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Abstract
Weconsider a dynamic approach to games in extensive forms. By restricting the convertibility
relation over strategy profiles, we obtain a semi-potential (in the sense of Kukushkin), and we
show that in finite sequential games the corresponding restriction of better-response dynamics
will converge to a Nash equilibrium in quadratic time. Convergence happens on a per-player
basis, and even in the presence of players with cyclic preferences, the players with acyclic
preferences will stabilize. Thus, we obtain a candidate notion for rationality in the presence of
irrational agents. Moreover, the restriction of convertibility can be justified by a conservative
updating of beliefs about the other players strategies. For infinite games in extensive form we
can retain convergence to a Nash equilibrium (in some sense), if the preferences are given
by continuous payoff functions; or obtain a transfinite convergence if the outcome sets of the
game are �0

2-sets.

Keywords Sequential games · Convergence · Belief learning · Infinite games

1 Introduction

The Nash equilibria are the fixed points of the better (or best) response dynamics. In graph
theory they would be called the sinks of these dynamics, and in computer science they may
be called their terminal strategy profiles. In general these dynamics do not terminate, i.e. the
corresponding binary relations over strategy profiles are not well founded. In finite games
non-termination amounts to the existence of a cycle.
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A particular exception is found in potential games [28]: A potential is an acyclic relation
over the profiles that includes all the players’ individual better-response dynamics. In a
potential game, better-response dynamics thus will always improve the potential, and hence
terminates (at a Nash equilibrium) if the game is finite.

The notion of semi-potential was introduced by Kukushkin [15,16] in order to salvage
some of the nice properties of potential games for a larger class of games. Here, each player’s
freedom to change strategies is restricted—however, only in such a way that if she could
change the current outcome to a particular outcome in the absence of restriction, she can still
do so in a way that is consistent with the restriction. In a generic normal form game this is
equivalent to a potential, as there different strategies will induce different outcomes. Nev-
ertheless, several classes of non-generic games have no potential but have a semi-potential:
A study [15, Theorem 3] proved that it is the case for finite real-valued games in extensive
form.

In this article we study Kukushkin’s restriction of the convertibility relation (we call it
lazy convertibility) as well as the resulting better-response dynamics (lazy improvement) in
some more detail. Some relevant properties of the lazy improvement are:

– The dynamics are uncoupled: Each player bases her decisions on her own preference,
but she does not need to know the other players’ preferences.

– The dynamics are history independent: Unlike, e.g. fictitious play or typical regret-
minimization approaches (e.g. [13]), the next step in the dynamics depends only on the
current strategies of the players. In particular, players do not need memory for learning.

– We consider pure strategies, not stochastic ones. Thus, our approach has a very different
flavour from the usual evolutionary game theory one (e.g. [8,9,35]).

– No restrictions akin to generic payoffs are required, and we merely need acyclic prefer-
ences to guarantee termination at a Nash equilibrium in finite games (and anyway this
requirement cannot be avoided for existence of Nash equilibrium [18,19]).

– In a finite game with acyclic preferences, the dynamics stabilizes at a Nash equilibrium
after a quadratic number of steps.

– The stabilization result for the rational players, i.e. with acyclic preferences, remains
unaffected, if unpredictable players, i.e. with cyclic preferences, are added.

– Under some conditions, even in an infinite game in extensive form we can ensure stabi-
lization at a Nash equilibrium after a transfinite number of steps.

Our Contributions

We give two alternative proofs of the termination at a Nash equilibrium in finite games
(originally shown by Kukushkin), one of which yields a tight quadratic bound on the number
of steps required. Previously, no bounds on the rate of convergence had been given explicitly.

The main advantage of our two proofs of termination is that they work on a per-player
basis: Each player with acyclic preference will terminate, even in the presence of players
with cyclic preferences. This is far from obvious, as in most dynamics a single player who
keeps altering their choices can induce the other players to keep changing, too. Having
this individual stabilization result allows us to provide a micro-foundation of a notion of
individual rationality derived from lazy improvementwhich is applicable even in the presence
of irrational agents.

Finally, we consider the extension to infinite games in extensive form in several ways. For
continuous payoff functions, we consider three variants of lazy improvement: The ε-variant,
which will converge to an ε-Nash equilibrium of the game. The deepening-variant guarantees
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that all accumulation points of the sequence are Nash equilibria, but the dynamics are history
dependent. For the history-independent fair variant, we need (mild) extra assumptions to
prove that all accumulation points are Nash equilibria. We then also consider having �0

2-
outcome sets, and show that transfinite continuation of the dynamics still stabilizes.

RelatedWork

Finite perfect information gameswhere each player acts only oncewere studied byKukushkin
[15]. These games are potential games; and depending on the update rule, convergence to
Nash equilibria or to subgame-perfect equilibria can be achieved. In the case where players
may act more than once, [7] studied various update rules including subgame updates and
updates by coalitions.

Some voting games that are neither generalized potential games nor perfect information
games still have a semi-potential: See, for example, [16,26].

Apart from the notion of semi-potential, Kukushkin [16] also studied the more general
notions of restricted acyclicity and weak acyclicity. Acyclicity was also studied in, e.g. [1].

The dynamics of a very specific infinite setting were explored in [5]. Kukushkin [17]
considered the question of lazy improvement in infinite games.Undermore general conditions
than ours, he showed that there are always finite improvement paths getting ε-close to a Nash
equilibrium. While our assumptions are more demanding, our results that all accumulation
points are Nash equilibria is also a much stronger conclusion.

An extended abstract based on this work is [24]. Section 6.2 is based on [21, Section VI].

Structure of the Article

The rest of the paper is organized as follows: Sect. 2 recalls the definitions of game in normal
form, game in extensive form, and the better-response dynamics. Section 3 introduces the
core concept of lazy improvement. Section 4 proves that in a finite game, lazy improvement
terminates at a Nash equilibrium. Section 4.2 gives an alternative proof also showing that
termination occurs after a quadratic number of improvement steps. Section 5 gives a basic
epistemic justification for lazy convertibility. In Sect. 6 we discuss extensions to infinite
games. Finally, Sect. 7 provides a number of (counter)examples showing that, to some extent,
our definitions have to be the way they are.

2 Background and Notation

This section recalls the definitions of game in normal form, game in extensive form, and the
better-response dynamics.

Definition 1 A game in normal form is a tuple 〈A, (Sa)a∈A, O, v, (≺a)a∈A〉 satisfying the
following:

– A is a non-empty set (of players, or agents),
–

∏
a∈A Sa is a non-empty Cartesian product (whose elements are the strategy profiles and

where Sa represents the strategies available to Player a),
– O is a non-empty set (of possible outcomes),
– v : ∏

a∈A Sa → O (the outcome function that values the strategy profiles),
– Each ≺a is a binary relation over O (modelling the preference of Player a).
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Definition 2 [Nash equilibrium] Let 〈A, (Sa)a∈A, O, v, (≺a)a∈A〉 be a game in normal form.
A strategy profile (profile for short) s in S := ∏

a∈A Sa is a Nash equilibrium if it makes every
Player a stable, i.e. v(s) ⊀a v(s′) for all s′ ∈ S that differ from s at most at the a-component.

NE(s) := ∀a ∈ A,∀s′ ∈ S, ¬(v(s) ≺a v(s′) ∧ ∀b ∈ A − {a}, sb = s′
b)

Implicit in the concept of Nash equilibrium is the notion of convertibility: An agent can
convert one strategy profile to another, if they differ only in her actions. As lazy improvement
will be introduced in Sect. 3 by restricting the convertibility relation, we provide a formal
definition:

Definition 3 [Convertibility, induced preference over profiles, and improvement]

– Let 〈A, (Sa)a∈A, O, v, (≺a)a∈A〉 be a game in normal form. For s, s′ ∈ ∏
a∈A Sa , let

s
c
�a s′ denote the ability of Player a to convert s to s′ by changing her own strategy,

formally s
c
�a s′ := ∀b ∈ A − {a}, sb = s′

b.
– Given a game 〈A, (Sa)a∈A, O, v, (≺a)a∈A〉, let s ≺a s′ denote v(s) ≺a v(s′). So in this

article ≺a may also refer to the induced preference over the profiles.

– Let �a :=≺a ∩ c
�a be the individual improvement relations of the players, and let

� := ∪a∈A �a be the better-response dynamics.

Observation 4 is a direct consequence of Definitions 2 and 3.

Observation 4 The Nash equilibria of a game are exactly the sinks, i.e., the terminal profiles
of the better-response dynamics �.

