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Abstract: In this paper, we established the Freidlin-Wentzell type large deviation principles for first-
order scalar conservation laws perturbed by small multiplicative noise. Due to the lack of the viscous
terms in the stochastic equations, the kinetic solution to the Cauchy problem for these first-order conser-
vation laws is studied. Then, based on the well-posedness of the kinetic solutions, we show that the large
deviations holds by utilising the weak convergence approach.
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1 Introduction

This paper concerns the asymptotic behaviour of stochastic scalar conservation laws with small multi-
plicative noise. The (deterministic) conservation laws (in both scalar vectorial) are fundamental to
our understanding of the space-time evolution laws of interesting physical quantities, in that they
(dynamical) processes can or cannot occur in nature. Mathematically or statistically, such
physical laws should incorporate with noise influences, due to the lack of knowledge of certain physical
parameters as well as bias or incomplete measurements arising in or modeling. More pre-
cisely, fix any 7" > 0 and let (Q, 7, P, {F 10,77, ({Br(0) }re[0.77)kerv) be a stochastic basis. Without loss of
generality, here the filtration {#;};c[0,7] 1S assumed to be complete and {Bx(#)}:c(0.7], K € N, are indepen-
dent (one-dimensional) {F;},c[0,r1—Wiener processes. We use E to denote the expectation with respect to
P. Fix any N € N, let TV < R" denote the N—dimensional torus. We are concerned with the following

scalar conservation law with stochastic forcing

du + div(A(u))dt = ®u)dW(r) in TV x [0,T]
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for arandom field u : (w, x,1) € QxXTVNx[0,T] — u(w, x,t) =: u(x,t) € R, that is, the equation is periodic
in the space variable x € TV, where the flux function A : R — R¥ and the coefficient ® : R — R are
measurable and fulfill certain conditions specified later, and W is a cylindrical Wiener process defined
on a given (separable) Hilbert space U with the form W(f) = } -1 Br(Hex, t € [0, T], where (ex)i>1 is a

complete orthonormal base in the Hilbert space U. We consider the following Cauchy problem

(1.1)

du + div(A(w))dt = ©w)dW(t) in TN x (0,T],
u(-,0) = up(:) onTN.

For the deterministic case, i.e., ® = 0, (1.1) is well studied in the PDEs literature, see e.g. the
monograph [6] and the most recent reference Ammar, Willbold and Carrillo [1] (and references therein).
As well known, the Cauchy problem for the deterministic first-order PDE (1.1) does not admit any
(global) smooth solutions, but there exist infinitely many weak solutions to the deterministic Cauchy
problem and an additional entropy condition has to be added to get the uniqueness and further to identify
the physical weak solution. The notion of entropy solutions for the deterministic problem in the L*
framework was initiated by Otto in [23]. Moreover, Porretta and Vovelle [24] studied the problem in the
L setting, that is, the solutions are allowed to be unbounded. In order to deal with unbounded solutions,
they defined a notion of renormalized entropy solutions which generalizes Otto’s original definition of
entropy solutions. The kinetic formulation of weak entropy solution of the Cauchy problem for a general
multidimensional scalar conservation law, named as the kinetic system, is derived by Lions, Perthame
and Tadmor in [19]. They further discussed the relationship between entropy solutions and the kinetic
system.

Having a stochastic forcing term in (1.1) is very natural and important for various modeling problems
arising in a wide variety of fields, e.g., physics, engineering, biology and so on. The Cauchy problem for
the stochastic equation (1.1) driven by additive noise has been studied by Kim in [17] wherein the author
proposed a method of compensated compactness to prove the existence of a stochastic weak entropy
solution via vanishing viscosity approximation. Moreover, a Kruzkov-type method was used there to
prove the uniqueness. Furthermore, Vallet and Wittbold [25] extended the results of Kim to the multi-
dimensional Dirichlet problem with additive noise. By utilising the vanishing viscosity method, Young
measure techniques, and Kruzkov doubling variables technique, they managed to show the existence and
uniqueness of the stochastic entropy solutions. Concerning the case of the equation with multiplicative
noise, for Cauchy problem over the whole spatial space, Feng and Nualart [13] introduced a notion of
strong entropy solutions in order to prove the uniqueness of the entropy solution. Using the vanishing
viscosity and compensated compactness arguments, they established the existence of stochastic strong
entropy solutions only in the one-dimensional space case. On the other hand, using a kinetic formulation,
Debussche and Vovelle [9] solved the Cauchy problem for (1.1) in any dimension. They made use of
a notion of kinetic solutions developed by Lions, Perthame and Tadmor for deterministic, first-order
scalar conservation laws in [19]. In view of the equivalence between kinetic formulation and entropy

solution, they obtained the existence and uniqueness of the entropy solutions. The long-time behavior



of periodic scalar first-order conservation laws with additive stochastic forcing under an hypothesis of
non-degeneracy of the flux function is studied by Debussche and Vovelle in [10]. For sub-cubic fluxes,
they show the existence of an invariant measure. Moreover, for sub-quadratic fluxes, they prove the
uniqueness and ergodicity of the invariant measure.

From statistical mechanics point of view, asymptotic analysis for vanishing the noise force is im-
portant and interesting for studying stochastic conservation laws, in which establishing large deviation
principles is a core step for finer analysis as well as gaining deeper insight for the described physical evo-
lutions. Due to lack of second order elliptic operators for the space variable, the asymptotic analysis for
stochastic conservation laws is really challenging and all those existing approaches for establishing large
deviation principles seem unapplicable. To our knowledge, Mariani [20] (see also [21] for more )
is the first work towards large deviations for stochastic conservation laws, wherein the author considered
a family of stochastic conservation laws as parabolic SPDEs with additional small viscosity term and
small (spatially) regularized (i.e., spatially smoothing) noises. By a very interesting scaling procedure
and deep insightful observations from interacting particle , Mariani has succeeded to establish
large deviation principles by vanishing viscosity and noise terms simultaneously in a smart choice of
scalings. While, large deviations for the stochastic first-order conservation laws remain open. Due to the
fact that the entropy solutions are living in rather irregular spaces comparing to various type solutions
for parabolic SPDEs, it is indeed a challenge to establish large deviation principles for the first-order
conservation laws with general noise force.

The purpose of this paper is to prove the Freidlin-Wentzell type large deviation principle (LDP) for
the first-order stochastic scalar conservation law in L!([0, T]; L' (TV)), which provides the exponential
decay of small probabilities associated with the corresponding stochastic dynamical systems with small
noise. An important tool for studying the Freidlin-Wentzell’s LDP is the weak convergence approach,
which is developed by Dupuis and Ellis in [12]. The key idea of this approach is to prove certain
variational representation formula about the Laplace transform of bounded continuous functionals, which
then leads to the verification of the equivalence between the LDP and the Laplace principle. In particular,
for Brownian functionals, an elegant variational representation formula has been established by Boué
and Dupuis in [2] and by Budhiraja and Dupuis in [3]. Recently, a sufficient condition to verify the large
deviation criteria of Budhiraja, Dupuis and Maroulas for functionals of Brownian motions is proposed
by Matoussi, Sabbagh and Zhang in [22], which turns out to be more suitable for SPDEs arising from
fluid mechanics. Thus, in the present paper, we adopt this new sufficient condition.

Our proof strategy mainly consists of the following procedures. As an important part of the proof,
we need to obtain the global well-posedness of the associated skeleton equations. For showing the u-
niqueness, we apply the doubling of variables method. For showing the existence result, we first apply
the vanishing viscosity method to construct a sequence of approximating equations as in [9]. Then, we
prove that the family of the solutions of the approximating equations is compact in an appropriate space
and that any limit of the approximating solutions gives rise to a solution of the associated skeleton equa-

tion. To complete the proof of the large deviation principle, we also need to study the weak convergence



of the small noise perturbations of the problem (1.1) in the random directions of the Cameron-Martin
space of the driving Brownian motions. To verify the convergence of the randomly perturbed equation
to the corresponding unperturbed equation in L' ([0, T]; L' (T")), the doubling of variables method plays
a key role.

The rest of the paper is organised as follows. The mathematical formulation of stochastic scalar
conservation laws is presented in Section 2. In Section 3, we introduce the weak convergence method
and state our main result. Section 4 is devoted to the study of the associated skeleton equations. The

large deviation principle is proved in Section 5.

2 Preliminaries

Let L(K;, Ky) (resp. L2(Ki, K»)) be the space of bounded (resp. Hilbert-Schmidt) linear operators
from a Hilbert space K to another Hilbert space K3, whose norm is denoted by || - || z(, x,)(resp. || -
ll£,(k,,k,))- Further, C; represents the space of bounded, continuous functions and Cé stands for the
space of bounded, continuously differentiable functions having bounded first order derivative. Let || - ||z»
denote the norm of Lebesgue space LP(TV) for p € (0,c0]. In particular, set H = L*(TV) with the
corresponding norm || - ||g. For all @ > 0, let HYTN) = W*2(T") be the usual Sobolev space of order a

2 a 2
« = D .
el > fT D" u(x)Pdx

lel=l(a1,...an)|=a1++ay<a

with the norm

H~(TN) stands for the topological dual of H*(T"), whose norm is denoted by || - || z-«. Moreover, we use

the brackets (-, -) to denote the duality between C7° (TN x R) and the space of distributions over TV x R.

L

Similarly, for 1 < p < o0 and g := =

the conjugate exponent of p, we denote

(F,G) := f f F(x,6€)G(x,&)dxdé, F e LP(TN xR),G € LYTY xR),
™ JR
and also for a measure m on the Borel measurable space TV x [0,T] x R

m(p) = (m, ) := f (x, 1,E)dm(x,1,8), ¢ € Cp(TN x[0,T] X R).

TNX[0,TIXR

2.1 Kinetic solution and generalized kinetic solution

Let us recall the notion of a solution to equation (1.1) from [9, 10]. Keeping in mind that we are working
on the stochastic basis (€, 7, P, {F:} 10,17, Bi())ken).

