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Electromechanical vibration of microtubules and its application in biosensors 

Si Li, Chengyuan Wang*, Perumal Nithiarasu 

Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, 

Bay Campus, Fabian Way, Swansea, Wales SA1 8EN, UK 

Abstract 

An electric field (EF) has the potential to excite the vibration of polarized microtubules(MTs) and thus, 

enable their use as a biosensor for the biophysical properties of MTs or cells. To facilitate the 

development, this paper aims to capture the EF-induced vibration modes and the associated frequency 

for MTs. The analyses were carried out based on a molecular structural mechanics (MSM) model 

accounting for the structural details of MTs. Transverse vibration, radial breathing vibration and axial 

vibration were achieved for MTs subject to a transverse or an axial EF. The frequency shift and stiffness 

alteration of MTs were also examined due to the possible changes of the tubulin interactions in 

physiological or pathological processes. The strong correlation achieved between the tubulin 

interaction and MT vibration excited by EF provide a new avenue to a non-contacting technique for 

the structural or property changes in MTs, where frequency shift is used as a biomarker. This technique 

can be used for individual MTs and is possible for those in cells when the cytosol damping on MT 

vibrations is largely reduced by the unique features of MT-cytosol interface. 
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1. Introduction 

Microtubules (MTs) are fundamental structural elements in the cytoskeleton (CSK) of eukaryotic 

cells. They provide mechanical support for the shape of cells, form tracks for directed subcellular 

transport and are part of the spindle apparatus important for cell division [1, 2]. MTs are composed of 

heterodimer subunits of α and β tubulins which carry unbalanced negative charge [3, 4]. This 

biophysical property of tubulin endows MTs with the ability to respond to the external electric field 

(EF) [5, 6].  

Vibration of MTs has attracted considerable attention in the last two decades [7-13]. Recently, 

the electromechanical vibration of MTs was excited by applying an external EF [2], showing the 

potential of polarized MTs as biosensors in disease diagnosis and health monitoring. It thus becomes 

essential to gain an in-depth understanding of the electromechanical vibration of MTs subject to an EF 

[2, 14]. A theoretical study was first conducted to quantitatively described the EF-generated by a 

vibrating MT [6], which provides a means to detect the vibration of MTs. After that, an optomechanical 

technique [2] was proposed to probe and more importantly, stimulate the vibration via EF on MTs 

modelled as one-dimensional structure. However, MTs are actually three-dimensional (3D) discrete 

structures composed of charged subunits. It is thus of great interest to explore the behaviour of EF-

induced vibration of MTs as 3D nanostructures. In existing studies, vibration analyses were carried 

out for MTs first in the framework of continuum mechanics theory [10, 11]. Subsequently, discrete 

approaches were developed to account for nanoscale MT structure and its influence on MT vibration 

[13]. The typical examples are the molecular dynamics (MD) simulations [15-17] and the cost-

effective molecular structural mechanics (MSM) model [18].   
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In this paper, the MSM model [18] is again employed to simulate the vibration of MTs subject to 

an alternating EF generated by a dipole antenna. The vibration spectra are recorded for MTs for various 

possible modes. In addition, the correlation between frequency shift and the possible 

softening/hardening of MTs is quantified demonstrating the potential application of vibrating MTs as 

biosensors. In addition, a parametric study is also conducted to evaluate the damping effect of 

surrounding cytosol, which could be greatly reduced by the nanoscale MT-cytosol interface. The paper 

is organized as follows. The simulation setup, i.e., an MT subject to an alternating EF of dipole antenna 

is illustrated in Sec.2. The simulation results and corresponding discussions are given in Sec. 3, and 

the conclusions are drawn in Sec. 4. 

