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Abstract 
In this paper we introduce a novel method for prescribing terminal boundary conditions in one-dimensional arterial flow 
networks. This is carried out by coupling the terminal arterial vessel with a poro-elastic tube, representing the flow resistance 
offered by microcirculation. The performance of the proposed porous media-based model has been investigated through 
several different numerical examples. First, we investigate model parameters that have a profound influence on the flow 
and pressure distributions of the system. The simulation results have been compared against the waveforms generated by 
three elements (RCR) Windkessel model. The proposed model is also integrated into a realistic arterial tree, and the results 
obtained have been compared against experimental data at different locations of the network. The accuracy and simplicity 
of the proposed model demonstrates that it can be an excellent alternative for the existing models. 

Keywords Arterial blood flow • Terminal resistance • Poro-elastic model • Systemic circulation • Microcirculation 

1 Introduction 

One-dimensional flow modelling in cardiovascular systems 
has gained significant popularity in the recent years due to 
its potential applications in different areas such as funda­
mental understanding of blood flow (Mynard and Nithiarasu 
2008), fractional flow reserve (FFR) calculations (Boileau 
et al. 2017), aneurysm detection (Sazonov et al. 2017), 
hypertension (Segers et al. 2007) and many other appli­
cations (Coccarelli and Nithiarasu 2015; Coccarelli et al. 
2016, 2017, 2018). In many of these applications, prescrib­
ing accurate boundary conditions is essential to obtain sen­
sible results. The material properties and geometry are the 
other important aspects that influence results. Among the 
boundary conditions, resistance boundary conditions at the 
extremities play an extremely important role in determining 
the accuracy of predictions. In the following paragraphs, the 
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most commonly used methods for prescribing resistance at 
the extremities of a systemic circulation model are reviewed. 

The easiest way for modelling vascular bed effects is to 
employ a pure resistive model. By adopting this approach, 
the downstream vasculature is simply seen as a pressure 
drop, and thus flow and pressure waveforms at the outflow 
node are in phase. Although this model has been largely 
used in several works (Schaaf and Abbrecht 1972; Avolio 
1980; Wan et al. 2002; Sherwin et al. 2003a, b; Matthys 
et al. 2007), the effect of downstream vascular compliance 
is not accounted for, and this may lead to poor results. More 
advanced models for the treatment of the outflow bound­
ary conditions include the structured tree approach (Olufsen 
1999; Olufsen et al. 2000) and its derived versions (Brown 
1996; Cousins and Gremaud 2012, 2014), tapering vessels 
(Mynard and Nithiarasu 2008; Low et al. 2012; Hasan et al. 
2018) and the three elements (RCR) Windkessel model 
(Porenta et al. 1986; Stergiopulos et al. 1992; Alastruey 
2006; Urquiza et al. 2006; Formaggia et al. 2006; Du et al. 
2015). 

The latter model undisputedly represents the most popular 
approach for modelling the downstream vasculature effects, 
and it was employed in the most advanced arterial circu­
lation frameworks (Reymond et al. 2009; Alastruey et al. 
2014; Blanco et al. 2014, 2015; Mynard and Valen-Send­
stad 2015; Carson and Van Loon 2017). It consists of two 
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resistances and one capacitor, with the latter representing 

arterial compliance. Alastruey et al. (2008) have increased 

the robustness of the RCR Windkessel model by includ­

ing time-dependent resistances in order to simulate control 

mechanisms in the cerebral circulation. It is important to 

mention that other models, like (Olufsen 1999; Cousins and 

Gremaud 2012, 2014), allow the integration of characteristic 

regulatory mechanisms of microcirculation. 

As outlined by Olufsen (1999), pure resistive and Wind­

kessel models are lumped and thus wave propagation effects 

are not included in the part of arterial system they represent. 

Furthermore, using this latter model for outflow conditions 

may lead to nonrealistic phase lag between flow and pres­

sure because of artificial reflections (Olufsen 1999; Vignon­

Clementel and Taylor 2004). Structured arterial tree models 

are able to tackle this issue, but they involve higher com­

putational costs for treating the boundaries (Guan et al. 

