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ABSTRACT: The filamentous peptide-based nanowires
produced by some dissimilatory metal-reducing bacteria,
such as Geobacter sulfurreducens, display excellent natural
conductivity. Their mechanism of conduction is assumed to
be a combination of delocalized electrons through closely
aligned aromatic amino acids and hopping/charge transfer.
The proteins that form these microbial nanowires are
structured from a coiled-coil, for which the design rules
have been reported in the literature. Furthermore, at least one
biomimetic system using related synthetic peptides has shown
that the incorporation of aromatic residues can be used to
enhance conductivity of peptide fibers. Herein, the de novo
design of peptide sequences is used to enhance the
conductivity of peptide gels, as inspired by microbial nanowires. A critical factor hampering investigations in both
microbiology and materials development is inconsistent reporting of biomaterial conductivity measurements, with consistent
methodologies needed for such investigations. We have reported a method herein to analyze non-Ohmic behavior using existing
parameters, which is a statistically insightful approach for detecting small changes in biologically based samples. Aromatic
residues were found to contribute to peptide gel conductivity, with the importance of the peptide confirmation and fibril
assembly demonstrated both experimentally and computationally. This is a small step (in combination with parallel research
under way by other researchers) toward developing effective peptide-based conducting nanowires, opening the door to the use
of electronics in water and physiological environments for bioelectronic and bioenergy applications.
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B INTRODUCTION bacterial nanowires. Given that it is known that the PilA
proteins of G. sulfurreducens utilize a coiled-coil motif for
nanowire formation,'® the design rules for forming o helices
and coiled-coil structures can be applied, driven by siting
hydrophobic amino acid side chains in the assembled fibril
core."”"® Such coiled-coil structures have been formed at
physiological pH with high thermostability,'”*" whereas other
coiled-coils have incorporated phenylalanine and tryptophan
zipper motifs.”""** Ing et al.”*> combined these concepts to form
fibrils and hydrogels from designed a-helical coiled-coil
peptides incorporating aromatic phenylalanine residues in
order to confer electron transport properties on the resulting

The mechanism of conductivity in the microbial nanowires of
Geobacter sulfurreducens has been controversially proposed to
occur through electron delocalization in closely stacked
aromatic amino acids.'~* Band conduction of this nature is a
novel phenomenon in natural systems, with wide-reaching
implications for protein functionality.”® Furthermore, mi-
crobes play diverse roles in the biogeochemistry of anaerobic
soils and sediments; understanding the manner of electron
transport in such natural systems is integral to bioremediation
and bioenergy strategies.s_10 In addition, bioelectronics is an
emerging discipline at the interface of biology and electronics,

reacting to a strong demand for flexible, biocompatible, and assemb}ed structures. Their findings, in combination with
naturally derived electronically active materials.' ' Peptide- others,” suggest that the dynamic interactions of aromatic
based mimics of microbial nanowires appear to be ideal amino acid side chains in peptide-based structures can increase
candidates for self-assembling bioelectronic materials."’ electrical conductivity.

The de novo design and application of self-assembling Herein, we present the formation, characterization, and
peptides is an established strategy for bionanotechnology conductivity of newly designed, tailored, fibril-forming peptide
applications."*'® Peptides offer a suite of biological and
chemical functionalities exploitable for the formation of Received: August 30, 2018
supramolecular architectures, such as ordered nanofibers. Accepted: January 3, 2019
Hence, this approach is appropriate for mimicking conducting Published: January 22, 2019
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Figure 1. Amino acid sequence (a, c), secondary structure representation showing side chains (b, d), and atomic force microscopy (AFM)
topography images for F6 (e) and L6 (f). Scale bars on AFM images: 500 nm (x) and 4.5 nm (2).

hydrogels in a reproducible manner. Thus, we have expanded
the knowledge basis for designing electrically conductive
biological nanowires, while also suggesting insightful method-
ology for further investigations.

