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ABSTRACT 

A six degrees of freedom dynamic model of a planetary geared rotor system with equally spaced planets is developed by 

considering gyroscopic effects. The dynamic model is created using a lumped parameter model of the planetary gearbox and a 

finite element model of the rotating shafts using Timoshenko beams. The gears and carrier in the planetary gearbox are assumed 

to be rigid, and the gear teeth contacts and bearing elements are assumed to be flexible. The modal analysis results show that 

torsional and axial vibrations on the shafts are coupled in the helical gearing configuration due to the gear helix angle whereas 

these vibrations become uncoupled for spur gearing. Mainly, the vibration modes are classified as coupled torsional-axial, 

lateral and gearbox for the helical gear configuration, and torsional, axial, lateral and gearbox for the spur gear configuration. 

Modal energy analysis is used to quantify the coupling level between the shafts and the planetary gearbox, highlighting the 

impact of the gearbox on certain mode families. Gyroscopic effects of the planetary gearbox are found to be of great importance 

in the gearbox dominated modes. 

Keywords: Planetary gearbox; rotor dynamics; gear dynamics; geared rotor; modal analysis; modal energy 
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1. INTRODUCTION 

Planetary gearboxes are widely used machine elements to transmit power and motion, and convert speed and torque in rotating 

systems since they provide compactness, higher gear ratio and power transmission capacity, and lower noise and vibration 

advantages [1,2]. Planetary geared systems can be seen in many engineering applications such as geared turbofan engines, 

automotive transmissions, wind turbines and 3D printers. Introducing a planetary gearbox into a rotating machine can directly 

affect its global dynamics due to the flexibility, damping and inertia of the planetary gearbox with gyroscopic effects, leading 

to a coupled dynamic response of the planetary gearbox and rotor. In addition, the planetary gearbox can become an excitation 

source in rotor systems because of the internal excitations caused by the time-varying mesh stiffness, profile modifications and 

manufacturing error, and the external excitations such as rotating mass imbalances and speed/torque fluctuations originating 

from the gears [3,4].  Due to the impact of a planetary gearbox on the dynamic response of the global system, the coupled 

dynamic behaviour of planetary geared rotor systems has recently become an important research topic. 

A main focus of current research is the dynamic modelling and analysis of planetary gearboxes with different configurations 

such as single stage [5–8], two stages [9,10], multiple stages [11–16], compound [17–20] and double helical [21–25] sets. Two 

main dynamic modelling approaches, flexible and rigid body models, have been employed by researchers. In flexible body 

models, mostly ring gears [26–30] and planet carriers [26,27] are accepted as flexible elements. A fully coupled dynamic 

modelling method using virtual equivalent shaft elements has recently been proposed [15,16]. Flexible body models can  be 

classified as two dimensional [28–30], including transverse (lateral) and rotational (torsional) degrees of freedom, and three 

dimensional [15,16,26,27] models. In rigid body models, the carrier and all gears (sun, planets, and ring) in the planetary 

gearbox are assumed to be rigid whereas the bearings and gear contacts are assumed to be flexible. Depending on the number 

of degrees of freedom, the rigid body dynamic models can be divided into three main groups: (i) purely torsional model, (ii) 

torsional - transverse model and (iii) three dimensional model [1]. The purely torsional model has one degree of freedom per 

node and can be used for the analyses of spur planetary gearboxes if transverse, tilting and axial motions, and gyroscopic effects 

are negligible [11,13,17,20,31,32]. Expanding the purely torsional model to include transverse motions leads to the three 

degrees of freedom per node torsional - transverse model [6,9,33,34]. This modelling approach can be employed for high speed 

applications of spur planetary gearboxes where gyroscopic effects can lead to motions in transverse directions [8]. Further 

modifications to the torsional - transverse model have led to the three dimensional model which includes six degrees of freedom 

per node (torsional, transverse, tilting, axial), and allows the capture of axial and tilting motions of planetary gearbox members 

[5,7,10]. This enables the analysis of helical planetary gear sets in which axial gear mesh forces can occur. Furthermore, 

dynamic models for double-helical planetary gear sets have been developed using the three dimensional model approach [22–

