV reconstruction algorithm of
Sidky et al. [12] and the gradient descent method of Barzilai and Borwein
[17] with TV regularisation [9,10].

The method of Sidky et al. [12] combines the ART algorithm with a
TV minimisation step to solve the following optimisation problem:

minimise || x|y subject 0 Ax=b, )
in an iterative manner. The first stage of the method is to minimise Ax =b
in a least squares sense using a single iteration of ART (Algorithm 1). It
should be noted that the inclusion of the optional positivity constraint is
applied at the end of each ART iteration as opposed to after each row
iteration as described in Algorithm 1. The next step in the method is to
minimise the TV of the ART reconstruction using a fixed step, y, gradient
descent method. This two step process is repeated for a fixed number of
iterations (Algorithm 3). Throughout this manuscript this algorithm will
be referred to as as ART-TV.

Algorithm 3 ART-TV
1: ;7;[0] =0

2: v =0.05
3: for k=1, ..., K do
4: fori=1,...,Mdo

> Initialise step length

> ART algorithm

5 .T,[k'w] _ 'T[k(””] T blfa‘z‘"(:[é"l).al

6: 2 ART) — 4 K]

o alkd = g

8: if ¥ < 0 then z" =0 > Applying positivity constraint

9 dy =[x ART] = gM||,

10: for j=1, ..., Ngag do > Gradient TV minimisation
N Pl

0= R

12: w[’“m] = J;[k(kn] — yd a0

13 gl = gk

The second TV reconstruction algorithm introduces the TV as a reg-
ularisation term into a least squares problem and the goal is to minimise:
| Ax— Bll3 +a || x|, %
where a > 0 is the regularisation parameter that controls the weighting
between the two terms in the equation [10,16]. Equation (7) is solved
using a gradient descent method where the step length parameter is
estimated using the Barzilai and Borwein method [17]. The inclusion of
the Barzilai and Borwein step length provides a computationally cheap
approximation to the Newton step, thus improving the rate of conver-
gence and being less affected by ill-conditioning than fixed step gradient
methods [9,10]. The Barzilai and Borwein gradient descent method does
not guarantee that the objective function decreases with each step. To
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overcome this and to guarantee that the objective function does decrease
over N iterations, a non-monotone line search using a backtracking
procedure is implemented [9] (Algorithm 4).

Algorithm 4 Gradient descent with TV regularisation

12l =0

2: € = 0.0001

3: p1 = 0.0001 > Initialise 1%‘step length
4: N =10

5. for k=1, ..., K do
6: VM) =vV|Azk — b3 + V|||

7 if £ > 1 then
(@M gk )T (gl g i)
Pr = (,:ML,:M 1 )T(f k] flk 1)

> Barzilai and Borwein step

9 6=0.95

10: 7 =k — ﬁkaf(a?:}"]) > Gradient TV minimisation
w f = max{f(@l), faltU), L f(alo M)

12: > Non-monotone line search

13 while f(z) > f — eV f(@M)T (2™ - z) do

14: B =pd

15 z =zl — ﬁp;\-,Vf(;zt["'])

16 ple+1] — 7

Typically the value of a may be estimated by trialing a number of
values and producing a trade-off plot, known as an L-curve which com-
pares the solution norm || x||7v, and the residual norm || Ax — b||» e.g.,
[10,16]. The value of « is then selected as ‘bend’ or ‘knee’ in the curve
and provides the best trade-off between the solution and residual
norms [16].

3. Dimensional measurements

The CT algorithms introduced previously are assessed for their
applicability to limited view NDE for dimensional measurement with the
results compared to traditional filtered back-projection images, manu-
facturers' tolerances and physical measurements. In the following tests
particular attention is drawn to the accuracy of both internal and external
edges of the samples for varying angular sampling (1°,5°,10°,15°,20°).
The test also determines at which angular sampling rate
(1°,5°,10°,15°,20°) each tomographic method fails to accurately recon-
struct the samples.

3.1. Turbine blade

The experimental X-ray CT data for a turbine blade were acquired
using a collimated 410 kV, 225 uA source and a 4 mm copper filter. The
X-rays were recorded on a linear array consisting of 2048, 0.415 mm long
pixels, with an exposure time of 1s per frame where each illumination is
averaged over 2 frames. The turbine blade was illuminated by 5000
projections with an even angular sampling of 0.072° through 360°. A
tomographic image of the turbine blade was obtained using the industry
standard FDK method [3] and post processed for any beam hardening
artefacts (Fig. 2).

