
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in:

Continuum Mechanics and Thermodynamics

                                                       

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa48719

_____________________________________________________________

 
Paper:

Hossain, M. (2019).  Modelling the curing process in particle-filled electro-active polymers with a dispersion

anisotropy. Continuum Mechanics and Thermodynamics

http://dx.doi.org/10.1007/s00161-019-00747-5

 

 

 

 

 

 

 

_____________________________________________________________
  
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

 

Permission for multiple reproductions should be obtained from the original author.

 

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

 

http://www.swansea.ac.uk/library/researchsupport/ris-support/ 

http://cronfa.swan.ac.uk/Record/cronfa48719
http://dx.doi.org/10.1007/s00161-019-00747-5
http://www.swansea.ac.uk/library/researchsupport/ris-support/ 


 
Cont. Mech. Therm. doi.10.1007/s00161-019-00747-5 manuscript No.

(will be inserted by the editor)

M. Hossain

Modelling the curing process in particle-filled electro-active

polymers with a dispersion anisotropy

Received: 01 August 2018 / Accepted: 19 January 2019

Abstract Even for a moderate actuation, a large electric voltage requirement hinders the application of

electro-active polymers (EAPs) in many areas. Hence, among other mechanisms, the actuation enhancement

in EAPs is performed via inclusions of high dielectric permittivity fillers in the matrix material in the uncured

stage. Moreover, to obtain an optimum advantage from the high dielectric permittivity fillers, an electric field

can be applied during the curing process which helps the particles to align in a preferred direction. To be spe-

cific, recent experimental evidences show that these particles form a dispersed anisotropy rather than a perfect

transverse anisotropic structure. The polymer curing process is a complex (visco-) elastic phenomenon where

a liquid polymer gradually transforms into a solid macromolecular structure due to cross-linking of the initial

solution of short polymer chains. This phase transition comes along with an increase in the material stiff-

ness and a volume shrinkage. In this paper we present a phenomenologically-inspired large strain framework

for simulating the curing process of particle-filled electro-active polymers with a dispersion-type anisotropy

that can work under the influence of an electro-mechanically coupled load. The application of the proposed

approach is demonstrated with some numerical examples. These examples illustrate that the model can pre-

dict common features in particle-filled dispersed electro-active polymers undergoing curing processes in the

presence of an electro-mechanically coupled load.
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1 Introduction

Among other functional materials, electro-active polymers (EAPs) draw considerable attention due to their

many exotic properties, e.g., large and complex actuations, compared to classical infinitesimally-actuated

smart materials [37; 55]. EAPs have potential applications in stretch sensors, actuator and energy harvesters.

In the case of transducers, an electric load converts into a mechanical energy and vice-versa. In modelling

such problems, governing equations need to be solved as coupled problems since EAPs exhibit an electro-

mechanical coupling behaviour, cf. [68; 10]. The excitations on EAPs by an externally applied electric field

result in large deformations and a change in their internal material behaviour. Depending on the mechanism for

the deformation, EAPs can be divided into two major categories: electronic electro-active polymers (EEAPs)

and ionic electro-active polymers. In EEAPs, two electro-mechanical forces are mainly responsible for the

deformation of the polymer; (i) the so-called Maxwell stress that originates due to electric field and penetrates

free space and matter alike and (ii) the electrostriction that is due to intramolecular electrostatic forces of the

material, see Vogel [67], Monk [47].

1.1 Modelling electro-elasticity

For modelling the electro-elastic coupled behaviour of electro-active polymers, several research works ap-

peared in the literature. Some of the pioneering works in the finite strain electro-elasticity are due to Dorfmann

and Ogden [10; 11] which are further extended by Bustamante [6] in the case of transverse isotropy. Another

of the seminal works in the area is due to Wissler et al. [69] where the authors formulated their constitutive

models in line with the so-called quasi-linear viscoelasticity. More recently, Ask and co-workers [3] modelled

the electrostrictive behaviours of viscoelastic polymers using a phenomenologically-motivated constitutive

ansatz. In contrast to earlier works in the area, Ask and co-workers validated their electro-viscoelastic models

with experimental data of Johlitz et al. [36] and Diaconu et al. [12]. Exploiting the classical work of finite

strain nonlinear viscoelasticity proposed by Reese and Govindjee [56], Büschel and co-workers [5] proposed

an electro-viscoelastic model using a multiplicative decomposition of the deformation gradient into an elastic

part and a viscous part for the mechanical deformation. In this work, they considered only a time-dependent

evolution for the mechanical internal variable and the electric quantity does not evolve with time.

Vogel [67] proposed an electro-viscoelastic model for EAPs where the governing kinematical and constitu-

tive equations were formulated in the logarithmic strain-space. The author formulated the constitutive relation

considering the influence of the electric field also on viscous responses. With a few illustrative numerical ex-

amples they conclude that the electric field affects not only the equilibrium part of the energy function but

also the viscous part, usually known as the non-equilibrium response. Similar to Vogel [67], Saxena et al.
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[62] proposed an electro-viscoelastic coupled model that considered the electric field influence also on the

non-equilibrium part. In this case, Saxena and co-workers [62] decomposed the electric variable, i.e. electric

field, into an elastic part and a viscous part. This decomposition idea is in line with the so-called multiplica-

tive decomposition of the deformation gradient, a well-known concept in viscoelastic and viscoplastic areas.

Moreover, a thermodynamically consistent evolution law is proposed for tracking the electric internal vari-

able evolution which is absent in the model proposed by Vogel [67]. All constitutive models discuss above

describing the electro-active response of dielectric elastomers are based on the so-called phenomenological

approach. Hence, very recently few efforts are made in formulating micro-mechanically motivated electro-

elastic models. Itskov et al. [35] proposed an electromechanical constitutive model based on molecular chain

statistics that considered polarization of single polymer chain segments and took into account their directional

distribution. They argued that the derived constitutive formulations resulted in a small number of physically

interpretable material constants.