B RESULTS AND DISCUSSION

Fibril-Based Hydrogels. Two peptides (labeled F6 and
L6) were designed for this study that were tailored to form into
self-assembled nanofibrils under physiological conditions based
on the coiled-coil sequence of AFD36.”" F6 was the sequence
designed to be “conductive” through incorporation of the
aromatic amino acid phenylalanine (F) (Figure 1a,b) into the
hydrophobic core to provide a conductive pathway.

By contrast, L6 contained no aromatic groups and was
intended as the fibril-forming, but nonconducting, reference
(Figure 1c,d). As with AFD36, these gels did successfully form
from fibrils—seen in diluted form in Figure lef. Several
polymorphisms were noted for F6, including rodlike needles
(Figure Sle), a twisted and tangled morphology (Figure S1d),
and a twisted rodlike combination (Figure S1f). For L6, only a
single morphology was observed, which was the twisted and
tangled form. It should be noted that, particularly in the case of
F6, fibrils were rarely observed in isolation and required
specific preparation for imaging (see methods). As with the
parent sequence, L6 and F6 formed a gel at around
physiological pH via titration in sodium bicarbonate, allowing
handling time for the pregelled solution to be placed onto
interdigitated array (IDA) electrodes before fully gelling in
situ, ready for assessment of conductivity.

Electrical Measurements. Some methods for potentially
investigating individual fibrils may be similar to those used for
pili or other nanowires," such as through the use of
nanofabricated electrodes,** conducting AFM,*>*® or multi-
ple-probe AFM,””*® if peptide fibrils prove mechanically
adaptable to these procedures. We have chosen to use IDA
electrodes, commonly used for measuring conductivity in
nanowire films.””~>" One of the reported reasons for using
IDAs for this type of measurement is that they comprise long
interdigitated electrodes separated by a small gap, thereby
enhancing sensitivity and detection limits.”” However, there
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are some drawbacks to this measurement system. Contact
resistance cannot be considered without carrying out measure-
ments on IDAs of several different gap sizes, increasing the
time and cost of experiments. Even considering electrode-
contract resistance, there is no experimental way to account for
fibril-to-fibril contact (contributing also to sample capacitance)
on a bulk material. In a recent paper by Ing et al,”’ lower
concentrations of peptide (relating to lower assembly and
branching) resulted in increasing conductance, likely due to
decreasing fibril—fibril contact resistance.

However, by careful consideration of the material properties
(such as thickness dependence) and measurement conditions
(such as voltage range and stable current), reproducible
measurements can be made using little material, even for small
electronic conductivities. Thus, an avenue for exploration for
bulk materials of this nature is to determine the missing
conditions to satisfy all parameters of this system, fitting the
model to account for contact resistance, sample capacitance,
mixed mobility carriers, and the energetics of the material.

The current—voltage (IV) curves obtained for both F6 and
L6 displayed a non-Ohmic “S” shape (Figure 2), often
observed for organic semiconductors such as DNA* and
conducting polymers.”’

At every voltage point, F6 showed a higher current response
(Figure 2, upper graph) compared to L6 (Figure 2, lower
graph), and the S-shape of the F6 curve was less pronounced
than the L6 curve, consistent with an increase in
conductivity.”***~*” The shape of the IV curves is indicative
of space charge limited current.’***

The thickness of G. sulfurreducens biofilms in conductivity
measurements on IDAs has been reported to be 40—60°" and
80 + 9 um (N = 3);** however, biofilms are a composite of
materials and not directly comparable. Our films are thin
(maximum 7.5 and 29.6 ym for F6 and L6, respectively) and
difficult to compare between L6 and F6. Hence, films of
various thicknesses were tested (Figure S1 for F6 and Figure
S2 for L6); the consistency of these data showed that the IV
response was independent of film thickness. As these materials
are chemically similar, it is assumed that the electrode-contact
resistance is conserved.