Definition 2.1. (Kinetic measure) A map m from Q to the set of non-negative, finite measures over
TN x [0, T]1 X R is said to be a kinetic measure, if

1. m is measurable, that is, for each ¢ € Cp(TN x [0, T1 X R), (m, ¢) : Q — R is measurable,



2. mvanishes for large &, i.e.,

lim E[m(T" x [0,T] x B)] = 0, (2.2)

R—+00

where By := {£ € R, [¢] > R}

3. forevery ¢ € C,(TN x R), the process

(w, ) eQx[0,T] — o(x,E)dm(x, s,&€) e R
TNx[0,f]xR

is predictable.

Let MJ (TN x [0,T] x R) be the space of all bounded, nonnegative random measures m satisfying
(2.2).

Definition 2.2. (Kinetic solution) Let ug € L*(T). A measurable function u : TN x [0,T] x Q — R is

called a kinetic solution to (1.1) with initial datum uy, if
1. (u(t))eo,1) is predictable,
2. for any p > 1, there exists C,, > 0 such that

E(ess sup |lu(d)|” <C,,
( 1€[0,T'] LP(TN)) b

3. there exists a kinetic measure m such that f := I,5¢ satisfies the following
T T
[ .owrar s Gopon + [ is.a0) - vt

T
= -, fo fT 8k(0p(x (. )dxdBy(1) (23)

k>1

1 T
2 Z f f Aep(x, 1, u(x, 0)G*(X)dxdt + m(dgp), a.s.,
0 J1V ’

k>1
forall ¢ € CH(TN x [0, T]1 X R), where u(t) = u(-,t,-), G* = 3,32, |gl* and a(€) := A’ ().

In order to prove the existence of a kinetic solution, the generalized kinetic solution was introduced
in [9].

Definition 2.3. (Young measure) Let (X, A) be a finite measure space. Let P1(R) denote the set of all
(Borel) probability measures on R. Amap v : X = P(R) is said to be a Young measure on X, if for each
¢ € Cp(R), the map z € X — v (¢) € R is measurable. Next, we say that a Young measure v vanishes at
infinity if, for each p > 1, the following holds

fflglpdvz(f)d/l(z)<+oo. 2.4)
x Jr



Definition 2.4. (Kinetic function) Let (X, A) be a finite measure space. A measurable function f : XXR —

[0, 1] is called a kinetic function, if there exists a Young measure v on X that vanishes at infinity such that
YéeR
f(z2,8) = vo(&, +00)

holds for A — a.e. z € X,. We say that f is an equilibrium if there exists a measurable functionu : X — R

such that f(z,&) = L)>¢ a.e., or equivalently, v; = 6, for A —a.e.z € X.
Let f: X x R — [0, 1] be a kinetic function, we use f to denote its conjugate function f := 1 — f.

Definition 2.5. (Generalized kinetic solution) Let fy : Q x TN x R — [0, 1] be a kinetic function with
X, ) = (Qx TV, P®dx). A measurable function f : QX TN x [0,T] x R — [0, 1] is said to be a
generalized kinetic solution to (1.1) with initial datum fy, if

1. (f(t)refo.1 is predictable,

2. fis a kinetic function with (X, ) = (Q x TV x [0, T], P ® dx ® dt) and for any p > 1, there exists a
constant Cp, > 0 such that v := —0¢f fulfills the following

E(ess sup f f (€17 dvy,()dx) < C), (2.5)
N JR

t€[0,T]

3. there exists a kinetic measure m such that for ¢ € C(TV x [0, T] x R),
T T
[ .0wrar s Gopon+ [ 40,00 Vetnar

T
- Y [ [, [eweeroa@ddso
0 TV JR

k>1

T
_lf f f Oz p(x, 1,E)G (X)dv . (E)dxdt + m(Dep), a.s.. (2.6)
200 Jrvdr :

Referring to [9], almost surely, any generalized solution admits possibly different left and right weak
limits at any point ¢ € [0, T]. This property is important for establishing a comparison principle which
allows to prove uniqueness. The following result is proved in [9].

Proposition 2.1. (Left and right weak limits) Let fy be a kinetic initial datum and f be a generalized
kinetic solution to (1.1) with initial fy. Then f admits, almost surely, left and right limits respectively at
every point t € [0, T]. More precisely, for any t € [0, T), there exist kinetic functions f* on Q x TN x R
such that P—a.s.

(ft— )0y = (f.0)
and

(ft+8),0) = (", 0)



as & — 0 for all ¢ € C/(TN x R). Moreover; almost surely,

= ey = - f D, Iy (8)dm(x, ..
TN x[0,T]xR

In particular, almost surely, the set of t € [0, T] fulfilling that f'* # f'" is countable.

For a generalized kinetic solution f, define f* by f*(¢) = f*, t € [0, T]. Since we are dealing with
the filtration associated to Brownian motion, both f* are clearly predictable as well. Also f = f* = f~
almost everywhere in time and we can take any of them in an integral with respect to the Lebesgue
measure or in a stochastic integral. However, if the integral is with respect to a measure—typically a
kinetic measure in this article, the integral is not well defined for f and may differ if one chooses either
fforf.

Finally in this subsection, as a special example, let us consider the following stochastic heat equation
on TV x [0, o)

du — Audt = O(u)dW(t), u(x,0) = uy(x). 2.7)

We aim to derive an explicit expression of its kinetic measure m. For this, we have the following kinetic

formulation

Proposition 2.2. Let ug € L*(TV) and u be the solution to (2.7). Then f := 1,>¢ satisfies the following

T T
0. Bipt00dt + O - L CF0), AG(D)di

T
= - f f f 8(x, O)p(ix, 1, E)dv (E)dxdBy(1)
o1 Yo J1vJr
1 (7 2
) 0ep(x, 1, E)G"(x, E)dv ((E)dxdt + m(Og ), a.s. (2.8)
0 J1v JR
forall p € C(ly. (TN x [0, T) X R), where fy(€) = wo>¢ and for all ¢ € Cp(TN x [0, T] X R),
T
dvy (&) = Ou=¢ds, m(¢) = f f ¢(x, t,u(x, )| Vuldxdt.
0 Jv
Proof. By It6 formula, we have for § € C*>(R) with polynomial growth at oo,
d(ly>¢, o) = df1u>fﬁ/($)d€ = do(u)

|
= & w)(Audt + D(u)dW (1)) + 59”@00%{;,

2 2
where G= = Y151 |gkl*



The first term can be rewritten as
0 (u)Au = AO(u) — [Vul?0” (1) = Al yse, 0)) + (0:(Vul*Sue), 0).
Hence, we obtain the following kinetic formulation:
, , p . 1 7 . ,
d(l>6,0) = Alyse 0)dt + (0:(|Vul“0y=¢ — ;G_()”:‘g), 0" )dt

+ Z(o‘,,zé.-g,\, ¢)dp;.

k>1
Taking 6(¢) = fi)( we have
! 1 .
(1(11,;)’::,)() = A([H’\)é:,/\/)df + ((9(::(|Vll|;()‘1/:¢: - ;(;_O”:{:),/\/)dr
+ Z((511:E(¥/\7/\/)(/ﬁ/\-
k>1

Since the test functions ¢(x, &) = a(x)y(¢) form a dense subset of C:;\’(T’V X R), it follows that (2.8) holds.

We complete the proof. O
From above, it is clear that the kinetic measure m has an explicit expression

m= |Vu|26,,:g.

2.2 Compactness results

Recall the following two compactness results from [9], which are important for establishing the existence

of generalized kinetic solution of (1.1).

Theorem 2.3. (Compactness of Young measures) Let (X, A) be a finite measure space. Let (V') be a

sequence of Young measures on X satisfying the condition (2.4) for some p > 1, namely,
sup f f 1PV (€)dA(z) < +oo. (2.9
neN JX JR

Then there exists a Young measure v on X and a subsequence which is still denoted by (V') such that, for
h e L'(X) and for ¢ € Cy(R),

lim f he) f HED AR = f h) f HENdV(OAA). (2.10)
n—eo Jx R X R

Corollary 2.4. (Compactness of Kinetic functions) Let (X, ) be a finite measure space. Let (f,) be a
sequence of kinetic functions on X X R: f,(z,&) = v2(£, 00), where v"',n > 1, are Young measures on X
satisfying (2.9). Then there exists a kinetic function f on X X R such that f,, — f in L™ (X X R)— weak =,

asn — oo,



2.3 Hypotheses and the global well-posedness of (1.1)

For the flux function A and the coefficient @, we assume the following

Hypothesis H The flux function A belongs to C>(R;R") and its derivative a has at most polynomial
growth. That is, there exist constants C > 0, p > 1 such that

la(€) — () STEDIE -2, TE ) =CA+ P+, (2.11)
For each u € R, the map ®(u) : U — H is defined by ®(u)e; = g(-,u), where each g(-,u) is a

regular function on TV. More precisely, we assume that g, € C(T" x R) with the following bounds

G0 = ) lgeCe )l < Dol + [uP), (2.12)
k>1
D lgxu) = gk vIE < Dyflx -y + ). (2.13)

k>1

for x,y € TV, u,v € R. Since ||gllz < llgkllcrvy, we deduce that ®(u) € Lo(U, H), for each u € R.
Moreover, it follows from (2.12) and (2.13) that

A

1PN,y < Do(l+ llullz), (2.14)
I1P@w) = OO,y < Dillu— Vil (2.15)

IA

The following result was shown in [9].

Theorem 2.5. (Existence, Uniqueness) Let ug € L™(TN). Assume Hypothesis H holds. Then there is a
unique kinetic solution u to equation (1.1) with initial datum uy. Besides, if [ is a generalized kinetic
solution to (1.1) with initial datum I,,¢, then there exist u™ and u™, representatives of u such that for all
t€[0,T], f5(x,1,€) = Liz(x>¢ a.s. for a.e. (x,1,€).