25,33]. Dynamic analyses of three-dimensional models have also been conducted with gyroscopic effects [7,10,25]. Depending 

on the complexity of the model, different types of mode shapes can be obtained. The purely torsional model can only detect 

torsional modes, which can either be global modes, or planet modes [6,8,9,33]. The torsional - transverse model can provide 

rotational, translational and planet modes for the spur planetary gearbox whereas the most advanced three dimensional model 

approach leads to rotational-axial, translational-tilting and planet modes for the helical gearbox [7,23]. The sensitivity of modal 

parameters of the planetary gearbox (natural frequencies and mode shapes) with regards to the gearbox input parameters such 

as gear mesh and bearing stiffness, and gear mass, inertia and speed have also been analysed using these dynamic models 

[12,16,35,36]. To validate the modal behaviour of the dynamic models, some experimental studies were performed for spur 

planetary gear sets. Computed rotational, translational and planet modes in the torsional - transverse model were correlated 

with these experimental studies [34,37–39]. 

The coupled dynamic behaviour of geared rotor systems with gyroscopic effects has also been studied in great detail with a 

focus on the coupling effects of the gearbox due to its torsional, axial and lateral stiffness. Lateral-torsional coupling in spur 

geared rotors and lateral-torsional-axial coupling in helical geared rotors were shown by many studies [40–49]. Among these 

studies, the finite element method has become a popular tool for the dynamic analyses [41,42,44,45,48,49]. Although the 

dynamic behaviours of spur and helical geared rotor systems are well understood today, less research has been carried out to 

understand the dynamic behaviour of planetary geared rotor systems [50–57] . So far, one DOF torsional [50–52], five DOF 

lateral-torsional [53] and six DOF lateral-torsional-axial [54–57] models of planetary geared rotor systems have been 

investigated for wind turbine and geared turbofan engine applications. From this research, only two of the six DOF models 

have taken gyroscopic effects into account for geared turbofan engine applications [56,57]. Wei et al. [57] considered the forced 

vibration analysis of a geared turbofan engine due to loss of a blade creating rotating imbalance. Tatar and Schwingshackl [56] 

used a low fidelity model of the planetary gearbox, including uncoupled gearbox stiffness, to investigate the planetary gearbox 

impact on the dynamics of the rotor system. The modal behaviour of planetary geared rotor systems is still only partially 

understood, and more work is needed to provide a full understanding of the dynamic behaviour of such systems.   
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To provide further insight into the dynamic behaviour of planetary geared rotor systems, a six degrees of freedom dynamic 

model is presented in this paper. For this purpose, a three-dimensional model of an equally spaced planetary gearbox and a 

rotor system are created by employing the lumped parameter and finite element methods respectively. 1-D rotating Timoshenko 

beam elements for the shafts and uncoupled linear spring elements for the bearings are used to construct the dynamic model of 

the rotor system. The planetary gearbox is introduced to couple the two shafts together. Gyroscopic effects of the shafts and 

planetary gearbox are included in the analysis. The modal behaviour of the global rotor system is identified based on the mode 

shapes of the shafts. The impact of the planetary gearbox on the dynamic behaviour of the rotating system is analysed by modal 

energy analysis. 

2. DYNAMIC MODEL OF A PLANETARY GEARED ROTOR SYSTEM 

A basic planetary geared rotor system consists of two shafts, several bearings and a planetary gearbox. Figure 1 shows such a 

basic system where the two shafts rotate at different speeds. The shafts are coupled by the planetary gearbox and supported via 

the bearing elements at each end. The planetary gearbox is also grounded via its bearings.  

 

Figure 1: Planetary geared rotor system 

In this section, some background on the rotor and planetary gearbox modelling will be provided, before the planetary geared 

rotor model for the system in Figure 1 is created. Throughout the work, the stationary coordinate system is employed for the 

dynamic model and the generalized coordinates are written as 

𝒒 = [𝑥, 𝑦, 𝑧, 𝜃𝑥 , 𝜃𝑦 , 𝜃𝑧]. 

where the generalized coordinates include transverse(𝑥, 𝑦), axial(𝑧), tilting (𝜃𝑥, 𝜃𝑦) and torsional (𝜃𝑧) motions.  