DOI: 10.1021/acsomega.8b02231
ACS Omega 2019, 4, 1748—-1756
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Figure 2. Current—voltage (IV) data for peptides F6 (top) and L6
(bottom), which have been determined from multiple samples (see
Figures S2 and S3). Both peptide films demonstrate nonlinear
behavior of the voltage range. Each data set has been fitted to a power
law (I = G,V*), where for F6, agg = 4.2 + 0.4 (2SE) Gopg = 2.1 + 0.3
x 1077 S/V3? (2SE), and for L6, a4 = 5.5 = 1.1 (2SE) Gy = 8.1 +
0.3 X 1072 §/V*S (2SE). The magnitude of the powers indicates that
the films are behaving in a trap-limited current regime.*>**

As a result, a master IV curve for each peptide was
constructed by averaging current values at a specific voltage
and determining the uncertainty to 2 times the standard error
(2SE) (see Figure 2). These master curves were then fitted to a
power equation (eq 1)

I=GV*" (1

and values for the pre-exponential and powers determined to
+2 SE.

To compare the conductivity of F6 peptide films to the
control L6 films, we note two things:

(1) The IV curves are nonlinear; hence, a standard approach
of linear fitting in the Ohmic regime is not possible.

(2) The IV curves showed thickness-independent behavior,
excusing extensive geometric considerations.

To tackle the first point, we determined conductance
(G(V)) values at each specific voltage for the master curves by
noting that

1(V) = G(V)V 2)

To tackle the second point, we used the conductance values to
determine a voltage-dependent conductivity (eq 3), utilizing
the fact we are in a “thick film” regime™” ™"

o(V) = G(V)/$ 3)

where S is the form factor (determined to be 5.86 cm for our
IDAs). Once we determined these individual conductivity
values at each measurement point (Table S1), a ratio of the
conductivities of the peptides was taken, that is, eq 4

(V)es/ (V)16 (4)
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the uncertainty increases for smaller values of voltage. The solid line
indicates the weighted mean value, and the shaded area indicates the
uncertainty around the mean. Corresponding values are 3.5 + 0.9
(2SE), indicating that F6 is indeed more conductive than L6.

The data shows that F6 is 3.5 + 0.9 times more conductive
than L6. However, both peptide films are still in the insulating
regime, with the calculated conductivities falling in the range
107 S/m, and the magnitude of power fitting (Figure 2)
indicates that the films are behaving in a space charge (trap)
limited current regime.””** The current is dominated by
charge carriers injected from the contacts and hence the higher
current at higher voltages. At low potentials, contact effects
dominate the data. This type of transport has been observed
using conducting probe AFM measurements on Geobacter pili
WT and Y27A,” also displaying S-shaped I/V curves (Figure
2). The current generated from the F6 film, compared with the
isolated pili from the aforementioned study, was higher than
Y27A and similar to WT. Since there was no metal or redox
cofactor in our peptides, this points to effective aromatic
contribution to the peptide conductivity when compared to
WT. However, due to lack of I/V data on isolated peptide
fibrils, it was not possible to calculate carrier mobility transport
and, more importantly, the effective electron carrier concen-
tration to compare with other nanowire systems and organic
semiconductors.

Our measured conductivity is slightly lower than a
comparable study using films of modified Curli protein fibers
(0.3—2 nS/cm).” The closest analogue to our work, the study
by Ing et al.*® on biomimetic a-helical peptide gels, does not
report the conductivity or measured current of gel measure-
ments. The calculated conductance values were higher (0.1—
0.2 mS), suggesting increased conductivity. Fiber films
prepared on IDAs showed very high conductivity, in the
range of 1 S/cm, with a strong inverse correlation on fiber
concentration. Our observed conductivity (nS/m range) is also
significantly lower than the microbial nanowires that inspired
this work (Table S1); however, to the best of our knowledge,
no conductivity measurements that are directly comparable
currently exist.

