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Optimal parameters of viscoelastic tuned-mass dampers

A. Batou?, S. Adhikari®

@ School of Engineering, The University of Liverpool, Liverpool, United Kingdom
bCollege of Engineering, Swansea University, Bay Campus, Swansea SA1 SEN, UK

Abstract

A vibration absorber, also known as a tuned mass damper (TMD), is a passive vibra-
tion control device. This is achieved by attaching a secondary oscillator to a primary
oscillator. In general, the aim is to reduce the vibration of the primary oscillator by
suitably choosing the parameters of the secondary oscillator. The effectiveness of a TMD
depends on (a) optimised the value of the tuned parameters, and (b) the nature of ambi-
ent damping of the absorber. They theory of TMD when the secondary and the primary
oscillators are undamped or viscously damped is well developed. This paper presents an
analytical approach to obtain optimal parameters of a TMD when the vibration absorber
is viscoelastically damped. Classical results on viscously damped vibration absorbers can
be obtained as a special case of the general results reduced in the paper. It is shown
that by using a viscoelastically damped TMD), it is possible to obtain superior vibration
absorption compared to an equivalent viscously damped TMD.

Keywords: tuned mass damper; vibration absorber; fixed-point method; viscoelastic;

optimisation

1. Introduction

Tuned mass damper (TMD) is a classical device concept for passive vibration control.
Early works can be seen in [1]. A comprehensive details regarding the physics and design
of tuned mass dampers, also know as vibration absorbers, can be found in the 1956 book

of Den Hartog [2]. Since the original theoretical concepts, there have been many practical
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high profile implementation of tuned mass dampers in high-rise buildings and towers. We
refer to the book by Soong and Dargush [3] for comprehensive details.

The central idea behind the tuned mass dampers is to attache a carefully chosen
secondary oscillator to a primary oscillator such that a part of the vibratory energy of
the primary oscillator is transferred for certain forcing to the secondary oscillator which
will dissipate this energy. It is generallyconsidered that the primary oscillator is ‘given’
so that its parameters, that is, the mass, stiffness and damping (if present) are fixed. The
mathematical problem of tuning the mass damper, therefore, comes down to selecting the
parameters of the secondary oscillator. For practical reasons, the mass of the secondary
oscillator is often fixed apriori. We suppose p < 1 is the ratio of the mass between
the primary and the secondary oscillator. When the primary oscillator is undamped, it
was proved [2]| that the optimal tuning ratio (the ratio of the natural frequency between
the secondary oscillator the primary oscillator) is given by \/m . This remarkable
simple result was derived based on a curious observation by Den Hartog [2] which came
to be known as the ‘fixed-point theory’. This pertains to the fact that there are two fixed
frequencies at which the frequency response of the primary oscillator is independent of
the damping of the secondary system. This observation results into certain simplifications
in the subsequent mathematical derivations, which in turn gives rise to the simple closed-
form expression of the optimal tuning parameter. For complex primary structures, the
optimal parameters and position of the TMD can be determined by introducing and
solving appropriate non-convex optimisation problems (see for instance [4, 5]).

When damping is introduced in the primary structure, the existence of the fixed
points, as they were known, is lost. Consequently, the derivation of the optimal tuning
parameter becomes less straightforward compared the classical undamped case. The path
of investigation for the damped case mainly follow two routes - (a) rigorous mathematical
optimisation based exact numerical methods, and (b) approximate but simple analytical
methods. Some examples of the first category include a numerical optimization scheme
proposed by Randall et al. [6, 7], an optimal design of vibration absorbers using nonlinear
programming techniques by [8], and an optimum design using a frequency locus method by

Thompson [9]. Pennestri [10] obtained optimal solutions using the min-max Chebyshev’s



criterion. Numerical studies based on minimax optimization are reported in [11, 12].
Works within the second category include empirical formulac for optimum stiffness and
damping of a vibration absorber based on the minimization of the acceleration response
by loi and Ikeda [13] and a perturbation technique by Fujino and Abe [14]. A particularity
noteworthy observation, made by Ghosh and Basu [15] , was that even when the primary
structure is damped, the so-called fixed points remain within a reasonably close proximity
to the original fixed points corresponding to the undamped primary structure. This lead to
the derivation of approximate closed-form expression of the optimal tuning parameter for
the damped case. Later approximate fined point theory was employed to obtain optimal
parameters of a piezoelectric energy harvesting dynamic vibration absorber [16]. It was
shown that as a special case when the piezoelectric coupling goes to zero, the optimal
tuning parameter reduces to the one derived by Den Hartog [2].