1.2 Enhancement of electro-active polymers

Despite many promising features of EAPs, a high electric voltage requirement, even for a moderately actuated

deformation, restricts their applications in many areas especially in the areas where human interactions are

predominant. Moreover, high voltage demands result in a large instrumentation and a higher cost. Hence, the

actuation enhancement for EAPs has been an active field of research for the last two decades. To increase ac-

tuation, sensing and energy harvesting by increasing dielectric permittivities, several strategies are currently

available in the literature [7; 8; 13; 19; 70; 45; 38; 39; 48; 52; 57; 58; 59; 65; 70]. Among other procedures,

the inclusion of high dielectric permittivity fillers into the polymeric matrix results in a higher deformation

with a reduced amount of voltage. According to Dang et al. [13], for the enhancement of transducers, the par-

ticle inclusion option is one of the most investigated procedures in the literature. These dielectric permittivity

enhancement methods can be classified into three main groups: random composites, field-structured compos-

ites, and new synthesised polymers [8]. In the first approach, a filler, either in a powder form or in a liquid

form, is dispersed into a polymeric matrix. The fillers can be of various scales, e.g. nanoscale to micro-scale.

Some commonly used fillers are, e.g., titanium dioxide, lead magnesium niobate, lead titanate. Very recently,

Carbon Nano Tube (CNT)-filled EAP composites gain a significant attention due to their excellent electric

properties over other particle-filled transducer materials [59]. The fillers of high dielectric constant are usu-

ally introduced in the form of powder in the elastomeric matrix before the curing process starts. In general,

the resulting composites will have intermediate dielectric properties with respect to those of either matrix or

filler [19]. In the second method, the fillers are also used to make a composite material. However, the material

is now cured in the presence of an externally applied electric field in order to align the fillers in a preferred
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direction. Such an alignment of dipoles under the application of an electric field increases electric polariza-

tion and hence the polarization stress [38]. Recent experimental evidences [38] suggest that the application

of an electric field during the curing process results in better actuations. The third strategy of the dielectric

permittivity enhancement is to synthesise new materials with tailored characteristics. In this case, the addition

of specific chemical agents alters the internal structures of polymers.

1.3 Scopes of the present work

Several experimental works demonstrate the formation of homogeneously distributed particle-filled isotropic

EAP composites where there is no application of an external electric field during the curing process [39; 8;

45; 38; 40]. However, the application of an external electric field during the process yields a field-structured

composite where the axis of anisotropy is along the direction of the applied electric field. To be specific, such

an alignment of chains is not forming a perfect anisotropy rather it has a dispersion along the mean direction,

see for example Fig (3) in Kashani et al. [38] for ceramic-filled EAP composites while anisotropic CNT-filled

EAPs are presented in Oliva et al. [53]. A great amount of efforts is devoted to find homogenised properties of

EAP composites using multi-scale techniques [40]. In deriving homogenised properties, it is roughly assumed

that there is a perfect bonding between the fillers and the matrix materials during the entire curing process.

However, the fully-cured final properties of these composite materials largely depend on the duration, nature

and effects of the curing process. For example, in the case of particle-filled EAP preparations, the uneven

or differential curing (typically known as the warpage) inside a mould of the composites is a common phe-

nomenon that might create residual stresses. This undesirable warpage will be significant if the thickness of a

sample becomes considerably large. Secondly, the formation of new chemical bonds during the curing allows

the chains to come closer that results in a decrease in specific volume which is denoted as the volume or the

curing shrinkage. The shrinkage-generated stresses can eventually de-bond composites from the mould if the

bond strength between the mould and the composite is not strong enough. Thirdly, most of the curing reac-

tions are either exothermic or endothermic. Hence, the lack of proper and timely dissipation of the generated

heat across the mould is further responsible for a spatial and temporal stress evolution in the matrix. In such

cases, cure-dependent electro-mechanically coupled constitutive models implemented in a simulation frame-

work can be useful tools to predict and to minimise such expected but unwanted pathological phenomena.

To the best of the authors’ knowledge, there is currently no constitutive model that can capture the stiff-

ness gaining process of polymeric composites with a dispersed anisotropy in the presence of an electro-

mechanically coupled load. Hence, a finite strain framework is required to predict the curing process with

an electro-mechanically coupled field. In order to capture all relevant phenomena during a purely mechan-



5

ical curing, several authors have proposed phenomenologically-inspired curing models for small and finite

strains, see for example, Kiasat [41], Lion et al. [44], Hossain et al. [21; 22; 23], Landgraf et al. [42; 43],

Heinrich et al. [32], Mahnken [50]. For a further review on the constitutive modelling of purely mechanical

curing process of polymers, our previous contributions, i.e. Hossain et al. [21; 22; 23] can be considered.

Uncured rubber demonstrates viscoplastic behaviours in the absence of distinct yield point. Hence, due to

lack of proper crosslinks, classical hyperelastic models do not apply to uncured rubber. Very recently, Dal et

al. [14] proposed a constitutive model for the isothermal response of uncured green rubber. Recently, Hossain

et al. [26; 27] proposed a finite strain framework for the stiffness gaining for particle-filled magneto-active

materials which is further extended in Hossain et al. [25] for EAP composites. However, these constitutive

models did not take into account the dispersion anisotropy that is experimentally observed in EAPs compos-

ites when they are being cured under an electric field. Therefore, the aim of the current contribution is to

formulate an electro-mechanically coupled curing model that can take into account the chain dispersions in

EAP composites. The model will be based on the hypoelastic concept (rate-form) of our previously proposed

mechanical and coupled curing models [22; 23].