DOI: 10.1021/acsomega.8b02231
ACS Omega 2019, 4, 1748—-1756
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We have reported a relatively simple method for measuring
the conductivity of high-resistance organic films; importantly,
these measurements are reproducible and amenable to
alteration of environment for interrogating the mechanism of
conduction. Experiments that also facilitate changing of the
temperature” and hydration status of the gels will yield further
fundamental information about the electron transport
mechanism in similar systems.

Conformation. Here, our de novo designed peptides
incorporating a phenylalanine core showed enhanced con-
ductivity compared to the control peptide of a leucine-based
coiled-coil. We suggest that the enhanced conductivity is due
to both self-assembly and the presence of phenylalanine. One
of the reasons for choosing phenylalanine in the design of F6
was to enable aromatic molecular orbital overlap, potentially
leading to electron delocalization and allowing band-gap
behavior. Some literature cites this as the mechanism of the
conductivity of G. sulfurreducens.””*”*" To investigate the
electronic state of phenylalanine in these peptides, fluorescence
spectroscopy was undertaken as the Stokes shift of phenyl-
alanine emission peaks has been attributed to 7— stacking in
the literature.””~** As seen in Figure 4, such a Stokes shift is
observed in F6 at 304 nm, suggesting interaction between the
phenylalanine groups of the peptide monomers.

When excited at 265 nm, F6 showed the expected emission
at around 280 nm due to phenylalanine, regardless of buffer. As
such, the peak intensities of all samples were normalized to the
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Figure 4. Fluorescence emission spectra with an excitation wave-
length of 265 nm of F6 peptide in (black lines) water and (blue lines)
titrated over time with sodium bicarbonate, where (b) is a portion of
(a) omitting water and zoomed in on the region of interest for clarity.

1751

phenylalanine peak at 280 nm for easy comparison. The peak
at 304 nm also had a shoulder around 315 nm, followed by a
long tail-off as the emission slowly reapproached zero. The
additional peak, shoulder, and tail-off is of higher intensity in
the sample of F6 in water (acidic; Figure 3a, dotted black line)
relative to the phenylalanine peak at 280 nm.

To compare the effect of pH changes on the same sample
and ensure no other inconsistencies in concentration or sample
preparation, a time series was undertaken during gelation
following addition of sodium bicarbonate to F6. The initial F6
concentration was 10 mM (Figure 4a, solid black line) before
addition of sodium bicarbonate and showed the largest relative
intensity of fluorescence emission at 315 nm of all measured
samples. During pH change, the biggest spectral change can be
seen at the peak near 270 nm (Figure 4b), which increased in
intensity as the sample approached pH 7.4 over time. More
subtle changes were observed in peaks at higher wavelengths
relative to the phenylalanine peak at 280 nm. The peak at 304
nm and the following shoulder near 315 nm increased in
intensity after 60 min, suggesting increasing aromatic
interactions due to gelation.

By contrast, L6 samples did not show significant emission
spectra, with a small emission at around 310 nm, potentially
due to histidine residues (Figure S4). The negative controls of
the empty cuvette and water alone did not show fluorescence
emission (Figure S$4).

The substantial increase in intensity of the emissions above
280 nm in the nongelled samples may reflect the presence of
oligomers in solution (Figure 4a). This is supported by
secondary structure investigations as a helices were detected
by circular dichroism (CD) spectroscopy even at low
concentrations and under acidic conditions (Figure $).

The canonical @ helical shape™>*® was observed by CD for
all concentrations and buffers of L6, with the double minimum
around 208 and 222 nm and a positive peak at ~195 nm
(Figure Sa,c). Although changing the pH at high concentration
(1 mM) did not result in a significant change in the shape of
the CD spectra, dropping the concentration of L6 in water did
reduce the intensity of the peaks, indicative of a change in
conformation toward random coil.*” The a helical shape was
also observed by CD for F6; however, it appeared to be
distorted. The double minimum at around 208 and 222 nm
was less defined and red-shifted (Figure Sb,d). Similar features
were observed for gel films measured in a dry state (Figure SS).