Remark 1. The kinetic solution u is a strong solution in the probabilistic sense.

3 Freidlin-Wentzell’s large deviations and statement of the main result

We start with a brief account of notions of large deviations. Let {X®}..¢ be a family of random variables
defined on a given probability space (2, #,P) taking values in some Polish space &.

Definition 3.1. (Rate function) A function I : & — [0, 0o] is called a rate function if I is lower semicon-
tinuous. A rate function I is called a good rate function if the level set {x € & : I1(x) < M} is compact for

each M < oo,

Definition 3.2. (Large deviation principle) The sequence {X®} is said to satisfy the large deviation prin-
ciple with rate function I if for each Borel subset A of &

—inf I(x) < lim infoslog P(X? € A) < limsup elogP(X? € A) < —inf I(x),
&> x€A

o
xeA -0

where A° and A denote the interior and closure of A in &, respectively.



Suppose W(t) is a cylindrical Wiener process on a Hilbert space U defined on a filtered probability
space (Q, 7, {F+}e(0.17, P) (that is, the paths of W take values in C([0, T']; U), where U is another Hilbert
space such that the embedding U c U is Hilbert-Schmidt). Now we define

A :={¢ : ¢ is a U-valued {F;}-predictable process such that fOT |¢(s)|%,ds < oo P-a.s.};
S = {he (0, TLU) : | ()3 ds < M);
Ay ={p e A: dw) €Sy, Pa.s.).

Here and in the sequel of this paper, we will always refer to the weak topology on the set S .
Suppose for each € > 0,G° : C([0, T]; U) — & is a measurable map and let X* := G¥(W). Now, we

list below sufficient conditions for the large deviation principle of the sequence X* as € — 0.

Condition A There exists a measurable map G° : C([0,T]; U) — & such that the following conditions
hold

(a) Forevery M < oo, let {h® : € > 0} C Ap. If h, converges to h as S yy-valued random elements in
distribution, then G*(W(-) + \/Lg fd h®(s)ds) converges in distribution to G%( fd h(s)ds).

(b) For every M < oo, the set Ky, = {Qo(fd h(s)ds) : h € Sy} is a compact subset of &.

The following result is due to Budhiraja et al. in [3].
Theorem 3.1. If {G?} satisfies condition A, then X? satisfies the large deviation principle on & with the

following good rate function I defined by

1 T
1(f) }{5 fo Ih(s)[ds), Vf €& (3.16)

= inf
{hELz([(LT];U):f=§°(f0 h(s)ds)
By convention, I(f) = oo, if {h € L*([0,T1; U) : f = G°([; h(s)ds)} = 0.

Recently, a new sufficient condition (Condition B below) to verify the assumptions in condition
A (hence the large deviation principle) is proposed by Matoussi, Sabagh and Zhang in [22]. It turns
out this new sufficient condition is suitable for establishing the large deviation principle for the scalar

conservation laws.

Condition B There exists a measurable map G° : C([0,T]; U) — & such that the following two items
hold

(i) For every M < +o0, and for any family {h®; & > 0} C Ay and any ¢ > 0,
lim P(p(Y?,Z%) > 6) =0
lim P(o(Y*, 2%) > 6) = 0,
where Y? := G* (W(-) + \/Lg fd hg(s)ds), 7z = G° (fo hg(s)ds), and p(:, ) stands for the metric in
the space &.

(ii) For every M < +o0 and any family {h®;& > 0} C S, that converges to some element s as € — 0,
G° ( fd hs(s)ds) converges to G° ( fo. h(s)ds) in the space &.

10



3.1 Statement of the main result

In this paper, we are concerned with the following stochastic conservation law driven by small multi-

plicative noise

3.17)

du? + div(A(u®))dt = \e®(u®)dW(t),
u®(0) = uo,

for ¢ > 0, where uy € L*(TV). Under Hypothesis H, by Theorem 2.5, there exists a unique kinetic

solution u® € L'([0, T1; L'(T")) a.s.. Therefore, there exists a Borel-measurable function
G°: C(0, TI;U) — L'(0,T1; L' (T)
such that u®(-) = G*(W(.)).

Let h € L*([0, T); U), we consider the following skeleton equation

(3.18)

duy, + div(A(uy))dt = O©(up)h(t)dt,
up(0) = up.

The solution u;,, whose existence will be proved in next section, defines a measurable mapping
G°: C([0,T1; U) — L'([0,T1; L'(TV)) so that G°( [[ h(s)ds) := un(").

We are now ready to state our main result of this paper

Theorem 3.2. Let uy € L¥(TV). Assume Hypothesis H holds. Then u? satisfies the large deviation
principle on L'([0, T; LY(TN)) with the good rate function I given by (3.16).

4 Skeleton equations

4.1 Existence and uniqueness of solutions to the skeleton equations

Fix h € S, and assume h(f) = 3> I (f)ex, where {e;}i>1 is an orthonormal basis of U. Now, we

introduce definitions of solution to the skeleton equation (3.18).

Definition 4.1. (Kinetic solution) Let ug € L (TV). A measurable function uy, : TV x [0,T] — R is said

to be a kinetic solution to (3.18), if for any p > 1, there exists C;, > 0 such that

ess sup N7, v < Cp,
1€[0,T] Lrx?) P
and if there exists a measure my, € Mar (TN x [0, T] x R) such that Jn = lLy,>¢ satisfies that for all

¢ € CHTN x [0,T] X R),
T T
fo ), Bup(D)dt + fo (O)) + fo a0, aé) - Vo)t

T
= Z fo fT 8k up (D) (x, 1 up(x, ORE(t)dxdt + my(9g), (4.19)

k>1

where fy(x,&) = Lyy()>¢-

11



Definition 4.2. (Generalized kinetic solution) Let fy : TV x R — [0, 1] be a kinetic function. A measur-
able function f,, : TV x [0,T] xR — [0, 1] is said to be a generalized kinetic solution to (3.18) with the
initial datum fy, if (fo(1)) = (fu(t, -, ) is a kinetic function such that for all p > 1, V! := —0¢ f satisfies

ess sup f f EPav! (&)dx < C,, (4.20)
™ JR ’

t€[0,T]

where C), is a positive constant and there exists a measure my, € Ma’ (TN x [0, T] x R) such that for all
@ € CH(TN x [0, T] X R),

T T
fo 0, Bt + fo o(O)) + fo i), (@) - Vo)

T
:_Z fo f[r § fR gi(x, O)(x, 1, O ()dV! (£)dxdt + my(Dgp). 4.21)

k>1

Theorem 4.1. (Existence) Let uy € L°(TV). Assume Hypothesis H holds, then for any T > 0, (3.18) has

a generalized kinetic solution f, with initial datum fo = L.

The proof of Theorem 4.1 is similar to the proof of Theorem 2.5 which was done in [9], we therefore
omit it here. Moreover, as stated in Proposition 2.1, for the generalized solution f,, we have fj, = chr = fh‘
ae. t€|0,T].

Taking a test function of the form (x, s,£) — ©(x, &)a(s) in (4.21), where ¢ € C 3.(TN X R) and « is

the function

1, s<t,
a(s) =1 1-=L, 1<s<t+e, (4.22)
0, t+e<s,

and letting £ — 0, we obtain for all # € [0, T'],
!
~FE0.0) + o) + fo ils)al®) - Vo)ds

:_Z fo fT ) jﬂ; 8k (x, )p(x, O (5)dV! (£)dxds + (my, Dee) ([0, 1]), a.s., (4.23)

k>1

where (mp, dgp)[0,11) = [ o 1on e (6 E)dmy(x, 5,€).

For the uniqueness, we firstly prove a comparison theorem for two generalized solutions f;, i = 1,2

of the following equations

{ dul, + div(A(ul ))dt = O Yh(n)dt, (424

u;l(O) = ug.
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Proposition 4.2. Under Hypothesis H, let f;,i = 1,2 be two generalized solutions to (4.24). Then, for
0 < t < T, and nonnegative test functions p € C*(TV), € CX(R), we have

f( o fR PO = WE = Ot OF 0.0 + Ff (et Of5 001, 0))dédldxdy

< [, JL et (ot 02000+ frotn o0 O)dciaray

+K| + K| +2K,, (4.25)
where

o= [ ’ f( . [, Aite 5. 005, 0a(@) - a0 Vsadgdcdzasas,

k- ' f( . [ Aite 5. 205, 0a(€) = a0 V,adgdcdzasas,
and

K= 3 [0 [ A [ 0 - . 0 b 0.2 6. Oy

k>1
with 1(&,0) = [ w(@ - 0de = [*F y(ay.