2.1. Shafts 

Longer rotating shafts can be modelled as flexible beams where their mass, stiffness and gyroscopic matrices can be obtained 

using the finite element method [58]. Due to the high number of modes included in this study, Timoshenko beam elements are 

used to capture potential shear deflection and rotational inertia terms [58]. Each beam element has two nodes with twelve 

degrees of freedom, including transverse, tilting, axial and torsional directions. The geometry of the beam element with its 

local coordinates can be seen in Figure 2. 

 

Figure 2: The shaft finite element 

(1) 
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The local coordinates, 𝒒𝑒(𝑡), and shape functions, 𝑵𝑒(𝜉), for this beam element can be expressed as [58] 

𝒒𝑒(𝑡) = [𝑥𝑒1(𝑡), 𝑦𝑒1(𝑡), 𝑧𝑒1(𝑡), 𝜃𝑥𝑒1(𝑡), 𝜃𝑦𝑒1(𝑡), 𝜃𝑧𝑒1(𝑡), 𝑥𝑒2(𝑡), 𝑦𝑒2(𝑡), 𝑧𝑒2(𝑡), 𝜃𝑥𝑒2(𝑡), 𝜃𝑦𝑒2(𝑡), 𝜃𝑧𝑒2(𝑡)] 

𝑵𝑒(𝜉) = [𝑁𝑒1(𝜉), 𝑁𝑒2(𝜉), 𝑁𝑒3(𝜉), 𝑁𝑒4(𝜉), 𝑁𝑒5(𝜉), 𝑁𝑒6(𝜉), 𝑁𝑒7(𝜉), 𝑁𝑒8(𝜉), 𝑁𝑒9(𝜉), 𝑁𝑒10(𝜉), 𝑁𝑒11(𝜉), 𝑁𝑒12(𝜉)] 

The deflections, 𝒒𝑒(𝜉, 𝑡), throughout the beam element can then be approximated by multiplying the shape functions and local 

coordinates with the Hadamard product as 

𝒒𝑒(𝜉, 𝑡) = 𝑵𝑒(𝜉) ∘ 𝒒𝑒(𝑡), 

𝒒𝑒(𝜉, 𝑡) =  [𝑥𝑒1(𝜉, 𝑡), 𝑦𝑒1(𝜉, 𝑡), 𝑧𝑒1(𝜉, 𝑡), 𝜃𝑥𝑒1(𝜉, 𝑡), 𝜃𝑦𝑒1(𝜉, 𝑡), 𝜃𝑧𝑒1(𝜉, 𝑡), 

                     𝑥𝑒2(𝜉, 𝑡), 𝑦𝑒2(𝜉, 𝑡), 𝑧𝑒2(𝜉, 𝑡), 𝜃𝑥𝑒2(𝜉, 𝑡), 𝜃𝑦𝑒2(𝜉, 𝑡), 𝜃𝑧𝑒2(𝜉, 𝑡)]. 

Then, the kinetic, 𝑇𝑠, and potential, 𝑉𝑠, energies of an individual Timoshenko beam element become [42,48,58,59] 

𝑇𝑠 =
1

2
∫ 𝜌𝑒 {𝐴𝑒(𝑥̇𝑒

2 + 𝑦̇𝑒
2 + 𝑧̇𝑒

2) + 𝐼𝑒 (𝜃̇𝑥𝑒
2

+ 𝜃̇𝑦𝑒
2

) + 𝐽𝑒 [(Ω𝑒 + 𝜃̇𝑧𝑒)
2

+ (Ω𝑒 + 𝜃̇𝑧𝑒)(𝜃𝑦𝑒𝜃̇𝑥𝑒 − 𝜃𝑥𝑒𝜃̇𝑦𝑒)]} 𝑑𝜉

𝑙𝑒

0

, 

𝑉𝑠 =
1

2
∫ {𝐸𝑒𝐼𝑒 (𝜃𝑥𝑒

́ 2
+ 𝜃𝑦𝑒

́ 2
) + 𝐺𝑒𝐽𝑒(𝜃𝑧𝑒

́ )
2

+ 𝜅𝑒𝐺𝑒𝐴𝑒 [(𝑥𝑒́ − 𝜃𝑦𝑒)
2

+ (𝑦𝑒́ + 𝜃𝑥𝑒)2] + 𝐸𝑒𝐴𝑒(𝑧𝑒́)2} 𝑑𝜉

𝑙𝑒

0

. 