As a helices are not stable as monomers, it is reasonable to
suggest that assembly is occurring, and the hydrophobic
phenylalanine groups are associating in the aggregated
structure. As seen in Figure 5, the L6 peptide formed o
helices as predicted, suggesting a coiled-coil structure as
described in similar systems.'””” However, the same type of
spectra was not observed for F6, even accounting for some
distortion due to aromatics in the CD spectrum.””*® The
presence of antiparallel -sheets, type II fS-turns, or aggregates
in solution may account for the red-shifting and reduced
intensity of the peak at 208 nm.*** It is interesting to note
that significant effects due to change of pH were not observed
as seen in similar peptide sequences;lg’ ° in both L6 and F6,
the minima at around 208 and 222 nm are not significantly
higher after adjusting the pH close to the gelation set point of
7.4 (Figure Sc,d). In the case of L6, the a helical shape was
close to its final intensity even in water (Figure Sa, red line);
however, F6 had a strong increase in intensity when placed
into buffer for pH adjustment (Figure Sa, red line, compared to

DOI: 10.1021/acsomega.8b02231
ACS Omega 2019, 4, 1748—-1756
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Figure S. CD spectroscopies of (a, c) L6 and (b, d) F6 peptides. (a, b) Dilution series of peptides in water, showing a change toward random coil
configuration at lower concentrations (per legend) and (c, d) CD spectra of 1 mM peptides in 10 mM 2-(N-morpholino)ethanesulfonic acid buffer

at varying pH (per legend), adjusted using NaOH.

Figure 6. Self-assembly of L6 (above) and F6 (below) into nanofibrils as obtained from MD simulations using the coarse-grained MARTINI model
for the peptides. On the left are snapshots of L6 and F6 peptides randomly distributed inside simulation boxes with leucine and phenylalanine
shown in green and yellow, respectively, and different peptide chains presented in different colors. On the right, after 10 us simulation, L6 has
assembled into a nanofibril with moment of inertia (MOI) along the principal axes of the largest cluster of 7.74, whereas F6 has assembled into a

higher dimension nanofibril with MOI of 2.23.

Figure Sd, red line). Either F6 does not form assembled
structures without the presence of salt/buffer or it has formed
small, nonchiral oligomers in solution that do not absorb in the
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CD spectra. Given the strong fluorescence peaks, the former
would appear to be more likely. F6 gels readily at the

DOI: 10.1021/acsomega.8b02231
ACS Omega 2019, 4, 1748—-1756



ACS Omega

appropriate pH, suggesting these early oligomers are in
equilibrium rather than overcoming a nucleation barrier.

Simulations. For 21-mer peptides such as F6 and L6, the
formed helical structures have bent rather than extended
helical conformation, based on molecular simulation (Figure
S6). Full-atomic molecular dynamics (MD) simulations show
that F6 possesses a stable a-helix secondary structure, like its
parent sequence AFD36."”*° However, the peptide ends may
be more flexible, showing allowed conformations in the
polyproline or extended f-sheet regions for the first and last
heptads. Overall, F6 was stabilized into a helix-turn-helix
conformation, as verified by the highly populated cluster. It is
possible that the favored interactions between the aromatic
amino acids of side chains exceed the interaction of backbone
hydrogen bonds, which results in the bending of the extended
helix. This finding is similar to the folding simulation of long
proteins reported by Lazim et al.*’ and Duan et al.>’ To be
clear, L6 was seen by contrast to adopt a stable oa-helix
conformation, in agreement with the CD data (Figure S). As
F6 displays a less stable helix, it is less likely to form perfect
coiled-coil structures—as evidenced by the experimental
results, seen in the form of multiple fibril polymorphisms
and imperfect CD curves.