2016). Another disadvantage related to the use of Windkes­

sel models is that the model parameters strongly depend on 

the vascular bed represented. In accurate representations of 

arterial tree, like (Blanco et al. 2015; Mynard and Valen­

Sendstad 2015), the specific resistance coefficients for each 

terminal RCR model have been determined by considering 

the amount of blood flow reaching that region. Compliance 

parameters of the downstream circulation are generally cal­

culated by assuming proportional distributions with respect 

to either terminal resistances or compliances. By having 

optimal values for the total resistance and compliance, the 

overall wave shape can be well approximated; however, these 

quantities are not easy to measure and the pulse profiles are 

extremely sensitive to these parameters. In addition to this, 

if there is a need to either extend or reduce the network, new 

RCR model coefficients need to be determined for represent­

ing the new downstream system. Similarly, tapering vessels 

approach is limited by the fact that tapers are artificial and 

therefore their length must be tuned depending on which 

fraction of the vascular bed branching they represent. The 

porous media model proposed addresses some of the issues 

identified and provides a natural extension of the arterial 

flow network at the boundaries. 

The porous media models have been already used for 

describing arterial blood flow and perfusion within soft tis­

sues, see for example Khaled and Vafai (2003), Khanafer 

and Vafai (2006) and Iasiello et al. (2014). However, none 

of these models have been adopted for studying blood flow 

in large network problems, such as the systemic circulation. 

Therefore, it is clear that progress can still be made in the 

development of more robust and physically based method­

ologies. In the present work a novel, physically motivated 

method for treating outflow boundary conditions in arterial 

networks is introduced. The idea behind this work is based 

on the proposition that the downstream resistance of a blood 

flow network can be assimilated to an elastic porous media. 
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The new methodology proposed is presented in Sect. 2. This 

includes the model derivation and the solution procedure 

adopted throughout the study. In Sect. 3 the model is tested 

on several different problems, including a flow network. 

Some important conclusions are derived in Sect. 4. 

2 Modelling methodology 

Large elastic arteries are characterized by diameters of the 

order of few centimetres, which decrease in size towards 

the periphery, where they branch into the smaller muscular 

arteries (0.1-10 mm in diameter) that perfuse the down­

stream circulation, called microcirculation. This consists of 

branching microvessels, called arterioles (below I 00 µm in 

diameter), which feed complex capillary networks (Alas­

truey et al. 2012). 

2.1 Equivalent porous media 

The microcirculatory network, originating from a muscular/ 

small artery, can be seen as series of bifurcations leading to 

a set of narrower vessels embedded in the solid tissues. The 

artery where microcirculation branches from is the terminal 
vessel of the arterial systemic circulation considered. The 

resistance offered by microcirculation to blood flow can be 

conceived as the one encountered by a fluid when it flows 

through a porous medium. This means that, for each terminal 

vessel belonging to the systemic circulation, the downstream 

vasculature may be represented by a ID axisymmetric poro­

elastic tube (see Fig. 1). For more details about modelling 

arterial branching and microcirculatory networks, see refer­

ence works available in the literature (Pries and Secomb 

2008; Pries et al. 2009; Cutri' et al. 2013; Causin et al. 2016; 

Arciero et al. 2017). 

By referring to Fig. 1, the characteristics of the proposed 

porous media model are defined below. The equivalent 

poro-elastic tube representing the microcirculation in the 

above figure is assumed to have a variable porosity e that 

decreases along the axial coordinate x. For a fluid entering 

into a packed bed, this relationship may be described accord­

ing to Nithiarasu et al. (1997) and references in this work as: 

(I) 

in which b
P 

and c
P 

are empirical constants (b
p 

= 1.0 , 

c
P 

= 2.0), whilst e0 is the free stream porosity and D
P 

is the 

characteristic dimension, which is taken as the particle size. 