Proof. Denote fi(x,t,&) = Iu‘;(x,z)>§ and fr,(y,t,0) = Iug(y’t)%, respectively,
- Let ) € C2(TY xR¢) and ¢ € CX(TY X Ry). By (4.23), we have

(ff@, 1) = <f1,0,901>+j(;(fl(s)’a(f)'vx‘#’l(s))ds

+Zf0 fTNjl;gk(x,5)901(x,g)hk(s)dv}c,s(f)dxds—(ml,aggol)([o,t]),

k>1

where fi o = I,,>¢ and v}c’s(f) = =01, (5,x,6) = 6§f_1+(s, x, ). Similarly,
!
B = o)+ [ (000 Topalods

_Zj(; fTN‘ngk(y’f)‘Pz(y,{)hk(s)dvis(g)dyds+(mz,awz)([o,t])_

k>1

where fo0 = Liysz and vi (0) = 8. fy (5,7, 0) = =015 (5,3, 0).
Denote the duality distribution over T ngxT;V xR by (-, )). Setting a(x, £, y,4) = ¢1(x, E)p2(y, )

13



and using the integration by parts formula, we have
GOEO.0 = Giopoan+ [ [ a9 a - Voodsazdyas

-2, f f f [ (s, x,8)agr(y. OHN(s)déav;, ({)dxdyds
0 (TN)Z R2

k>1

f
> f f f 7 (5.3, Dage(x. R ()dZdv' (€)dxdyds
1 0 (TN)Z R2

+ftf 1 (s, x,E)0radmy(y, £, s)dédx
0 (TN)Z R2

t
- f f 15 (8,3, Odcadmi(x, &, s)dLdy
0 (TN)Z R2
= <<f1’0f2’0, a)) + 11 + 12 + 13 + 14 + 15. (4.26)

Similarly, we have
t
(FFof o) = (fiofro a) +[) ,f(TN)Z Lzﬁfz(a(g) Vi +a(l) - Vyadédidxdyds

!
+Z fo LFN)Z RzJE1+(S’x,f)agk(%f)hk(s)dfdvf,’s(g)dxdyds

k>1
S [ [ B ey e ent o edzdsdyas
o1 0 (TN)Z R2

—f f [ (s, x, ©0radmy(y, £, s)dédx
0 (TN)Z R2
+ f f f2+(S, Y, g)afadml(xv gv s)d{dy
0 (TN)Z R2
= <<f1,()f270, 0/)) + 1_1 + 1_2 + 1_3 + 1_4 + 1_5. (4.27)

By a density argument, (4.26) and (4.27) remain true for any test function @ € C° (Tiv XRg xTy XRy).
The assumption that @ is compactly supported can be relaxed thanks to (2.2) on m; and (2.4) on v;,
i = 1,2. Using a truncation argument of a, it is easy to see that (4.26) and (4.27) remain true if @ €
CX(TY x Rg X TV X R;) is compactly supported in a neighbourhood of the diagonal

{(x,_f, & xeTV e R}.
Taking @ = p(x — y)W(& — ), then we have the following remarkable identities
(Vi+V)a=0, (0+0)a=0. (4.28)

Referring to Proposition 13 in [9], we know that Iy, Is, I4, I5 in (4.26) and (4.27) are all non-positive. As

14



a result, we have

Lr . fR P = Ws(€ =< W, O 01,0 + i (x, ,E) 5 0, 1, 0))dédddxdy
= f@w)z fR Py(x = 5(€ = D0 ) Fo0( ) + Fro(x, ) fro(v, O)dédidxdy
+ 23:(1,- +1).
=1
With the aid of (4.28), we deduce that

!
no= [ [ [ Aisee - aovededcasasas
0 (TN)Z R2

3
[ [ [ dinae - aenvadeacasasas
0 (TN)Z R2

I

Let
Y10 = f Y& - dé’
for some &, € R. Then

o= = L A e € gt O e @

k>1

S [ [ vaoont [ 5sx o0 odea axdvas
= Jo Javy Jr R

DL L on ont o 0. 6. Odvas. 429

k>1

The third equality is obtained by

Lff(s,x,§)9g71(§,§)d§ —fRagf1+(5,x,§)71(§,§)d§

: fR V1. Odvy (&),
Similarly, for &, € R, let
7’2(46):[Z W& - ¢Hdd,

then

o= =3 e 0pt oo o oo dcasdvas

k>1

= —Z f f f p(x = )gi(x, O (s)( f £ (5,9, 00:y2(, £)d¢ v} (€)dxdyds
0 JTV)?2 JrR R

k>1

- > f(T . | ropte -y o an, o 7 . odsdyas (4.30)

k>1

15



Note that y1(£,0) = v2(L,€) = f_ i:f Y(y)dy. We deduce from (4.29) and (4.30) that

L+l=Y px =) | 71ED(r(x.8) — gy, OV ($)dv, , ® dv; (€, {)dxdyds.
0 (TN)Z RZ

k>1

Similarly, we have

!
Beh=Y [ [ p-n [ ne 0 - s s, @ v} 6. Odxdvds.
= Jo Jav R
Taking K; = I, Ky = Iy and K> = I, + I3 = I, + I3, the equation (4.25) is established for f". To obtain
the result for f, we take 7, T £, write (4.25) for f;’(t,,) and let n — oo. m|

Theorem 4.3. Let uy € L™(TV) and assume Hypothesis H holds. Then there exists at most one kinetic
solution to (3.18) with the initial datum uy. Besides, any generalized solution f;, is actually a kinetic
solution, i.e. if fj, is a generalized solution to (3.18) with initial datum I, >¢, then there exists a kinetic

solution uy, to (3.18) with initial datum uy such that fi(x,t,&) = Ly, (xp>¢ for a.e. (x,1,€).

Proof. Let p,, s be approximations to the identity on TV and R, respectively. That is, let p € C®(TN),
Y € CZ(R) be symmetric nonnegative functions such as ﬁl‘” p=1, wa = 1 and suppy C (-1,1). We
define ¢
)
Letting p := py(x —y) and ¢ := 5(¢ — {) in Proposition 4.2, we get from (4.25) that

1 1
py(x) = y—Np(g), ws() = 50

[, [yt~ 02 0700 + 50 Oty
< f(TN)z fR2 Py(x = s — O(f1.0(x, 8 fo0(, ) + fro(x, &) fr0(y, ))dédLdxdy
+K + Ky + 2K, (4.31)

where K1, K1, K» in (4.31) are the corresponding K, K1, K> in the statement of Proposition 4.2 with p,

y replaced by p,, ¥, respectively. Let ¥1(£, ) = f_io Ws(& = 0)dé, for simplicity, we denote ,(¢,0) =
v1(&,{). In the following, we devote to making estimates of K, K 1 and K>.
For K; and K 1, by (2.11) and using the same method as the proof of Theorem 15 in [9], we have

IKy| + 1K) < 2TCp6y7". (4.32)
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For K, by utilizing (2.13), we deduce that

IA

Boox [ aen [ n€0 Yl - s Ol 0 e odvdvds
k>1

t 1 1
< fo f( e PPEY) fR NED( Y I8 &)~ s0n OF) (Y WP dvi, @ dv; (& dxdydss

k>1 k>1

< D1 [ ool f(TN)zpy<x—y>|x—y| [ neoit, @ e cosdyas

Dy [0l [ ot [ el - v 0. & Oy

= Ko+ Ky,
Note that
f NEDd @A (€D < 1,
R
f py(x =y)lx = yldxdy < v,
(TV)?
it implies that
1
Ky < Dy f l($)lyds < DT + M). (4.33)
0
Moreover, by vy (§) = =0¢ff(s,.6) = Oeff (5, x.6) = S,z and V1 () = 9:fy(s.3.0) =
=0 f5(5,3,0) = 8,02, ) _» it follows that
: 22 (y5)=

!
Kyp < D f |h()ly f f py(x = YE = Lldvy  ® dvy, (€, {)dxdyds
0 (TN)Z R2
!
= VD1 [ [ oy D) = 0 oy
0 (TN)Z
!
= VD1 [ [ oy ) - a5 ddvds
0 (TN)Z
t
+y/D) f ()l f Py =)y 5) = ™ (v, 8))ddydss
0 (TV)

= VB [ WOl [ [ e 8 070 0 050 s
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By utilizing [, ys(¢ ~ HdZ = 1and [ ys(€ = OdZ = 4, we get
| f f— f Py (X = DI (%, 5,65 (v, 5, 6)dédxdy
f — f [ 8,6 5 (0,8, Opy(x = YWs(€ = Hdxdydéd
_ | f( . py(x =) f A f Uol€ = Oy e = Ly, dEd dy

j(‘TN)zfpy(x—)’)I |+(xs)>§f, W(S(f é/) §<u (ys)qdé’dfdxdy
fTN)zfpy(x y)Ili(xs)>ff Ys(& - DI E<u (ys)<(d§dfdxdy|

mm{uh (x,s), uh *(y,5)+6)
3 f py(x—=y) dédxdy
(TN)?

0y (3,9)
1 mm{uh‘i(X,S),Mi’i(y’s)}
+§f py(x_y) fu dédxdy
(TN)? 0-)-0
1 1

< Z0+z0=0.
T2 2

IA

IA

Similarly, we deduce that
’ f (v f Py(x = W (x, 5,6 /5 (v, 5. §)dédxdy
f(TN)z f FE O, 915700 5. Opy(x = Y)Wo(€ = )dxdydéd]

= ’ f py(x - )’) f 1 li(x §)<& f wé(f - {)(qu’i(y,s)>§ - Iuii(y,‘)>§)d§dfd)€dy

< f( o f Py(X =W 1x < f( Y& = Dl oy 5)<pdddEdxdy
ITN)pry(x y)Ili(x_y)<ff Y5 — I, <u (ys)<:d§d§dxdy|
”h = (y,5)+6
= gf py(x =) . dédxdy
(TN)? max{u, ™= (x,8),u, (y,9)}
1 1 (5)
+3 f py(x =) f dédxdy
2 (TN)? max{u;’i(x,s),ui’i(y,s)f(s}
1 1
< 55 + 55 =0.
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Then, we deduce from (4.34) and (4.35) that
!
26 4D f |h($)|yds
0

++/D; j(; |h($)|y j; vy fR 2(f1i 5+ [Ty (x = yWs(€ = Odxdydédds
26/D((T + M)

IA

K>»

IA

++/D; fo Ih(s)|y f( o fR z(fff;* + fELDPy(x = YWs(é — dxdydédlds.  (4.36)

Hence, Combing (4.33) and (4.36), we get

Ky < Dily +26)T + M)

+ \/D—lfo |h(s)ly j(:]pzv)z jéz(fff_f + 5Dy (x = W€ — Odxdydédlds.

Taking into account (4.31), we deduce that

Lr . [ o= s = O OB 001, 0+ T O Oy

IA

S =€ = DG 020000+ oot oot Oty
+2TCp6y "' +2+/Di(y + 26)(T + M)

+2 \/D_lfo [h(s)ly f(TN)Z fRz(fff{ + fi 5Py (x = YWs(é — Odxdydédlds

IA

[, [ oo+ Frofondeds + a0+ 27C, 87"+ 2yDity +oXT + )
2\Br [ [ [ G275 T eyt te - Ousdvasdcas,

where Ey(y,0) — 0,asy,d — 0.