Typically turbine blade wall thickness measurements are made
perpendicular to the surface so as to limit small angle errors which scale
proportionally to sec (¢) where 6 is the deviation angle from the normal.
However, the complex geometry of the turbine blade means that only a
very few walls have parallel surfaces. Given the ambiguity in defining
measurement lines perpendicular to the turbine blade walls, here we
follow the approach used in other imaging studies where the FDK image
is used as a baseline to compare the results of the other reconstruction
algorithms e.g., [2,10,12,15,16]. Comparing the reconstruction against a
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0 5mm

Fig. 2. Filtered back-projection image of turbine blade. The three red lines indicate the
cross-sections through the blade.

baseline image provides a consistent and robust method of quantifying
the accuracy of each reconstruction which is independent of any
geometrical errors. The accuracy of the reconstructions, in particular, the
location of the blade edges and the pixel amplitudes, are assessed by
comparing three cross-sections through the turbine blade (Fig. 2).

In order to eliminate artefacts associated with beam hardening an
empirical correction was estimated which revises the measured
amplitude of the detector based on the travel path through the turbine
blade. The correction was estimated by fitting a third order poly-
nomial such that the difference between the expected amplitudes
computed by ray-tracing through the corrected filtered back-projec-
tion image (Fig. 2) and those measured on the central detector bin are
minimised (Fig. 3).

Modelled sinogram amplitude

0 i 1
0 0.5 1

Experimental sinogram amplitude

1.5

Fig. 3. Comparison of modelled and experimental sinogram amplitudes recorded at the
central detector bin (red points). The black line is least squares empirical correction
applied to the experimental sinogram amplitude data to account for beam hard-
ening artefacts.
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L-curve for 10° sampling

35

30

n
(6]

Solution TV norm ||V ><||1
N
o

15

10 ‘ :
0 0.05 0.1

Relative residual norm ||Ax - b||2/||b||2

Fig. 4. Trade off curve to determine the parameter a in Algorithm 4 for tomographic
reconstructions with a 10° sampling. The images on the right hand side are turbine blade
reconstructions with varying values of a. Note that larger and smaller values of « lead to
smoother and coarser reconstructions respectively. The optimum value of a is determined
by the ‘bend’ in the curve at 0.1.

Prior to testing the algorithms a number of user defined parameters
had to be set; the most important of these are § and « in Algorithms 3 and
4, and the maximum number of iterations, K, for all algorithms. The value
of 5 in Algorithms 3 and 4 was determined following a trial and error
approach whereby a number of reconstructions of the turbine blade were
computed and visually compared with the desired control image.
Following this process & was set as 10~% and 10 for Algorithms 3 and 4
respectively. The regularisation parameter, «, that controls the weighting
between the two terms in Equation (7) must be determined prior to the

1°sampling

ART ART positivity

0° sampling
ART ART positivity

20° sampling
ART ART positivity

SIRT

SIRT

T
>olo~To—
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analysis. A series of reconstructions were computed using a = 174 0.01,
0.1, 1, 2, 5 with the solution norm and relative residual norm plotted on a
trade off curve (Fig. 4). The optimum value of « is that which adequately
reduces the both solution norm and residual norm which is determined
by the ‘bend’ or knee in the trade off curve. Following these tests a = 0.1
was deemed to produce the best reconstructions over a number of
different angular sampling regimes. The maximum numbers of iterations
are algorithm dependent and were determined via a trial and
eITor process.

Fig 5 shows the image reconstructions for an angular sampling of 1°,
10° and 20°. A notable feature of the reconstructions is the significant
amounts of noise in the ART, ART with positivity and SIRT re-
constructions; this noise is routinely referred to as ‘salt and pepper’ noise
which is commonly visible in these reconstructions [2]. Both the TV al-
gorithms produce homogeneous turbine blade image amplitudes in the
10° sampling case whilst displaying smearing towards the tail of the
blade and within its internal cavities (Fig 5). This smearing in the images
at 20° is less apparent in the ART with positivity and SIRT where the
main features of the turbine blade have been preserved.

Fig. 6 shows the reconstructed cross-sections A-A*, B-B*, C-C* for the
tomographic inversions with an angular sampling of 1°,5°,10°,15°,20°.
Due to the noise in ART and SIRT reconstructions, it is difficult to assess
the quality of each of the reconstructions shown in Fig. 6. The ART
method produced adequate cross-sections for angular sampling of 1-5°
and is unable to produce meaningful results for greater angular sampling.
However, the addition of prior knowledge in the form of positivity con-
straints improves the reconstructions with all of the different angular
sampling methods, producing meaningful reconstructions which closely
resemble the true cross-sections.