A (generalized)1 potential is an acyclic relation containing �. Clearly a game has a
potential iff � is acyclic. If

∏
a∈A Sa is finite, this is equivalent to the termination of the

better-response dynamics. A less restrictive notion is a semi-potential (introduced in [15]).
A semi-potential is an acyclic relation ↪→ contained in �, such that whenever s � s′ then
there is some s′′ with s ↪→ s′′ and v(s′) = v(s′′). In words, if a strategy profile can be reached
by an improvement step, there is an equivalent strategy profile (w.r.t the induced outcome)
reachable via a step in the semi-potential. It follows that the sinks of a semi-potential are
exactly the sinks of the better-response dynamics. Thus, in a finite setting, the existence of a
semi-potential in particular implies the existence of sinks, i.e. Nash equilibria.

Our setting will be games in extensive form, rather than games in normal form. The idea
here is that the players collectively choose a path through a tree, with each player deciding
the direction at the vertices that she is controlling. The preferences refer only to the path
created, and choices of the chosen path are irrelevant. Thus, the evaluation map v is highly
non-injective, which in turn gives room for the notion of a semi-potential to be interesting.
Formally, we define games in extensive form as follows:

Definition 5 A game in extensive form is a tuple (A, T , O, d, v, (≺a)a∈A) where

– A is the non-empty set of players,
– T is a rooted tree (finite or infinite),
– O is the non-empty set of outcomes,
– d associates a player with each vertex in the tree,
– v associates an outcome with each maximal path from the root through the tree,

1 This article does not study more specific potentials, see [28] for the details.
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– and for each Player a ∈ A, ≺a is a relation on O (the preference relation of a).

The corresponding game in normal form is obtained as follows: Let a strategy of Player a
associate an outgoing edge with each vertex controlled by a. If a strategy per player is given,
the collective choices identify some maximal path p through the tree, called the induced
play. Applying v to that path yields the outcome of the game, i.e. the valuation of the game in
normal form is the composition of the map that identifies the induced play and the valuation
of the game in extensive form.

In our concrete examples, the outcomes will be tuples of natural numbers, and the nth
player will prefer a tuple (x1, . . . , x|A|) to (y1, . . . , y|A|) iff xn > yn .

3 Defining Lazy Improvement

The idea underlying lazy improvement is that we do not let a player change their irrelevant
choices, i.e. those choices not along the play induced after the improvement. Equivalently,
we require a player to change choices at a minimal set (for the inclusion) of vertices when
changing the induced play.

Definition 6 [Lazy convertibility and improvement]

– For two strategy profiles s, s′ in a game in extensive form let s
c

⇀a s′ (read: Player a can
lazily convert s into s′), if for every vertex t ∈ T , if s(t) �= s′(t), then d(t) = a and t

lies along the play induced by s′. Let c
⇀:= ∪a∈A

c
⇀a .

– Let ⇀a :=≺a ∩ c
⇀a be the lazy improvement of Player a, and let ⇀ := ∪a∈A⇀a be

the lazy better-response dynamics, or lazy improvement.

Let us exemplify the notion of lazy convertibility, which has nothing to do with the
preferences or the outcomes: Player a can lazily convert the leftmost strategy profile below
into each of the three other profiles, but not into any other profile. Strategy choices are
represented by double lines in the pictures, e.g. Player a chooses left instead of right at each
node of the leftmost profile. Also for each other profile, Player a is written bold face at nodes
where the profile differs from the leftmost one.

a

a a

a

a a

a

a a

a

a a

Contrary to the convertibility relations
c
�a which are equivalence relations, the lazy convert-

ibility relations
c

⇀a are certainly reflexive but in general neither symmetric nor transitive.
For instance, Player a cannot lazily convert the rightmost profile above back into the leftmost
one. In the additional example below, Player a can convert the leftmost profile to the middle
profile but not to the rightmost profile.

a

a

a a

a

a a

a

a

a a

a

a a

a

a

a a

a

a a

Since several forthcoming proofs invoke induction over the tree structure of the games,
we note below that lazy convertibility could also be defined inductively.
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Observation 7 The inductive definition below is equivalent to Definition 6.

– If s is a leaf profile, let us define s
c

⇀a s for all a ∈ A.
– Let two profiles s and s′ have the profiles s0, . . . , sn and s′

0, . . . , s
′
n as respective children

with s j = s′
j for j �= k. Let Player a choose si at the root of s and s′

k at the root of s
′. If

sk
c

⇀b s′
k and if b = a or i = k, let us define s

c
⇀b s′.

The lazy convertibility enjoys a useful property that the usual convertibility does not: If a
player changes a play p into another play during a sequence of lazy convertibility, only the
very same player might be later able to make the last step to induce p again, possibly induced
by a different profile. This phenomenon is more formally stated by Lemma 1.

Lemma 1 If s
c

⇀a s0
c

⇀ · · · c
⇀ sn

c
⇀b s′ where s and s′ induce the same play, and if this

play is different from the plays that are induced by s0, . . . , sn, then a = b.

Proof Let us prove the claim by induction on the underlying game. Since the play induced
by s0 is different from the play induced by s, these profiles are not just leaves, but proper

trees instead. During the assumed
c

⇀ reduction of s, its subprofile that is chosen by the root

owner in s undergoes a
c

⇀ reduction too, say t
c

⇀a t0
c

⇀ · · · c
⇀ tn

c
⇀b t ′, where t and t ′

induce the same play (and the root owner chooses t ′ in s′). If all these subprofiles are equal,
Player a must be the root owner (of s), since s and s0 induce different plays by assumption,
and b is also the root owner since sn and s′ induce different plays, so a = b. Now let t j be
the first subprofile different from t , so t j induces a play different from t and t ′. For all k such
that j ≤ k < n, if tk and t ′ induce different plays but tk+1 and t ′ induce the same play, then

sk+1 and s′ induce the same play by definition of
c

⇀, contradiction with the assumptions
of the lemma, so all t j , . . . tn induce plays different from that of t ′. If t1 �= t , then a = b
by the induction hypothesis, else a must be the root owner and does not choose t1 in s1.
The first time that a chooses some ti again must be in s j : Indeed if it were before, s and si
would induce the same play, and if it were after, a could not change t j−1 into t j . Therefore

t j−1
c

⇀a t j
c

⇀ · · · c
⇀ tn

c
⇀b t ′ and a = b by the induction hypothesis. ��

Observation 8 shows that despite the restrictive property from Lemma 1, the lazy convert-
ibility is as effective as the usual convertibility, in the same sense as used in the definition
of a semi-potential. (Thus, it will only remain to prove that lazy improvement is acyclic in
order to establish lazy improvement as a semi-potential.)

Observation 8 If s � s′, there is some strategy profile s′′ such that s⇀s′′ and v(s′) = v(s′′).

Proof By definition, lazy convertibility does not restrict the choice of the new induced play,
merely the ability to alter the strategy of the new induced play. ��
Corollary 1 The Nash equilibria of a game are exactly the terminal profiles of the lazy
improvement ⇀.

4 Termination in Finite Games

This section presents two proofs. The first proof consists in showing acyclicity of the lazy
improvement by contradiction,which carries over to infinite games. The secondproof is closer
to the original proof of [15], and it yields tight bounds on the number of lazy improvement
steps occurring before termination.
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4.1 First Proof, by Contradiction

Theorem 1 Consider a game in extensive form played on a finite tree, and some sequence
(sn)n∈N such that sn⇀sn+1 for all n ∈ N. Assume that for a Player a there are infinitely
many n with sn⇀asn+1. Then a has a cyclic preference.

Proof Towards a contradiction let us assume that a’s preference is acyclic. Among the profiles
s such that s = sn⇀asn+1 for infinitely many n, let s be minimal for a’s preference (i.e. least
preferred), and let M be large enough such that every profile sn with M < n occurs infinitely
often in the sequence. Let s = sn for some n > M , and let k > n be the least k such that
sn and sk induce the same play. Lemma 1 implies that sk−1⇀ask , so Player a prefers the
outcome of sn over that of sk−1, contradiction. ��

Together with Corollary 1 the following corollary shows the equivalence between all
preferences being acyclic and universal existence of NE.

Corollary 2 Consider outcomes O, players A, and their preferences (≺a)a∈A: All ≺a are
acyclic iff for all finite games in extensive form built from O, A and (≺a)a∈A the lazy better-
response dynamics terminates.

Proof The difficult implication of the equivalence is a corollary of Theorem 1. For the other
implication, note that if x0 ≺a x1 ≺a · · · ≺a xn ≺a x0, then ⇀a does not terminate on the
profile below.

a

x0 x1 ... xn ��
Corollary 3 [Kukushkin] In a finite game in extensive form where every player has acyclic
preferences, lazy improvement is a semi-potential.

Proof Combine Corollaries 1 and 2. ��
Kukushkin ([15, Theorem 3]) proved Corollary 3 in the case where the preferences are

derived from payoffs. In this specific (yet usual) setting, it is not possible to consider players
with cyclic preferences, so Theorem 1 or Corollary 2 cannot even be stated.