Utilizing Gronwall inequality, we obtain

S L=t - 0 O 0000 + 50 vy

INA

| fT y fR (frofoo + fiofoo)dédx + E(y, 6) + 2TCpoy™" +24/Di(y + 20)(T + M)|
xexp 2D [ o]

2 \/DT(T+M)[ I}r ) fR (frofeo + flofro)dédx + Eo(y, 6)]

+22 VDI T C 5y~ + Dy (y + 26)(T + M)].

IA
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Combing all the above estimates, it follows that
[, [Ferofwno+ o s o
™ JR

- f(T . [P s = O OF 0.0+ 5 O 0. D)y + (7.0

IA

DT [ [ (fofso + Frosodeds + 280070
™ JR
+2e VPITIOITC, 5y~ + DIy +20)(T + M)] + &3, ), (4.39)

where &(y,06) — 0,asy,6 — 0.
Taking 6 = y% and letting y — 0O gives

[, [rerofwno+ itonofs oo

< AVPITHM) f y f (frofo0 + fiofr0)dxdé. (4.40)
T R

The reduction of generalized solutions to kinetic solutions is very similar to the proof of Theorem 15
in [9], we therefore omit it here. Suppose that u]11 and ui are two kinetic solutions to (4.24), using the

following identities
f Liselos dé = (uy — up)*, f Lisel s dé = () — 1), (4.41)
R MO R hTS AT
we deduce from (4.40) with f; = ]“Z g fi0 = Luy>¢ that
ek (®) = 5 Ollsmy < VP T llug = wll vy = 0.
This gives the uniqueness. O

In view of Theorem 4.1 and Theorem 4.3, we can define G° : C([0, T1; U) — L'([0,T]; L'(TV)) by

wp, if h = [ h(s)ds, for some h € L*([0,T]; U),

. (4.42)
0, otherwise,

G(h) := {
where uy, is the solution of equation (3.18).

4.2 The continuity of the skeleton equations

Firstly, for any family {h®,& > 0} € S and 7 > 0, we consider the following parabolic approxima-

tion

{ duty, — nAuy.dt + div(AGuy,))dt = DGR (D, (4.43)

uzg 0) = uyp.
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It is shown by Theorem 2.1 in [15] that equation (4.43) has a unique L? (TN)—valued solution provided
o is large enough and ug € Lo(TV), hence in particular for uy € L*(TV). We denote by uze the solution
of (4.43).

Furthermore, for any R € N, we approximate operator A in (4.43) by Lipschitz continuous operator

AR using the method of truncation. Consider the following approximation

n.R R 1n,R
duhs - nAu Rar + div(A (th Ndt = O(u,; )h*(ndt, (4.44)
ul(0) = uo,
where AR is Lipschitz continuous hence it has linear growth |AR(&)] < C(R)(1 + |¢]).
Referring to Proposition 5.1 in [8], we have
T
sup{ sup [luf"|l3 + f IVl E (9)li3ds) < CM, uollm), (4.45)
¢ 1€]0,T] 0
where the constant C is independent of £ and R.
Using the same arguments as the proof of Theorem 5.2 in [8], for every n > 0, it gives that
lim sup f 1R () = ul ()| dt = 0. (4.46)
R—+00 450

n.R R R
Uy, ,&>0}. we denote that " = u);".

As in [14], we introduce the following space. Let K be a separable Banach space with the norm || - ||x.
Given p > 1,a € (0, 1), let W*P([0, T]; K) be the Sobolev space of all functions u € L”([0, T]; K) such

that ;
1) —u(s
f f llue(2) ()IIKdd ‘o
|t_s|1+ap

which is then endowed with the norm

T ) — u(s)ll%
P
[l m—— f luoligde + f f s

The following result can be found in [14].

Firstly, we prove the compactness of {u

Lemma 4.1. Let By C B C By be three Banach spaces. Assume that both By and B; are reflexive, and
By is compactly embedded in B. Let p € (1,00) and a € (0, 1) be given. Let A be the space

A := LP([0,T]; By) N W*P([0,T1; By)

endowed with the natural norm. Then the embedding of A in LP([0, T1; B) is compact.
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We then have the following result.
Proposition 4.4. For any n,R > 0, {MZ’R, &> 0} is compact in L*([0, T1; H).
Proof. From (4.44), uZ’R can be written as
t t !
e = up+nm f AulRds — f div(ARUR (5)))ds + f OV (5)d s
0 0 0
= I[+5+15+1j.

Clearly, [[I{|lz < C;. Next,

= Aufly = sup Ky, —Aul®)]
VIl <1
= sup Vv, V™))
[Ivll <1
< CIVul®ily
which then yields the following
!
156 =&, = 1l f —Au(Ddil,
A
!
< ce-9) [ 1= MO ai
<

!
C(t-s) f IVulZR (DI dl.
N
Hence, by (4.45), we have for « € (0, 1),

2
Sup ”Igllwn,Z([O’T];H—l (TN))
&

r TS - IR,
[ s [ [ s
0 o Jo |t — s|'*=

Cr(a).

IA

IA

By integration by parts formula and the linear growth of AR, we have

div(AR U2 ()l -1 sup (v, div(AR @R (s)))

[Ivll1 <1
= sup Vv, AR@IR ()l
vl <1
< C(R) sup |Vv|(1+|uZ’R(s)|)dx
[Ivll, ;1 <1 JTV
< CR + ()12
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which gives that

I5(8) = I5(s)II7,

!
! f div AR R )l

< =) [ @t O,
< CR(t-s) f (1 + 2R D12l
< CR)(r—$)[1+ sup [l*®I2].

t€[0,T]

Hence, we deduce from (4.45) that for a € (0, %),

Sup||18||WH2( OT] H- I(TN))
T T |IE5(0) = ()7,
< f o [ [T dar
0 0o Jo |t — s|'+=e
< Cs(a).

Moreover, by (2.14), it follows that

[ VO3] A T T o L O3
< Do(L + R IZInE D,
then, by Holder inequality, we get
!
5@ -5l = | f (DI,

IA

(i) f DGR D2l

IA

!
Dot - s)(1+ sup W (I) f DRl
t€[0,T] K

DoM(t — s)(1 + sup [ (@0)II%).
t€[0,T]

IA

Thus, we deduce from (4.45) that for a € (0, %),

Sup“l ”Waz([OT] JH)
T e - )Nz
< f ||1€(t)||Hdt f f |t — s|1+2 I
< Cyla).

Collecting the above estimates, we conclude that for « € (0, %),
Sup ||u8 ||W“2([0 T] H- I(TN)) — C(a/)

Applying (4.45) and Lemma 4.1, we obtain the desired result.

23



Furthermore, we apply the doubling of variables method to obtain the convergence of the sequence
{t!,n > 0} to uy in L' ([0, T1; L'(TV)) uniformly on /1 € S .

Proposition 4.5. We have

lim sup ”M77 - uh”Ll 0.T1:L1(TN)) = 0.
i Sup fhy (0.T1LH TV

Proof. For any h € S, we consider the kinetic solution fi(x,t,&) = I, x.n>z of the skeleton equation

(3.18) with the corresponding kinetic measure mj. As the proof of (4.23), for ¢; € Cf.“(Tf'\\," X Re), we

have
!
i@, e1y = (fro.e)+ f (Fi(s), a@) - Vi (x, £))ds
0
!
+Zf f f‘Pl(L &)gr(x, 'f)h/\(s)c/vrl..s(f)dxds — (my, 001 )([0,1]),  (4.47)
=1 Y0 JTV IR »
where f19 = I,,>¢ and V,]\..y(é“ ) = (%]F]i(s, X, &) = —(')i:fli(s,x, &) = (5,,;:5. Similarly, consider the general-

ized kinetic solution fz”(y, t,{) = [L,;;(_\,J)>( of equation (4.43) with h® replaced by /4 and the corresponding

kinetic measure is denoted by m;_]. For ¢, € C:‘“(T»‘y X Ry), we have
- + - f -
Srm.e) = (f0.02) + f (f(9),a(Q) - Vypa(s))ds
0

!
_Z f f f 8k, g2 (x, RN ()dvy ! (Odydss + (mil, d2)([0, £])
0 JTV JR ' h

k>1
-7 f (), Aypa(9))ds, (4.48)
0

+

: 20, .t - ‘
where f5,0 = Ligs¢ and v, 1) = =0 £ (5,9, 0) = 0.f3 (5,3, {) = Sy

Setting a(x, &,y,{) = ¢1(x, E)p2(y, £), using integration by parts formula, we have

t
o = Wopoon+ [ | Afa@- V. a0 Vedsazdvivas

!
‘fo fﬁ@MMMWMwMMWMS
0 (TN )2 RZ

k>1

+Z fo Lr‘ vp Jee ArE(s, s Dag(x, R (s)d¢av!. (£)dxdyds

k>1

‘
+ f f 1 (s, x, f)aé«a/dmg(y, £, s)dédx
0 (TN)Z R2

!
- f f f (s, y, OOcadmy (x, &, s)dddy
0 J(TN)? JR?

!
-7 f f [ Avedédldxdyds
0 (TN)Z R2
= ((fi.0/20.@)) + Ri + Ry + R3 + Ry + Rs + Re.
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Similarly, we get

(0L @, ) (fr0fr0, @) + fo Lr v fR @@ Vi +alQ) - Vyadédidxdyds

S L T s o sdeas i Oandvas

k>1

2
_fo fg’i(s’y,f)agk(X,rf)hk(S)dfdvl’s(‘f)dxdyds
0 (TN)Z R2

k>1

!
—ff [ (s, x, &0 adm’y(y, ¢, s)dédx
0 (TN)Z R2
!
w [ A 0cadm g ddy
0 (TN)Z R2

!
+7 f f FEfTAyadédldxdyds
0 (TN)Z R2
= {((fi0/20,@)) + Ri + Ry + R3 + Ry + Rs + Re.