Coarse-grained (CG) assembly simulations were carried out
up to 40 ps to investigate the likely structure of assembled
fibrils, shown in Figure 6. F6 tended to form an aggregated
structure with dimension >1. The aggregation propensity
score, calculated as the ratio of the solvent-accessible surface
area (SASA) of the peptide molecules in the initial minimized
box to the SASA of the final configuration of the simulation of
F6, is smaller than that for L6 (from both full-atomic and
coarse-grained Martini approaches). The moment of inertia
(MOI) of F6 is similar in all three dimensions, thus confirming
the observation that the F6 aggregated structure has dimension
>1.

As expected, L6 was observed to form one-dimensional
(1D) fibril structures based on the coiled-coil motif.
Interestingly, F6 formed fibrillar-like structures but did not
continue in the form of 1D assembly. Instead, the bent-helix
lent itself to branching, resulting in a meshlike structure.
However, as highlighted in blue and yellow, which represent
leucine and phenylalanine, respectively, the hydrophobic
residues remained as expected within the core of the assembled
structures (Figure 6, right). It is possible that the interaction
between phenylalanine residues triggered both intramolecular
(end-bending) and intermolecular interactions. Despite these
different fibrillar-like structures, the aggregation did bring the
benzene rings of phenylalanine into close proximity as can be
seen from the radial distribution function (RDF; Figure 7).

Confirming the fluorescence data in Figure 4, the RDF
calculation in Figure 7 shows interaction of benzene rings in F6
after self-assembly. Importantly, a portion of the phenylalanine
residues are within 3—5 A of another phenylalanine, suggesting
conditions conducive to electron transfer."”' These data do
not reflect the conformation of the benzene rings and therefore
cannot, alone, confirm 7—7 stacking.

As highlighted, the low conductivity achieved is likely due to
poor fibril—fibril contact and broken electron transfer pathways
from branching and multiple polymorphisms. From these
simulations, we conclude that refining the design through
smarter placement of the bulky phenylalanine residues would
enhance conductivity. By reducing bending of the helix residue
by moving the phenylalanine away from the ends of the

1753

0.03

——First 2ns
——Last 2ns

0.02 |

0.01

Radial Distribution function, g(r)

0.00

10
Radial Distance (A)

Figure 7. Radial distribution of interaromatic rings shows possibility

of intermolecular aromatic ring-stacking interactions at high

concentration of F6 peptide. Data were extracted from full-atomic

MD simulation of 28xF6 peptides (starting from random distribution

in a periodic simulation box) at S00 ns.

sequence, two-dimensional assembly and conductivity would
be enhanced.

B CONCLUSIONS

The most important features of this work have been the de
novo design of peptides for self-assembly and enhanced
conductivity and the development of reliable methods for the
electronic investigation of biomolecules. Using steady-state
conditions for films of varying thicknesses drop cast onto IDAs,
current—voltage plots can be formulated through the equations
given herein for high-resistance organic materials.

We can say that de novo designed peptides incorporating a
phenylalanine core show enhanced conductivity compared to
the control peptide of a leucine-based coiled-coil. Through
electronic, spectroscopic, and simulation analyses, we suggest
that the enhanced conductivity is due to both self-assembly
into fibrillary form and the presence of phenylalanine.

This work offers additional phenomenological evidence to
suggest that amino acids are capable of transporting electrons
across micron-scale distances without the aid of redox centers
or metal components. Taken together, the results provide
support for electron delocalization as playing a role in G.
sulfurreducens pili, although there is still some way to go to
optimize phenylalanine as a sole mobility carrier in assembled
peptide systems. Improved structures could be formed by
replacement/addition of phenylalanine by another electroni-
cally active moiety, such as tryptophan, or through stabilization
of the C-terminus region to improve 1D self-assembly.
Adornment of the fibrils or gels using a hopping stepping
stone may also assist in conductivity by offering conduits for
electron hopping between fibrils.