Based on Corollary 2 we obtain a reasonable candidate for rational behaviour in games in
extensive form played with an unpredictable nature or erratic players: Perform lazy improve-
ment until the players with acyclic preferences no longer change their strategies. It is always
consistent with the observations to assume that the changes in another player’s strategy are
based on lazy convertibility. This argument is explored in more detail in Sect. 5. Nature can
then be modelled as a player with the full relation as preferences, such that any convertible
step for nature becomes an improvement step.

4.2 Second Proof, with Bounds

The proof of Theorem 1, by contradiction, gives a quick argument but no deep insight on
how and how fast the relation terminates. A stronger statement can be proven by using the
multiset of outcomes avoided by a Player a (i.e. the outcomes obtained in a subgame, where
the decision not to play into that subgame was made by a, see Definition 9) to construct
a measure that will decrease on any lazy improvement step by a (Lemma 3), and remain
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unchanged by any lazy convertibility step by a different player (Lemma 2). Thus, we are in
a situation very similar to potential games [28]—however, in a potential game a player can
increase the potential (which is common to all the players) but does not want to, whereas
here the players cannot impact the measure of another player as long as they are restricted
to lazy convertibility.

Definition 9 [Avoided outcomes of a game and of a profile] The avoided outcomes of a game
g are a function �(g) of type A → N, and it is defined inductively below.

– �(g, a) := 0 if g is a leaf game.
– If Player a owns the root of a game g whose children are g0, . . . , gn then

– �(g, b) := ∑n
j=0 �(g j , b) for all b �= a.

– �(g, a) := ( ∑n
j=0 �(g j , a)

) + n

The avoided outcomes of a profile s are a function δ(s) of type A → O → N, or
equivalently in this case, of type A × O → N, and it is defined inductively below.

– δ(s, a, o) := 0 if s is a leaf profile.
– If Player a owns the root of a profile s and chooses the subprofile si among s0, . . . , sn

then

– δ(s, b, o) := ∑n
j=0 δ(s j , b, o) for all b �= a.

– δ(s, a, o) := ( ∑n
j=0 δ(s j , a, o)

) + |{ j ∈ {0, . . . , n} − {i} | v(s j ) = o}|
The smaller array below describes the function �(g), where g is the underlying game

of the left-hand profile s below, and the right-hand array describes the function δ(s). For
instance δ(s, b, y) = 2 because Player b avoids the outcome y twice: once at the leftmost
internal node, after two leftward moves, when choosing outcome x rather than y, and also
once after one rightward move, also when choosing x rather than y. Note that the only leaf
that is not accounted for by the function of the avoided outcome of a profile/game is the leaf
that is induced by the profile.

a

b

b

x y

a

z t

b

a

x t t

a

y z
�(g, ·)
a �→ 5
b �→ 3

δ(s, ·, ·) x y z t
a 1 0 1 3
b 0 2 1 0

Observation 10 relates the two functions from Definition 9. It refers to s2g, a function
that returns the underlying game of a given profile, see [18] or [19] for a proper definition.

Observation 10 1. Let s beaprofile anda beaplayer, then�(s2g(s), a) = ∑
o∈O δ(s, a, o).

2. Let g be a game, then 1 + ∑
a∈A �(g, a) equals the number of leaves of g.

Proof 1. By induction on s. If s is a leaf profile, the claim holds since �(s2g(s), a) =
0 = δ(s, a, o) by definition, so now let s be a profile where the root owner a
chooses si among subprofiles s0, . . . , sn . For b �= a Definition 9 and the induction

hypothesis yield �(s2g(s), b) = ∑n
j=0 �(s2g(s j ), b)

I .H .= ∑n
j=0

∑
0∈O δ(s j , b, o) =

∑
0∈O

∑n
j=0 δ(s j , b, o) = ∑

0∈O δ(s, b, o). Similarly we have �(s2g(s), a) =
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∑n
j=0 �(s2g(s j ), a) + n

I .H .= ∑n
j=0

∑
o∈O δ(s j , a, o) + |{ j ∈ {0, . . . , n} − {i} |

v(s j ) ∈ O}| = ∑
o∈O

( ∑n
j=0 δ(s j , a, o) + |{ j ∈ {0, . . . , n} − {i} | v(s j ) = o}|) =∑

o∈O δ(s, a, o).
2. By induction on g. This holds for every leaf game g since �(g, a) = 0 by definition. Let

g be a game whose root is owned by Player a and whose subgames are g0, . . . , gn . The
number of leaves in g is the sum of the numbers of leaves in the g j , that is,

∑n
j=0

(
1 +

∑
b∈A �(g j , b)

)
by induction hypothesis. This, equals 1+ ∑n

j=0
∑

b∈A−{a} �(g j , b) +
n+∑n

j=0 �(g j , a), which, in turn, equals 1+∑
b∈A−{a} �(g, b)+�(g, a) by definition.

��
Lemma2 states conservation of the outcomes that are avoided by a player in a profile during

a lazy convertibility step of another player. Intuitively, it is because a lazy convertibility step
of a player cannot modify the subtrees that are avoided by the other players, even though she
may own nodes therein. In the lemma and after δ(s, b) denotes o �→ δ(s, b, o)

Lemma 2 s
c

⇀a s′ ∧ b �= a ⇒ δ(s, b) = δ(s′, b)

Proof By induction on the profile. It holds for leaves, so let s
c

⇀a s′ with subprofiles

s0, . . . , sn and s′
0, . . . , s

′
n , respectively. By definition of

c
⇀a we have s j

c
⇀a s′

j for all j , and
therefore δ(s j , b, o) = δ(s′

j , b, o) by induction hypothesis. If the root owner is different from
b, then δ(s, b, o) = ∑n

j=0 δ(s j , b, o) = ∑n
j=0 δ(s′

j , b, o) = δ(s′, b, o) by definition of δ. If
b is the root owner, she chooses the i th subprofile in both s and s′ since b �= a, and moreover
s′
j = s j for all j distinct from i . So δ(s, b, o) = ∑n

j=0 δ(s j , b, o) + |{ j ∈ {0, . . . , n} − {i} |
v(s j ) = o}| = ∑n

j=0 δ(s′
j , b, o) + |{ j ∈ {0, . . . , n} − {i} | v(s′

j ) = o}| = δ(s′, b, o). ��
However, the conservation does not fully hold for the player who converts the profile,

unless the induced outcomes are the same for both profiles. The difference is little though,
only depending on both induced outcomes. In Lemma 3, eq is just a boolean representation
of equality: eq(x, x) := 1 and eq(x, y) := 0 for x �= y.

Lemma 3 s
c

⇀a s′ ⇒ δ(s, a) + eq(v(s)) = δ(s′, a) + eq(v(s′))

Proof By induction on the profile s. It holds for leaves, so let s
c

⇀a s′ with subpro-
files s0, . . . , sn and s′

0, . . . , s
′
n , respectively. If the root owner is distinct from a, she

chooses the same i th subprofile in both s and s′, and therefore, for all outcomes o we
have δ(s, a, o) + eq(v(s), o) = ∑

0≤ j≤n ∧ j �=i δ(s j , a, o) + δ(si , a, o) + eq(v(si ), o) =
∑

0≤ j≤n ∧ j �=i δ(s
′
j , a, o) + δ(s′

i , a, o) + eq(v(s′
i ), o) = δ(s′, a, o) + eq(v(s′), o) by defi-

nition of δ, since s j = s′
j for j �= i , and by induction hypothesis.

If a is the root owner, let a choose the i th and kth subprofiles in s and s′, respectively. Let
N := δ(s, a, o) + eq(v(s), o), so N = ∑n

0≤ j≤n ∧ j �=k δ(s′
j , a, o) + |{ j ∈ {0, . . . , n} − {i} |

v(s j ) = o}| + δ(sk, a, o) + eq(v(si ), o) by unfolding Definition 9, since s′
j = s j for all

j �= k, and since v(s) = v(si ) by the choice at the root. Rewriting N twice with the
easy-to-check equality |{ j ∈ {0, . . . , n} − {x} | v(s j ) = o}| + eq(v(sx ), o) = |{ j ∈
{0, . . . , n} | v(s j ) = o}|, first with x := i and then with x := k yields the equality N =∑n

0≤ j≤n ∧ j �=k δ(s′
j , a, o)+|{ j ∈ {0, . . . , n}−{k} | v(s j ) = o}|+δ(sk, a, o)+eq(v(sk), o).

Since sk
c

⇀a s′
k by definition of lazy convertibility, and by the induction hypothesis, let us

further rewrite δ(sk, a) + eq(v(sk)) with δ(s′
k, a) + eq(v(s′

k)) in N . Folding Definition 9
yields N = δ(s′, a, o) + eq(v(s′), o). ��
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The invariant stated inLemma3 suggests thatwhenever a playerwill lazily convert a profile
to obtain a better outcome, some measure will decrease a bit with respect to her preference.
The invariant stated in Lemma 2 ensures that such a lazy conversion will leave the measure
for the other players unchanged. The lazy improvement should therefore terminate, and even
quite quickly, as proved below.