Viscous damping model is one of the many possible physically damping models that
can be used for dynamic systems [17, 18]. The aim of this paper is to explore the use of
more general viscoelastic damping in the context of tuned mass damper. The motivation
behind this investigation is that by using a more generalised damper, it may be possible to
achieve a passive vibration control which is beyond the limit of a purely viscous damper.

The paper is organised as follows. A brief overview of general viscoelastic damping
models are given in Section 2. The equation of motion of the viscoelastically damped
vibration absorber in given in Section 3. In Section 4 we derive the optimal parameters

of the vibration absorber.
2. Brief overview of viscoelastic models

In classical elasticity, instantaneous stress within a material is a function of instanta-
neous strain only. In contrast, in viscoelasticity, instantaneous stress is considered to be
a function of strain history. When a linear viscoelastic model is employed, the stress at
some point of a structure can be expressed as a convolution integral over a kernel function

[19] as

o)~ [ g-n"s )

— 00



Here t € R is the time, o(t) is stress and €(t) is strain. The kernel function g¢(t)
also known as ‘hereditary function’, ‘relaxation function’ or ‘after-effect function’ in the
context of different subjects. The stress-strain relationship in (1) can be directly applied
to dynamic analysis of a solid body. For example, it is is applied to an uniform rod,
Equation (1) can be multiplied by the area and the equation can in tern be expressed in
terms of the force and displacement rate (or velocity). In practice, the kernel function is
often defined in the frequency domain (or Laplace domain). Taking the Laplace transform

of Equation (1), we have

a(s) = sG(s)e(s) (2)

Here 5(s), €(s) and G(s) are Laplace transforms of o(t), €(t) and g(t) respectively and
s € C is the (complex) Laplace domain parameter. There are two broad ways by which
the kernel function g(¢) can be constructed, namely by a physics based approach or a

more general mathematical approach.

2.1. Physics based representation of the kernel function

In a physics based approach, the kernel function appearing in the viscoelastic consti-
tutive relationship can arise from a combination of springs and dashpots. This can be
achieved in various ways. Four main cases are shown in Figure 1.

We define the unit step function ¢(¢) and Dirac delta function §(¢) as below

1 if t>0, 0 if t#0,
Ut) = and 0(t) = (3)
0 if t<O0. 7 o(t)dt =1
Using these functions, the viscoelastic kernel function can be expressed [19-22] for the

four models as

o Maxwell model:

g(t) = ke”®M (1) (4)
e Voigt model:
g(t) =no(t) + kU(?) (5)
o Standard linear model:
g(t) = [ka + Ky e_(k”/")t] U(t) (6)
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Figure 1: Springs and dashpots based models viscoelastic materials.

o (Generalised Mazxwell model:

g(t) — [Z kje—(kj/nj)t
j=1

Models similar to this is also known as the Pony series model.

Ut) (7)

These functions can be constructed by considering the equilibrium of forces arising by
stretching the springs and dashpots appearing in Figure 1.
2.2. Mathematical representation of the kernel function
The kernel function in Equation (2) is a complex function in the frequency domain.
For notational convenience we denote
G(s) = G(iw) = G(w) (8)
where w € RY is the frequency. The complex modulus G(w) can be expressed in terms of

its real and imaginary parts or in terms of its amplitude and phase as follows

G(w) = G'(w) +iG" () = |G(w)|e" (9)