As the proof of Proposition 4.2 and Theorem 4.3, taking @ = p,(x — y)Ws(& — {), where p, and s are

approximations to the identity on TV and R, respectively, we have
j(;r . fR Py = Ws€ = ¢ WL OO0, 60 + fil e t, Of (0, 1, )dédldxdy
: ﬁw fR Py(x = YWs(E = O(f10(%, ) fr00, O) + fiolx, &) o0, O))dédddxdy
+Z6"(R,- +R). 4.49)
=
where R;, R; in (4.49) are the corresponding R;, R; with a = py(x — y)s(& = ) fori = 1,- - -,6.

Referring to Proposition 13 in [9], I~€4,R5,I:€4,I:€5 are both non-positive. From (4.28), R; and 131 can

be written as

ko= fo f(w fRz 1@ = a(Q) - V.opy(x = ys(é = {)dédidxdyds,
R = fo f( o fR [ = alQ) - Vupy(x = yWss(é = dédidxdyds.

Similarly to the proof of Theorem 15 in [9], we get
IRi| < TCoy™", IRIl < TC,oy™".

Moreover, with the aid of y1(£.0) = [* ws(¢ = Ode' 72(E.0) = [ dol€ ~ )L and 71(£,0) =
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v2(&, £), by the same arguments as the proof of Theorem 4.3, it follows that

=
[\
+
=
w
Il

Rz +R3

>, L e [t - s oo o e asavas

k>1

IA

Jomos [ o= [ v 03 i) -0 0F) vl v} avas.

k>1

Applying the same method as the estimate of K, in Theorem 4.3, we deduce that

=
)
+
=
&

|

Rz +R3

!
VB [ [ oyt [ 16 0= livl, @ e s

IA

+ \/D—lfo |h(s)lu ‘f(TN)Z py(x—y) ‘fRZ Y€ QIE = Lldvy, ® dv)z,,’g(f, O)dxdyds
T
(y +26)/Dy(T + L Ih(s)|7,ds)

Dy [ [ [ R 0 vt - e

IA

For the term R, it can be estimated as follows:

Rg

IA

. f f f ST Aoy (x = Wialé — OdédCdxdyds
0 (TN )2 R2

0 [ Awe-)] [ A5 vste - oddclaxayas
0 (TN)Z R2

n f f Apy(x = 3)| f 1€, 0dv)  ® dvyl(&,0) |dxdyds,
0 (TN)Z R2

where

o nE
l(§,§)=f( f Us(E — Vg de’.

Moreover, let & = & — (', it follows that

0 < f ( f vs(@de” ) de
4 {1€7]<0,8" <€~}

E+6
c f Slwsllz-de’
4

C(él + 121 + 0).

A

IA

IA

Then,
f I, Odv @ dviTI(E,0) < C(1 +6),
R2
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Based on all the above estimates, it follows that
[, Lottt = 0 0700+ Tt 0 0r. ity
< [, L e - 0100 00,0+ ot 0000, Oty
+2TCp6y ™" +2C(1 + 6Ty + 2(y + 26) Dy (T + fo ' |h(s)|2Uds)
+2/Dy fo sl Lr . fR ERT + FER Dy (= Wo(é - Ddxdydédlds,
By Gronwall inequality, we get

S Lot = O 077000 Fr 00 ity

2 VO o] f

(TV)?

IA

Lz Py(x = W€ — O (f10(x. ) 00, O) + fro(x, €)oo g“))dfd{dxdy]

T
T
22 VDT WO 7,5y 4+ C(1 + 6Ty + (y +26) VDI (T + fo Ih(s)ds)]

IA

2P | f f (1006 O 0. &) + fiolx. &) fro(x, ENdxdeé + Eg(y. )|
™ JR
T 2 r
+2e> VPT by WA 70,571 + €1+ 6Ty + (y +28) yDi(T + f h()fds)|,  (4.50)
0

where Ey(y, 0) is independent of i7 and converges to 0 as y,d — 0.
Let

Eny.0) = fT ) fR b OF (1 6) + o1, 611 (x 1, £)dndé
- f(T . fR 0y = W€~ DF L DT 01,0 + J7 (e 1,1 0,1, )ddldxdy,

we claim that &(n, y, 0) is independent of 7. Indeed,
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Em o) = | fT i fR FECo 6 F (x, 1,€) + FECo 1, € £ (x, 1, £)dxdé
- LT . fR oy (X =N L O, 1,6 + [, 7O 1, g))dgdxdy]
+[»f(TN)2 pr(x —y)(fli(x, t, &) _qui(y, 1,€) + f]i(xv 1, f)fzn’i(y, 1, £))dédxdy

- [, Lo e - 0 O 00.0 ¢ O 7 0ur. O
= H 1+ Hz,

Applying the same method as (4.34) and (4.35), it follows that
|H>| < 26, (4.51)
and

|H|

IA

|j(.TN)zp)’(x_y)jﬂ;lu,f(x,t)>§(lwz+(xt)<§ Iu”’t(y,t)sf)dgdxc{y|
+'j(‘TN)zp)’(x_y)LIu;(x,t)<f(l 1 iy I"+(yt)>§)d§dxdy’

2 f Py(x = Dy ™ (x, 1) = w) ™ (, 1)ldoxdy. (4.52)
(TN)?

IA

Combing (4.51) and (4.52), it yields

8[(’7’ 7, 6)
26+2fN py(x — y)luh (x f)—uZ’i(y, Dldxdy

IA

2542 f f Py (5= Dt T 1 6) + 71 (1,615 (01, ) xdy

IA

002 [ [ -yt - 007200
+ e 6 S (0.1, 0) )dédidxdy. (4.53)
Utilizing (4.48) and applying the similar method as the proof of (4.50), we obtain
S, L=t = 002 072 00.0 + B0 Oy
< o VDuTH)) lh(S)l%]dS)[[]rN fR(fz’sz’o + Frofoo)dxdé + Eo(y, 5)+Jﬁ]

, T
12 VDi(T+), |h(s)|%/ds)[TCp§)/_1 + (y + 26) \/D1(T + L |h(S)|%st)],
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where Ep(y, 0) is different from that in (4.50) but they both converge to 0, so we do not distinguish them.
Moreover, by utilizing the property 0@ + d,a = 0, we deduce that

!
Jﬁ = _T] f f fzn’i(-x’ S, ‘f)f_zq’i(y, S, {)Aya/dfd{dxdyds
0 (TN)Z R2
!
+1] f f 5 8,8 5 (0, 5, O Aedédldxdyds
0 (TN)Z R2
!
=1 f f f B, 8,8 5, 5, O)Aedédldxdyds
0 (TN)Z R2

!

+ f f f B s, O (3,5, OAedédldxdyds
0 (TN)Z R2

0.

Hence,

Sy L=t = 003 o 072 000.0 + e 80 Oy

< 2D+ [ ) [E0(v.6) +2TC,5y ™" +2(y +26) VD1 (T + fo ' Ih(s)3ds)]. (4.54)
Combing (4.53) and (4.54), we conclude that
&1, y,96)
< 46426 VDI(T+ [} Ih(s)ds) [80()/, 6) + 2T C,6y ™" + 2(y +26) \/D—l(T + fOT Ih(s)I%,ds)], (4.55)

which implies that &,(n, y, ¢) is independent of 1, so we denote that &,(y, 0) := &,(17,7,0).
From (4.50) and (4.55), we deduce that

[, [ ot e + o on cr e

IA

Sy L= = DG O 0.0+ FeCn 007 Our. Oty + 6.0

IA

DGR [ oo+ Rofodide + Eor.0) + 27C,y7!| 4 E.0)
™ JR

T
T
+2e2 VATl A9 (1 + 6Ty~ + (y +26) YD1 (T + f Ih(s)IF ds)]
0

IA

PV MO 38y, 5) + 6TCpoy ™| + 46
T
T
+2e> VTl W49 (1 + §yTy™ + 3(y +28) Dy (T + f Ih(s)I7 ds)]|.
0
Then, we reach

sup fT N \[R O 6, ) (6, 1,€) + FECe, 1,6 15 (x, 1, €)dxdé

hes y
< 2VPTEM|38(y,6) + 6TC,5y ™" | + 46

+2e2 VDI (1 4 6)pTy ™2 + 3(y +26) VDI(T + M),
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Taking 6 = y% andy = 77.%, we get

sup fTN jlé(fli(x, 1, é—‘)f_z’]’i(_x, t,&) + f]i(x’ t, é;)fzn,t(x’ t,£))dxdé

heS M

< & W(T+M)[380(% ) + 6TCpné] + 477%
+2e NPT T (] 4 nm3 + 33 +209) VD(T + M.

We deduce further from the following identities
fluh>£lu2>gdf = (up — MZ)+’ flu,,>glu;l>§d§ = (up - uZ)_,
R R >
that

sup || (£) = up(O)l| 1 pvy
hes y

< AVPITHM[380(y, ) + 2TCynd + 6CT(1 + 331 + 47
162 VDIT+M) (5 4 203Y D V(T + M).

4
9

Therefore, we get

lim sup ||uZ(t) — upOllp1 vy = 0. (4.56)
10 pes

We complete the proof.

Now, we are in a position to prove the continuity of G°.

Theorem 4.6. Assume h® — h weakly in L*([0, T1; U). Then uye converges to uy, in L'([0, T1; L'(TV)),
where uys is the kinetic solution of (4.24) with h replaced by h®.

Proof. Fix any n, R > 0. For the solution uZ;R of (4.44), we shall firstly prove that when #° — h weakly
in L2([0, T]; U), we have lim,_ ||uZ;R - uZ’Rll Liqo.ry:Lirvy = 0, where uZ’R is the solution of (4.44) with
h? replaced by h.