Recall that a finite preference relation≺ has height at most h if there is no chain s1 ≺ s2 ≺
· · · ≺ sh+1. Please bear in mind that the heights here refer to preferences, not trees. Also
recall that �(g, a) is the total number of choices available to Player a, minus the number of
vertices where a is choosing.

Theorem 2 [Strengthening Theorem 1 with bounds] Consider a game g where Player a has
anacyclic preference of height h. Then in any sequence (possibly infinite) of lazy improvement,
the number of lazy improvement steps performed by Player a is bounded by (h−1) ·�(g, a).

Proof For every outcome o let h(a, o) be the maximal cardinality of the ≺a-chains whose
≺a-maximum is o, and note that o ≺a o′ implies h(a, o) < h(a, o′). For every profile s let
M(s, a) := ∑

o∈O(h(a, o) − 1) · δ(s, a, o) and note that 0 ≤ M(s, a) ≤ (h − 1) · �(g, a)

by Observation 10.1. Let s⇀as′ be a lazy improvement step, so s
c

⇀a s′ and v(s) ≺a v(s′)
by definition, then M(s, a) − M(s′, a) = ∑

o∈O(h(a, o) − 1) · (δ(s, a, o) − δ(s′, a, o)) =
h(a, v(s′)) − h(a, v(s)) > 0 by Lemma 3. Let s

c
⇀b s′ be a lazy convertibility step where

b �= a, then M(s, a) = M(s′, a) by Lemma 2. This shows that the ⇀a steps are at most
(h − 1) · �(g, a) in every sequence of ⇀. ��
Corollary 4 [Strengthen Corollary 2 with bounds] The lazy improvement terminates for all
games iff all preferences are acyclic, in which case the number of sequential lazy improvement
steps is at most (h − 1) · (l − 1) where h bounds the cardinality of the preference chains and
l is the number of leaves.

Observation 11 1. The maximal length of a lazy improvement sequence is bounded in a
quadratic manner in the size of the game in general and linearly when h from Corollary 4
is fixed.

2. The quadratic and linear bounds are tight.

Proof (of 11.2) For the linear bound, let us consider the figure below and set x := x0 =
· · · = xn and y ≺a x and x ≺b y. There is clearly a lazy improvement sequence starting
from the figure and visiting each leaf exactly once.

a

b

x0 y

b

x1 y

… b

xn y

It is similar for the quadratic bound, but we need to be a bit more careful. For n ∈ N,
consider the game in the above figure, where y ≺a x0 ≺a x1 · · · ≺a xn and xi ≺b y for
all i . Let us prove by induction on n the existence of a sequence of (n+2)(n+3)

2 − 2 lazy
improvement steps when starting from the strategy profile above. For the base case n = 0,
there are 1 = (0+2)(0+3)

2 − 2 lazy improvement steps. For the inductive case, let Player a
make n lazy improvements in a row, by choosing x1, then x2, and so on until xn . At that point,
let Player b improve from xn to y and then let Player a come back to x0. So far, n + 2 lazy
improvement steps have been performed. Now let us ignore the substrategy profile involving
xn (and y). By induction hypothesis, (n+1)(n+2)

2 − 2 additional lazy improvement steps can

be performed in a row. Since (n + 2) + (n+1)(n+2)
2 − 2 = (n+2)(n+3)

2 − 2, we are done. ��
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4.3 Lazy Non-worsening

In this section the outcomes are real-valued payoff tuples. In this case, Theorem 2 can
be slightly generalized in a way that will prove useful for studying lazy improvement in
infinite games in Sect. 6.3. Let a lazy non-worsening step be a lazy convertibility step that
does not decrease the payoff of the converting player. Said otherwise, a lazy non-worsening
step is either a lazy improvement step or a lazy convertibility step preserving the payoff
of the converting player. As shown below, weakening the first (but not the second) “lazy
improvement” in Theorem 2 into a “lazy non-worsening” still yields a correct statement.

Definition 12 [Non-worsening] Let fa be the payoff function of Player a, and let s �a s′ if
fa(s) = fa(s′) ∧ s

c
⇀a s′. Let �:= ∪a∈A �a be the lazy preservation, and let ⇀∪ � be

the lazy non-worsening.

Theorem 3 [Strengthen Theorem 1] Consider a game g with real-valued payoffs, where
Player a has at most h different payoffs. Then in every sequence (possibly infinite) of lazy
non-worsening, the number of lazy improvement steps performed by Player a is bounded by
(h − 1) · �(g, a).

Proof The proof is similar to that of Theorem 2. We modify δ from Definition 9 to take
payoffs into account instead of outcomes/payoff tuples. A modification of Lemma 3 is then
easily obtained. Now, the old M(s, a) from the proof of Theorem 2 is redefined with the new
δ. We should additionally point out that a lazy preservation step preserves the new M(s, a),
by the new Lemma 3. Thus, lazy preservation steps preserve M , and have therefore no impact
on the termination argument for the lazy improvement steps. ��
Corollary 5 Let us restrict the lazy non-worsening such that preservation stepsmayonly occur
if the current profile is an NE. Every infinite sequence of such a restricted non-worsening is
eventually made only of NE.

Note that there is no bound on when at the latest the lazy improvement steps may occur
in Corollary 5, as the following example shows:

Example 1 We consider a game with two players, a and b, and two payoff tuples, x and y
such that y ≺a x and x ≺b y. The game tree and initial strategy profile are as follows:

a

x x b

x y

Player a can alternate between his leftmost and centre choice as often as he wishes using
lazy equilibrium preservation. He can also at any time change to his rightmost choice. Then
Player b has the opportunity to a lazy improvement step by changing to y, whereupon Player
a can lazily improve by going back to the leftmost or centre choice to obtain the outcome x .
After this happened, all remaining possible lazy non-worsening steps are Player a alternating
between the leftmost and centre choice.

Lemma 4 will be used with Theorem 3 to deal with lazy improvement in infinite games
in Sect. 6.

Lemma 4 Let (gn)n∈N be a family of finite games in extensive form that differ only in payoffs
and that converge towards some game g when n approaches infinity. Consider an infinite
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sequence of profiles (sn)n∈N such that sn(⇀∪ �)sn+1 in gn. Then there is some k ∈ N such
that for all n ≥ k we have that sn(⇀∪ �)sn+1 in g.

Proof As lazy convertibility does not refer to the payoffs, we see that any lazy convertibility
step in one of the gn is also a lazy convertibility step in g. We only need to argue about the
improvement and preservation aspects.

Let δ be the minimum distance between different payoffs in g. We pick k ∈ N such that
for all n ≥ k the difference between payoffs in gn and g at the same leaf is less than δ

4 for all
leaves. In particular, we find that in gn for n ≥ k payoffs differing by less than δ

2 correspond
to identical payoffs in g, payoffs differing by at least δ

2 correspond to different payoffs in g.
Any lazy improvement step in gn for n ≥ k that improves the payoff of the acting player

by at least δ
2 is a lazy improvement step in g. Any lazy improvement step in gn for n ≥ k that

improves the payoff of the acting player by less than δ
2 corresponds to a preservation step in

g, and so do preservation steps in gn . ��

5 Lazy Convertibility as Belief Updating

Let us discuss whether we should expect players to conform to lazy convertibility when
playing a sequential game repeatedly. Observation 8 tells us that in the short term, a player
has no incentive to deviate from lazy convertibility: If she desires some outcome she can
reach by some deviation from her current strategy, she can obtain this outcome by converting
a strategy in a lazy way. There is a caveat, though, in that restricting convertibility to lazy
convertibility changes the overall reachability structure, as the following example shows.

Example 2 The last profile of the three-step improvement relation below is aNash equilibrium
that cannot be reached from the first profile under lazy improvement.

a

b

a

3, 3 0, 0

0, 0

b

2, 2 1, 1

a

b

a

3, 3 0, 0

0, 0

b

2, 2 1, 1

a

b

a

3, 3 0, 0

0, 0

b

2, 2 1, 1

a

b

a

3, 3 0, 0

0, 0

b

2, 2 1, 1

From the perspective of any given player, it, however, makes a lot of sense to assume that
all other players are updating their own strategies only in a lazy way—assuming that only
relevant choices of the other players can be observed. The latter seems to be crucial in order to
make the game truly sequential: If all players announced their entire strategy simultaneously,
it would be a game in normal form after all.

To formalize this idea, let us fix a Player a and consider the game from her perspective.
She may consider the game as a two-player game played by her against all other players
aggregated into a single Player b. She starts with some initial strategy s(0)

a , and some prior
assumption s(0)

b on the strategy of her opponent(s). She then updates her own strategy via lazy

improvement to s(1)
a . Then the game is actually played, and Player a observes the actualmoves

(but not the strategy) of her opponents. As she only observes themoves along the path actually
taken, it is consistent with her observations to assume that the aggregated opponent player
lazily converted s(0)

b into some s(1)
b . Then the Player a again performs a lazy improvement

step to s(2)
a , plays the game, etc. Provided that the Player a has acyclic preferences, Theorem

1 implies that her own strategy stabilizes to some strategy sa eventually.
This learning procedure is the deterministic counterpart to the rational learning proposed

by Kalai and Lehrer [10], and extended to define the self-confirming equilibria by Fudenberg
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andLevine [10].2WellmanandHu’s conjectural equilibria [34] are basedon the same intuition
underlying the learning procedure—only actual actions are observed, not hypothetical ones,
which are merely subject to conjecture.