 

 

2. Model development and vibration excitation  

2.1 MSM model for MT structure 

    In this work, 13-3 MTs are considered as a typical example, which have 13 Proto-filaments (PFs) 

and helix start S=3 [19] as shown in Fig.1a. The details of the helix nanostructure were characterised 

by an MSM model [18] in Fig.1b where the blue balls denote α tubulins and the red balls represent β 

tubulins. In addition, the intra-PF αβ interactions of MTs are modelled as the longitudinal elastic space 

beams while the inter-PF αα (ββ) interaction are treated as the helical space beams. Following previous 

studies [16, 18, 20], the small difference in αα and ββ interactions is neglected. Such a frame structure 

model is developed to account for the configuration details, the tubulin interaction and various 

deformation patterns (Fig.1c) of 13-3MTs at the nanoscale.  
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    In the molecular mechanics, the force field is expressed in the form of steric potential energy. The 

major parts of the steric potential energy of an MT structure include the bond stretching energy Ui
r, 

the angle bending energy Ui
φ
 and the dihedral angle torsional potential energy Ui

τ. The total potential 

energy U of an MT reads  

Ubonds= ∑ ( ∑ Ui
r + ∑ Ui

φ
+ ∑ Ui

τ )

i=1,2

 (1) 

where i denotes the types of bonds mentioned above (i=1 for the intra-PF bonds and i=2 for the inter-

PF bonds). The expressions for the three types of bond energy are as follows. 
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r=

1

2
ki

r
(∆ri)

2
 , Ui

φ
=

1

2
ki

φ
(∆φ

i
)
2
, Ui

τ=
1

2
ki

τ
(∆Φi)

2
,(i=1,2)  (2) 

Here, as shown in Fig. 1c, ∆ri is the change of bond length, ∆φ
i
 is the change of in-plane bond angle, 

∆Φi is the change of out-of-plane angle, ki
r
 is the force constant for bond stretching, ki

φ
 is the force 

constant for bond angle bending and ki
τ
 is the force constant for bond torsion. The values of these 

force constants can be obtained in atomistic simulations or experiments. 

    Also, the total potential energy of the MSM model can be written as: 

Ubeams= ∑ (∑ Ui
A + ∑ Ui

M + ∑ Ui
T)

i=1,2

 (3) 

where, Ui
A is the strain energy of a beam in tension, Ui

M is the strain energy due to bending, Ui
T is 

the strain energy due to torsion and i specifies the quantities of beam i (i=1 for longitudinal beams and 

i=2 for lateral beams). The beam energy is calculated by using the formulae below. 
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As shown in Fig. 1d, ∆li  is the length change of the beam, ∆αi  is the bending angle, ∆β
i
  is the 

torsion angle, Yi Ai is the extensional stiffness, Yi Ii is the bending stiffness and SiJi is the torsional 
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stiffness of the beams. 

    The equivalency of the MT structure and its MSM model can be established when the 

corresponding energies in Eqs. 2 and 4 are equal, which leads to the following relationship between 

the force constants of the bonds and the stiffnesses of the space beams. 

YiAi

li
=ki

r
, 

YiIi

li
=ki

φ
,
SiJi

li
=ki

τ
,(i=1,2) (5) 

In this study, the values of ki
r
, ki

φ
, ki

τ
 were obtained from the molecular dynamics simulations in [18, 

21, 22] and further optimized in [23], i.e., k1
r
=3nN/nm, k1

φ
=2nN∙nm, k1

τ
= 0.04nN∙nm, k2

r
=0.14nN/nm, 

k2
φ
=0.085nN∙nm , k2

τ
=0.0017nN∙nm . Then, the values of the beam stiffnesses required in the MSM 

simulations of 13-3MTs can be obtained by using Eq. (5). The MSM model was employed to perform 

the simulations on the electromechanical vibration of 13-3 MTs.  

 

2.2 Excitation and damping of MT vibrations 

    The migration of individual MTs in an EF has been observed via video contrast microscopy [3]. 

In this process, the magnitude of the unbalanced negative charge carried by tubulins was found to be 

lower than the theoretical one due to the effects of the electroosmotic flow and the surrounding 

substances [3]. Also, the magnitude varies from one experiment to another [3, 24-26]. On the other 

hand, the computer simulations from crystallographic data gave an identical value of -5 electron 

charges for the tubulin monomer isolated from environment [3, 27, 28]. As such, the charge carried by 

one monomer was set to q = -5e [28] in the present work. Fig. 2 shows an alternating EF generated by 

a Hertzian Dipole in a spherical polar coordinate system characterised by the radial (r), polar angle (θ) 

and azimuthal angle (Ψ) coordinators. The math description of the EF can be found in [29-31]. Herein, 
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we have placed a 13-3 MT (1 μm in length) at a point with θ = 0 and r = 0.1m, and the axial direction 

of the MT is in either azimuthal angle direction 𝛹̂ (the unit vector) or polar angle direction 𝜃 (Fig. 