The paper is organized in the following way. Section 2 will briefly review an electro-elastic model for fully-

cured elastomers that basically originates from a recently proposed electro-mechanical model by our group.

In Section 3, the main mathematical procedure is described that leads to a generic constitutive relation for

the polymer curing process in the presence of an electro-mechanically coupled load. In Section 4, a novel

approach is proposed to capture the curing-induced volume shrinkage. This procedure is an extension of the

multiplicative decomposition of the deformation gradient-based approach to the dispersion-type anisotropic

curing shrinkage where the dispersion effect is scaled via a von Mises distribution function. The evolution

of the various time-dependent material parameters appearing in the free energy function is discussed in the

same section. Section 5 discusses a specific energy function to verify the constitutive framework developed

in Section 3. The final Section 6 presents some numerical examples which illustrate that the proposed model

can capture relevant phenomena of polymer curing in the presence of an electro-mechanically coupled field.

2 Modelling dispersion anisotropy in electro-active polymers

In particle-filled EAPs that are cured under an electric field, we assume that the orientations of the chains

within a family I (with I = 1 · · ·N ) are distributed by a certain dispersion with respect to a mean preferred

direction. A schematic figure of such a dispersion is depicted in Fig 1. Such a family of chains constitutes a

transversely isotropic contribution to the overall response of EAP composites. Hence, the chain contributions

are added to the bulk part of the free energy. The incorporation of the dispersed chain contributions to the over-
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Fig. 1: A schematic representation of the curing process in particle-filled EAPs under an electric field: a)
Initial random distribution of the particles embedded in a monomeric solution (not shown here), b) Particles
are gradually aligned in the direction of the applied field, c) Particles form dispersed anisotropic structures
under the field

all free energy function in the case of electro-mechanically coupled problems in fully-cured electro-elasticity

is formulated in our recent contribution, see Hossain and Steinmann [31]. For the sake of completeness, we

provide a brief summary of the modelling framework here. Therein, the averaging process of transferring the

free energy contribution of single chains from the microscopic level to the macroscopic continuum level is

done as

t̄ = F̄r , (1)

where F̄ (= J−
1
3 F , F is the deformation gradient and J = detF ) is isochoric deformation gradient and r

is the orientation vector representing a single chain. Then the macro-stretch λ̄ of a material line element is

defined relating the orientation vector t̄ as

λ̄ = |̄t | =
√

t̄ · t̄ =
√

F̄r · F̄r =

√
C̄ : [r ⊗ r ], (2)

where C̄ = F̄
T

F̄ is the isochoric right Cauchy-Green deformation tensor, see Miehe et al. [49]. Similarly,

the electric field vector is projected onto the direction of the chain r to obtain a chain-oriented scalar electric

field E as

E = E · r, (3)

where E is the electric field vector in the material configuration, see Thylander [66]. Following the classical

approach of decoupled representation of the strain energy in polymeric materials into a volumetric and an

isochoric part, a similar analogy is adopted in the electro-elasticity as

Ψ = Ψ vol(J) + Ψiso(C̄ ,E,a1, · · · ,aN ) = Ψvol(J) + Ψ isp
iso (C̄ ,E) + Ψ ani

iso (C̄ ,E,a1, · · · ,aN ) (4)
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Fig. 2: The representation of a single chain r in the three-dimensional space. Additionally, the preferential
unit vector a is oriented in a way so that it coincides with the Cartesian coordinate axis e3

where Ψvol(J) is the volumetric and Ψiso is the isochoric energy functions, respectively. Here the array of

vectors, i.e., a1, · · · ,aN represent the N families of chains. The isochoric energy Ψiso is further decomposed

into an isotropic part Ψ isp
iso and an anisotropic part Ψ ani

iso , respectively. Each chain orientation is expressed by

an arbitrary unit vector r(Θ,Φ) = sinΘ cosΦe1 + sinΘ sinΦe2 + cosΘe3 (r ∈ U2, |r| = 1) . Therein,

the unit vector is characterized by the use of Eulerian angles Θ ∈ [0, π], Φ ∈ [0, 2π] and {ei}i=1,2,3 de-

note the axes of a rectangular Cartesian coordinate system, cf. Fig (2). Similar to the chain orientation vec-

tor r, the preferential vector a can also be expressed in terms of the Eulerian angles, i.e., a(Θm, Φm) =

sinΘm cosΦme1 + sinΘm sinΦme2 + cosΘme3, where Θm ∈ [0, π] and Φm ∈ [0, 2π], cf. Fig 2.

Now the macroscopic energy density is derived from the microscopic contributions of single chain energy

densities. We consider N preferred (mean) orientations a1, · · · ,aN related to N families of chains and each

family of chains is symmetrically distributed along a preferred direction aI ∈ U2. Furthermore, if it is as-

sumed that n number of chains exist per unit volume, then the anisotropic part of the macroscopic electro-

mechanical coupled energy for this set of chains is obtained as

Ψ ani
iso (C̄ ,E,a1, · · · ,aN ) =

N∑
I=1

Ψ Ic (C̄ ,E,aI) =

N∑
I=1

n∑
s=1

ρI(r
s)ψsc(λ̄s, Es), (5)

where rs ∈ U2 is the referential unit vector that represents the direction of the s-th chain, and ψsc is the

microscopic strain energy of the s-th chain of family I according to the deformation in the direction of rs.