Note that this procedure requires no assumptions on knowledge of rationality of other
players or their payoff functions, not to speak of common knowledge. There is in general
no reason to assume that the aggregated Player b acts according to some acyclic preference
(given that the different players making up b may have partially antagonistic preferences).
However, if eachplayer has an acyclic preference andperforms the sameprocedure asa above,
then each players actual strategy will stabilize. As any change in what a player assumes her
aggregated opponents are playing has to be caused by either a change in her own, or someone
else’s strategy, this implies that also the believed strategy of the aggregated players sb will
stabilize. Furthermore, all the strategy profiles constructed in this way induce the same play,
and combining them as follows yields a Nash equilibrium:

Proposition 1 Let a set of players play a finite sequential game by converting their own
strategies lazily based on beliefs about the other players strategies in order to maximize an
acyclic preference relation. Then a Nash equilibrium can be obtained from the stable strate-
gies they will settle to as follows: Along the common path chosen by their stable strategies,
everyone follows their own strategy. In any subgame that is not reached, each player plays
according to the beliefs held by the player controlling access to the subgame about their
strategies.

Proof At any vertex reached during the final play, the choice facing the current player is the
same one she was anticipating due to her beliefs on her opponents strategies. As her choice is
consistent with the stable choice made during the dynamical updating, she has no incentive
to change. ��

In comparison, the investigation of the epistemic foundations of Nash equilibria by
Aumann and Brandenburger [4] identified mutual knowledge of rationality, knowledge of
the game and (in case of more than two players) a common prior as the prerequisite for play-
ing a Nash equilibrium. A subgame-perfect equilibrium requires even stronger assumptions,
namely well-aware players [3].

6 Lazy Improvement in Infinite Games

Infinite games in extensive form with win/lose preferences are generalizations of Gale–
Stewart games [11], and are of great relevance for logic.That any two-player game in extensive
form with antagonistic preferences and a Borel winning set actually has a Nash equilibrium
is a highly non-trivial result by Martin [25]. It was used by Mertens and Neymann [27] to
show that infinite games with finitely many players and bounded, Borel-measurable, non-
necessarily antagonistic real-valued payoffs have ε-Nash equilibria. It was generalized to
infinitely many players and payoffs only bounded from above in [20]. Moreover, subgame-
perfect equilibria do not always exist (cf. [21,32]).

The definition of lazy improvement applies to infinite games in extensive form as well,
and we can adapt the results on finite games to see that it still constitutes a semi-potential:

Proposition 2 Consider an infinite game in extensive form where each player (there might
be infinitely many) has acyclic preferences. Then lazy improvement is a semi-potential.

2 The notion has been corrected by Kamada later, but the difference is not present in the deterministic setting.
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Proof As argued in Sect. 3, we only need to show that lazy improvement is acyclic. Assume
the contrary, then there is some finite cycle s1⇀s2⇀ · · · ⇀sn⇀s1. Any subtree of the game
tree not reached by any strategy profile si is irrelevant for the existence of the cycle, and could
thus be pruned. Doing so yields a finitely branching game tree, with still a lazy improvement
cycle.

Let p1, . . . , pn be the paths induced by the strategy profiles s1, . . . , sn , and choose k ∈ N

such that pi |≤k = p j |≤k ⇔ pi = p j . By choice of k, the path chosen inside any subgame
rooted at depth k remains unchanged throughout the improvement cycle. Thus, replacing
any such subgame with a leaf carrying the outcome induced by this path has no impact on
the improvement cycle. We have obtained a finite game in extensive form with the same
preferences and a cycle built from lazy improvement step, contradicting Theorem 1. ��

Of course, in an infinite game acyclicity does not suffice to ensure termination or even
convergence. In fact, [21, Example 26] (reproduced below as Example 6) shows that lazy
improvement in infinite games will not always converge, and that even accumulation points
do not have to be Nash equilibria. There are, however, several potential ways to extend the
results on lazy improvement to infinite games in extensive form:

1. We can consider games where the preferences are expressed via continuous payoff func-
tions. For some fixed ε > 0, we can then consider ε-lazy improvement (where only lazy
convertibility is allowed, and improvement steps are only taken if the player can improve
bymore than ε). Then Theorems 1 and 2 carry over, and as a counterpart to Corollary 1we
find that the terminal profiles of ε-lazy improvement are precisely the ε-Nash equilibria.
See Sect. 6.1.

2. Again for continuous payoff functions, we can employ lazy improvement being done in a
finitary way with increasing precision, and find that any accumulation point of particular
subsequence is guaranteed to be a Nash equilibrium, see Sect. 6.2.

3. We define a notion of a fair lazy improvement sequence in Sect. 6.3. We then generalize
the measure employed in the proof of Theorem 2 to infinite games with Lipschitz payoff
functions for fair improvement sequences.Moreover, we prove that for continuous payoff
functions, all accumulation points of a fair lazy improvement sequencewith finitelymany
accumulation points are Nash equilibria.

4. Departing from the setting of continuous payoff functions, we can consider games where
the players have win/lose objectives (i.e. their preference relations have height 2), and
the winning sets are �0

2-sets. Then transfinite iteration of lazy improvement will reach a
Nash equilibrium, see Sect. 6.4.

In the following we always assume that the game tree is the full infinite binary tree, and
hence the set of resulting plays is {0, 1}N. This space carries a natural topology induced by
the metric d(p, q) = 2−min{n|p(n)�=p(q)} for p �= q , and in particular is a compact zero-
dimensional space. In the first three following subsections, we assume that the preferences
of each player are given by payoff functions fa : {0, 1}N → R, where p ≺a q iff fa(p) <

fa(q). We can then speak about restrictions on the payoff functions such as being continuous
or Lipschitz continuous.

6.1 "-Lazy Improvement

Consider preferences obtained from payoff functions. Then for every ε > 0, we can introduce
ε-lazy improvement as the intersection of lazy convertibility and ε-improvement, where ε-
improvement means considering only those improvement steps where the payoff for the
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player increases by more than ε. Consequently, an ε-Nash equilibrium is a strategy profile
where no player can improve by more than ε.

Observation 13 The sinks of ε-lazy improvement are precisely the ε-Nash equilibria.

Proposition 3 Let (sn)n∈N be a sequence of strategy profiles in an infinite binary game in

extensive form with sn
c

⇀ sn+1. Let Player a have a preference induced by a continuous

payoff function f , and assume that for some ε > 0, whenever sn
c

⇀a sn+1, with induced

plays pn, pn+1, then f (pn+1) > f (pn) + ε. Then sn
c

⇀a sn+1 holds for only finitely many
n.

Proof We will essentially use a reduction to the case for finite trees, and invoke Theorem 1.
We consider the cover (Ak := ] ε(k−1)

2 ,
ε(k+1)

2 [)k∈Z of R. By continuity of f and com-
pactness of {0, 1}N, there is a bar, i.e. a finite prefix-free family (wi ∈ {0, 1}∗)i≤N such
that {0, 1}N = ⋃

i≤N wi {0, 1}N (where wi {0, 1}N is the subset of the sequences of {0, 1}N
having wi as prefix), such that for every i there exists some ki with f [wi {0, 1}N] ⊆ Aki .
Now consider the tree T with the wi as the leaves. Clearly any strategy profile sn restricts to

some strategy profile s′
n on T , and moreover, if sn

c
⇀ sn+1, then s′

n
c

⇀ s′
n+1.

In the finite game played on T , let Player a have the preference wi ≺a w j iff ki < k j .
Clearly, this is an acyclic preference. For every other Player b, we just use the full preference

wi ≺b w j for every i, j . Whenever sn
c

⇀a sn+1, then s′
n , s

′
n+1 must induce somewi ,w j with

ki < k j . Thus, we do not loose any convertibility steps performed by Player a, and have an
instance of Theorem 1 which implies that a only converts finitely many times. ��
Corollary 6 If there are finitely many players, each with continuous payoff function, per-
forming ε-lazy improvement in an infinite binary game in extensive form, then the process
terminates in finitely many steps.

6.2 Deepening Lazy Improvement

Let us now assume that all (countably many) Player a have preferences derived from con-
tinuous payoff functions fa . For each Player a we can use fa to label every vertex v in the
game with some rational interval I av in a way3 that the label of every vertex is a subset of its
predecessor, and such that

⋂
n∈N I ap≤n

= { fa(p)}, i.e. the intersection of all labels along an
infinite path is the singleton set containing the payoff for this path.