2). When the radial distance r of the MT is much greater than its length, the EF can be approximated 

as a uniform EF exhibiting harmonic time dependence. The amplitude of the EF is set to |𝐸⃗ | =20 V/m. 

Here, Fig. 2 graphically illustrates a prototype design of MT-based biosensors where an 

alternating EF is generated by an electronic device (represented by a dipole here) and used to excite 

the vibration of individual MTs which are a distance away from the electronic device. The frequency 

shifts of MTs can then be employed as a biomarker to monitor the changes of MT structure and stiffness 

in pathological and physiological processes. Thus, the distance r = 0.1 m is selected here between the 

dipole and MTs to demonstrate such a design of the MT-based biosensor. In the meantime, it is 

understood that the amplitude of time-dependent EF should be large enough to excite the forced 

vibration of MTs with sufficiently large amplitude and thus, easy to identify by e.g., vibration energy 

absorption. The safety is another issue that needs to be taken into consideration. |𝐸⃗ | = 20 V/m was 

selected here as it is relatively strong but safe for human being according to World Health Organization 

and Federal Office for Radiation Safety, Germany [32]. In addition, the fixed-fixed end conditions 

were imposed on the 13-3 MT in Fig. 2. The vibrations of the MT are stimulated by the alternating EF 

via the corresponding electrical force 𝐹 = 𝐸⃗ 𝑞 on MT tubulins. In this study, the vibration analysis 

was carried out based on the MSM model [18] developed for 13-3MTs as shown above. The details of 

the mathematic techniques used in vibration analyses are introduced in the Supplementary Material.  

Moreover, a parametric study is conducted for the transverse vibration of MTs in cytosol across 

a range of damping effects and the frequencies up to 50 MHz. The damping force Fd on the MT 
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monomers is used to characterise the energy dissipation in viscous flow of cytosol and calculated based 

on the slide film damping theory accounting for the damping effect of microfluid between two moving 

microscale objects [33, 34]. First, a non-slip boundary condition associated with a continuous MT-

cytosol interface was considered in calculating Fd. After that, damping reduction coefficient P from 

0.0001 to 0.1 was introduced to estimate the reduced damping effect. i.e., the damping force on the 

monomers decreases to FRd = Fd × P. Here it should be pointed out that these calculations provide 

insights into how much reduction is required to achieve prominent MT vibration in cell. However, the 

possible damping reduction due to the relative sliding [14] and the vdW interaction between MT and 

cytosol needs to be evaluated in future study based on experiments or atomistic simulations. The details 

of the theory and the damped model are shown in Supplementary Material. Meanwhile, the quality 

factor Q= ωm /△ω is also calculated for the damped MT vibration, where ωm is the frequency at the 

maximum amplitude, 𝐴𝑚 is the amplitude of the resonance peak and △ω is the frequency increment 

at the points with amplitude 𝐴𝑚/√2. [35, 36].  

      

 

3. Results and discussions 

In this section, the forced vibrations of MTs subject to an alternating EF were explored, and the 

influence of the abnormal interaction between adjacent tubulins was examined. In addition, a 

parametric study was also conducted to evaluate the influence of the reduced cytosol damping due to 

the distinctive MT-cytosol interface at the nanoscale. 
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3.1 Electromechanical vibrations  

3.1.1 Vibrations excited by transverse electric field  

As mentioned in Sec. 1, the investigations on the free vibration of MTs have achieved multiple 

progresses [10, 11, 37]. The Eigenvalue vibration analysis was efficiently used to predict the vibration 

modes and resonant frequencies of MTs [10, 13, 20]. The associated vibration amplitude however 

cannot be obtained by solving the Eigenvalue problems. In this study, we further studied the forced 

vibrations of MTs excited by a uniform EF. The major concerns are (1) the possible vibration modes 

and associated frequencies that can be excited by an alternating EF in the transverse or axial direction 

of MTs, and (2) “vibration amplitude-EF frequency” relations, which is crucial in predicting the 

equivalent dipole moment of vibrating MTs [6] and facilitating the design of MT-based biosensors 

based on the electromechanical vibration of MTs [14].  