In Eqn (5), Es = E · rs, λ̄s =
√

C̄ : [rs ⊗ rs] and ρ(rs;aI) is a chain probability distribution function that



8

will be explained in the next section. For large n, the total isochoric chain energy function for a single family

of chains can be expressed as the weighted average of the n contributions, whereby the weight is the chain

probability distribution function ρI = ρI(r
s)

Ψ Ic (C̄ ,E,aI) = 〈nρIψc(λ̄, E)〉. (6)

In Eqn (6) 〈•〉 denotes an averaging operator for scalar quantities and λ̄ (defined in Eqn (2)) is the macro

stretch. The differential area element of the unit sphere U2 can be expressed in terms of the Eulerian angles

as dA = sinΘdΘdΦ which yields the unit sphere’s total area if we integrate the surface area, i.e. AU2 =∫ Θ
0

∫ Φ
0
dA =

∫ Θ
0

∫ Φ
0

sinΘdΘdΦ = 4π. We now obtain for the averaging operator by normalising the integral

over the unit sphere,

〈nρIψc(λ̄, E)〉 =
1

4π

∫
U2

nρIψc(λ̄, E)dA. (7)

Fig. 3: The von Mises probability distribution function (PDF) presented in Eqn (9) is projected onto the
surface of a unit-sphere with respect to various degree of dispersion b. (I) b = 0, (II) b = 3.0, (III) b = 20.0.
Note that for this particular illustration, the preferential unit vector a is considered in the vertical direction
e3. The colour corresponds to the normalised magnitude of the PDF ρ ∈ [0, 1]

In averaging the above formulations, we take an affine assumption for the micro to macro transformation. For

a further explanation related to the affine and non-affine kinematics, see Miehe et al. [49], Alastrue et al. [2].

A discrete form of the continuous chain probability distribution function over the unit sphere can be expressed

by assuming nid orientation vectors {rs}s=1,··· ,nid along with nid weighting factors {ws}s=1,··· ,nid as

〈(•)〉 =
1

4π

∫
U2

(•)dA ≈
nid∑
s=1

(•)sws. (8)

The micro-sphere based constitutive frameworks obtain popularity in many areas of material modelling due

to their simple formulations where complicated tensorial derivations are absent. However, they require high

computational costs, see for examples, Miehe et al. [49], Dal et al. [14; 15; 16], Alastrue et al. [2], Ehret et al.

[17], Itskov et al., [34], Skacel et al., [64], Pandolfi et al., [54], Nateghi et al. [51].
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Now an appropriate probability distribution function (PDF) ρ is required that can accurately capture the ef-

fects of the chain distribution. It is assumed that a single chain is symmetrically distributed around the mean

direction a, i.e., ρ(r;a) = ρ(−r;a) which needs to be incorporated in the PDF. Furthermore, we assume

that the chains are rotational symmetrically distributed with respect to the preferred mean direction a, i.e.,

ρ(Q · r;a) = ρ(r;a) ∀Q ∈ Q3
+ with rotation axis a. The normalised π-periodic von Mises PDF has such

properties that can represent transversely isotropically distributed chains where it has the form

ρ(χ) = 4

√
b

2π

exp(b[cos(2χ) + 1])

erfi(
√

2b)
. (9)

In Eqn (9), b ∈ [0,∞] is a positive concentration parameter that represents a measure of the degree of

anisotropy, erfi(x) = −i erf(x) is the imaginary error function, and χ is the angle between unit vectors r

and a. The angle χ can be calculated by using the scalar product of r and a, i.e.

χ = cos−1(a · r). (10)

A three-dimensional presentation of the von Mises PDF is illustrated with respect to different degree of

dispersions b in Fig 3 for a = e3, while for a three-dimensional polar plot of the same, see [31].

3 Modelling the curing process in electro-elasticity

During the curing process, a continuous chain cross-linking occurs due to chemical reactions that helps ini-

tially scattered monomers to come closer with time to form a cross-linked macromolecular structure. For

chemical processes, cross-linkers and other chemical agents are normally added to the system and the results

of chemical reactions lead to random networks that eventually yield successive stiffness gaining of the mate-

rial. Such a continuous stiffness gaining phenomenon, till the end of a curing process, is modelled mathemati-

cally under a mechanical load in a series of contributions by Hossain et al. [21; 22; 23; 24]. These frameworks

are further extended in the case of particle-filled magneto-active polymers under a magneto-mechanically

coupled load, see Hossain et al. [25; 26; 27; 28]. For the curing process in a particle-filled electro-active

polymers under an electro-mechanical load, a convolution integral type potential function can be formulated

as

Φ(E,E, t) =
1

2

∫ t

0

[
A′(τ) : [E(t)−E(τ)]

]
: [E(t)−E(τ)] dτ − 1

2

∫ t

0

[
K′(τ)·[E(t)−E(τ)]

]
·[E(t)− E(τ)] dτ

−
∫ t

0

[
C′(τ)·[E(t)−E(τ)]

]
: [E(t)−E(τ)] dτ. (11)
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In Eqn (11), A′(τ) = dA(τ)/dτ,K′(τ) = dK(τ)/dτ , C′(τ) = dC(τ)/dτ , where E is the Green-Lagrange

strain tensor E := 1
2 [C − I] and E is the electric field vector in the material configuration. In order to

obtain the elasticity tensor A, the piezoelectricity tensor C, and the dielectricity tensor K in the material

configuration, an energy function Ω(t), similar to the one commonly used for a fully-cured electro-elastic

polymer modelling, is required. With time-dependent or degree of cure-dependent parameters appearing in

the energy function, the above mentioned stiffness moduli are defined as

A(E,E, t) =
∂2Ω(t)

∂E ⊗ ∂E
, C(E,E, t) = − ∂2Ω(t)

∂E ⊗ ∂E
, K(E,E, t) = − ∂2Ω(t)

∂E⊗ ∂E
. (12)