Since the exponential relationship was developed for packed 

beds, its applicability to the poro-elastic model of microcir­

culation may not be very suitable. Thus, we also investigate 
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Fig. 1 Downstream vascular 
network embedded in solid 
tissue (top) and equivalent poro­
elastic material model (bottom) 
for representing terminal bound­
ary conditions 

Flow 
..... 

Flow 
..... 

Fig. 2 Change of particle size as microvessel diameter decreases. 
Smaller calibre vessels perfuse more intimately into solid tissue, 
which can be seen as solid particles embedded in a fluid matrix 

simpler linear law for describing porosity changes in space, 
i.e. 

(2) 

where 11 is a coefficient defining the slope of the variation 
and e00 is the limit porosity. The proposed methodology is 
based on the assumption that the solid particle diameter is 
equivalent to the microvessel diameter, as approximately 
represented in Fig. 2. This modelling hypothesis can be jus­
tified for small size vessels, which are intimately embedded 
in the solid tissue, as reported in Lorthois and Cassot (2010). 

X 

Microcirculation 

embedded in 

solid tissue 

Porous 

media 

For a given porosity e, it is possible to calculate the asso­
ciated permeability of the medium via (see Nithiarasu et al. 
1997) 

e3D2 
k = 

P 
P 150(1 - e)2 

(3) 

The pressure drop associated with the porous media resist­
ance can be obtained through the linear Darcy's law as 

(4) 

where µ is the fluid viscosity and u the fluid velocity aver­
aged over the tube cross-sectional area. The diameter of the 
poro-elastic tube is set equal to the terminal vessel diam­
eter DT, and DP values are determined using relationships 
derived in the following section. 

2.1.1 Microvascular branching 

It is assumed that the microcirculatory network mainly 
develops along the x-axis. All the vessel lengths are con­
sidered only in such a direction. The microvessel diameter 
DP can be described with a piecewise continuous function, 
in order to reflect the change in size after each bifurcation. 
The same can be done for the microvessel length LP. The 
terminal vessel, having diameter DT (or Dp,o) and length½ 
( or Lp,o), branches into two equal narrower and shorter ves­
sels, characterized by a diameter Dp,I and length Lp,I· Each 
of these vessels branches into other two equal narrower and 
shorter vessels having diameter DP,2 and length Lp,2, and so 
on for the following generations. 
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For a generic vessel generation n, characterized by D and 
p
,n 

L
p
,n• its generation n + 1 has the size that may be calculated 

via: 

D
p
,n+l = </JD

p
,n and L

p
,n+I = rJL

p
,n• (5) 

in which the coefficients </J and 17 are those to ensure that, 
after each bifurcation, the vessel diameter, length and vol­
ume decrease and the vessel total cross-sectional area and 
lateral surface increase. Following the work by Alastruey 
(2006), the satisfaction of these conditions requires 

1 1 
2</J < 1'/ < 2<JJ2 

. (6) 

From Eq. (5), it is possible to write the size of vessel n with 
respect to the size of the terminal vessel as 

(7) 
A microvascular branching characterized by n generations 
has a total length LiJ = LiJ(n) (including also the terminal 
vessel length) that can be expressed as 

n 

(8) 

which can also be written as 

(9) 

For a generic cumulative length LiJ, the associated number of 
branching generations can be found by re-arranging Eq. (9): 

log[l - �(l -11)] 
n = ---.....:....--� - 1 

log(17) 
. (10) 

It is noticed that this final formulation is very similar to what 
was derived in Papageorgiou and Jones (1987). With regard 
to Fig. 1, the total length of the microvascular network can 
be written as LiJ = Lr + L7=1 Lp

,i = Lr + L
P
. The diameter 

D
p
,n can be expressed as a function of the microcirculation 

length L
p
,n and the coefficients 17 and </J: 

(11) 
This means that by knowing the coefficients 17, </J and total 
length of microcirculation network LiJ, both functions D 

p
,n 

and L
p
,n can be defined. It is important to note that, since 

n = n(x), also D
p
,n = D

p
(x). 