The TV algorithms produce accurate reconstructions of the turbine
blade cross-sections up to an angular sampling of 10°. For an angular
sampling of 15° the shape of the cross-sections are correct, however,
there are some discrepancies in the amplitudes of the reconstructions
particularity in cross-sections A — A* and C — C* (Fig. 6). At an angular
sampling of 20° the TV methods are unable to accurately reconstruct the
cross-sections particularly towards the tail of the blade.

Fig. 7 compares the RMS residual of the control image (Fig. 2) with
the tomographic reconstructions for the different choices of angular
sampling. The ART has the largest RMS image residual. The gradient
descent with TV regularisation (Algorithm 4) produces the best image
match of the TV algorithms for angular sampling of 1-15° with the ART-

ART-TV TV gradient

ART-TV TV gradient

TV gradient

Fig. 5. Turbine blade reconstructions for 1°, 10° and 20° angular sampling. The ‘salt and pepper’ noise is clearly visible in the ART and SIRT images whilst those generated by the TV
method have a single value. Note the increased smearing towards the tail of the turbine blade in the TV reconstructions whilst this smearing is reduced in the ART with positivity and SIRT

reconstructions.
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0 100 200 300 400 500 |[—FDK
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0.0 100 200 300 400 500
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0 100 200 300 400 500
B Pixels B
100 150 200 250 300 [—1°
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06 CART - TV A A _A_A A\ .
0 1 1 1
100 150 200 250 300
0.6 TV gradient m ]
0 1 1 1
100 150 200 250 300
C Pixels C*
06 CART
0 a = il
0.6° 100 200 300 400 500
- ART positivity -
0 1 1 1 1
0 100 200 300 400 500 [—1°
Oe[LSIRT ' | ' ] F3o
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0 100 200 300 400 500 [—FDK
OCCART-TV ﬁl A ! P ' .
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0 100 200 300 400 500
06 cTv gradient' ﬁl H ! Q ! ]
0 1 - 1 1 1
0 100 200 300 400 500

Pixels

Fig. 6. Tomographic reconstruction of cross-sections A — A*, B - B* and C — C*, for ART, ART with positivity, SIRT, the ART-TV and TV gradient descent method with angular sampling 1°,

5°,10°, 20°.

TV algorithm (Algorithm 3) producing a slightly improved result at 20°.
Both the ART (Algorithm 1) and ART-TV (Algorithm 3) produce RMS
residuals which are worse for 1° than for 5° which may be explained by a
slight discrepancy in the amplitude of the reconstruction associated with
the ‘salt and pepper’ noise.

103

The final stage of the turbine blade analysis consists of comparing the
accuracy of the reconstruction algorithms in calculating the thickness of
each part of the turbine blade and comparing this thickness value with
the FDK solution [3]. The thickness of each part of the turbine blade was
computed along each cross-section, A — A*, B — B*, C- C* with an
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0.04 .
—6—ART
0.035 —6—ART positivity
= —e—SIRT
2 0.03 ——ART-TV
B —o—TV gradient
©0.025 |
[0}
)]
g 002t
L0015 |
[id
0.01
0.005

10
Angular sampling (")

15 20

Fig. 7. RMS residual between the control turbine blade and the tomographic re-
constructions for angular sampling of 1°,5°,10°,15°, 20".

automated 1D Canny edge detection algorithm [18]. The automated edge
detection algorithm convolves the cross-section of the turbine blade
reconstruction with the first derivative of a normalised Gaussian kernel.
The edges are defined as the local maxima or minima in the convolved
function [18]. This edge detection algorithm has low error rate and
works well with noisy data which is the case in the ART, ART with
positivity and SIRT (Fig. 6). For the edge detection analysis a Gaussian
kernel of 9 pixels with a standard deviation of 2 pixels was deemed
optimal. Fig 8 shows the location of the automated thickness estimates
and + 5 pixel error on the filtered back-projection image (Fig. 2) along
with a matrix which indicates the residual between the edge location
picked for the reconstruction algorithms and the control as function of
the angular sampling.