To guarantee thermodynamically consistent formulations, the second law of thermodynamics in the form of

the so-called Clausius-Duhem inequality needs to be fulfilled. For an isothermal process in the case of an

electro-mechanical coupled problem, this law can be written as

S : Ė − D · Ė− Φ̇ ≥ 0, (13)

where S, D and Φ are the total second Piola-Kirchhoff stress tensor, the electric displacement vector in

the material configuration and the potential function Φ proposed in Eqn (11), respectively. When the time

derivative of the potential function Φ is inserted in the above form of the dissipation inequality, i.e. Eqn (13)

and after some rigorous calculations, we obtain more precise and explicit relations between stress-strain and

electric displacement-electric field as

Ṡ(E,E, t) = A : Ė − C · Ė =
1

2
A : Ċ − C · Ė, (14)

Ḋ(E,E, t) = Ct : Ė + K · Ė =
1

2
Ct : Ċ + K · Ė, (15)

where Ct is the transpose of the third order coupling stiffness tensor C. Note that a detailed and step by step

derivations of the equations (14) and (15) are omitted here since a similar framework in the case of magneto-

elasticity is derived in Hossain et al. [25]. Using an Euler-backward type implicit integrator, we can obtain

the updates for the algorithmic stress tensor and the electric displacement vector

Sn+1 = Sn +
1

2
An+1 : [Cn+1 −Cn]− Cn+1 · [En+1 − En], (16)

Dn+1 = Dn +
1

2
Ct,n+1 : [Cn+1 −Cn] + Kn+1 · [En+1 − En]. (17)

In Eqns (16) and (17), [•]n = [•](tn) , tn+1 = tn +∆t and ∆t is a time step.
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4 Modelling curing shrinkage in composite EAPs

During the process of curing, initial monomers come closer to form new chemical bonds and then gradually

form a chain-like macromolecular structure with the help of cross-linkers and other chemical agents. Such

successive cross-linking of polymer chains will lead to more dense packing situation compared to an uncured

monomeric solution. As a result, one important but undesirable property of polymers is a volume reduction

that is known as the curing shrinkage in the curing process [41]. To capture such a phenomenon in finite strain

settings, a multiplicative decomposition-type modelling approach has originally been formulated by Lion and

Höfer [44] in the case of a purely mechanical curing where the deformation gradient is decomposed into two

parts: a stress producing mechanical part Fm and a volume reducing shrinkage part F s, i.e.,

F = FmF s with F s = [1 + αs]1/3I, (18)

where α ∈ [0, 1] denotes the so-called degree of cure, s ≤ 0 is a parameter that gauges the magnitude of the

volume shrinkage, and I is a second order unit tensor. Note that the above formulation can only be applied

when a same amount of volume shrinkage occurs in all directions which is the case ideal for an unfilled

polymer. For the electro-mechanically coupled curing in EAP composites, we assume that the presence of an

electric field affects the overall curing process in two ways which will be explained in the following.

Coupled curing shrinkage: Effect I

The first assertion is that the amount and nature of the curing shrinkage under an electric field is not only

dependent on the curing time or the degree of cure but also on the magnitude and duration of exposure of the

applied electric field E. Hence the shrinkage part of the deformation gradient in (18) is modified to

F s = [1 + αs{α,E}]1/3I. (19)

Recently, a similar approach has been formulated for the case of magneto-mechanically coupled curing by

Hossain et al. [25; 26; 27; 28]. To account the overall influence of an electric field on the curing process, we

define a new parameter ’degree of exposure’ eE as

eE =

t∫
0

f
(
α(τ)

)
|E(τ)| dτ, with, f(α) = 1−H(α− 1), (20)

where H is the Heaviside function and |E(τ)| is the magnitude of the applied electric field. The parameter eE

incorporates a duration time of the applied electric field that is activated during the curing process. In order to

include the fluctuating influence of an electric field to the constitutive model, the function f(α) is introduced.

Two extreme values of exposure are defined as 0 < eE1 < eE2 which simply imply that when the lower
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value of the degree of exposure eE crosses the threshold eE1 it starts increasing the value of the shrinkage

parameter s from an initial value of s1. When it reaches the upper threshold value eE2, the maximum possible

value of shrinkage s = s2 is reached and the evolution of s remains unchanged. All these information can be

incorporated once the evolution of s can be expressed by the following functional form

s =
s1 + s2

2
+
s2 − s1

2
tanh

(
ξ

[
eE −

1

2
[eE1 + eE2]

])
, (21)

where ξ is a scaling constant. Evolutions of the shrinkage parameter s with respect to the degree of exposure

e and curing time for a scaling factor ξ = 1 are depicted in Fig 4.
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Fig. 4: Evolutions of the shrinkage parameter s with respect to (left) the degree of exposure e, (right) curing
time for a scaling factor ξ = 1

Coupled curing shrinkage: Effect II

For an isotropic curing process, the same amount of volume shrinkage can occur in all directions. However,

for an anisotropic curing process, which is the case for the curing under an electric field, the amount of the

volume shrinkage is not the same in all directions. It can be easily predicted that a less amount of volume

shrinkage will occur in the direction of the particles alignment due to the action of an electric field. The

directional-dependency (anisotropy) with a chain dispersion will also influence the total amount of shrinkage.

In the case of particle-filled EAPs when the curing occurs in an electric field, high conductive particles are

aligned in a preferred direction a. Hence the reformulated equation in (19) will be transformed to

F s = [1 + αs{α,E}]1/3 [I − βa⊗ a] + βa⊗ a, (22)



13

where β is a scaling parameter 0 < β < 1 that can be related to the degree of dispersion b. For a particular

preferred (mean) direction a, the scaling factor β can be determined by

β =

∑nid
s=1 ρ(rs,a)∑nid

s=1 ρmax(rs,a)
, (23)

where ρmax(rs;a) is the ultimate value of the PDF evaluated at the maximum value of b, i.e., b = 20. Once

formulations of the shrinkage part of the deformation gradient F s is determined, the multiplicative decom-

position of the deformation gradient yields the cure-dependent right Cauchy-Green tensor and the electro-

mechanical stress tensor as

Cm = F t
mFm = F−2s C, S = F−1s SmF−ts . (24)

5 A specified energy function

For the calculation of the three stiffness moduli A,C,K formulated in Eqns (14) and (15), an electro-

mechanically coupled energy function is required. In this section, a specific energy function will be formulated

that will take into account the dispersion anisotropy in electro-active polymers. If the so-called free-space term

contribution outside the matter is included, the total energy function reads as

Ω(F ,E,a) = Ψ(F ,E,a) + E0(F ,E) (25)

which can be further decomposed into

Ω(F ,E,a) = Ψvol(J) + Ψ isp
iso (C̄ ,E) + Ψ ani

iso (C̄ ,E,a1, · · · ,aN ) + E0(F ,E). (26)

The vacuum permittivity associated with E0(F ,E) has insignificant contribution in the overall calculations.