First, the forced vibrations of MTs excited by the transverse alternating EF (Fig. 2) are presented 

in Fig. 3 in comparison with the free vibrations obtained for the same MT via the Eigenvalue analysis. 

The top panel of Fig. 3 shows seven transverse free vibrations whose resonant frequency up-shifts with 

the growing half wavenumber and falls in the range of (0MHz, 250MHz). The amplitudes of the MT 

are measured at the three points whose distance from the left MT end is L/2, L/4 and L/8, respectively 

(L is the MT length) (Fig. 3). In the obtained amplitude-frequency spectra (Fig. 3) seven peaks were 

picked up in the vicinity of the resonant frequencies. Accordingly, seven forced transverse modes were 

achieved, which are identical to the seven free vibration modes shown in Fig. 3. Meanwhile, for a 

given amplitude the bandwidths of the peaks (the frequency span around the frequency peak with the 

amplitude greater than the given value) associated with the odd half wavenumbers 1, 3, 5 and 7, are 
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found to be greater than those corresponding to the even half wavenumbers 2, 4 and 6. In addition, 

among the peaks with an odd half wavenumber, the bandwidth increases with decreasing wavenumber 

or declining frequency. The observation suggested that the excitation of the MT vibration with 

relatively large odd half-wavenumber and particularly, even half-wavenumbers are very sensitive to 

the selected frequency of the EF, and accordingly, showed narrow or sharp peaks in the amplitude-

frequency spectra. They can be obtained only if the frequency of excitation is the same as the 

corresponding resonant frequency of MTs. A small deviation from the resonant frequency would 

extinguish these even modes. It follows that the odd transverse modes of MTs with low frequency can 

be excited in a wider range of frequency and thus, are promising for their applications in the MT-based 

biosensors. 

3.1.2 Vibrations stimulated by axial electric field 

Possible vibration behaviours of MTs other than transverse modes have been predicted by 

Eigenvalue analysis [6, 10]. Such vibration modes can also be achieved by applying an alternating EF 

in the axial direction (Fig. 4a). Fig. 4b, c and d show the three typical examples and the associated 

amplitude-frequency spectra. The radial breathing mode (RBM) with a circular cross-section and the 

axial half wavenumber m =1 was observed at around 53.019MHz (Fig. 4a). In RBM, the α and β 

tubulins of the MT oscillate in the radial direction as if the MT was breathing with a time-dependent 

radius. The vibrational radial displacement is distributed uniformly along the perimeter of MT cross 

section. Along the MT length, the distribution however becomes non-uniform and characterised by the 

axial half wavenumber m, which increases with rising frequency. For instance, the frequency 

159.291MHz of the RBM with m = 3 is three times as much as the 53.019MHz associated with m = 1. 
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In addition, the circumferential modes with a non-circular cross-section [11, 38] was also found in Fig. 

4c at around 585.64 MHz. The radial amplitudes (Fig. 4a) at the middle point of the MTs were recorded 

in the amplitude-frequency spectra for the vibration modes (Fig. 4b and c). Here, two peaks are 

observed around the resonance frequencies (of RBMs) 53.019MHz (Fig.4b) and 585.64 MHz (Fig.4c), 

respectively. The amplitude is of the order of 0.02nm at 53.019 ± 0.001MHz and 0.0003nm at 585.64 

± 0.001MHz, which is two orders of magnitude smaller than the first one. Meanwhile, in Fig. 4c 

another peak of circumferential mode was also observed at a frequency slightly lower than 585.64 

MHz of RBM.  

Herein, it is worth mentioning that for a nanostructure, factors other than the vdW interface and 

the sliding between MT and cytosol may also have influence on the damping of surrounding water. 

For example, in [39] the wettability of water and especially, the slip length are identified as major 

factors affecting water damping effect on the longitudinal vibration of polarized nanorods. 