where the dot ˙ and prime ˊ denote differentiation with respect to time and 𝜉 respectively. The kinetic energy includes the 

transverse, axial, tilting and torsional motions with gyroscopic terms. The potential energy includes axial, torsional, bending 

and shear deflections where the shear constant, 𝜅𝑒, for a solid shaft is [58] 

𝜅𝑒 =
6(1 + 𝜈𝑒)

(7 + 6𝜈𝑒)
. 

Following the energy equations, the finite element formulations for the mass, gyroscopic and stiffness element matrices are 

obtained by applying the Lagrange`s equations of the second kind. The full mathematical derivation of the mass, stiffness, 

gyroscopic matrices and shape functions of the system can be found in reference [58], and the 12 DOF finite element matrices 

are given explicitly in reference [48]. Damping can also be added to the shaft model via proportional damping [60] as   

𝐂𝒔 = 𝛼1𝐌𝒔 + 𝛼2𝐊𝒔. 

Finally, the mass, 𝐌𝑠, stiffness, 𝐊𝑠, damping, 𝐂𝑠, gyroscopic, 𝐆𝑠 matrices of the shafts are obtained using the element matrices. 

2.2. Bearings 

Bearings are used to support the rotating systems, which can be either rigid or flexible, depending on the application. A range 

of bearing element models is available in the literature, ranging from simple linear models to advanced nonlinear dynamic 

models [58]. In the present model, the bearing elements are assumed to be flexible and consist of linear translational and 

rotational spring elements. The stiffness, 𝐊𝑏, and damping, 𝐂𝑏, matrices of the bearing elements are written as [58] 

𝐊𝑏 = diag (𝑘𝑥, 𝑘𝑦 , 𝑘𝑧, 𝑘𝑄𝑥
, 𝑘𝑄𝑦

, 𝑘𝑄𝑧
), 

𝐂𝑏 = diag(𝑐𝑥 , 𝑐𝑦 , 𝑐𝑧 , 𝑐𝑄𝑥
, 𝑐𝑄𝑦

, 𝑐𝑄𝑧
). 

As seen in Eq. (7), the matrices are in diagonal form which means that the bearings consist of uncoupled stiffness and damping 

elements. Torsional stiffness, 𝑘𝑄𝑧
, and damping, 𝑐𝑄𝑧

, of the bearing elements will be assumed to be zero, allowing the shaft to 

rotate freely without any resistance. This study focuses on the understanding of the impact of a planetary gearbox on the 

dynamics of the rotor system and for that reason basic bearing elements with no coupling terms are considered sufficient for 

this study. 

2.3. Planetary Gearbox  

A basic single stage planetary gearbox consists of a ring gear, a carrier, a sun gear and N planet gears. A six degrees of freedom 

linear lumped parameter of a planetary gearbox is employed for the dynamic modelling from references [5,21,22]. In this 

model, all the members of the planetary gearbox, which are the sun, ring and planet gears and the carrier, are assumed to be 

(4) 

(5) 

(6) 

(7) 

(2) 

(3) 
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rigid disks. The gear teeth contacts and bearing elements are assumed to be flexible. Linear time varying mesh stiffness and 

clearance nonlinearity due to loss of teeth contact are neglected. All the planet gears have the same property and they are 

equally spaced. As seen schematically in Figure 3, the gear teeth contacts are represented with linear springs, which are between 

the sun and planet gears (𝑘𝑠𝑝), and between the planet gears and the ring gear (𝑘𝑟𝑝). These gear teeth contacts are also known 

as gear mesh stiffness, which are assumed to be constant in the model due to the linear spring elements [5,21,22]. All the 

planetary gearbox members have six DOF bearing elements, represented by linear springs (𝑘𝑟, 𝑘𝑐, 𝑘𝑠, 𝑘𝑝) defined in Eq. (7). 