An alternative way to define the microcirculatory system 
is to impose, instead of the length LiJ and coefficient 17, the 
minimum diameter D

p
,min that is accounted in the model. In 

this case the number of generations n can be easily found by 
rearranging the first expression in Eq. (7) as 
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(12) 

According to Alastruey (2006), the coefficient 17 can be com­
puted as 

17 = n: 1 (2�2). (13) 

guaranteeing, at the last bifurcation of capillaries, the maxi­
mum perfusion with the minimum space occupied by the 
whole network originated from the terminal vessel. Once 17 
is known, it is possible to calculate the length of the whole 
network through Eq. (8). 

2.2 Flow in 1 D poro-elastic vessel 

The variables considered in a 1D arterial circulation system 
are the cross-sectional area (A), the average values of velocity 
(u), fluid pressure (p) and porosity (e) over the cross section. 
The density (p) of the fluid and wall is considered constant due 
to the incompressible nature of the materials assumed. The 
viscosity (µ) of the fluid is also assumed to be constant. Due 
to the one-dimensional nature of the model, the shear stress 
is evaluated using Poiseuille's flow assumption. For relating 
pressure and cross-sectional area, a nonlinear relationship 
used by Formaggia et al. (1999) and Olufsen et al. (2000) is 
employed. The mass and momentum conservation equations 
for the flow in a poro-elastic vessel, in terms of area and veloc­
ity, are given as, 

a(eA) a(eAu) --+--=0 
at ax 

' (14) 

(15) 

where P is a parameter accounting for the wall elasticity. 
Pressure is assumed to be related to cross-sectional area via 

P = Pext + P( y;;,_ - veAo°), (16) 

in which Pext is the transmural pressure and A
0 

the stress-free 
vessel area. The conservation equations can also be written 
in the following compact form 

(17) 

where U is the primitive variables (eA,u) vector, and F and 
S are, respectively, the convective and source terms. It is 
important to note that for e --+ 1, the system reduces to the 
classical Navier-Stokes equations for flow in elastic vessels. 
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2.3 Solution method 

A brief overview on the finite element solver employed is 
provided in this section. Equation (17) requires a scheme 
with a stabilization term to obtain a stable solution. Thus, 
in this study the locally conservative Taylor Galerkin 
(LCG) method is used, which is the finite element equiva­
lent of Lax-Wendroff stabilization in finite difference dis­
cretization. Using this method, the semi-discrete form of 
Eq. (17) can be written as, 

(18) 

where H and Q are, respectively, the Jacobian matrices of 
the convective and source terms. Applying LCG method, 
Eq. (18) can be written as (Nithiarasu 2004; Thomas and 
Nithiarasu 2008): 

l NT flUdx 
= flt l NT ( - a:; + sn )dx 

e e 

+ flt l NT {:x[en ( a!n -sn)] (19) 

-Qn ( a:; -sn) }dx, 

The final discrete form of Eq. (19) can now be written as 
(Mynard and Nithiarasu 2008; Thomas and Nithiarasu 2008) 

where [Mel, [Ke] and [Le] are the element mass matrix, 
the coefficient matrix for convection, Taylor-Galerkin and 
source terms for the coupled continuity and momentum 
equations, respectively. These element matrices of the sys­
tem of equations are solved on individual elements, inde­
pendent of surrounding elements. Information is transmitted 
between elements via the numerical flux term (fr) that is 
imposed along the boundaries of each element (Mynard and 
Nithiarasu 2008; Nithiarasu 2004). The time step restriction 
of the numerical scheme is 

flx 
flt = 0.9�, 

cmax 
(21) 

where flxmin is the minimum element size in the finite ele­
ment mesh and cmax is the maximum wave speed. For further 
details on dealing with bifurcations and other boundary con­
ditions, refer to Mynard and Nithiarasu (2008). 

3 Results and discussion 

In this section, several problems are studied for validat­
ing the proposed methodology and probing the param­
eter effects on the arterial flow waveforms. In all simu­
lations, the porosity e for the blood vessel lumens is set 
as e00 = 0.99999. This will recover the Navier-Stokes 
equations for flow through elastic vessels with no porous 
media. After the terminal vessels, the porous resistance is 
switched on by appropriately imposing varying porosity 
values as discussed in the previous sections. The coeffi­
cient</> is kept fixed equal to yo.6, as suggested in Alas­
truey (2006). 