In fact, by the chain rule, we have

!
R R R R
" (0) — w7, + 2 fo IV — I ds

IA

! !
2 f (ARGRY — ARG, V@R — u)ds +2 f (@ (5) — O (), Wl — ulyds
0 0

IA

! !
2 fo (AR — ARG, V@R — uPR)yds + 2 j; (@R = D@NRE (), ulK — uPRyds
t
+2 f (@Y B (s) = h(s),ul = ulyds
0

!
= L +h+2 f (@) (hE(s) = h(s)), ul'X = ul®yds.
0
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Using the Holder inequality and Lipschitz continuous of AR, we get

I

IA

!
R R R R
2R f V@R — = Rl s

IA

f VG — iR Rds + Cn.R) f R IR,

Using Holder inequality and (2.15), we obtain

Hence, it follows that

I

< f DR — DU Ol — il
< D f el = w2 hE ()l ds.
0
sup () — RO, + 1 f VG — R Rd s
t€[0,T]
T R R
< CoLR) f R~ IR+ ()l )ds
0

+2 sup | f (@I (5) — h(s)), ul R — M|,
0

t€[0,T]

By the Gronwall inequality, we obtain

IA

A

t€[0,T]

2 sup
1€[0,T]

C(n,R,

sup [ (1) — ) (t)||H+77f IVl = )l ds

T
| [ - wna - iyasfes ey [ wora

T, M) sup | fo YR (s) = h(s)), ul — s

t€[0,T]

To show limg—0 Sup;(o.7 ||u (t) - uh (t)||2 = 0, it suffices to prove that

lim sup
&0 0<<T

!
f (@Y — hy, R - uZ’R>ds‘ =
0

This will be achieved if we show that for any sequence €, — 0, one can find a subsequence &,, — 0

such that

Now fix a sequence &,, — 0. Since {u

lim sup
k—cog<s<T

f
[ @ty - mat, - | =0 (457)

hSR ,m > 1} is compact in L*([0, T]; H), there exists a subsequence
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{my, k > 1} and a mapping i such that ul,' — iiin L*([0, T); H). Now, note that

h5m

sup f )l = ), — s
0<t<T
sup f(q)(u”R)(ha’"" h), ugmk u)ds|
0<t<T
R\ 1 & ~ n,R
+ sup | [ oo - i yas|
0<t<T " JO

Since h®" — h weakly in L*([0,T]; U), for every t > 0, it follows that
t
f (@Yo — hy, i — ul™yds = 0. (4.58)
0
On the other hand, by (2.14) and utilizing the assumption on 4, for 0 < #; < t, < T, it yields

15}
| (@MY — h), it — )

1

5}
< f ||5t—MZ’R||H||(D(MZ’R)||£2(U,H)|h8’”k — hlyds
1
15}
< Do f & = (L + R )l = hlyds
1
1 15} N 1
< vDo@@M)2(1+ sup [l |la)( f i = |17, ds)’
t€[0,T] 1
15 1
< VDoCOH Tl [ = ) (4.59)
n

Combing (4.58) and (4.59), we deduce that

lim sup
k—o0 0<I<T

!
f (@) HEm — h), i~ MZ’R>dS| =
0

By Holder inequality, we have

=

sup | f @Y — ), —u)ds| < DoC(M. T lluolzr)( f %, = ilyds)”

te[0,T]

Since MZ;If”k — @iin L*([0, T]; H), we obtain

!
lim sup |f(d>(uZ’R)(h‘9'"k —h), uZ;ﬁk — ﬁ)ds| =
k—=co ser0,71' Jo

Collecting the above estimates, we prove (4.57). Hence

lim sup [lu*(@) — 0|2 =
&0 ei0,r] a
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which further implies that for any > 0, R > 0,
. R R
};l_l;l(l) ”MZS - MZ ”LI([O,T];LI(TN)) =0. (460)
Note that for any €,7,R > 0,

leene — unllpr o, 7701 (o)
< n n R R _ R
< e = unellpro, et vy + e — wps lpqo,rptervy + Nige = wy o e covy

R _ o0 1
Hllu, ™ — wyllprgo, .t rvyy + iy, — wnllz o, Lt covy- (4.61)

For any ¢ > 0, by Proposition 4.5, there exists 79 such that for all £ > 0,

L L
62 = unelli qo.r1:00 (ovy) < 1 and [|u} — upll1 qo.77:01(Tvy) < 1

Letting = 19, we deduce from (4.61) that

L R R R
0 7705 170 170
e = unlliqo ey < 5+ e =" liniqo,risercovy + ltge™ = 4, oy oy

R
+Hloy "™ = w1 o710t 1) (4.62)

Using (4.46), there exists Ry large enough such that for all & > 0,

R L R L
el =l ozt vy < 1 and 1" = |l o710t vy < T
Replacing R by Ry in (4.62), we get
70,R: 70,R:
llre = unllzrqo,ryrvyy < ¢+ g™ = " llago 7y covy-

Using (4.60), we conclude that

im ||upe — upl|; g1 <t
lim lletne — unllpr o, r3:1 (xvy)

Since the constant ¢ is arbitrary, we obtain the desired result. O

5 Large deviations

For any family {#°;0 < & < 1} € Ay with h* = 3,5, h®*er, we consider the following equation

{ dii® + div(A@E*)dt = Q@I (1)dt + e®@)dW (1), (5.63)

uf(0) = uy.

we conclude that there exists a unique kinetic solution #® with

initial data uy € L™ (T") satisfying the following

E(ess sup [[2°(0)llprv) < +eo,
t€[0,T]
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and there exists a kinetic measure m® € MS(TN x [0, T] x R) such that f¢ := I ¢ fulfills that for all
¢ € CHTN x[0,T) X R),

T T
fo FE. et + (o, pl0)) + fo e alé) - V()

T
= —Vey, g, (. D)p(ix, 1, 8°(x, 1) dxdBe()
0 ™ JR

k>1

T
2 f f dep(x, 1, B (x, 1)G2(x, 7 (x, 1))dxdt
2 0 ™

T
—Z f f f o(x, 1, @ (x, 1)) g (x, 7 (x, DA™ (1) d xdt + m®(0z¢p), a.s. (5.64)
0o JrvJr

k>1

where G2 := Dkl |gk|2. According to the definition of G?, it is clear that Q‘S(W(-)+ \/%E fo' hg(s)ds) =ut().
According to Theorem 3.1 (the sufficient condition B) and Theorem 4.6, we only need to prove the

following result to establish the main result.

Theorem 5.1. For every M < oo, let {h® : € > 0} C Apy. Then

E 1 . &£ . & . ey
’g (W(.) + $£ h (s)ds) - QO(L h (S)dS)HLl([o,T];Ll(TN)) — 0 in probability.

Proof.

Denote fi(x,1,£) := Iyz(x > and fo(y,1,{) := Lye(y 5. Using the same procedure as for (4.22)-(4.23),
we have for all ¢1(x, &) € CX(TY x Ry),

(fi @, 1) (fro.en) + fo (fi(s),a(é) - Vap1(x,&))ds

t
+Ve ) 8k(x )1 (x, E)dv 5 (€)dxdBi(s)
0 JTN JR

k>1

+§ f f f 0ep1 (x, E)G™ (x, £)dv, 5(€)dxdss
0 JTN JR

+ Z fo fT N fR @1(x, E)gi(x, ORF(5)dvLE(€)dxds — (m, der ([0, 1),

k>1

where fi0 = I,,>¢ and v)lcj?(f) = —0¢ [ (s, x,é) = (')fff(s, X,&) = Opex(x=¢. Similarly, in view of (5.64),
for all ¢(y,2) € CX(TY X R;), we have

Fren) = (honga)+ fo as).a0) - Vyr(y, b

_Zfo fTNj};gk(y,5)902()’,{)h‘g’k(s)dvff({)dyds+(mg,awz)([o, 1),

k>1
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where fo.0 = Lz and 755() = 0, (5,9, 0) = =00 [ (5,3, 0) = Syee g1
Setting a(x, &,y, L) = ¢1(x, &) (v, ), using integration by parts formula, we deduce that

WO 0.0
= okoays [ [ [ e - a0 V.adsicaaas

+fff f3§a]32+(S,y,§)G2(x,f)dy;f(ér)dé«dxdyds
2 0 J(TN)2 JR2 !

[ [ e on oz ziedsivas

k>1
-, f f f i (s, x ©)agi(y, Oh(s)dédvy 5 (Odxdydss
i1 Vo Javy Jr2

—ff 15 (s, , O)0cadm(x, &, 5)d{dy

0 (TN)Z R2

+ f f FE(s, 0, 6)0adin(y, £, s)dédx
0 (TN)Z R2

oY [ [ B s oadcai@dsdydsio
k=1 O Jah? JR2
= ((fl,OfZ,O,a’)) + ]1 + J2 + J3 + J4 + J5 + J@ + J7.
Similarly, we get
(RO @), @)
= Ghopwan+ [ [ fipte - a0y V.adsdzdryas
-2 f f f dgaf3 (5,3, G (x, E)dvy 5 ()dLdxdyds
2 0 (TN)Z R2 ’

—Z f f f [5(5, 5, Oagi(x, O K (s)dLdviE(€)dxdyds
0 TN)Z R2

k=1 (
+>) f f f FiE (s, x,)agu(y, QR ()dedv2E(()dxdyds
izt Jo Javy Jr

+ff ff;(s,y,g“)@gadm‘f(x,f,s)dg“dy
0 (TN)Z R2

—ff fi(s, x, E)0adimsy(y, £, s)dédx
0 (TN)Z R2

t

Y [ [ e oat oadaayi@dsdrdsis)

=1 0 (TN)Z R2
= <<]E],0f2,0, a)) + .]_1 + .]_2 + ./_3 + j4 + .]_5 + J_(, + .]_7.

Taking a(x, y,&,) = py(x — YWs(& — {), where p, and ;s are approximations to the identity on TV
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and R, respectively. Then, we have

[, [yt~ 02 07000 + 5 0.0t say
< [ e vt - 00 0720000 + Fox ot e
7
+ > i+ D, (5.65)
i=1

where J;, Jz, in (5.65) are the corresponding J;, J; with a/(x, y,&,0) = py(x — y)Ws(€ - ), fori=1,---,7.