In all three cross-sections the ART algorithm without positivity per-
forms the poorest of the reconstruction algorithms, with only reliable
edge locations being obtained for a sampling of 1°. The inclusion of
positivity constraints on the ART and SIRT greatly improves the edge
location estimates with a maximum edge residual of +2 pixels
(+0.23 mm) up to 10° angular sampling for both methods. Both TV al-
gorithms produce accurate edge detection of less than +2 pixels (+0.23
mm) for an angular sampling of up to 15°. To further understand the
cause in the degradation in the image estimates, the relative contrast
between each edge was calculated. The relative contrast is defined as:

obj oise
Xrms — Xrus
RMS RMS
C=——— x100%, (8
XRMS
bi . . . .
where xpys and x5 are the RMS estimates of the object and noise

within a 5 sample window around a valid edge. Fig. 9 summarises the
relative contrast for each iterative method as a function of angular
sampling. The graphs clearly highlight a decrease in the relative contrast
with increasing angular sampling separations. For each cross-section the
ART with positivity constraints and SIRT algorithms produce the most
stable results with a contrast between 70 and 90%. The TV methods have
a contrast of greater than 80% up to a sampling of 10°, before dropping
sharply to less than 60% for angular sampling of 10°. These reductions in
contrast of the edges with increasing angular sampling correlates with
the degradation in the reconstructed images (Fig. 5) and an increase in
error for the dimensional analysis (Fig. 8).

3.2. Additive manufactured sample

For the additive manufacturing test case a simple example was
manufactured consisting of a 70 mm by 70 mm square polymer block
with hexagonal voids with a length of 6.93 mm and a separation of 2 mm
between each hexagon (Fig. 10). Experimental X-ray CT data were
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Fig. 8. Top panel shows the control cross section (A — A*, B — B* and C — C*) through the
turbine blade. The red lines indicate the location of the automatically determined edges
and the shading indicates the location of + 5 sample error. The bottom panel shows the
picking error in pixels for each of the edges with angular sampling of 1°,5°,10°,15°, 20" for
the different tomographic algorithms. The white squares represent an edge which was
not picked.

acquired with a 120 kV, 220 uA source and a flat panel detector con-
sisting of 2304 by 2304, 0.05 mm pixels, running in continuous mode
with an angular velocity of 0.24°/s. In this study we only consider 2D
image reconstructions and as such the input data for each algorithm is
chosen to be the X-rays recorded on the central horizontal pixels of the
detector. As in the previous study a number of user defined parameters
were set; § in Algorithms 3 and 4 were determined by trial and error and
set to 10~ and 10° for each algorithm respectively. The parameter a in
Algorithm 4 was again determined using a trade off curve and a = 0.1
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SIRT

SIRT
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Fig. 11. Additive manufactured sample reconstruction for 1°, 10° and 20° degree angular sampling. The circular ring artefact associated with the sample moving in and out of the view of
the detector can clearly be seen on all reconstructions. Once again ‘salt and pepper’ noise is clearly visible in the ART and SIRT images whilst those generated by the TV method have a
more homogeneous pixel value. Note the increased smearing at the centre of the sample at 10° and 20° degree angular sampling.

was deemed to produce the best reconstructions over a number of
different angular sampling regimes.

The reconstructed images of the sample for 1°, 10° and 20° are shown
in Fig. 11. A circular ring artefact is clearly visible in all images and is
associated with the sample not being entirely contained within the X-ray
beam. The ART reconstruction once again produces the poorest image at
all angular sampling with significant ‘salt and pepper’ noise present. The
inclusion of positivity constraints dramatically improves the ART
reconstruction and reduces the image noise. The SIRT reconstruction is
similar to the ART with positivity constraints but with reduced noise
content. The TV reconstructions produce images with homogeneous pixel
values in the 1° reconstructions. In all cases the quality of reconstruction
is degraded particularly at the centre of the object where the images are
blurred. This blurred patch grows with increasing sampling up to 20°
where the image reconstructions have no discernible features present
(Fig. 11). The location of this blurred patch at the centre of the recon-
struction is unexpected since this region has the greatest number of

ART-TV TV gradient

ART-TV TV gradient

ART-TV

TV gradient
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Fig. 12. Matrix of wall thickness estimates in mm between the hexagons along a cross-section through the middle of the sample as a function of angular sampling. The numbers in each

block are the measured thickness estimates for each reconstruction. The colours represent the difference between the estimated thickness and those measured using the digital micrometers.
Values which are coloured green are within the precision bounds of the measured thickness (+ 0.05 mm). Blue and red colours represent thickness estimates that are up to twice the
precision bounds of the physical measurements and are within the manufacturers quoted build resolution (+ 0.2 mm). The gray coloured squares represent values that are outside the

manufacturers build resolution for the sample. White squares represent thickness measurements that could not be reliably computed. The values in each square represent the thickness

estimates computed from each reconstruction.

crossing X-rays which is sufficient to produce an accurate reconstruction.
It was expected that errors with the reconstruction would have occurred
towards the edges of the sample where the X-ray sampling is limited.