3.1 Porosity model effect: single vessel 

In this subsection, the effects of porous media approach 
used for terminal resistance on flow and pressure are ana­
lysed using a single vessel (see Fig. 3). The results are 
compared with the ones obtained for a vessel with no 
reflections prescribed at the outlet (pure absorption bound­
ary condition). A vessel representing the carotid artery is 
considered here. The unstressed vessel cross-sectional area 
used is A

0 
= 0.22038 cm2 , the tube length L-r = 12.6 cm 

and the elastic parameter p = 2251960.3 dyne/cm3 • In 
addition, the dynamic viscosity µ = 0.04 poise and the 
fluid density p = 1.06 g/cm3 are also used. At the inlet, 
a flow waveform is prescribed (see Fig. 4). Both the ves­
sel and porous tube domains are discretized with 500 
linear finite elements each and the time step used is 
flt = 0.000005 s. An analysis of the mesh size effect on 
the solution is reported in "Appendix". 

For this numerical experiment, four different 
space-porosity relationships have been used and the mini­
mum microvessel diameter, D

p
,min• is set equal to 0.2 cm. 

The length of the porous section L
P 

is determined using 
the relationship discussed in Sect. 2.1.1. The space-poros­
ity relationships used are exponential and linear decays 
with additional parameter variations as shown in Fig. 3. It 
is important to note that many other porosity variations, 
including nonlinear variations, can be imposed. Such 
flexibility allows the model to adapt realistic variations 
if the porosity variations in real microcirculation can be 
measured. More details on the measurement of the tis­
sue porosity associated with microvessels can be found in 
recent studies like Sato et al. (2015), Tang et al. (2015) and 
Peyrounette et al. (2015). It is worth mentioning that the 
variations shown in Fig. 3 are only for demonstrating the 
usability and effectiveness of the proposed model. 

Figure 4 shows the time evolution of flow and pressure at 
monitored locations of the terminal vessel (a), (b) and (c). 
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Fig. 3 Space-porosity models 
adopted. The locations (a), (b), 
(c), (d), (e) and (f) are used to 
monitor flow rate and pressure 

(b} 
Terminal vessel (c) (d} Poro-elastic tube 
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Fig. 4 Flow and pressure time evolutions at the monitored locations (a), (b) and (c) of the terminal vessel, for different outflow boundary condi­
tions 

For the pure absorption case both flow and pressure signals 
are identical at both inlet and exit. As shown in Fig. 4, the 
employment of the porous media approach results in a mag­
nification of the pressure amplitude. Imposing a variable 
porosity media, beyond the terminal vessel, increases the 
resistance the fluid encounters at the terminal vessel outlet. 
This is reflected by the drop in peak flow at the outlet for all 
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porosity models although the total mass is conserved (see 
Fig. 4). The exponential decay model is characterized by a 
much steeper drop in porosity along the length (see Fig. 3), 
which leads to higher peak pressure than in the linear decay 
cases as shown in Fig. 4. Among the linearly varying poros­
ity cases, higher pressure is recorded for steeper variation 
in porosity. This is because steeper porous profiles provide 



A novel porous media-based approach to outflow boundary resistances of 1 D arterial blood flow . . .  
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Fig. S Flow and pressure time evolutions at the monitored locations (d), (e) and (f) of the porn-elastic vessel, for different porosity models 

a much higher resistance to flow. As seen, increase in free­
porosity parameter e

0 
decreases the pressure at the outlet. 

Figure 5 shows the waveforms obtained inside the poro­
elastic tube. As seen, the pressure drop increases with dis­
tance in a consistence manner in all models employed. This 
represents a smooth decay in pressure, as normally expected 
in a microcirculation. Thus, the proposed model, supported 
by more realistic representation of the porosity variation, can 
easily replicate microcirculation. 