 

Figure 3: Dynamic model of a planetary gearbox 

The equation of motion of the planetary gearbox is obtained using Lagrange’s equations. For this purpose, the total kinetic and 

potential energies of the system must be obtained. With the small rotation assumption in the 𝜃𝑥ℎ and 𝜃𝑦ℎ tilting directions, the 

kinetic energies of the central members  (ring gear, sun gear and carrier) and planet gears can be written as 

𝑇ℎ =
1

2
∑ 𝑚ℎ(𝑥̇ℎ

2 + 𝑦̇ℎ
2 + 𝑧̇ℎ

2) + 𝐼𝑑ℎ (𝜃̇𝑥ℎ
2

+ 𝜃̇𝑦ℎ
2

) + 𝐼𝑝ℎ (Ωℎ
2 − 2Ωℎ𝜃̇𝑦ℎ𝜃𝑥ℎ + 𝜃̇𝑧ℎ

2
)

3

ℎ=1

 

𝑇𝑝 =
1

2
∑ 𝑚𝑝𝑖(𝑥̇𝑝𝑖

2 + 𝑦̇𝑝𝑖
2 + 𝑧̇𝑝𝑖

2) + 𝐼𝑑𝑝𝑖 (𝜃̇𝑥𝑝𝑖
2

+ 𝜃̇𝑦𝑝𝑖
2

) + 𝐼𝑝𝑝𝑖 (Ωpi
2 − 2𝛺𝑝𝑖𝜃̇𝑦𝑝𝑖𝜃𝑥𝑝𝑖 + 𝜃̇𝑧𝑝𝑖

2
) 

𝑁

𝑖=1

 

respectively [58]. Here, ℎ is the central member index for the ring gear, carrier and sun. The kinetic energies include all motions 

in three dimensions with gyroscopic terms, similar to the kinetic energy of the Timoshenko beam elements, defined in Eq. (4). 

The gyroscopic terms in the gearbox originate from the 𝜃̇𝑦𝜃𝑥 multiplication. The strain energies of the bearings for the central 

members and planet gears can be written respectively as [21] 

𝑉ℎ =
1

2
∑ 𝑘𝑥ℎ𝑥ℎ

2 + 𝑘𝑦ℎ𝑦ℎ
2 + 𝑘𝑧ℎ𝑧ℎ

2 + 𝑘𝜃𝑥ℎ
𝜃𝑥ℎ

2 + 𝑘𝜃𝑦ℎ
𝜃𝑦ℎ

2 + 𝑘𝜃𝑧ℎ
𝜃𝑧ℎ

2

3

ℎ=1

 

𝑉𝑝 =
1

2
∑ 𝑘𝑥𝑝(𝑥𝑐 − 𝑥𝑝𝑖 − 𝑟𝑐𝜃𝑧𝑐 𝑠𝑖𝑛 𝛼𝑝𝑖)

2
+ 𝑘𝑦𝑝(𝑦𝑐 − 𝑦𝑝𝑖 + 𝑟𝑐𝜃𝑧𝑐 𝑐𝑜𝑠 𝛼𝑝𝑖)

2
𝑁

𝑖=1

+ 𝑘𝑧𝑝(𝑧𝑐 − 𝑧𝑝𝑖 + 𝑟𝑐𝜃𝑥𝑐 𝑠𝑖𝑛 𝛼𝑝𝑖 − 𝑟𝑐𝜃𝑦𝑐 𝑐𝑜𝑠 𝛼𝑝𝑖)
2

+ 𝑘𝜃𝑥𝑝
(𝜃𝑥𝑐 − 𝜃𝑥𝑝𝑖)

2
+ 𝑘𝜃𝑦𝑝

(𝜃𝑦𝑐 − 𝜃𝑦𝑝𝑖)
2

 

where 𝛼𝑝𝑖 is the angular position of each planet, which can be defined for the non – rotating carrier configuration as 

𝛼𝑝𝑖+1 = 𝛼𝑝𝑖 +
2𝜋

𝑁
. 