To qualitatively assess the capability of the various algorithms to
provide accurate dimensional assessments of the sample thickness,
measurements were made along a cross-section through the sample
(Fig. 10). For the dimensional analysis the internal wall thickness be-
tween each of the hexagons along the cross-section was measured using
digital callipers and these values were compared with estimates calcu-
lated from the cross-section of each reconstruction. The thickness esti-
mates were calculated by computing the edge in each cross-section and
associating each of the edges that have an up-going gradient with the
nearest down-going edge. Prior to this the 2D images were smoothed
using a Gaussian filter of 9 pixels with a standard deviation of 2 pixels.
The automatic Canny 1D edge detection algorithm [18] was applied in
order to compute each of the edges of the hexagon. The Gaussian kernel
used to compute each of the edges had a standard deviation of 2 pixels
and a window width of 9 samples. A comparison with the physically
measured hexagon wall thickness and the build tolerance of the sample is
shown in Fig. 12.

It can be clearly seen that the ART reconstruction is unable to
generate accurate thickness measurements which are within the toler-
ance of the physical thickness measurements. The ART with positivity,
SIRT and both TV algorithms are capable of producing accurate mea-
surements for 1° sampling. At 5° only ART-TV is capable of producing
thickness measurements within the tolerance of the physical measure-
ments whilst the ART, SIRT and TV gradient methods produce estimates
within the build tolerance of the sample. This inability of the methods to
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Fig. 13. RMS percentage contrast ratio for the detected edges as a function of
angular sampling.
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accurately determine the material thickness between the hexagons for
sampling rates greater than 1° is also seen in the degradation in the
relative contrast (Equation (8)) of the edges with increasing sampling
rate (Fig. 13). For this dataset the relative contrast drops to below 70% by
a sampling rate of 10° for all methods.

4. Discussion
4.1. Overview

We have shown that inversion based methods are capable of pro-
ducing accurate image reconstructions and dimensional measurements
with more than an order of magnitude reduction in the number of X-ray
projections compared to filtered back-projection methods. The inclusion
of prior information either as positivity constraints or as an edge pre-
serving (TV) regularisation greatly improved the quality of the recon-
structed image when compared to the unconstrained reconstruction
method. Inclusion of this prior information reduced the number of evenly
spaced projections necessary for an accurate reconstruction of the turbine
blade from 5000 to 36 in the case of ART and SIRT algorithms (Algo-
rithms 1 and 2; Fig. 8) and 24 projections in the TV examples (Algorithms
3 and 4; Fig. 8). However, in the additive manufactured example, such
dramatic reduction in the number of projections required to accurately
characterise the sample was not observed. 360 evenly spaced projections
were required in the ART, SIRT and both TV algorithms (Fig. 13). In both
examples we note that the number of projections required to accurately
recover the image of the object is greater than the 20 projections sug-
gested in theoretical experiments e.g., [12]. The variability in results
between the examples presented indicate that experimental setup and
sample complexity plays a significant role on the accuracy of the recov-
erable image for a given angular sampling.

4.2. Image improvement with prior information

In both of the reconstruction experiments presented here, significant
improvement to limited view reconstructions are possible by the inclu-
sion of basic prior information into the inverse problem. In NDE appli-
cations of X-ray CT, additional information is present (e.g., expected
boundary, number of materials present in the specimen etc.) and could be
incorporated into any reconstruction algorithm. In addition to knowl-
edge associated with the object to be imaged, statistical information
about the expected data noise may also be incorporated to aid the
reconstruction process. However, great care must be taken when incor-
porating prior knowledge into the inversion so as to avoid erroneous
information corrupting the final image. Prior knowledge should help
direct the optimisation problem whilst also honouring the measured
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data [19].
4.3. Experimental setup and sample complexity