B EXPERIMENTAL SECTION

Peptide Preparation. Peptides L6 (Ac-LHELAKL LHE-
LAKL LKELAKL-CONH,, MW 2465.04 g/mol) and F6 (Ac-
FHEFAKL FHEFAKL FKEFAKL-CONH,, MW 2669.14 g/
mol) were synthesized and purified by GenScript and
Mimotopes (Australia) using FMOC chemistry. The final
purity was >95% as measured by high-performance liquid
chromatography. The peptide content of the solid was
determined by high-sensitivity amino acid analysis for precise

DOI: 10.1021/acsomega.8b02231
ACS Omega 2019, 4, 1748—-1756
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concentration calculations (Australian Proteome Analysis
Facility, Sydney).

Peptide stocks were prepared from lyophilized powder in
water (Ultrapure MilliQ, 18.2 MQ) at a concentration of 10
mM (36.4 and 37.7 mg/mL for F6 and L6, respectively) and
further diluted in desired buffer as required.

Conductivity. Electrical measurements were carried out on
films prepared on interdigitated array (IDA) microelectrodes
(ED-IDA6-Au, Micrux Technologies, Spain). The IDAs had a
channel length of 1500 ym, width of 5 yim, electrode gap of 5
pum, and the number of electrode fingers was 30.

Arrays were electrochemically cleaned in 0.1 M H,SO, as
per the manufacturer’s instructions and tested as a negative
control; then, the sample was drop cast and dried in air prior to
measurement. For thicker films, 2 L of sample was drop cast,
whereas for thinner films (under 1 ym thickness), the excess
amount of sample was removed almost immediately after the
sample was drop cast by gently scraping a clean glass slide
across the IDA. Arrays were checked for damage by optical
microscopy. After electrical measurement, film heights were
measured using a Dektak 150 stylus profiler (Bruker,
Germany).

Two-point probe current—voltage (IV) data was constructed
utilizing previously published methods*” in which a set voltage
was applied across the film and the current recorded up to 100
s to minimize the ionic contribution over time. The final
equilibrium result was taken as the electronic current value for
the film. Discrete voltage values were selected from —0.9 to 0.9
Vin 0.1 V steps to yield the final IV curves. Data was obtained
by utilizing a probe station connected to an Agilent B1S00A
Semiconductor Parameter Analyser (Keysight Technologies).
Our voltage range selection was chosen to be below 1.2 V so as
to avoid electrochemical splitting of water.

We were unable to obtain reliable current values for our
films from —0.3 to 0.3 V due to insufficient equipment
sensitivity; hence, current measurements in this range were not
recorded.

Circular Dichroism. CD spectra were recorded using a
JASCO J-815 CD spectrophotometer at 20 °C in 0.1—10 mm
quartz cuvettes. Spectra were recorded from 190 to 260 nm
with a step size of 0.1 nm, bandwidth of 1 nm, integration time
of 4 s, and averaged over 10 scans. Raw ellipticities were
converted to mean residue ellipticities as described pre-
viously.*

Molecular Dynamics Simulations. All-atom molecular
dynamics simulation was conducted to get more information
on the secondary structures of the designed peptides. The
initial structures of F6 and L6 were built in (right-hand) a-
helix conformation of 21 amino acids by PYMOL and were
capped on the N-terminus with an acetyl group and on the C-
terminus with a primary amide (CONH,). Peptides were then
immersed in the center of cubic periodic (in all directions)
TIP3P water boxes with the minimum solute-box boundary
distance being set to 1.5 nm to ensure the absence of periodic
image interactions. Counterions were added to produce a
neutral simulation system. The salt concentration (NaCl) was
set at S0 mM. MD simulations were driven by the GROMACS
5.1 software package with CHARMM36 force field for the
peptides. The LINCS algorithm was applied to constrain all
bond lengths between heavy atoms and hydrogen atoms.>” The
Verlet leapfrog algorithm was used to propagate the dynamics
of the system at a time step of 2 fs. The long-range electrostatic
interaction was treated with the particle-mesh-Ewald method,
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and the van der Waals interactions were calculated with a
cutoff at 1.2 nm. Each system initially underwent 10 000 steps
of steepest descent to remove the local strain in the peptide
(due to generation of hydrogen positions) and to remove bad
van der Waals contacts, followed by 50 000 steps with position
restrains on the heavy atoms, the backbone atoms, and the C,
atoms. The simulation was continued with the NPT ensemble
at temperature of 298 K and 1 bar pressure employing the
Nosé—Hoover thermostat and the Parrinello—Rahman baro-
stat, respectively. Initial velocities were generated according to
the Maxwell distribution. The coordinates and velocities were
monitored every 2 ps, and the energies were recorded every 5
ps. Backbone dihedral angles y against ¢ of amino acid
residues in L6 and F6 were determined by the GROMACS
command g_rama. The pair distribution function g(r) between
the aromatic rings of PHE was determined using VMD for the
last 2 ns of the production run. The first 200 ns runs of each
trajectory were omitted to reduce the bias of the respective
starting model. All visualizations were produced by VMD with
the Tk Console extension tool.