The real and imaginary parts of the complex modulus, that is, G'(w) and G”(w) are also
known as the storage and loss moduli respectively. One of the main restriction on the
form of the kernel function comes from the fact that the response of the structure must to
start before the application of the forces. This causality condition imposes a mathematical
relationship between real and imaginary parts of the complex modulus, known as Kramers-
Kronig relations (see for example [23] for recent discussions). Kramers-Kronig relations
specifies that the real and imaginary parts should be related by a Hilbert transform pair,

but can be general otherwise. Mathematically this can be expressed as

G'(w) =G + z/ uG(w) du
0

T w? —u?
(10)
" 2w [ G'(u)
G(w):?/o u2—w2du

where the unrelaxed modulus G, = G(w — o0) € R. Equivalent relationships linking

the modulus and the phase of G(w) can expressed as

w2 — u2

In |G (w)| :1n|Goo|+z/oo o) 4.,
[ o )
0

¢(w) =

It should be noted that complex modulus derived using the physics based principled

T u? — w?

discussed above automatically satisfy these conditions. However, there can be many
other function which would also satisfy these conditions. It is possible to determine G(w)
from experimental measurements (see [23-26]) which satisfy these conditions. In Table 1
we show some functions which have been used in literature. Among various possible
viscoelastic models, the Standard linear model (which is equivalent to a Biot model with
n = 1) is considered here. Other viscolelastic models could considered for the TMD (see
for instance [26]). Nevertheless, the use of a Standard linear model enables a closed-form
solution to be calculated (and thus avoids the solving of a non-convex inverse problem),

which is one of the objectives of this paper.

3. Equation of motion of the coupled system

The viscoelastic tuned mass damper considered here is shown in Figure 2. The primary
structure is assumed to be an undamped single degree of freedom system. The secondary

oscillator or the vibration absorber is considered to be coupled with the primary oscillator
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Viscoelastic Complex modules Main references
model

Biot model Gw)=Go+> 1, 1::’;12; Biot [27, 28]

Fractional Gw) = % Bagley and Torvik [29]

derivative

GHM G(w) = Gy [1 +> ak%] Golla and Hughes [30]

and McTavish and

] Hughes [31]

ADF G(w) = Gy 1 + D Ay ;:“;22’“ Lesieutre and Mingori
' 32]

Step-function G(w) = Gy [1 + 771_36;) Sto} Adhikari [33]

Half cosine Gw) =Gy |1+ n1+21(f§(/;(12/;)6; o Adhikari [33]

model ) ’

Gaussian model  G(w) = G [1 + et/ {1 —erf ( >}] Adhikari and Wood-

Vi
I house [34]

Table 1: Complex modulus for viscoelastic models in the frequency domain

through a Standard linear model type as discussed in the previous section. Damping is the
primary structure is ignored here as this would help to reduce the vibration and therefore
could mask any added benefit arising due to the viscoelastic absorber which we want to
investigate.Also, this assumption is necessary to derive a methodology for optimizing the
viscoelastic TMD since it is a condition for fixed-points to exist.

The mass and stiffness of the primary oscillator are represented as m; and k; re-

spectively. The vibration absorber has a mass and viscoelastic damping function as msg,

ky — MW"
MW
koo

Figure 2: A schematic representation of the viscoelastic tuned mass damper.



ko + ke~ (®/M'4(t). The dynamics of the primary mass (m;) and the absorber mass (ms)
can be expressed by two coupled ordinary differential equations as

mu X () + kX (0) + ke (X0(8) — Xa(t) + /0 " e /=" (X1(r) = X)) dr = F (1),

(12)

ma X + ky (Xa(t) — X1(1)) + / " e t/n-0) (Xa(r) = Xa(n) dr =0, (13)

0
where X (t) and X,(t) are the displacement of the primary mass m; and absorber mass

mo respectively. The primary structure is assumed to be driven by an excitation force

F(t). Transforming Equations (12) and (13) in the frequency domain we have
)1 (w) — (ko +iw

k + iwn k+z’wn)x2(w):f(w)v
nk B
k + iwn) (22(w) — 21(w)) = 0.

Here 71 (w), x2(w) and f(w) are Fourier transforms of X;(t), Xo(t) and F(t) respectively.