3.2 Microvessel diameter effect: single vessel 

In this section the effects of minimum microvessel diam­
eter on flow variables are investigated. Performances of the 
proposed approach are compared with the classical three 
elements (resistance-capacitance-resistance, RCR model) 
Windkessel model. The properties, geometries and boundary 
conditions for two example problems are taken from Boileau 
et al. (2015). Once again a single vessel is used but with 
two different diameters, one representing aorta and another 
representing carotid artery. The material properties and flow 
conditions are appropriately changed to reflect the change in 
nature of the two subproblems. For carotid artery, the condi­
tions are identical to the one explained in the previous sub­
section. The stress-free area of the aorta is taken as 3.0605 
cm2 , the elastic parameter f) is taken equal to 370648.7 dyne/ 

cm3 , the length of the aorta used is 24.137 cm, and all other 
properties remain the same as carotid artery. Each artery 
is discretized with 500 linear finite elements. The poro­
elastic vessel used for applying the boundary condition is 
also discretized using the same number of elements. Three 
different minimum microvessel diameters (D

p
,min = 0.2, 0.1 

and 0.01 cm) and three space-porosity relationships are 
considered. 

Figure 6 shows both flow and pressure evolutions with 
time at the outlet of the common carotid artery for three 
porosity-space relationships. This figure also shows the 
results obtained using the RCR model used in Boileau 
et al. (2015). By varying the minimum microvessel diam­
eter D

p
,min• a slight change in flow amplitude is observed. 

The pressure on the other hand significantly increases with 
decrease in D

p
,min· This is anticipated as smaller vessels offer 

higher resistance and thus increase in pressure. The spatial 
distribution of the porosity also plays a fundamental role in 
determining the pressure distribution. The linear decay case 
with Y/ = 0.8 and e

0 = 0.5 provides results that are close to 
the RCR model when D

p
,min = 0.1 cm. It appears that both 

the exponential and linear porosity models can be tuned 
to match the pressure distribution generated by another 
model. However, the linear models appear to be giving a 
better overall control in terms of adapting. Irrespective of 
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Fig. 6 Flow and pressure time evolutions at the outlet of the common carotid artery, for different terminal models and minimum microvessel 
diameters 
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Fig. 7 Flow and pressure time evolutions at the outlet of the upper thoracic aorta, for different terminal models and minimum microvessel diam­
eters 
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these, it would certainly be useful in the future to have the 
rnicrovessel porosities and diameters measured to represent 
the resistances more robustly into the porous media models. 
With regard to the computational efficiency, the poro-elas­
tic model is more expensive than the RCR model ( + 83.1 % 
for D

p
,min = 0.2 cm), due to the additional equations to be 

solved for the porous domain. However, this cost is strongly 
affected by the type of discretization adopted for the porous 
media. Moreover, it is important to mention that the treat­
ment of the boundary conditions represents a negligible frac­
tion of the overall simulation cost. 

In Fig. 7 time evolutions of the flow rate and pressure at 
the outlet of the upper thoracic aorta are shown. It is impor­
tant to note that for the exponential porosity decay, the wave­
form shape is preserved across all D

p
,min cases. However, 

this is not always the case with linear porosity variation. As 
seen the linear approach not always preserves the waveform 
shape. This is expected as the proposed porosity models 
are meant for resistances represented by rnicrocirculation, 
and thus, their applicability to large vessel resistances may 
require more work. 

3.3 An arterial network 

Fig. 8 Arterial tree proposed by Low et al. (2012). The red dashed 
line represents the heart region including the first eight arteries of the 
network. Black circles indicate the four monitoring points where flow 
variables are recorded 

In this section, the proposed methodology is applied for 
treating the boundaries in a realistic arterial tree network. 
The model validation is carried out by studying how wave­
forms propagate from aorta to the lower limb. The simula­
tion results are compared with in vivo data taken from differ­
ent studies (Schaaf and Abbrecht 1972; Matthys et al. 2007; 
Kroeker and Wood 1955; Reymond et al. 2009). The arterial 
tree adopted is the one described by Low et al. (2012) and is 
shown in Fig. 8. For more details on the boundary conditions 