In the deepening lazy improvement dynamics, we start with some inspection depth d . The
players consider the prefix of the game tree of depth d , where Player a prefers some vertex
v (at depth d) to some vertex u (also at depth d) if all points in I au are smaller than all points
in I av . Now any lazy improvement step in this finite game (on the tree cut at depth d) induces
an improvement step in the infinite tree game. By Theorem 1, improvement in every such
finite game terminates.

Once all players are stable at the current inspection depth, the inspection depth is incre-
mented by one. The incrementing shall be counted as an updating step, where the strategy
profile is not modified. Thus, some infinite sequence of strategy profile always arises. We
shall call the subsequence of the profiles right after the inspection depth is incremented, the
stable subsequence.

3 The idea behind this corresponds to the representation of real numbers in computable analysis [33].



Dynamic Games and Applications

Note that the choice of labelling system is not uniquely determined by the payoff function,
and that the labelling in turn influences the lazy improvement dynamics. Moreover, note
that while we are dealing with linear preferences only in the case of infinite games, we do
make use of finite approximations that lack linear preferences—yet we are guaranteed that
every preference occurring in our finite approximations is acyclic, which is sufficient for
Theorem 1. Finally, the dynamics do depend on the history—however, only on the depth
currently reached, not on any details.

Observation 14 The deepening lazy improvement dynamics are computable, i.e. given an
infinite binary game and an initial strategy profile, we can compute a sequence of strat-
egy profiles arising from deepening lazy improvement, as well as the indices of the stable
subsequence.

Theorem 4 The following properties are equivalent for a strategy profile s:

1. s is a Nash equilibrium.
2. s is a fixed point4 for deepening lazy improvement.
3. s is an accumulation point of the stable subsequence of some sequence obtained from

deepening lazy improvement.

Proof
1. ⇔ 2. By continuity of the preferences, a player prefers a strategy profile s to another

profile s′, if and only if there is an inspection depth d such that he prefers the
restriction of s to the restriction of s′ in the corresponding finite approximation.
This in turn implies that a strategy profile is a Nash equilibrium of the infinite game,
if and only if all its finite prefixes are Nash equilibria in the corresponding finite
games. The same holds for fixed points by construction of the lazy improvement
steps for infinite games. Thus, the claim for infinite games follows from the result
for finite games, i.e. Observation 4.

2. ⇒ 3. If s is a fixed point, then the lazy improvement sequence with starting point s is
constant, hence has s as accumulation point.

3. ⇒ 2. Let the strategy profile s arise as an accumulation point of the stable subsequence of
a sequence (sn)n∈N obtained by deepening lazy improvement, and assume that s is
not a fixed point. Then there is some minimal inspection depth d necessary to find
a lazy improvement step in s, which is executed by some Player a. The detection at
inspection depth d means that any strategy profile s′ sharing a finite prefix of depth d
with s will admit exactly the same lazy improvement step. The assumption that s is
an accumulation point of the stable subsequence in particular implies that infinitely
many strategy profiles occur that share a prefix of length d with s. In particular,
there would have to be a strategy profile that shares a prefix of length d with s, and
that is stable at inspection depth d ′ > d . But, as explained above, Player a would
then wish to change his strategy, i.e. we have arrived at a contradiction. Hence, s
has to be a fixed point. ��

6.3 Fair Lazy Improvement

The third approach is based on what we call fair lazy improvement, and it is closely related
to the outcomes’ being real-valued payoff tuples. An infinite improvement sequence is fair

4 Given the history dependence of the lazy improvement dynamics, a fixed point is understood to be any
starting point of a lazy improvement sequence resulting in a constant sequence, i.e. no improvement step is
found at any inspection depth.
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if the following holds: Every player who could improve her payoff by more than some given
value infinitely often also makes such an improvement infinitely often. This condition rules
out two undesirable cases: First, a player keeps improving towards some lower payoff, while
a larger payoff has been available all along; second, a player never gets the chance to improve
at all, while she could improve significantly. The formal definition follows:

Definition 15 [Fair improvement]5 Consider a game with real-valued payoff functions
( fa)a∈A. A lazy improvement sequence (sn)n∈N is fair if the following holds: For all positive
real numbers r and all players a ∈ A, if for all n there are m > n and a strategy profile s′
such that sm⇀as′ and fa(sm) + r < fa(s′), then sn⇀asn+1 and fa(sn) + r < fa(sn+1) for
infinitely many n.

As of now we are unable to answer the following question.

Open question 16 In an infinite binary game with continuous real-valued payoff functions,
are all accumulation points of a fair lazy improvement sequence Nash equilibria?

We will show that the answer is positive in two special cases. First, if the sequence has
only finitely many accumulation points, we can use the lazy non-worsening we introduced
in Sect. 4.3 together with a limit argument to establish the following.

Theorem 5 If a fair lazy improvement sequence (sn)n∈N in a binary game with continu-
ous payoff functions has only finitely many accumulation points, then all of them are Nash
equilibria.

Proof As there are only finitely many accumulation points of (sn)n∈N, there are only finitely
many positions in the game tree where the current choice changes infinitely many times. Let
d0 ∈ N be large enough that no such position occurs below depth d0 in the game tree. For any
vertex v below depth d0, the sequence of payoffs induced by sn starting from v will converge.

Assume for the sake of contradiction that (sn)n∈N has some accumulation point s which
is not a Nash equilibrium. By continuity of the payoff functions, there is some d1 ≥ d0, a
Player a and some δ > 0 such that infinitely many sn coincide with s at least up to depth
d1, that any two paths agreeing up to depth d1 grant Player a payoffs differing by less than
δ, and moreover, that in any strategy profile coinciding with s up to depth d1, Player a has a
lazy improvement step of at least δ available.

Let gn be the finite game of depth d1 where each leaf has the same payoff as the subgame
starting at the corresponding vertex in the original gamewould yield using the strategy profile
sn , and let s′

n be the corresponding truncation of sn . Let g be the limit of the gn .We have either
s′
n = s′

n+1, or s
′
n⇀s′

n+1 in gn .We can safely remove duplicates from the sequence. ByLemma
4 we find that s′

n⇀∪ � s′
n+1 in g, and then Theorem 3 implies that each player (in particular

Player a) makes only finitely many improvement steps in the sequence (s′
n)n∈N. Now any

improvement step by Player a in (sn)n∈N by more than δ corresponds to an improvement step
in the (s′

n)n∈N, and hence he makes only finitely many of those. This contradicts the fairness
of (sn)n∈N. ��

Covering the case of only finitely many accumulation points does not suffice in general,
as there can be uncountably many, as we shall proceed to show.

Proposition 4 Let A ⊆ {0, 1}N be a non-empty closed set with empty interior. Then there is
a one player game with a continuous payoff function, and a fair lazy improvement sequence
(sn)n∈N, such that A is the set of runs induced by the accumulation points of (sn)n∈N.

5 This is fair as in fair scheduler, not as in fair division of cake.
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Proof We will use the payoff function p �→ (1− d(p, A)) for the player. As a closed subset
of Cantor space, A can be represented as the set of infinite path through some pruned tree
TA ⊆ {0, 1}∗. As A has empty interior, we know that for any v ∈ TA there is some extension
w � v with w /∈ TA. By iteratively applying this to children, we find that for all v ∈ TA and
k > |v|, there is some wv,k � v with wv,k /∈ TA, |wv,k | ≥ k, and the longest proper prefix of
wv,k is in TA.

Let TA = {vn | n ∈ N}. We now construct a sequence of paths (pn)n∈N iteratively,
together with an auxiliary sequence (kn)n∈N of integers. Let k0 := 0, and p0 be some path
extending wv0,0. Then let us always choose kn+1 such that d(pn, A) > 2−kn+1+1, and pn+1

to be some path extending wvn+1,kn+1 .
This construction ensures that d(pm, A) convergesmonotonely to 0.We derive a sequence

(sm)m∈N of strategy profiles linked via lazy convertibility, such that sm induces pm . Then
(sm)m∈N is a fair lazy improvement sequence. It remains for us to argue that A is the set of
accumulation points of (pn)n∈N. Some open ball v{0, 1}N intersects A iff v ∈ TA. Since any
such v has infinitely many extensions v′ also in TA, we see that there are infinitely many
pn with prefix v. Thus, any p ∈ A is an accumulation point of (pn)n∈N. Moreover, since
limn→∞ d(pn, A) = 0, (pn)n∈N cannot have any accumulation points outside of A. ��
Corollary 7 There are fair lazy improvement sequences with uncountably many accumulation
points.

We can extend the argument based on a measure employed in the proof of Theorem 2 to
the infinite case, provided that the payoff functions satisfy a rather strong Lipschitz condition.
This conditions is used to ensure that (a modification of) the measure is a finite quantity.