(—w2m1 + ]fl + kz + w
(14)

(—w?mg + ko + iw

We introduce the following notations for convenience

k
H= %7 Wy = _17 Q(W) =
mi mi w1
5 w27)2k‘ ~ n k2
k:(w) = ko + m, C(W) = m; (15)
k(w) c(w) wj (@)
w2(w) - Mo ) ( ) - 2m2w1> (w) w%
Using these notations it can be shown that the modulus of x;(w) solution of Eq. (14)
reads
|21 (w)] = Bw)[f(w)], (16)
where

Bw) = \/ (26(w) Aw))? + (Aw)? — g(w))?
(2€(w) 2()P(Qw)” = T+ p QPP + (1a(w) Aw)’ — (Aw) = D) — @)
(17)

is the amplification factor for which, contrary to the classical TMD case, & and g depend

on the frequency w.



4. Derivation of the tuning parameters
4.1. description of the general methodology

For the case my; = 1 kg, mo = 0.1 kg, k1 =1 N/m, ky = 0.0645 N/m, k = 0.0678 N /m,
the function ((w) is plotted in Figure 3 for different values of the damping coefficient 7.

It can be seen in this figure that:

—n =3e4

n =0.05
10°
—~ 10"
)
(e
10° }
107 ¢

Figure 3: The amplification factor §(w) for different values of 7.

1. For very small values of n, as for classical TMDs, the viscoelastic TMD presents two
large resonance peaks. Indeed in this case, the link between m; and my is equivalent
to the unique spring ko without damping.

2. For very large values of 7, the damper locks and then the link between m; and
ms is equivalent to only two parallel springs ks and k£ without damping. Therefore
contrary to the case of a classical TMDs, no complete lock for mass ms appears
when increasing the damping 7.

3. There are three points for which the response amplitude does not depends on the
damping 7. For classical TMDs, such fixed-points have also been observed but there
were only two of them. The classical methods for deriving the optimal parameters

of a classical TMDs are based on these fixed-points. For viscoelastic TMDs, we now



have three fixed-points. We therefore need to revisit the methodology for finding

the optimal parameters.
Based on Figure 3, we propose to derive the optimal parameters in three steps:

e Step 1: Calculate the positions of the three fixed-points.

e Step 2: Determine the optimal values for ks and k such that the values at the fixed-

points (which are independent of the damping) have prescribed relative positions.

e Step 3: Determine the damping 7 that gives a symmetric response with respect to

the central fixed point.

4.2. Positions of the three fixed-points
To calculate the position of the three fixed-points, we introduce a methodology similar
to the one used for classical TMDs: we search the frequencies for which the amplification
factor 3 has the same values for n = 0 and n = 400. Indeed for these two values, the
expression of 3 in (17) has a simple expression. It can be shown that k(w;n = 0) = ks,
k(w;n = +00) = ky+ k, &(w;n = 0) = &w;n = +00) = 0, and then go(w) = q(w;n = 0) =
ka/(1k1), Goo(w) = qwin = 400) = (ka + k)/(uk1) , §(win = 0) = {(wsn = +00) = 0.
Finally equating the amplification factor 3 for n = 0 and n = +o0 yields the equation
Q% — qo Q* — g

g2 — (2 —1)(2 —q0) e — (02— 1)(Q2 — ¢u)

The minus sign in the above equation is arising from the sign change when taking the

(18)

absolute value. This equation can be rearranged to obtain the following equation

1
0 — 5 (@0 +4=)(2+ ) + 2)0" + (g0 + goo + Gogoo(pt + 1))* — gogos = 0. (19)

This equation is cubic in Q2. Therefore, eliminating negative values, we can derive the
three closed-form solutions €2;(qo, ¢oo ), 2e(qo, @00 ), and ©,.(qo, ¢~ ) Which correspond to left,
central and right fixed-points respectively (See Appendix A for the closed-form solutions).
For parameters corresponding to Figure 3, it is found 2; = 0.77, €2, = 0.97, and €; = 1.24

(for this particular case wy = 1 rad/s and then Q = w).