There was a clear difference in the success of the limited view al-
gorithms between the two experiments presented. Significantly, a
blurred patch was observed at the centre of the reconstructions for
angular sampling rates greater than 1° in the additive manufactured
case. The location of this smearing was unexpected since this region has
the greatest X-ray density, which should be sufficient to produce an
accurate reconstruction. However, inverse CT imaging is an ill-posed
problem whereby small perturbations in the data can have a signifi-
cant impact on the higher spectral frequencies of the reconstruction,
which are generally amplified [10,16]. The amplification of these
higher frequencies is often damped by some form of regularisation,
which in itself will have an effect on the image. In addition, CT prob-
lems are generally under- or mixed-determined meaning some regions
of the image may be well resolved whilst others are unstable where
multiple solutions exist [20]. We also note that a high X-ray density
does not guarantee that the pixel attenuation values are well resolved,
particularly where data cannot discriminate between changes in one or
more pixels e.g., in the case where multiple parallel rays traverse a pair
of pixels, the variations in the measured X-ray attenuation of each X-ray
will occur if either or both pixels are changed [20]. In the case of the
additive manufactured sample we attribute the main cause of the
smearing in the area of greatest X-ray density to the ill-posed nature of
the imaging problem.

In order to obtain a satisfactory reconstruction of the object, sufficient
spectral frequencies of the data must be included which themselves are a
function of the object we wish to CT. Therefore, we attribute the vari-
ability in the reconstruction quality between the turbine blade and the
additive manufactured sample to the relative complexity of both objects.
The metrics used to define the complexity of the objects are the per-
centage length of an internal feature or structure to its full length and
number of internal voids in the object. We define a complex structure as
one with low percentage wall lengths whilst having a higher number of
voids. In the turbine blade case, the average wall thickness along the
three cross sections A — A*, B - B*, C — C* relative to the total blade length
is 6.25% and the number of internal voids is 8. In the additive manu-
factured case wall thickness relative to the total length of the object is
2.88%, with 48 internal voids. Based on the complexity criteria the tur-
bine blade is a less complex object when compared with the additive
manufactured sample.

Synthetic

Reconstruction
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To understand the role of sample complexity on the variability of the
results two synthetic datasets were created from 1024 x 1024 segmented
reconstructions of the additive manufactured sample. The first utilised
the full segmented 1° sampled reconstruction and the second dataset was
generated using a circular mask to reduce the object's complexity such
that it closely mimicked that of the turbine blade (Fig. 14). We note that
in the simplified synthetic example the relative length of the internal
walls of the object increased to 4.5% whilst the number of internal voids
reduced to approximately 22. The reconstructions were performed on a
coarser grid 512 x 512 to mimic the continuous material penetrated by
the X-rays and avoid so called ‘inverse crimes’ where the model grid is
the same in both the modelling of the data and inversion [10].

Fig. 14 shows the results of the synthetic reconstructions using the
SIRT algorithm (Algorithm 2) with 10° angular sampling. The central
area of the full segmented image produced similar smearing artefacts to
those observed with the experimental data (Fig. 11). The cross-section of
the fully segmented image highlights the inability of the algorithm to
accurately reconstruct the amplitude of the central wall and the gener-
ation of secondary peaks and smearing at the wall edge. These, in turn,
caused the algorithms to fail to generate meaningful wall thickness es-
timates in the experimental data for angular sampling greater than 1°
(Fig. 13). Increasing the number of iterations enhanced the amplitude of
the central wall whilst also reducing the edge effects. However, due to the
ill-posed nature of the tomographic problem, increasing the number of
iterations resulted in the over-fitting and enhancement of any data-noise
on the resulting image [16].

The reconstruction of the circular synthetic dataset did not exhibit the
smearing artefacts seen in the fully segmented example (Fig. 14). The
cross-section through the object showed that the inversion accurately
reconstructed both the amplitude and edge location of the object. The
improvement in the reconstruction of the circular synthetic dataset
relative to the full synthetic dataset highlights the importance of object
complexity on the capacity of limited view algorithms to accurately
reconstruct the object of interest for dimensional analysis. In addition to
the sample complexity the experimental setup and the material proper-
ties of the sample play a vital role in the successful application of limited
view algorithms. The acquisition of sparse X-ray data where a large
number of detector bins have values close to zero, such as in the turbine
blade and circular synthetic example. also aid in the successful applica-
tion of the limited view algorithms. The sparse dataset allows the
reconstruction algorithm to focus on the region of interest as seen in the
circular synthetic example. Finally, the X-ray source and material prop-
erties of the sample play a vital role in controlling the contrast of the

Image cross section

Synthetic Reconstruction

|—True —100 —500

1000 —5000 |

Fig. 14. Comparison of the synthetic sample reconstruction using SIRT algorithm with 10° angular sampling. Note the secondary peaks and amplitude mismatch at the central wall
estimate in the synthetic example of the full sample. This mismatch is reduced by increasing the number of iterations. Reducing the size of the sample such that all raypaths homogeneously
sample the area of interest, removes the amplitude mismatch and secondary lobes along the central wall.
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measured data which subsequently dictates how sharp a material edge
may be resolved in the image.