(8) 

(9) 

(10) 
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Here, 𝛼𝑝1 represents the first planet`s angular position, which is assumed to be zero. The torsional stiffnesses of the rotating 

members in the planetary gearbox are assumed to be zero based on the planetary gearbox configurations. For instance, torsional 

bearing stiffnesses of the ring, sun and planet gears are set as zero in the rotating ring – fixed carrier configuration since the 

gears rotate and the carrier does not rotate in this configuration. Another potential energy component given by the gear mesh 

strain energy due to gear teeth deflections must also be included in the model [21] as 

𝑉𝑚 = ∑
1

2
𝑘𝑠𝑝𝛿𝑠𝑝𝑖

2 +
1

2
𝑘𝑟𝑝𝛿𝑟𝑝𝑖

2

𝑁

𝑖=1

 

where 𝛿𝑠𝑝𝑖 and 𝛿𝑟𝑝𝑖 represent the relative displacement between the sun-planet and ring-planet gear meshes respectively.  These 

relative displacements depend on the geometry of the gear meshes and can be expressed as 

𝛿𝑠𝑝𝑖 = [(𝑥𝑠 − 𝑥𝑝𝑖) sin 𝜓𝑠𝑝𝑖 +(𝑦𝑠 − 𝑦𝑝𝑖) cos 𝜓𝑠𝑝𝑖 + (𝑟𝑠𝜃𝑧𝑠 + 𝑟𝑝𝜃𝑧𝑝𝑖)] cos 𝛽

+ [(𝑟𝑠𝜃𝑥𝑠 + 𝑟𝑝𝜃𝑥𝑝𝑖) sin 𝜓𝑠𝑝𝑖 + (𝑟𝑠𝜃𝑦𝑠 + 𝑟𝑝𝜃𝑦𝑝𝑖) cos 𝜓𝑠𝑝𝑖 + (𝑧𝑝𝑖 − 𝑧𝑠)] sin 𝛽 

𝛿𝑟𝑝𝑖 = [(𝑥𝑝𝑖 − 𝑥𝑟) sin 𝜓𝑟𝑝𝑖 +(𝑦𝑟 − 𝑦𝑝𝑖) cos 𝜓𝑟𝑝𝑖 + (𝑟𝑟𝜃𝑧𝑟 − 𝑟𝑝𝜃𝑧𝑝𝑖)] cos 𝛽

+ [(𝑟𝑟𝜃𝑥𝑟 − 𝑟𝑝𝜃𝑥𝑝𝑖) sin 𝜓𝑟𝑝𝑖 + (𝑟𝑝𝜃𝑦𝑝𝑖 − 𝑟𝑟𝜃𝑦𝑟) cos 𝜓𝑟𝑝𝑖 + (𝑧𝑟 − 𝑧𝑝𝑖)] sin 𝛽 

where 𝛽 is the gear helix angle. A spur gear configuration for the planetary gearbox can be obtained by setting the helix angle, 

𝛽, to zero. In Eq. (12), 𝜓 is the angle between the plane of action and the vertical y axis, which is defined for a counter clockwise 

motion of the sun gear as [21,22] 

𝜓𝑠𝑝𝑖 =  𝜙𝑠𝑝 − 𝛼𝑝𝑖 

𝜓𝑟𝑝𝑖 =  𝜙𝑟𝑝 + 𝛼𝑝𝑖 

for the sun-planet and ring-planet gear meshes respectively. Here, 𝜙𝑠𝑝 and 𝜙𝑟𝑝 are the transverse pressure angles of the sun-

planet and the ring-planet gear meshes respectively [21,22]. The total kinetic and potential energies of the planetary gearbox 

can then be computed as 

𝑇 = 𝑇ℎ + 𝑇𝑝, 

𝑉 = 𝑉ℎ + 𝑉𝑝 + 𝑉𝑚. 