Proposition 5 If the game tree is binary and if for each player there exists η > 2 such that
her payoff function is Lipschitz continuous for the distance d defined by d(h0ρ, h1ρ′) = 1

η|h| ,
then all the accumulation points of a fair lazy improvement sequence are Nash equilibria.

Proof To all strategy profiles s and all players a let us associate a real number:

Ma(s) :=
∑

h∈d−1(a)

fa
(
h · (1 − s(h)) · ρ(h · (1 − s(h)), s)

) − min
ρ∈{0,1}ω( fa(hρ))

where d(h) is the player that plays at history h, and fa(ρ) is the payoff for Player a and run
ρ, and s(h) is the choice in {0, 1} that is prescribed by s at h, and ρ(h, s) is the run induced by
strategy profile s from h on. Similarly to the finite case fa(h · (1− s(h)) ·ρ(h · (1− s(h)), s))
is the payoff that is avoided by a at history h. Note that the summands of Ma(s) are all
non-negative by definition of the minimum, and that the sum converges absolutely: Indeed,
by assumption | fa(h0ρ) − fa(h1ρ′)| ≤ La

η|h| for some La > 0 and for all h, ρ, and ρ′, so
Ma(s) ≤ ∑

h∈{0,1}∗
La
η|h| = La

∑+∞
l=0 ( 2

η
)l = La

1− 2
η

. Also, each Ma is continuous.

Similarly to the finite case, it is easy to see that Ma is left unchanged when another player
performs a lazy convertibility step. Also, Ma decreases by δ when Player a performs a lazy
convertibility step that improves her payoff by δ ∈ R: first prove the claim for convertibility
step changing only one choice (at one node); then by induction the claim holds for finitely
many changes; finally, the full claim holds by continuity of Ma . As Ma is non-negative, it
follows that for all δ > 0, in all lazy improvement sequences, no player can infinitely often
improve by more than δ.

Assume that (sn)n∈N is a lazy improvements sequence, and let s be some accumulation
point that is not an Nash equilibrium. So s⇀at for some profile t and Player a. By continuity
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of the payoffs there are δ, ε > 0 such that whenever d(s, s′) < δ, there is some t ′ such that
s′⇀at ′, and the payoff for a in t ′ exceeds her payoff in s′ by at least δ.

Now if (sn)n∈N were fair, then a would need to improve by at least δ infinitely often,
contradicting our observation above. ��

6.4 Transfinite Lazy Improvement in the Difference Hierarchy

We start by formalizing what it means to do a transfinite number of improvement steps.
The following definition generalizes the notion of finite sequence or ω-sequence induced
by a binary relation to α-sequence for some ordinal α: At limit ordinals, following a valid
sequence amounts to picking an “accumulation point”.

Definition 17 [Ordinal sequence of a relation] Let→be a binary relation on some topological
space S, and let α be an ordinal number. An α-sequence of→ is a family (sβ)β<α of elements
in S such that for all β < α, if β + 1 < α then sβ → sβ+1, and if β is a limit ordinal, then
for every β ′ < β and every neighbourhoodU of sβ there exists γ ∈]β ′, β[ such that sγ ∈ U .

Lemma 5 says that, given a binary relation over a compact set, the only reason why an
ordinal sequence cannot be further extended is when a sink has been reached.

Lemma 5 Let (sβ)β<α be a countable ordinal sequence of→ over a compact set S. If (sβ)β≤α

is not a sequence of → for any sα ∈ S, then α = α′ + 1 for some α′ and sα′ is a sink of →.

Proof Let α be a limit ordinal. Towards a contradiction let us assume that (sβ)β<α is not
extendable. So for all s ∈ S there exist a neighbourhood Us of s and an ordinal βs < α such
that sγ /∈ Us for all γ > βs . The {Us}s∈S form an open cover of S, so by compactness of S
there exists a finite subcover {Us}s∈S′ . Let γ := sups∈S′ βs + 1. So γ < α by finiteness of
S′. Moreover sγ /∈ Us for all s ∈ S′, so sγ /∈ ∪s∈S′Us ⊇ S, contradiction. ��

In this paper by countable we mean at most countable. We find that even in very simple
games, we can have improvement sequences of any countable length.

Proposition 6 For every countable ordinal α there exists a win–lose two-player game on a
binary tree with open winning set for one player, and an α-sequence of lazy improvement in
the game.

Proof By transfinite induction on α. It holds for the case α = 0 (take the empty set as winning
set). For the inductive case let us make a further case disjunction: First case, α = α′ +1 is not
a limit ordinal. Let (sβ)β<α′ be an α′-sequence on some game g with open winning set. Let
X be the opponent of the player who wins according to sα′ . Let us consider the supergame
where X chooses between playing in g orwinning directly. This leads to an (α′+1)-sequence.
Second case, α is a limit ordinal. Since it is countable, there exists a sequence (βi )i∈N such
that 1 < βi < α for all i and α = supi∈N βi . Since α is a limit ordinal, βi + 1 < α for all
i , so by induction hypothesis let gi be a game with open winning set for a, and that has a
βi + 1-sequence with starting profile si . Since ignoring the first profile of the sequence does
not change its order type, we can further assume that si makes a lose. Now let us define a
supergame by giving Player a the possibility to continue forever and lose, or stop at stage
i and play in gi . The winning set of a is a union of open sets and is therefore open. Let us
build an α-sequence as follows: Let us start with a profile where si is the subprofile in gi for
all i , and where a chooses to play g0 at the root of the supergame. Let the players change



Dynamic Games and Applications

strategies in g0 until b wins for the last time in the β0 + 1-sequence, then let a change games
to g1 and simultaneously perform the first change from s1 in g1. Then let the players change
strategies in g1 until b wins for the last time in the β1 + 1-sequence, and so on. ��

Lemma 6 uses the main proof technique in this section: From a putative uncountable
ordinal sequence of lazy improvement, we can extract an uncountable factor (or substring)
with more properties.

Lemma 6 Let g be a game on a binary tree, where some open set X contains only worst runs
for some Player a. If there exists an uncountable sequence of lazy improvement in g, it has
an uncountable subsequence where improvements from Player a do not involve runs in X.

Proof Since there is an uncountable sequence of lazy improvement in g, there is a ω1-
sequence, where ω1 is the first uncountable ordinal. Since there are only countably many
vertices in the game, and since X is open and non-empty, it can be written ∪i∈Nui {0, 1}ω
where all ui ∈ {0, 1}∗. If Player a avoids some ui {0, 1}ω at some point in the ω1-sequence, it
avoids it for ever, since it is open and since it contains only worst possible runs. So Player a
escaping X by an improvement step only occurs countably many times in the ω1-sequence.
Let � be the set of ordinals where such improvements occur. So, such improvements do not
occur from (sup�) + 1 (a countable ordinal) to ω1. This truncated sequence witnesses the
claim. ��

Lemma 7 is the base case of the proof of Theorem 6, which is proved by transfinite
induction.

Lemma 7 Let g be a game with finitely many players who have Boolean (i.e. win/lose)
objectives. If every winning set is open or closed, every sequence of lazy improvement in g
is countable.

Proof By induction on the number of outcome tuples occurring in the game. The claim
holds for one tuple, so let us assume that at least two tuples occur in the game. Towards
a contradiction, let us consider an uncountable sequence of lazy improvement in g. Let us
assume that the losing set of some Player a has non-empty interior X . By applying Lemma 6
there is an uncountable subsequence where improvements from Player a do not involve runs
in X . So the above sequence is still valid in the game derived from g by moving X from the
losing set of Player a to her winning set. Applying this to each player yields a game g′ where
the losing sets are all closed with empty interiors and where there is a ω1-sequence of lazy
improvement.

Let A be the set of the players occurring in the game and for all a ∈ A let Wa be the
winning set of a in g′. Let A′ have maximal cardinality under the constraint ∩a∈A′Wa �= ∅,
so all runs in ∩a∈A′Wa make all players in A\A′ �= ∅ lose. Since ∩a∈A′Wa is open and
non-empty, {0, 1}ω\Wa has non-empty interior for all a ∈ A\A′, which implies that A′ = A
to avoid a contradiction. So, the ω1-sequence of lazy improvement does not visit ∩a∈A′Wa

(because nobody would want to leave it), which induces an uncountable sequence with fewer
tuples and allows us to conclude by IH. ��

Lemma 8 will be useful during the transfinite induction step, when proving Theorem 6.

Lemma 8 Let g be a game, let a be a player with Boolean objectives, let u be a node of
the game, let gu be the subgame of g rooted at u, and for all profiles s in g let su be the
corresponding profile in gu. Consider a lazy improvement sequence in g. For all steps s⇀as′
in the sequence (but possibly the first one entering gu), either s′

u = su or su⇀as′
u in gu.
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Proof If the induced play does not reach u after the improvement step s⇀as′, then s′
u = su .