Hence it will be neglected in this contribution as in [68; 46], i.e. Ω(F ,E,a) ≈ Ψ(F ,E,a) is assumed in

the subsequent calculations. To obtain a complete expression for the energy function in Eqn (4), appropriate

choices for the isotropic energy function Ψ isp
iso as well as for the anisotropic energy function Ψ ani

iso need to be de-

termined. The Neo-Hookean type electro-mechanically coupled strain energy function is often used in electro-

elasticity. Therefore, as a starting point in the modelling of curing process under an electro-mechanically

coupled load, we assume a Neo-Hookean-like material as follows

Ψ isp
iso (C̄ ,E) =

1

2
µ
[
Ī1 − 3

]
+ ne[E⊗E] : C̄

−1
+me[E⊗E] : I (27)
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where me and ne are electrostrictive coupling coefficients. Similar to the Neo-Hookean structure of the

isotropic part of the macroscopic energy appearing in Eqn (27), a Neo-Hookean type free energy function

for a single chain is chosen. After performing the averaging operation on the unit sphere including scaling by

the von Mises PDF ρ for a single family of chains, we obtain the macroscopic form of the anisotropic energy

function as

Ψ ani
iso (C̄ ,E,a) ≈

nid∑
s=1

ρs ψsc w
s =

nid∑
s=1

ρs
[

1

2
µ̃[λ̄2s − 1] + c1λ̄

2
sE

2
s + c2E

2
s

]
︸ ︷︷ ︸

ψs
c

ws (28)

where µ̃, c1 and c2 are the chain shear modulus and the coupling parameters, respectively, in the micro-sphere

energy function ψsc . Finally, after combining the isotropic coupled function in (27) and the anisotropic coupled

function in (28), a complete form of the compressible energy function becomes

Ψ(C ,E,a) =
κ

2
[ln J ]2 − µ ln J +

1

2
µ [I1 − 3] + ne[E⊗E] : C−1 +me[E⊗E] : I

+

nid∑
s=1

ρs
[

1

2
µ̃[λ2s − 1] + c1λ

2
sE

2
s + c2E

2
s

]
ws. (29)

Note that this particular form of compressible Neo-Hooke energy function for the mechanical part appearing

in the first part of the total coupled energy has shortcomings, e.g. the term κ[ln J ]2 does not satisfy the so-

called growth conditions and the convexity requirements of elasticity. In order to facilitate for a closed form

solution in the subsequent part, we have chosen this particular form of Neo-Hooke energy function. However,

our modelling framework described in the previous sections is a generalised one that can fit to any advanced

form of energy function. For given values of the deformation gradient F and the electric field vector E, the

stiffness moduli tensors A,C,K need to be derived from the energy function presented in Eqn (29). Thus,

the elasticity tensor is given as

A =
∂2Ψ

∂E ⊗ ∂E

= κC−1⊗C−1 − 2 [µ− κ ln J ]
∂C−1

∂C
+ 4ne [E⊗ E] :

∂

∂C

(∂C−1
∂C

)
+

nid∑
s=1

ρsλ̄−2s

[
∂2ψsc
∂λ̄s∂λ̄s

− λ̄−1s
∂ψsc
∂λ̄s

]
rs ⊗ rs ⊗ rs ⊗ rsws. (30)

The tensor derivative of ∂C
−1

∂C can be expressed as component-wise, i.e.,
(
∂C−1

∂C

)
ijkl

= − 1
2

[
C−1ik C

−1
jl + C−1il C

−1
jk

]
.

Furthermore, ∂
∂C

(
∂C−1

∂C

)
is also given in component-wise: − 1

2

∂(C−1
ik C

−1
jl +C−1

il C
−1
jk )

∂Cpq
= 1

4

[
C−1ip C

−1
kq C

−1
jl +

C−1iq C
−1
kp C

−1
jl + C−1ik C

−1
jp C

−1
lq +C−1ik C

−1
jq C

−1
lp + C−1ip C

−1
lq C

−1
jk +C−1iq C

−1
lp C

−1
jk + C−1il C

−1
jp C

−1
kq +C−1il C

−1
jq C

−1
kp

]
.
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The third-order so-called piezoelectric tensor is

C = − ∂2Ψ

∂E ⊗ ∂E
= −2

∂2Ψ

∂C ⊗ ∂E
= −4neE ·

∂C−1

∂C
−

nid∑
s=1

ρsλ̄−1s
∂2ψsc
∂Es∂λ̄s

rs ⊗ rs ⊗ rsws, (31)

while the dielectric tensor can be obtained as

K = − ∂2Ψ

∂E⊗ ∂E
= −2meI − 2neC

−1 +

nid∑
s=1

ρs
∂2ψsc

∂Es∂Es
rs ⊗ rsws. (32)

6 Numerical examples

In this section, the capability of the cure-dependent model developed in the sections above will be demon-

strated with the help of several benchmark examples. For a certain deformation and an electric field, updates

of the total stress and the electric displacement are calculated according to Eqns (16 ) and (17), respectively.