In addition to RBMs, the axial vibration mode at around 377.84 MHz possesses the highest 

amplitude as shown in Fig. 4d. Specifically, a sinusoidal alternating EF with an amplitude of 20V/m 

can excite the axial vibration of individual MTs with a bandwidth (associated with amplitude greater 

than 0.1nm) around 150 KHz, i.e., from 377.915MHz to 377.765MHz. In this study, the amplitude 

0.1nm is selected as a reference oscillatory displacement. The bandwith of a resonant peak is then 

defined as the frequency range (around the peak) associated with the amplitude greater than 0.1nm. 

This definition allows us to compare the bandwith between different resonant peaks [6]. 
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3.2 Dependence of vibration on tubulin interaction  

It was shown recently [40] that cell stiffness can be used as a biomarker to identify cancerous 

cells among surrounding healthy cells. Herein, MTs are known as one of the major structural elements 

responsible for cell stiffness and the variation of MT stiffness can be reflected by the frequency shift 

of MT vibration excited by an EF [14]. It is thus expected that MT frequency can be used as a bio-

indicator to quantify the changes in the structural stiffness of MTs in diseased cells.  

It is understood that the structural domains of tubulins, i.e., the N-terminal, intermediate, and C-

terminal domains [41], may contribute to heterodimer stability, longitudinal and lateral PF interactions, 

nucleotide exchange and hydrolysis, and MT–protein interactions [41]. Disease-causing amino acid 

substitutions are found among the three domains of tubulins and therefore predicted to perturb a range 

of MT functions [42]. Specifically, the disease-causing substitutions in TUBB2B alter amino acids in 

domains important for GTP binding, heterodimer stability and longitudinal interactions, and those in 

TUBB3 are located primarily in regions that regulate GTP binding, heterodimer stability, and 

longitudinal and lateral interactions. It follows that the variation of MT stiffness may arise from the 

abnormal interactions between adjacent tubulins due to pathological changes (e.g., the above-

mentioned disease-causing substitutions or the cancer progression induced structural remodelling of 

MTs) in human body [23]. It is thus of great interest to study the dependence of the elastic moduli and 

vibration frequency of MTs on the strength of tubulin interaction. The outcomes have potential 

applications in developing biosensor for the biophysical properties of individual MTs or cells.  

To mimic this scenario, we have adjusted the strength of longitudinal and helical tubulin 

interactions by varying the values of the force constants ki
r
, ki

φ
, and ki

τ
 (Sec.2.1) that control changes 
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in the bond length, the bond angle and the dihedral angle of tubulin interactions (Fig.1c and d). ki
r
, ki

φ
, 

and ki
τ
 for normal cells were obtained in [21, 23] and replaced in this study by  Ωki

r
,  Ωki

φ
, and  Ωki

τ
 

where Ω is a coefficient ranging from 0.2 to 2, which allows us to produce the elastic modulus close 

to the experimentally obtained stiffness of cancer cells at different progression stages [40]. First, 

Young’s modulus Y and Shear modulus G are measured for the MTs where the strength of the tubulin 

interactions varies by an order of magnitude. The method used here to measure the elastic moduli is 

demonstrated in [18]. Subsequently, the fundamental vibration is studied for the above MTs subject to 

a transverse EF. The aim of this study is to establish the correlation between the tubulin interaction and 

the bandwidth at the resonant frequency, which is defined by the frequency span with an amplitude 

greater than 0.1nm [6]. 

As shown in Fig. 5a, when the longitudinal interaction is altered with Ω rising from 0.2 to 2, G 

changes slightly around 1.5MPa [43], while Y increases linearly from 0.17GPa to 1.71GPa by a factor 

of 10.06. In the same process, the fundamental frequency rises from 9.02MHz to 23.67MHz (by a 

factor of 2.62) while the bandwidth decreases from 7.05MHz to 2.48MHz (by 65%). The trend of the 

properties and dynamic responses to change with helical interaction is plotted in Fig. 5b. In contrast to 

the longitudinal interaction effect, Y remains nearly unchanged while G grows linearly from 0.32MPa 

to 2.86MPa by a factor of 8.94 with rising Ω. It also is noted in Fig.5b that when Ω rises from 0.2 to 2, 

the fundamental frequency rises from 13.67MHz to 19.41MHz (by 42%) while the bandwidth 

decreases from 4.30MHz to 3.03MHz (by 30%). The effect of the helical interaction on the frequency 

and the bandwidth is found to be smaller than the effect of the longitudinal interaction. 