Fig. 9 Time evolutions of pres­
sure at different nodes of the 
arterial network. Dashed lines 
are used for experimental data 
from the literature: Schaaf and 
Abbrecht (1972), Matthys et al. 
(2007) and Kroeker and Wood 
(1955) 
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Fig. 1 0  Time evaluations of 
flow rate at different nodes of 
the arterial network. Continuous 
lines are used for simulation 
results. Dashed lines are used 
for experimental data from 

Thoracic Aorta II (segment 35) Abdomina l  Aorta IV (segment 47) 
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and geometry of the system, refer to the above-cited work. 
The time step used is !1t = 0.00002 s, and each porous tube 
beyond the terminal vessel is discretized in space by using 
an element length of Ax = 0.2 cm. The simulations are car­
ried out for porous media model with different Dp,min (0.08 
and 0.05 cm) and two different space-porosity relationships 
(exponential and linear decays). 

Flow variables are monitored at four different locations 
of the arterial tree. These correspond to the middle of four 
arteries proposed in Low's network (empty black circles in 
Fig. 8): thoracic aorta II, abdominal aorta N, right common 
iliac and right femoral. 

In Fig. 9, pressure values are reported with respect to 
time for all four locations. As seen, agreement with the 
experimental measurements is satisfactory, especially for 
the model with linear decay in porosity. It also appears that 
a decrease in minimum diameter of the microvessel slightly 
increases the accuracy although this is not significant. The 
exponential decay appears to provide poor approximation, 
involving an augmentation of the signal period. However, 
with change in parameters used in the exponential relation­
ship, accuracy could be improved. It is worth noting that 
the experimental data for the right common iliac artery are 
taken from a study carried out on an circuit of elastic tubes 
and not a real arterial system. This may explain the marked 
discrepancy between experimental and numerical results. 

The time evaluations of flow rate for the mentioned four 
locations are plotted in Fig. 10. As seen, they in general are 
in good agreement with the measured data. 
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4 Concluding remarks 

In this paper a novel, porous media-based approach is intro­
duced for treating outflow boundary conditions in 1D blood 
flow modelling. The model's effects on flow and pressure 
fields are investigated through a series of numerical exam­
ples. The role of parameters like € and Dp,min is also eluci­
dated. The proposed methodology is then validated against 
the popular benchmark and network problems. The proposed 
model has the advantage that no specific regional param­
eters require to be determined by a tuning process, and only 
few general parameters, describing the porous media, are 
user-dependent. The results clearly show that the spatial 
distribution of the porosity strongly affects the results. The 
same can be said for the minimum size of the microvessels 
considered. The simulation results showed that the model is 
able to provide very similar results to that of the reference 
results, but the proposed model is robust in the sense that it 
requires smaller number of parameters. Such parameters can 
be determined independent of flow. The proposed model can 
be easily adapted to represent experimental or other model 
data as it is easy to control. Thus, the proposed model pro­
vides a more flexible and simpler alternative to the existing 
models. Further research is required on experimental meas­
urements of porosity of microcirculation and new porosity 
variation models. 
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Fig. 1 1  Flow and pressure time evolutions at the monitored locations (a, b, c), for five different mesh sizes 

mmons.org/licenses/by/4.0/), which permits unrestricted use, distribu­
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made. 

Appendix: Mesh size effect 

In this section the mesh size effect on the solution of 
the problem in Sect. 3.1 is reported. With regard to the 
space-porosity relationship, the exponential decay case 
is considered. In this analysis five different element sizes 
are considered (Ax = 0.01, 0.02, 0.04, 0.1 and 0.2 cm). It is 
worth mentioning that the same Ax is applied for vessel and 
porous tube. All the other parameters, including the time 
step, are the same as in Sect. 3.1. Figure 11 shows flow and 
pressure values in time at the locations (a), (b) and (c), for 
five different mesh sizes. 

The comparison shows that for mesh size equal and lower 
than Ax = 0.02 cm the numerical solutions tend to converge 
to the same values. 
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