The equations are discretised using an Euler-backward type implicit integrator. For incorporations of the stiff-

ness gain and other observed phenomena during the curing, relevant parameters appearing in the model are

to be evolved with time. The free energy function expressed in Eqn (29) has several material parameters

where the shear modulus is a key material parameter for the realisation of the stiffness gain during the cur-

ing process. For coupled electro-mechanical parameters, we can take similar mathematical formulations as in

the case of mechanical material parameters, e.g. shear modulus. One of the easiest formats for the evolution

of these parameters is an exponential saturation function. Therefore, the evolutions of shear modulus µ and

electro-mechanical coupled parameters, namely ne, are considered as

µ(t) = µ0 + [µ∞ − µ0] [1− exp(−κµt)] , ne(t) = ne0 + [ne∞ − ne0] [1− exp(−κnet)] , (33)

where µ0, ne0 and µ∞, ne∞ are initial and final cut-off values of a particular material parameter, respectively.

In Eqn (33) κµ, κne are curvature parameters. All other parameters appearing in the model are assumed to

be insensitive to the curing process. Note that a numerical integration schemed is required to perform the

integration over the unit sphere, e.g. in Eqn (30). Several angular integration procedures are proposed and

their comparisons are critically discussed in the literature for purely mechanical loadings, see [17; 34; 71].

Since the aim of the current contribution is not to focus on the integration schemes, we stick to use the 64-

integration point proposed by Womersley [71] due to its excellent performance which is recently analysed in

the case of fully cured electro-elastic modelling in Hossain and Steinmann [31].
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6.1 Uniaxial tests : Pull-hold-pull load

At first, several numerical examples with uniaxial type loading are demonstrated to ensure that the developed

constitutive framework can predict stiffness gaining during curing processes under an electro-mechanically

coupled load. In the case of a uniaxial tension test, the specimen is elongated only in one direction, i. e. λ1 =

λ, while the other two lateral directions are free to move. Here, the deformation gradient is expressed as

F = λe1 ⊗ e1 + λ2e2 ⊗ e2 + λ2e3 ⊗ e3 while the electric field vector is E ≡ [E1, 0, 0]t, where λ is

the stretch in the load direction and E1 is the electric field component in the same direction. Due to the

compressibility assumption of the constitutive model under consideration, we need to establish a relation

between λ1 and λ2 (λ2 = λ3, in the case of a symmetric deformation). For a compressible Neo-Hookean type

material which is the case expressed in Eqn (29), we establish an analytical relation between λ1 and λ2 (=

λ3) in the case of a simple uniaxial deformation. Detailed descriptions of such a relation are skipped here due

to its length expressions. However, a similar procedure is illustrated in our previous works, see Hossain et al.

[26; 27]. Note that since the elongation is only in one direction, both lateral components of the nominal stress

P=diag{P11;P22;P33}, i.e. P22 and P33 are zero and only component P11 needs to be determined. For the

numerical examples presented here, few material parameters used are as follows
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Fig. 5: (Left) A three-phase pull-hold-pull pure mechanical load applied in 50 sec curing time, (Right) Stress
response during the curing process under a mechanical load

µin = 1.0× 10−11 MPa, µ∞ = 5.0× 106 MPa, κµ = 0.0825 s−1

ne0 = −1.0× 10−11 N/V2, ne∞ = −6 N/V2, κne = 0.0825 s−1. (34)

Note that a similar set of material parameters is used by Saxena et al. [62] in the modelling of fully-cured

electro-active polymers. During the development of the cure-dependent electro-mechanically coupled model
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Fig. 6: (Left) A constant amount of electric field applied throughout the curing time, (Right) A three-phase
electric load similar to the three phase mechanical load

explained in Sections 3 and 4, two main observations are taken into account, i.e. the stiffness gain due to the

continuous chain cross-linking with an advancement of the curing process and the chain formation should be

stress-free, see Gillen [20], Adolf [1]. Moreover, an electric field further affects the material stiffness [10]. To

demonstrate the incorporation of all three major assumptions within the constitutive framework, a three phase

pull-hold-pull electro-mechanically coupled load is applied. At first, the purely mechanical part of the model

formulated in Eqn (16) will be verified whether it can capture stiffness gaining as well as it can also capture

the effects of chain dispersions during the curing process. For this, a three phase pure mechanical load is ap-

plied as in Fig 5 (left). The results for this loading is presented correspondingly in Fig 5 (right). It is clear from

the figure that for a purely mechanical pull-hold-pull load, the stress development is larger in the third load

phase compared to the first phase while there is no stress increment during the load holding period of 6-45 sec.

Now the influence of a constant amount of electric field on the stress response during the three phase pull-

hold-pull loading will be checked. As mentioned earlier, for a constant amount of electric field, cf Fig 6 (left),

along with a mechanical load during the entire curing time, the overall stress response will increase in contrast

to the purely mechanical loading, see Fig 7 (left). If the magnitude of the electric field is increased, the total

stress is also elevated at a higher value. To illustrate the stiffness gain under an electro-mechanical coupled

load, the total coupled nominal stress is plotted over the mechanical stretch in Fig 7 (right).

In order to demonstrate combined effects of electro-mechanical coupled loads and the chain dispersions, we

now apply a three phase mechanical, cf. Fig (5, left) and a three-phase electric loading, cf. Fig (6, right). For

this combined loading, the total nominal stress over the stretch is depicted in Fig (8, left). It is again clear that

an electric field produces additional stress in addition to the mechanical stress. Moreover, this total stress is

increasing with a decreasing trend of the dispersion, characterised by a higher value of the dispersion param-
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Fig. 7: Effects of a constant amount of electric field: (Left) Electric field affects the total coupled stress and it
increases with the increase of the field, (Right) The effects are more vivid when the coupled stress is plotted
over the mechanical stretch
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Fig. 8: Effects of the chain dispersion on the total coupled stress : (Left) The total coupled stress is increased
with the alignment of particles in the load direction characterised by the dispersion parameter b, (Right) Total
stress is plotted over the mechanical stretch to observe the effects of chain dispersions

eter b. Similar to the three-phase purely mechanical load, the stress development in the electro-mechanically

coupled case is much more in the third load phase compared to the first phase while there is no stress in-

crement during the load holding period of 6-45 sec. The total electro-mechanical stiffness gain is more vivid

when the total coupled stress is plotted over the mechanical stretch, see Fig (8, right).