These results and those of the turbine blade and synthetic examples
suggest that a simple sample with a minimum wall thickness of 4.5% of
the total length of the sample and the acquisition of sparse data where a
large number of detector bins have values which are close to zero are
necessary to successfully utilise the limited view algorithms discussed.

4.4. Extension to 3D

The algorithms presented here were tested using 2D examples. Each
method can be easily scaled to 3D without any structural change to the
linear equations b = Ax. However, the addition of another dimension to
the problem leads to a significant increase in the data vector which can
increase from m to m? when a single linear detector up-scales to a square
flat panel detector, whilst the number of image pixels (or voxels) also
increases dramatically. For example, the upscaling of 2D to a 3D image
would increase the number of pixels from n = 262144 ton = 134217728
for 512 pixels in each dimension. Based on our experimental findings the
improvement in image quality and the reduction in the number of pro-
jections required when applying the TV methods versus the ART and
SIRT could be outweighed by the need to acquire more data due to the
increased complexity of the algorithms.

Cheap graphic processing units (GPU), which possess large scale
parallel architecture, are ideally suited to highly vectorised computa-
tional problems and must be used in order upscale the X-ray CT in-
verse problem to 3D. So called block iterative methods e.g., [21]
combine the fast semi-convergence of ART with the multicore prop-
erties of SIRT rendering them suitable for large scale inverse problems
on GPU architecture. The resulting reconstruction from these block
methods are essentially an average of the ART and SIRT results, and
based on our results, are an ideal candidate for an inversion based 3D
X-ray CT.

In addition to reducing the number of projections required to accu-
rately generate a CT image and improving the hardware, enhancements
to the speed of the discussed iterative algorithm could be achieved by
changing the structure of the model matrix A [21,22,23]. The algorithms
discussed back-project the calculated solution at each iteration onto a
series of hyperplanes and for a consistent system, the solution is the point
of intersection of the hyperplanes. To accelerate convergence of ART and
SIRT, the rows of the matrix A should be ordered in such a way that each
successive hyperplane is orthogonal to the previous one. In a practical
sense this amounts to ordering the projection data so that the current
projection data is as independent as possible compared to the previous
projection [21,22,23]. A number of approaches have been proposed in
the ordering of the rows of A e.g. [22,23], however similar convergence
acceleration may be achieved by a randomised ordering scheme [21].

5. Conclusions

Much work has been conducted over the past decade on applying
compressive sensing methods to medical X-ray CT as a way of reducing
patient radiation exposure. These methods have yet to be applied or
rigorously tested to industrial X-ray CT where reduced data acquisition
times are desirable to improve manufacturing throughput. This study
surveyed and rigorously tested the capability of a number of limited view
CT algorithms to accurately reconstruct and precisely measure the
dimensional features of an additive manufactured sample and turbine
blade. Unlike previous studies where basic synthetic data derived from
simple phantoms have been used, the examples studied have used
experimental data acquired in an industrial setting.

Our findings highlight the importance of prior information, either as
pixel value constraints or as an edge preserving regularisation term, in
improving the image reconstruction with limited angular sampling when
compared with the unconstrained reconstruction method. All methods
were capable of reducing the number of X-ray projections to produce an
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accurate reconstruction of the sample by an order of magnitude or more.
In the turbine blade example the number of projections were reduced
from 5000 to 36 for the case of positivity constrained ART and SIRT al-
gorithms and to 24 projections in the TV examples. However, in the
additive manufactured example this dramatic reduction in the number of
projections necessary to produce accurate dimensionality measurements
was not observed (3000-360 in the positivity constrained ART, SIRT and
TV cases). This variability in the number of projections necessary to
produce an accurate reconstruction highlights the additional importance
of the experimental setup and sample complexity in reducing X-ray
projections. It was identified that simple structures which have a mini-
mum feature size of 4.5% relative to the length of the object and the
acquisition of sparse X-ray data are necessary to maximise the limited
view algorithms presented. The methods presented may be easily
extended from 2D to 3D with no significant change in the underlying
inverse problem. With the rapid application and design of complex and
irregularly shaped components for safety-critical applications X-ray CT
will continue to grow as a NDE inspection tool. Limited view CT algo-
rithms offer a method of reducing data acquisition time and alleviate
manufacturing throughput bottlenecks which may arise without
compromising the reconstruction accuracy.