Herein, the longitudinal interaction is found to be important for axial Young’s modulus, while the 
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helical interaction is mainly responsible for Shear modulus. These results are in agreement with [23, 

44]. In consistent with this observation, the longitudinal interaction also plays a major role in 

fundamental (transverse) vibration, where axial Young’s modulus has a predominant effect over shear 

modulus. Moreover, the fundamental frequency also changes with the variation of the helical 

interaction and is found to be more sensitive to the helical interaction weakening than its strengthening. 

For instance, when Ω falls from 1 to 0.2, i.e., the helical interaction is weakened by 80%, the 

fundamental frequency decreases by 26% while it only increases by 5% when Ω rises from 1 to 2, i.e., 

the helical interaction is strengthened by 100%.   

The above study indeed shows a typical example that the nanostructures of subcellular 

components like MTs may have a substantial influence on their overall static and dynamic responses 

[1]. The prominent role of longitudinal interaction in the transverse MT vibration originates from its 

influence on axial Young’s modulus that controls the bending or transverse deformation of MTs. In the 

meantime, the helical interaction is responsible for the resistance of MTs to shear deformation or inter-

PF sliding. Weakening the helical interaction leads to significant inter-PF sliding [19, 23, 45], which 

however is prohibited when the interaction is strengthened. This explains the relatively large frequency 

shift due to the helical interaction weakening. These results obtained in the present simulations show 

the potential of polarized MTs as a biosensor and its frequency as a possible biomarker in detecting 

the property and structural changes in individual MTs or cells in physiological or pathlogical processes.  

 

3.3 Evaluation of reduced cytosol damping 

In previous sections, the EF-excited vibrations of individual MTs are investigated without 



14 

 

considering any damping effect in the intracellular environment. In reality, MTs are submerged in 

cytosol of cells (70% water). Thus, cytosol damping cannot be avoided. On the other hand, cytosol 

damping may reduce to some extent due to, e.g., the possible MT-cytosol sliding and the vdW 

interaction although we are still waiting for experiments or simulations to confirm this assumption. 

Therefore, it is of interest to conduct a parametric study of cytosol damping and find the condition 

under which the prominent vibration of MTs can be excited by EF. It was shown in Sec.2 that a 

coefficient P was introduced to decrease the frictional forces on the MT due to surrounding cytosol 

and thus, measure the reduction of the damping effect. The amplitude-frequency spectra are calculated 

in Fig. 6 for the transverse vibrations with P rising from 0.0001 to 1. For the continuous MT-cytosol 

interface with P = 1, viscous damping is so strong that can extinguish the vibrations of MTs, which is 

found to be in agreement with [46]. When the damping effect decreases to P = 0.1, the amplitude 

increases but is still very small. Further decreasing P to 0.01, 0.001 and to 0.0001 leads to the 

increasing amplitude of the order of 0.02 nm, 0.2 nm and 1.2 nm, respectively. Thus, transverse 

vibration with amplitude greater than 0.1nm [6] can be achieved when the cytosol damping effect can 

decrease by three orders of magnitude due to the unique features of the MT-cytosol interface at the 

nanoscale. To reveal the trend of quality factor Q in this process we have calculated the frequency 

spectra with P ranging from 0.002 to 0.009 in the inset of Fig. 6. In the figure, Q is found to increase 

with decreasing damping effect measured by P and at P < 0.003 Q > 4.3 can be obtained. Here, it is 

worth mentioning that decreasing cytosol damping leads to greater Q mainly by raising the amplitude. 