At this stage, evolutions of the electric displacement during the curing process will be illustrated. For a three-

phase electro-mechanically coupled loading, the corresponding electric displacement is plotted in Fig (9, left).

It is clear from the figure that the electric displacement is greater in the second loading phase compared to the

first phase. However, the increments of the electric displacement in the second load step are not qualitatively

as large as the total stress. The reason is, for the electric part of the energy function, we assume that only

the coupling parameter ne is evolving with respect to the curing process. There is no temporal change of the
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electric parameter me during the process. However, this assumption is flexible that can easily be modified

as soon as we will have enough experimental data. Now, the influence of the dispersion phenomenon on the

electric displacement is tracked with the model. As expected, for a greater value of the degree of dispersion

characterised via b, filler particles will align in the direction of the applied field that results in a larger electric

displacement. In order to illustrate the results in a more explicit manner, we plot the electric displacement

over the electric field that represents the electric stiffness gain during the curing process, cf. Fig (9, right).
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Fig. 9: Evolutions of electric displacements during the curing process: (Left) Response of the electric displace-
ment over the curing time, (Right) Electric displacement is increasing with respect to the chain alignment in
the applied field direction

6.2 Curing shrinkage under a coupled load

In this section, the effects of coupled load as well as the chain dispersions will be illustrated on the curing-

induced shrinkage behaviours. For this, the multiplicative decomposition type shrinkage model systematically

presented in Section (4) will be utilised. In addition to the material parameter set listed in Eqn (33), some more

parameters required for the numerical examples are presented here. The evolution for the degree of cure α

required in Section (4), e.g., in Eqn (19) is considered as an exponential saturation function similar to Eqn

(33), i.e. α(t) = α0 + [α∞ − α0] [1− exp(−καt)]. For the initial and the final cut-off values of the degree of

cure, i.e. α0 and α∞ are considered as 1.0 × 10−8 and 1.0, respectively. For a fifty second curing time, the

curvature parameter κα, required in the above formulation, is taken as 0.0825 s−1. In order to see the effects

of an electric field on the nature and magnitude of the shrinkage-induced stress, at first, it is assumed that

the shrinkage parameter s does not depend on the electric load E, i.e. there is no direct coupling between s

and E. In this case, the curing-induced volume reduction parameter is taken as s = −1.0 × 10−4. A three-

phase pure mechanical load enhanced by a three-phase electric field applied throughout the curing time is

utilized. The stress evolution by the three-phase pull-hold-pull electro-mechanically coupled load without a
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curing shrinkage model is plotted with a solid line in Fig (10, left). In the same figure, the stress response

for an isotropic curing (Eqn., 18) is plotted (dashed line) while the effect of an anisotropic curing (Eqn.,

22) is depicted with a solid-stared line. For the latter case, the anisotropic scaling parameter β is taken as

a dispersion-independent constant, e.g. β = 0.3. It is clear from figure (10, left) that the amount of curing-

induced shrinkage in the anisotropic case is less than the isotropic shrinkage since the particle alignments

restrict the shrinkage in the applied electric field direction. Furthermore, for both isotropic and anisotropic

cases, the shrinkage-induced total stress is higher than the no-shrinkage total coupled stress in the plateau

region (6-45 sec) since both the electro-mechanical load and the shrinkage-generated load contribute to the

stress development in this region.
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Fig. 10: Effects of the curing shrinkage on the stress evolution with a three-phase coupled loading: (Left)
Comparison between isotropic and transversely isotropic curing shrinkages, (Right) Comparison shows that
the dispersion of the chains affect the total amount of shrinkage

Now we want to demonstrate how the chain dispersion affects the shrinkage-induced stress generation during

the curing process. For this, in contrast to the previous case, the anisotropic scaling parameter β will be related

to the degree of dispersion b via Eqn (23). The mathematical formulations presented in Eqn (23) establish that

for a smaller value of b, that corresponds to a highly chain-dispersed situation, β gets a smaller value and

vice-versa. A strict alignment of the chains in the direction of the applied electric field yields less shrinkage-

induced stress, see Fig (10, right). Similar to the previous case, a three-phase electric load is applied along

with the three phase mechanical load. For the figure (10, right), a medium value of b = 5 is used to calculate

the anisotropic parameter β using Eqn (23).

7 Conclusion and outlook

Within this contribution a three-dimensional electro-elastic constitutive framework that can model the stiffness

gaining during the curing process undergoing finite deformations is presented. We propose the cure-dependent
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electro-elastic model in the spirit of a dispersion-type anisotropy since, according to the recent experimental

data presented in the literature, a chain-like micro-structure is formed by filler particles when EAP composites

are being cured under an electric field. Moreover, to capture the volume shrinkage, a directional-dependent

shrinkage model is formulated that takes into account the dispersion anisotropy. Some well-known benchmark

numerical examples show that all relevant phenomena can be envisaged in an environment where a curing

process occurs under an electro-mechanically coupled load. To simulate real life examples, these modelling

frameworks will be implemented in an electro-mechanically coupled finite element code. Furthermore, the

temperature evolution is a common phenomenon during the curing process. Hence a thermo-electro-elastic

extension of the framework is essential that will be our current area of study. In the near future, there is a plan

to validate the model with a real experimental data.
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