 Finally, the planetary gearbox equation of motion can be derived using Lagrange’s second equation as   

𝐌𝒈𝒒̈𝒈(𝑡) + [𝐂𝑔 + 𝐆𝑔(Ωℎ , Ωpi)]𝒒̇𝒈(𝑡) + 𝐊𝑔𝒒𝒈(𝑡) = 0  

which leads to the mass, 𝐌𝒈, stiffness, 𝐊𝑔, gyroscopic 𝐆𝑔 matrices of the planetary gearbox. Proportional damping defined in 

Eq. (5) may also be employed for the damping of the planetary gearbox, 𝐂𝑔. It must be noted that 𝒒𝑔(𝑡) in Eq. (15) represents 

the generalized coordinates for the gearbox. The full mass, stiffness and gyroscopic matrices can be seen in references [5,21,22].   

2.4. Assembly of the Planetary Geared Rotor System 

The general equation of motion of a planetary geared rotor system with n degrees of freedom system can be obtained after the 

assembly of the shafts, bearings and planetary gearbox matrices. The global mass, 𝐌, gyroscopic, 𝐆, stiffness, 𝐊, and damping 

matrices, 𝐂, are obtained using the standard assembly methods for FE analysis and defined as 

[𝐌] = 𝐌(𝐌𝒔, 𝐌𝒈), 

[𝐆] = 𝐆(𝐆𝒔, 𝐆𝒈), 

[𝐊] = 𝐊(𝐊𝒔, 𝐊𝒃, 𝐊𝒈), 

[𝐂] = 𝐂(𝐂𝒔, 𝐂𝒃, 𝐂𝒈). 

(12) 

(13) 

(14) 

(15) 

(16) 

(11) 
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Figure 4: Global matrices with 78 DOFs, a) mass, b) stiffness, c) gyroscopic. 

Figure 4 shows the general distribution of entries in the global matrices where mass and stiffness matrices are symmetric while 

the gyroscopic matrix is skew-symmetric. The planetary gearbox contribution in the matrices is highlighted by the red frames 

where the mass matrix of the planetary gearbox is in diagonal form and the gyroscopic matrix of the planetary gearbox is skew-

symmetric. The stiffness matrix of the planetary gearbox makes the dynamic problem coupled since coupling terms arise.  

Finally, the system equation of the planetary geared rotor system for free responses can be written as 

𝐌𝒒̈(𝑡) + [𝐂 + 𝐆(Ωℎ , Ωpi)]𝒒̇(𝑡) + 𝐊𝒒(𝑡) = 0.  

In this model, the input and output shafts are rigidly connected to the input and output members of the planetary gearbox. For 

the rotating ring-fixed carrier gear configuration, the input and output members of the planetary gearbox thereby become the 

sun and ring gears respectively. In the case of the rotating carrier-fixed ring configuration the carrier becomes the output 

member whilst the sun gear remains the input member. Speed ratios of the planetary gearbox members can be obtained for the 

different configurations from the reference [61]. The model presented in this paper allows to analyse a rotating ring – fixed 

carrier configuration of the planetary gearbox, but is not sufficient to analyse a configuration with a rotating carrier since the 

spacing angles are currently constant, and the centripetal acceleration of the planets is not included in the formulation. 

3. MODAL ANALYSIS  

3.1. Eigenvalue Problem of Rotating Systems 

The natural frequencies and mode shapes of the previously introduced system can be obtained from a free-free modal analysis 

by solving the eigenvalue problem. As can be seen from Eq. (17), gyroscopic and damping matrices make the eigenvalue 

problem of rotating systems quadratic, and therefore the state-space form is used to reduce the order of the eigenvalue problem 

from two to one. To construct the state-space representation, the system equation of motion (Eq. (17)) is reformulated as [62,63] 

𝒒̈(𝑡) + 𝐌−𝟏[𝐂 + 𝐆(Ωℎ , Ωpi)]𝒒̇(𝑡) + (𝐌−𝟏𝐊)𝒒(𝑡) = 0. 