By the same method as the proof of Theorem 15 in [9], we have
il <TCyoy™', Js+Js<0, i <TCyoy™', Js+Js<0.
With the aid of y((¢, ), v2(&, {) and by using (2.12), we have

L=

J
!
) ff f f aG?(x, )dv,§ ® vy 5(€. O)dxdyds
2 Jo Javy Jr2 g
& !
_Doff fa(l+|‘§|2)dv,l\"ff®d‘7%_’f(§7§)d)(dyds
2 0 J(TN)?2 JR?
& !
_D"f f f adv,§ ® dvyi(€,{dxdyds
2 0 Javye Jr2 , ¥,

!
+£D, f f f alélPdvit @ dvie(€, O)dxdyds.
2 " Jo Javye Jr2 ' i

IA

IA

Clearly, it holds that

f ) f advy @ dViE(€, O)dxdy
e Jr2 '

sl f . f py(x = y)dvy© ®d?$jf({?, O)dxdy
(V) JR?2

IA

A

< MWl f py(x = y)dxdy
(T\’)Z
< 6 (5.66)

Moreover, by utilizing the property that measures vif and V\zf vanish at infinity, it yields that

f f aléPdvie @ d\"/%:f(f, Odxdy
(TN)?2 JR2 ! ’

< f py(x =) f s — DIEPdvS ® dvii(€, Odxdy
(TV)2 R2 '
< sl f - f (EPdv!e @ de(e, £)dxdy
(TN)2 R2 ’
< Cdlf py(x — y)dxdy
(TV)?
< csh (5.67)
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Recall

¥2(4,8) = f ws(& —¢Had. (5.68)
¢
Using the similar arguments as in the proof of Proposition 4.2, we have
J=3 + Jz4 = j3 + j4
!
= ) S Lo e d - s O s o astiie, asavas
k=1
< fo f( . fR N2E Py (x = Vlgr(x.§) = 10 DN (ldvys ® AV (&, Odxdyds
k=1
< | f( . [ 72600 3 0.8 = 0, OF) (3 4 0IP) vk © a6, s
k=1 k=1
<

!
NY f or f f AL Oy = Yl Yldv'E @ A6, dxdyds
0 (TN)Z R2

!
+Dy f ()l f Y=y f V&6 - LldvyS @ dvi(€, Odxdyds
0 (TV) R
= .i3,1 + j4,1.

By

IA

Jo oot e vidy <,

IA
:—‘

[ reontsedien
(TN)?
it follows that
1 < DT + M).
Using the same method as the estimate of 1?2,2 in Theorem 4.3, we have
Ja1 < 2+/DiS(T + M)
!
Ny [(wt [ [ et vwte - 0z + 7t acacdsavas.
Hence,
f3 + j4 = .i3 + j4
\D1(y +26)(T + M)
!
Ny (Wt [ [ ot vwte - 0z + it aacaavas.

IA
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Combing all the previous estimates, it follows that
j;]r . fR . Py(X = YWs(€ = DT, O 0, 1.0) + [ 1,6) f5 (v, 1, 0))déd L dxdy
< [ (ot o) + froln ol O)dde + €000+ 27C,y”
+26CDoTS™" +2~/D1(26 + y)(T + M) + |J3|(t) + |J5](1)
t
2Dy [l [ oy Wt - DG + T £ dedcasayas
Applying Gronwall inequality, we get
f(TN)2 fRz Py(x = W€ = O, O 0,60 + [ 1,6) f5 (v, 1, 0)déd L dxdy
< AT [ (oot Rofodsds + Enr.0)
+2 VP27 C Ly~ + 26CDO TS ™ +24/Di(26 + Y)(T + M) + |51(0) + 171(0)].

Thus, collecting all the above estimates, we deduce that

[, [rerof @ fienom oo

S, L0000 4 T O 000 000y = it ~ Dl + 6.

IA

] [ [ (frofso + frofoldads + Er.0)
T R
+2 VP27 C Ly~ + 26CDOTE™ +24/D1(26 + Y)(T + M) +1T71(0) + 1J71(1)] + Ei(y. 6)
= AVDITHM) f ) f (frofe0 + frofro)dxdé + NPT Tol) + | T71(0) + (e, v, 6,0, (5.69)
T R
where the remainder is given by
r(e,y,6,1) = & VPITMDTC 5y~ 4 26CDTS ™ +24/D1(26 + y)(T + M) + Eo(y.6)] + E,(7. ).

Applying the Burkholder-Davis-Gundy inequality, and utilizing (5.68), (2.12) that

INA

!
E sup i) < Ve swp 1Y [ f( . [ B nen adcaris@dsdydeio

t€[0,T] 1€[0.T] =7

= VEE sup 137 [ [ [ 70000706 00y 5= it D@y

€l0.7] 53

!
= em s 1 [ [t 0y s iz @ a3, o)

€l0.7] 153

INA

T 1
VEE| fo f( i, fR NEOp =) ) g )V © v dadyds|

k>1

IA

T 1
VENDOE| [ [ [ o0 + Pt @ astice dadvas]
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Taking into account the following facts
2 2\ 7 Le o 528
[ Aeoa i atics
R
< [JariPaiteatico<c
R
and
[, At nduay <y
(TV)?
we further deduce that

E sup |J71(1) < CNey/DeTy™.
t€[0,T]

By the same method as above, we deduce that

E sup |J7l(1) < C Ve DTy ™.
t€[0,T]

For the remainder, we have
sup r(e,7,6,1) < 282VPUTMITC 5y~ 4 &CDT5™" + D1(26 +y)(T + M)]
1€[0,T]

+HEVDITM) 4 1y qup E,(y, 6). (5.70)
te[0,T]

In the following, we aim to prove the error term sup,cg 7y &:(y,6) — 0 as y,6 — 0. To achieve it, we
adopt similar method as the proof of Proposition 6.1 and Theorem 6.2 in [8].

For any 7 € [0, T], we have
&r.6) = ﬁ ﬁ (et O (an &) + Fo(u 1,6 (n 1, £))dédx
- f( y [ E e OF 000+ 01 Oy = )l - Oodrdydeg
- [, [Urropwno oo oo
-] . [ o=@ OF 0O+ O 5O O]
+ f( - [ o OF 0 + Fr O 0. Oy

- f( | f (FELOF 0,00 + FE@ L6 £ (.. 0y (x — yWs(E — Hdxdydid |
™2 JR2
= H| + H>,

Applying the same method as (4.34) and (4.35), it follows that

|H>| < 26. (5.71)
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Moreover, it is easy to deduce that
|Hi| < ’ f Py(x =) f Taex (e py>e(Des(xpy<e — Iv5>i(y,r)§§)d§dXdy’
(TN)? R
+| f py(x - Y) f Iﬁgﬁi(x,t)sf(lv&i(x,tbf - Iv5~i(y,t)>f)d'dedy|
(TN)? R
< 2 f Py(x = MIVZE(x, 1) — v&E(y, 1)ldxdy.

(TNy?

By (5.71) and (4.38), we have

f( . Py(x = MIVEE(x, 1) = vE=(y, Dldxdy

S, Lotz o 000 + oo oy

IA

Lo, L= wete - 0 0000 + x50 ey + 25

IA

PTW] [ [ (frofso+ Frofokdeds +Enr.0)
+22 VDI C 5y~ + D1 (y + 26)(T + M)] + 26
= 2VDUTHME,(y 5) + 262 VPITHMITC 5y~! + Dy (y + 26)(T + M)] + 26,
where Ey(y, 0) — 0, when y,6 — 0. Then,
Hi| < 46+ 22 VP T g,y 6) + 42 VPITMITC 5y~ 1+ \[D\(y + 26)(T + M)].
Combing all the above estimates, we conclude that

sup E(y,06) < 66 + 262 VPITMg (6 1+ 42 VPIT+M[TC 5y~1 4+ \[D|(y + 26)(T + M)].
t€[0,T]

Hence, we deduce from (5.70) that

Sup r(g, Y 6a t)
t€[0,T]

< 22VPUTMITC 57" 4 £CDTS™" + /D126 + y)(T + M)]
+6(e2VPITHM) 4 1)5 4 22 VPITHM) (@ NDUTHM) 4 1) 80y, 5)

+ 42 NDIT+M) (,NDUT+M) DITC,oy~" + \/Di(y + 26)(T + M)].

Letting

then,

E sup |J5/(t) < C/DeTeT™™ -0 & — 0,
t€[0,T]

40



and

E sup |J5l() < C/DeTe™™ 0 &0,
te[0,T]

which implies that sup,¢(o 7 |J71(£) — 0 in probability and SUPye[0.77] |J=7|(t) — 0 in probability, as e — 0
by Chebyshev inequality. Moreover, it follows that

Sup 7(8, 7, 5’ t)
t€[0,T]

< 22NDIUTM[TC o1 4 CDYT X + D267 + 0 )(T + M)]
2
+6(e2VPITHM) o 1) 3wy 4 22 VPOIT+MD(2VDITHM) ()8 (4, 5)

+42 VDT 2ANDITHM) o [T C oG 4 [D] (26700 + X0 )T + M)]
— 0, as &—-0. (5.72)

Notice that fi = Ize5¢ and fo = ;s> with initial data f1 9 = I,,>¢ and o0 = I,,>¢, respectively. With the
help of identity (4.41), we deduce from (5.69) that

(1) = v Ol vy < EVPITMT 1) + 171(1) + (8,7, 6, D).
Hence, it follows from (5.72) that

Ni® — vl go.ryet vy

< T-ess sup [[u°(t) = ve(@)llp1 v
1€[0,T1
< TV sup |Fl(0) + sup [Fl0)+T - sup r(e,y.6,1) > 0
1€[0,T] t€[0,T] 1€[0,T]
in probability as € — 0. We complete the proof. ]
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