In this process, the bandwidth also grows with increasing Q or decreasing P. Thus, reduced cytosol 

damping makes it easier for one to excite a transverse vibration of MTs in cells. 
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Here, it should be noted that the present study evaluates the reduction of cytosol dmaping required 

to stimulate prominent vibration of MTs in cells. It is however not celar whether the unique MT-cytosol 

interface can finally achieve the goal. In addition, the experimental evidence of MT vibration in cells 

is still not available in the literature. There are two possibilities, i.e., (1) The MT-cytosol interface 

cannot substantially decrease the damping effect of cytotol which finally quenches the vibrations of 

MTs in cells. (2) More advanced signal acquisition technique is required to indentify the resonance of 

nanoscale components of cells and tissues. Indeed, these issues as well as many other technique 

challenges need to be addressed before one can eventually realise the proposed MT-based biosensors.  

 

 

4. Conclusions 

In the present paper, an alternating EF was used to excite the forced vibration of polarized MTs 

in different modes. The possibility was also examined to detect the abnormal tubulin interaction in the 

pathological process by measuring the changes in the frequency and elastic moduli of MTs. The effect 

of cytosol damping is also evaluated for the transverse vibration of the MT. 

It is found that a transverse EF is able to excite transverse vibrations of MTs where frequency 

upshifts from 18.4 to 240.3 MHz when the half axial wavenumber rises from one to seven. The 

vibrations with the even half wavenumbers are hard to excite as they show a very narrow bandwidth 

on the vibration spectra, while it is relatively easy to achieve those with odd half wavenumber due to 

their much wider bandwidth which increases with the decreasing frequency.  

An axial EF is found to generate RBMs (with a circular cross-section) of MTs, which can be 
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observed in the vibration spectra at a frequency around 53.019 MHz and 159.291 MHz, much higher 

than the frequencies of the transverse vibrations with the same half axial wavenumber. The 

circumferential vibrations with non-circular cross-section are also achieved at 585.64 MHz. In addition, 

the axial vibration of frequency 377.84 MHz can also be excited, where the amplitude is found to be 

greater than other modes stimulated by an axial EF.  

For MTs in cells, the excitation of prominent vibrations depends largely on the possible MT-

cytosol sliding at the interface, which may substantially reduce cytosol damping. The transverse 

vibration with amplitude greater than 0.1nm and quality factor Q larger than 4.3 can be achieved by 

applying an EF of 20 V/m provided that the sliding MT-cytosol interface can largely decrease the 

damping by three orders of magnitude relative to the cytosol damping due to a normal continuous MT-

cytosol interface. 

In addition, it is also found that the longitudinal tubulin interaction determines the axial Young’s 

modulus that controls the bending deformation or the transverse vibration, while the helical tubulin 

interaction mainly decides shear modulus and the inter-PF sliding. Thus, changes in the longitudinal 

or helical interaction in pathological processes can be detected via the variation of elastic moduli and 

the shift of MT frequency as promising biomarkers. 

Indeed, correlating the pathological changes of MTs to their responses to an alternating EF is 

crucial for the development of MT-based biosensors. Hence, the dependence of MT frequency on the 

tubulin interaction achieved here not only reveal the structure-property relation of MTs, but also 

provides useful guidance to the development of the MT-based biosensors to detect the changes in the 

mechanical properties and strcutres of individual MTs or cells. 
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Figures and captions 

 

 
 

 

 

 

 

 

Fig. 1 (a) Structural representation of an MT with tubulin interactions; (b) the MSM model developed 

for the MT with elastic beams characterising the tubulin interactions; (c) the deformation patterns of 

the tubulin bonds of the MT and (d) the space beams of the MSM model;  
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Fig. 2 EF generated by a Hertzian Dipole in a spherical polar coordinate system and its vector 

directions at the locations where the MTs was placed 

 

 

  



25 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 The comparison between the Eigenvalue transverse vibration modes and the vibrations of MTs 

excited by the EF in the transverse direction 
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Fig. 4 The vibration modes of MTs excited by the EF in the axial direction  
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Fig. 5 The changes in vibrational responses and elastic moduli of MTs as a result of (a) abnormal 

longitudinal interactions between tubulins and (b) abnormal helical interactions between tubulins 
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Fig. 6 The changes in responses of damped MT vibration in cytosol due to different damping reduction 

factors 

 

 

 

 

 

 

 

 