So let us assume it reaches u afterwards. If it also reaches u before, su⇀as′
u , so let us assume

it does not. Let us assume that some earlier profile induced a play that reached u. Since Player
a is coming back to u, it must be her who left it. In particular, the outcome induced by s′

u
makes player lose her objective, so su⇀as′

u . ��
Example 3 In the following example, the numbers denote the payoffs for Player a. Player b
may be assumed to be antagonistic to a. We depict a lazy improvement sequence such that
its projection to the left subtree is not a lazy improvement sequence—in fact, the payoff is
decreasing for the acting Player a. This shows that the restriction to boolean outcomes in
Lemma 8 is not dispensable.

a

a

1 2

b

0 4

a

a

1 2

b

0 4

a

a

1 2

b

0 4

a

a

1 2

b

0 4

We recall from descriptive set theory (a standard reference is [14]) that a subset S of a
metric space is called a �0

2-set, if it is expressible both as S = ⋂
i∈NUi with open Ui , and

as S = ⋃
i∈N Ai with closed Ai . By the Hausdorff–Kuratowski theorem, the �0

2-subsets of
Cω are exactly those in the difference hierarchy. The difference hierarchy can be defined
as follows: D0 = {∅}. For some countable ordinal α > 0, Dα contains all sets of the form
∪i∈I (uiCω\Ai ) where the ui ∈ C∗ are prefix independent, and each Ai appears in some Dβ

with β < α. That this indeed defines the difference hierarchy was observed by Motto-Ros
[29, Section 7] extending previous work by Andretta and Martin [2]. A direct proof can be
found in [23].

Theorem 6 Let g be a game with finitely many players who have Boolean objectives. If every
winning set is �0

2, every sequence of lazy improvement in g is countable.

Proof Let us proceed by transfinite induction on (the tuple of) the levels in the Hausdorff
difference hierarchy of the winning sets Wa of the players a ∈ A. The claim holds when the
Wa are open or closed by Lemma 7, so let us assume that someWa is neither open nor closed.
Wa can be written ∪i∈I (uiCω\Ai ), where the ui are not prefixes of one another, where I
is countable since there are countably many vertices, and where each Ai lies in some lower
level of the difference hierarchy than Wa .

Towards a contradiction, let us assume that there is a ω1-sequence of lazy improvement
in g. By Lemma 8 this induces sequences of equalities or lazy improvements in the subgame
gi rooted at ui in g. Let �i be the set of ordinals where improvement occurs in gi . The
induction hypothesis implies that �i is countable. Let �′ be the set of the ordinals where
some gi is reached for the first time. Then also γ := (sup�′ ∪ ⋃

i∈N �i ) + 1 is countable.
In the truncated sequence from γ to ω1, the induced profiles in all gi are constant. Let the
ti be the corresponding Boolean tuples, and let g′ be derived from g by fixing the outcome
tuple ti all over gi , for all i . In g′ the winning set of a is open because it is a union of some
of the uiCω, and the winning sets of the other players did not increase in complexity. So, by
IH every sequence of lazy improvement in g′ is countable, contradiction. ��
Corollary 8 Let g be a gamewith finite branching and finitelymany playerswho haveBoolean
objectives. If every winning set is �0

2, every sequence of lazy improvement in g is countable
and ends at a Nash equilibrium.

Proof By Theorem 6 and Lemma 5, since finite branching implies compactness. ��
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Regarding a potential extension of Corollary 8 to winning sets beyond �0
2 we shall make

a tangential remark: The computational task of finding a Nash equilibrium in a two-player
game in extensive form with �0

2 winning sets is just as hard as iterating the task of finding
an accumulation point of a sequence over some countable ordinal. This follows from results
in [6,22,23,30]. Finding a Nash equilibrium of a game with �0

2 winning sets is strictly more
complicated. Thus, �0

2 seems to be a natural boundary for results of the form of Corollary 8.

7 Some Counterexamples

In order to obtain the termination result in the finite case (Theorem 1), some restriction on
how players can improve is indeed necessary. We shall show below that the better-response
dynamics � may fail to terminate even for very simple games in extensive form:

Example 4 An improvement cycle:
a

b
1, 0 0, 1

b
1, 0 0, 1

a

b
1, 0 0, 1

b
1, 0 0, 1

a

b
1, 0 0, 1

b
1, 0 0, 1

a

b
1, 0 0, 1

b
1, 0 0, 1

The technical notion of strategy that is used in this article to represent the intuitive concept
of a strategy (in games in extensive form) is not the only possible notion. An alternative notion
does not require choices from a player at every node that she owns, but only at nodes that
are not ruled out by the strategy of the same player. The three objects in Example 5 are such
minimalist, alternative strategy profiles, where double lines still represent choices. Up to
symmetry, they constitute from left to right a cycle of improvements that could be intuitively
described as lazy, so an actual cycle of length eight can easily be inferred from the short
pseudocycle. This may happen because, although the improvements may look lazy, Player
a forgets about her choices in a subgame (of the root) when leaving it, and may settle for
different choices when coming back to the subgame. This suggests that even counter-factual
choices are sometimes relevant. In particular, this means that lazy improvement is not a
natural dynamics in the sense of Hart [12]; or a simple model in the sense of Roth and Erev
[31].

Example 5 Let W be winning for Player a and L be losing, and vice versa for Player b.
a

b
a

WL

a

W L

b
a

WL

a

W L

a

b
a

W L

a

WL

b
a

WL

a

WL

a

b
a

WL

a

WL

b
a

WL

a

WL

The example below shows that for infinite games, a sequence of lazy improvement steps
may have multiple accumulation points even for continuous payoff functions; and moreover,
that not all accumulation points have to be Nash equilibria.
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Example 6 ([21, Example 26])
c

α0, β0, γ0, δ0 d

α1, β1, γ1, δ1 c

αn, βn, γn, δn

α, β, γ, δ

Let us consider games with four players a, b, c, and d . Given four real-valued sequences
A = (αn)n∈N, B = (βn)n∈N, C = (γn)n∈N, and D = (δn)n∈N converging towards α, β, γ ,
and δ, let T (A,B, C,D) be the following game and strategy profile. Note that apart from
the payoffs, the underlying game effectively involves players c and d only. If C and D are
increasing, the lazy improvement dynamics sees players c and d alternating in switching
their top left-move to a right-move.

Let A := B := (1 + 1
n+1 )n∈N and let C := D := (1 − 1

n+1 )n∈N. Starting from the profile
below, players c and d will continue to unravel the subgame currently chosen jointly by a and
b. Player b will keep alternating her choices to pick the least-unravelled subgame available
to her. Player a will prefer to chose a subgame where Player b currently chooses right, and
also prefers less-unravelled subgames.

a

b

T (A,B,C,D) T (1 + A,B,C,D)

b

T (A,B,C,D) T (1 + A,B,C,D)

First of all, already the subgame where b moves first demonstrates that the lazy improve-
ment dynamics will not always converge, hence we have to consider accumulation points
rather than limit points. For the next feature, note that there is an infinite sequence of lazy
improvement where players a and b (at both nodes that she owns) switch infinitely often,
and where Player a switches only when Player b chooses the right subgame (on the induced
play). Then the following strategy profile is an accumulation point, but it is clearly not a Nash
equilibrium.

a

b

1, 1, 1, 1 2, 1, 1, 1

b

1, 1, 1, 1 2, 1, 1, 1

In our currentmodel the players perform lazy improvement updates in a sequentialmanner.
If simultaneitywas allowed (yet not compulsory), cycles could occur, as shown in the example
below.

Example 7 The following profiles constitute the beginning of a cycle of synchronous updates.
A proper cycle of length 4 may be easily derived from it.

a

b

a

3, 2 2, 0

1, 1

b

1, 1 a

2, 0 3, 2

a

b

a

3, 2 2, 0

1, 1

b

1, 1 a

2, 0 3, 2

a

b

a

3, 2 2, 0

1, 1

b

1, 1 a

2, 0 3, 2
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This behaviour can be avoided by considering lazy best-response dynamics, rather than
merely lazy better-response. In the sequential case, clearly the termination of the latter implies
termination of the former. In the simultaneous case we find the following.

Proposition 7 The synchronous lazy best-response sequences in a gamewith n internal nodes
have length at most 2n, provided that the players have acyclic preferences.

Proof It suffices to prove the claim for preferences that are linear orders, which we prove
by induction on the number of internal nodes of the game g. (It holds for zero.) Let v be an
internal node in g whose children are all leaves, let a be the owner of v, and let us consider a
sequence where a always chooses the same outcome x at v. Let g′ be the game derived from
g by replacing v with a leaf enclosing the outcome x . The synchronous lazy best-response
sequence in g corresponds, by restriction of the profiles, to a sequence in g′, so it has length
at most 2n−1 by I. H. Now let us consider an arbitrary sequence, and note that a can change
choices only once at v, from some non-preferred outcome to her preferred one (among the
outcomes occurring below v). So the length of a sequence in g is at most 2n−1 + 2n−1 = 2n .
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