To get more insight into the fibril assembly process, MD
simulations with the coarse-grained (CG) MARTINI force
field were also conducted for F6 and L6. The (right-hand) a-
helix conformation was used as the secondary structure of both
peptides. CG Martini topologies of the peptides were built
using the martinize.py script. This force field uses a 4:1 atom/
CG-bead mapping to represent peptide backbone and side
chains and a 3:1 atom/CG-bead mapping for the aromatic ring
of PHE. The CG MARTINI model does provide insight into
the driving force for the aggregation and consequently the self-
assembly of peptides, even though the priori secondary
structures are fixed during the simulation and the polarity,
shape, and nonbonded interaction potential of the amino acids
only included implicitly. Eighteen peptides were initially placed
randomly in a cubic simulation box of 8 X 8 X 8 nm® and then
solvated in Martini water.””*> The coarse-grained MD
simulations were run in the NPT ensemble. The Berendsen
method was used to maintain the pressure and temperature at
1 bar and 303 K, respectively. The systems were simulated for
40 ps in effective simulation time. To get more insight into the
structure (one-dimensionality) of self-assembled fibers after
the production run, we calculated the moments of inertia
(MOIs) along the principal axes of the system of the largest
cluster of peptides. In detail, the cluster was centered and
aligned according to its principal axes. The moments of inertia
of the cluster in the final snapshot are calculated by the
GROMACS command g_gyrate. The aspect ratios (I,/I,) and
relative magnitudes of I, I, and I, give some insight into the
differences in self-assembled structures. Aggregates with I, < I,
~ I, are mainly 1D.

Atomic Force Microscopy. AFM micrographs were
collected using an Asylum MFP3D SPM (Oxford Instruments)
using Etalon HA NC probes (nom k = 3.5 N/m, nom f = 140
kHz) in the tapping mode under ambient conditions. Peptide
samples were freshly prepared to 10 mM in water (Ultrapure
MilliQ, 18.2 MQ) and then diluted to a final concentration of
1 mM in 5.04 or 526 mM (for F6 or L6, respectively)
NaHCO;. Then, 20—50 uL of sample was spotted onto OTS-
coated silicon wafer’* and incubated for 2 h in a humid
environment. Excess liquid was removed by wicking; then,
samples were rinsed in 10 mM NaHCO; (adjusted to pH 7.4
with HCI) and allowed to dry in air before imaging. Fibrils
were easily found in the optically clear areas within ~100—200
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pum of micron-scale salt crystals. Image analysis was undertaken
using freeware Gwyddion (http://gwyddion.net) v2.41.

Fluorescence Spectroscopy. Fluorescence spectroscopy
measurements were carried out at room temperature on a
Jobin Yvon Fluoromax 4 (Horiba, Japan) fluorescence
spectrophotometer with a small-volume cuvette (pathlength
0.1 cm) with excitation wavelength of 265 nm, emission
wavelength in the range of 275—500 nm, and a scan speed of
~250 nm/min. Emission data was normalized against the
fluorescence peak of phenylalanine (280 nm).
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