4.8. Calculation of the stiffnesses ko and k

In order to obtain a good mitigation of the around the resonance frequency of the

primary mass m;, we propose to calculate ks and k as the values that (1) provides equal

10



values for the end fixed-point 2; and 2, and (2) allows to control the amplitude of the
central fixed-point €2, with respect to the amplitudes at €2; and §2,.. The advantage of this
methodology is that the obtained values are independent of the damping coefficient that
can then be fixed later. Let be w; = wy ), w. = w1 Q. and w, = wy ,. We then introduce

the two following equations
Blwin =0) = aB(wen =0),

Bwr;n = +00) = af(we;n = +00),

in which « is a proportion parameter. For o = 1, the amplitude is the same for the three

(20)

fixed-points. We then obtain the two equations

Qg + Vl(Qla ch a)QO + WZ(QM QC? a)v

2 (21)
a5+ 71(2, Qs @) goo + 72(2r, Qe @)
where
1 2,2 2 2 1 . 9 9
71(“,'0;0[) — ( +OC)/1’/U/ (Y (u + v )(( +Oé) (au + v ))’
La— {1+ plow+v?) (22)

w (14 a) — (au? + v?)
L+a— (14 p)(au?+0?2)’

By eliminating non physical solutions, only one solution remains for each equation, yield-

Yo(u, v; ) =

ing

_ -N (le Qc; Oé) B \/71((917 Qc; a))Q - 472((Ql7 Qc; Oé)

9 )
(23)
oo = _’Yl(Qra Qc; Oé) + \/71((Qr; Qc; a))2 - 4’)/2((91“7 Qc; O./)
oo — D) .

These solutions depend on €2, 2. and (). which themselves depend on ¢g and ¢.. Any

qo

attempt to eliminate €2;, €2, and €. or ¢y and ¢ yields very complex equations that
cannot not be solved explicitly. To circumvent this difficulty, we propose to solve Eqs.(19)
and (21) iteratively. For the initialization, the parameters ¢y and ¢, are set such that
ky = k = ko in which kg is the optimal stiffness for a classical TMD, i.e., kg = pky /(14 p)>.
Then Eqgs.(19) and (21)are successively and repeatedly solved until convergence. For the
case m; = 1 kg, my = 0.1 kg, k; = 1 N/m, and o = 1, the convergence curves of
parameters €2, €2.,€2., qo and g for 100 iterations are plotted in Figure 4. It can be seen

a good convergence after 50 iterations. Once the ¢y and ¢ calculated, the stiffnesses ko

11



Figure 4: The convergence for €, £2.,£. (solutions of Eq. (19)),

of iterations.
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and & are calculated such that

ko = qo k1 1, k= qoc k1 pt — ko (24)

For the optimal values of ks and k, the function §(w) is plotted on Figure 5 for different

values of the damping coefficient 7.

4.4. Calculation of the damping coefficient n

The effect of the damping coefficient 7 on the amplitude of the response can be seen in
Figure 5. This parameter directly impacts the symmetry of function §(w) with respect to
the central fixed-point €2.. It appears clear that the optimal curve corresponds to the one
that will present the best symmetry with respect to Q.. A possible way to control this
symmetry consists in controlling the slopes of function 3(w) at the fixed-points ; and €,
and try to make these slopes opposite. A direct method would consists in calculating the
derivative ('(w) of the function ((w) with respect to w and then calculate then calculate

the slopes at frequencies {; and €2,. Then the optimal value for 7, is such that

B (wis Nopt) = =B (wWrs Nopt)- (25)

Unfortunately, the function ('(w) is very complex and this method does not allow to obtain
a closed-form expression for 7,,. We then propose an alternative approach consisting in
approximating the derivative. Then Eq.(15) is modified using a forward approximation

at w; and backward approximation at w,, i.e.,

ﬁ(wl + Aw, nopt) - ﬂ(wl; nopt) o _6(("}7“; 7Iopt) B B(wr B Aw? 770;075) (26)
Aw B Aw ’

where Aw is a small frequency increment. Then since B(wi; Nopt) = B(wWr;Nopt), solving

Eq.(15) consists in searching the zero of the function €(n) defined by

e(n) = Blwi + Aw;n) — Blwr — Aw;n). (27)
Finally, this approximation consists in equalling the value of the amplitudes just after w;
and just before w,.. The zero of function €(n) can be search graphically or using any devoted
algorithm. For the previous case, with a = 1 and Aw = 0.01, function €(n) is plotted
in Figure 6 In can be seen in this figure that the zero is reached for 7,,; = 0.045 Ns/m.
The corresponding function [(w) is plotted in Figure 7. In Figure 8, the mitigation

obtained using the optimal viscoelastic TMD is compared to the one obtained using a

13
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B(w)

Figure 5: The amplification factor G(w) for different values of . Top: o = 1. Bottom: a = 1.2.
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Figure 6: The function €(n) (see Eq. (27)).