Acknowledgements

GAJ is funded by EPSRC RCNDE 3 (EP/L022125/1) and PH is funded
by EPSRC Early Career Fellowship (EP/M020207/1). The authors would
like to thank Rolls-Royce for providing the turbine blade and the
Manufacturing Technology Centre for acquiring the turbine blade X-ray
data. The authors would like to thank Prof Michael Lowe for his helpful
discussion and critical reading of the manuscript and Gabor Gubicza for
designing the additive manufactured specimen.

References

1

Kruth JP, Bartscher M, Carmignato S, Schmitt R, De Chiffre L, Weckenmann A.
Computed tomography for dimensional metrology. CIRP Annal.-Manuf. Technol
2011;60(2):821-42.

Kak AC, Slaney M. Principles of computerized tomographic imaging. IEEE Press;
1988.

Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm. JOSA A 1984;
1(16):612-9.

Xu F, Mueller K. Accelerating popular tomographic reconstruction algorithms on
commodity pc graphics hardware. IEEE Trans Nucl Sci 2005;52(3):654-63.

Han X, Bian J, Eaker DR, Kline TL, Sidky EY, Ritman EL, et al. Algorithm-enabled
low-dose micro-ct imaging. IEEE Trans Med Imaging 2011;30(3):606-20.

Beck A, Teboulle M. Fast gradient-based algorithms for constrained total variation
image denoising and deblurring problems. IEEE Trans Image Process 2009;18(11):
2419-34.

Chambolle A. An algorithm for total variation minimization and applications.

J Math Imaging Vis 2004;20(1):89-97.

Goldfarb D, Yin W. Second-order cone programming methods for total variation-
based image restoration. SIAM J Sci Comput 2005;27(2):2005.

Jensen TL, Jorgensen JH, Hansen PC, Hansen SH. Implementation of an optimal
first-order method for strongly convex total variation regularization. BIT Numer
Math 2012;52:329-56.

Miiller JL, Siltanen S. Linear and nonlinear inverse problems with practical
applications. SIAM; 2012.

Rudin LI, Osher S, Fatemi E. Nonlinear total variation based noise removal
algorithms. Phys D Nonlinear Phenom 1992;60(1):258-68.

Sidky EY, Kao C-M, Pan X. Accurate image reconstruction from few-views and
limited-angle data in divergent-beam ct. J X-ray Sci Technol 2006;14:119-39.
Vogel CR, Oman ME. Iterative methods for total variation denoising. SIAM J Sci
Comput 1996;17(1):227-38.

Donoho DL. Compressed sensing. IEEE Trans Inf Theory 2006;52(4):1289-306.
Candes EJ, Romberg J, Tao T. Robust uncertainty principles: exact signal
reconstruction from highly incomplete frequency information. IEEE Trans Inf
Theory 2006;52(2):489-509.

Hansen PC. Discrete inverse problems: insight and algorithms. SIAM; 2010.
Barzilai J, Borwein JM. Two-point step size gradient methods. IMA J Numer Anal.
1988;8(1):141-8.

Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal.
Mach Intell 1986;8(6):679-98.

Scales JA, Tenorio L. Prior information and uncertainty in inverse problems.
Geophysics 2001;66(2):389-97.

Rawlinson N, Fichtner A, Sambridge M, Young MK. Seismic tomography and the
assessment of uncertainty. Adv Geophys 2014;55:1-76.

[2]
[3]
[4]
(5]

(6]

[71

[8

[9

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]

[20]



G.A. Jones, P. Huthwaite NDT and E International 93 (2018) 98-109

[21] S¢rensen HH, Hansen PC. Multicore performance of block algebraic iterative [23] Guan H, Gordon R. A projection access order for speedy convergence of art
reconstruction methods. SIAM J Sci Comput 2014;36(5):C524-46. (algebraic reconstruction technique): a multilevel scheme for computed
[22] Herman GT, Meyer LB. Algebraic reconstruction techniques can be made tomography. Phys Med Biol 1994;39(11):2005-22.

computationally efficient. IEEE Trans Med Imaging 1993;12(3):600-9.

109