B(w)

Figure 7: The amplification factor S(w) for different values of the damping coefficient 7.
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classical optimal TMD. We can see in this figure that a viscoelastic TMD gives a better

1

10 B — T
— = ﬂopt
== classical TMD
S
Q.
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

0

Figure 8: A comparison of the amplification factor 5(w) between the optimal viscoelastic TMD and the
classical optimal TMD.

mitigation than a classical optimal TMD for a wide range of frequencies including around
the resonance frequencies.

The comparison is also performed for different value of the mass ratio p. The results
are plotted in Figure 9. It can be seen in this figure that the gain provided by a viscoelastic

TMD increases with the mass ratio.

5. Summary and discussions

Tuned mass dampers (TMD) are classical passive vibration control concepts achieved
by attaching a secondary oscillator to a primary oscillator. A TMD with viscoelastic
properties has been considered in this paper as a generalisation of the classical viscously
damped TMDs. The widely-used Biot model of viscoelasticity with one term is used.
This gives rise to two additional parameters (the stiffness and the time constant) to be
determined compared to an undamped TMD. Some of the main points of this paper are:

- The fixed-points theory has been generalized to the optimal parameters of the vis-

coelastic TMD.

16
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7 ot 16| ;
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w w

Figure 9: Comparison of the amplification factor 5(w) between the optimal viscoelastic TMD and the
classical optimal TMD for different values of the mass ratio u.

- A TMD with a standard linear viscoelastic model shows three fixed-points instead
of the two fixed-points for a classical TMD.

- The two stiffnesses are obtained by controlling the vibration amplitude at the three
fixed-points.

- The damping coefficient is obtained by controlling the symmetry of the of the am-
plitude function with respect with respect to the central fixed point.

- The optimized viscoelastic TMD offers more flexibility and allows to reach a better
vibration mitigation compared to classical viscously damped TMD.

Representative numerical results with non-dimensional parameters are given. A semi-
analytical iterative procedure for calculating the optimal parameters has been proposed.
Through numerical examples. It has been demonstrated that the iterative approached
converges rapidly to the final value. It is assumed that there is no damping for the
primary structure. In the presence of damping, similarly to the classical TMDs, the
dynamics won’t exhibit fixed-points any more. In the case of reasonably small damping,
it is expected, as shown for classical TMDs (see [15]) that the fixed points will remain

close to the fixed-points corresponding to the undamped primary structure. It is also

17



assumed that the primary structure is linear. In the case of a nonlinear behaviour, a
temporally averaged linearisation technique, as suggested in [35], could be applied as a
prior step before applying the method proposed in the present paper. The methodology
has been derived for the standard (Biot) linear viscoelastic model. The use of a Standard
linear model enables a closed-form solution to be calculated (and thus avoids the solving
of a non-convex inverse problem), which is one of the objectives of this paper. Future
research is necessary to determine if there would still be fixed-points for a more general

viscoelastic model.

Appendix A. Closed-form solution for the fixed-points equation
Let ag, a; and ay be the coefficients associated with the cubic (in Q2) Eq.(19):

a0 = —Qooo, @1 = (G0 + Goo) T Qoo (it + 1), a2z = —((q0 + ¢oo) (2 + 1) +2)/2. (A1)

In this case the three solutions 2, €. and €3 can be calculated as

Ql = \/ﬁa QC = \/E? Qr = \/T_3> (Az)

where
ro=—ay/3—(S+T)/2+iV3(S—T)/2,
ro = —ag/3 — (S +T)/2 —iV3(S —T)/2, (A.3)
rg=—ay/3+S+T,
in which

S = <R+\/Q3+R2>1/3, T = (R—\/Q3+R2)l/3, (A.4)
and such that

Q= (3a; —a3)/9, R = (9asa; —27ag — 2a3)/54, (A.5)
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