Then, the standard eigenvalue problem in state – space form becomes  

{
𝒒̇
𝒒̈

} = [
𝟎 𝑰

−𝐌−𝟏𝐊 −𝐌−𝟏[𝐂 + 𝐆(Ωℎ , Ωpi)]] {
𝒒
𝒒̇}   

where {
𝒒
𝒒̇} and {

𝒒̇
𝒒̈

} are the state vectors, 𝒙 and 𝒙̇ respectively. The standard eigenvalue problem can then be rewritten as 

{𝒙̇}2𝑛 ×1 = [𝐀]2𝑛 × 2𝑛{𝒙}2𝑛 ×1. 

Although the eigenvalue problem is now first order, the size of the eigenvalue problem has doubled, and as a result doubling 

the size of the eigenvalue and eigenvector matrices. After solving the standard eigenvalue problem, the eigenvalue and 

eigenvector matrices are written as  

[𝜆]2𝑛 × 2𝑛 

[𝜙]2𝑛 × 2𝑛 

(17) 

(18) 

(19) 

(20) 

c) 

(21) 

a) b) 
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respectively. It should be noted that these matrices consist of complex conjugate pairs. Finally, the mode shapes are extracted 

from the eigenvector matrix [𝜙] and the natural frequencies are obtained using the eigenvalues [𝜆] as [63] 

𝜔𝑖 = √𝑅𝑒(𝜆𝑖)
2 + 𝐼𝑚(𝜆𝑖)

2 

In this analysis, the standard eigenvalue solution is used rather than the generalized one to compute the eigenvalues and 

eigenvectors because of its higher accuracy and computational performance [62,63]. 

3.2. Mode Identification 

Mode shapes in rotor systems can either be uncoupled with no interaction between the lateral, axial and torsional vibration of 

the system, or coupled where these modes can interact.  A simple cyclically symmetric rotor system can be considered as 

uncoupled [58], but the presence of a gearbox in the system can lead to lateral, torsional and axial mode interaction [42,45–

47,49]. To quantify the impact of a planetary gearbox on the coupling behaviour of the global modes of the geared rotor system, 

a modal energy approach is used where the modal energy of the gearbox for each mode is compared to the total modal energy 

in the system. The total modal energies of the rotor system and the planetary gearbox are computed by summing their kinetic 

and potential energies. The kinetic, 𝑇𝑟, potential, 𝑉𝑟 , and total, 𝐿𝑟, energies of the rotor system are written as 

𝑇𝑟(𝑖) =
1

2
[𝒒̇𝑟(𝑖)]𝑇[𝐌][𝒒̇𝑟(𝑖)], 

𝑉𝑟(𝑖) =
1

2
[𝒒𝑟(𝑖)]𝑇[𝐊][𝒒𝑟(𝑖)], 

𝐿𝑟(𝑖) = 𝑇𝑟(𝑖) + 𝑉𝑟(𝑖). 

Similarly, the kinetic, potential and total energies of the planetary gearbox in the rotor system can be written respectively as 

𝑇𝑟
𝑔(𝑖) =

1

2
[𝒒̇𝑟(𝑖)]𝑇[𝐌𝑔][𝒒̇𝑟(𝑖)], 

𝑉𝑟
𝑔(𝑖) =

1

2
[𝒒𝑟(𝑖)]𝑇[𝐊𝑔][𝒒𝑟(𝑖)], 

𝐿𝑟
𝑔(𝑖) = 𝑇𝑟

𝑔(𝑖) + 𝑉𝑟
𝑔(𝑖). 

In Eqs. (23) and (24), 𝒒𝑟  is the motion vector in translational and rotational directions for each mode, defined as  

𝒒𝑟 = [𝑞𝑟1, 𝑞𝑟2, 𝑞𝑟3, 𝑞𝑟4, 𝑞𝑟5, 𝑞𝑟6, … … … … … … … … … … , 𝑞𝑟𝑘]. 

where 𝑘 represents the number of degrees of freedom of the system and 𝑟 is the mode number. 𝑞𝑟𝑘 is defined as a function a 

of time as [64] 

𝑞𝑟𝑘(𝑖) = 𝜙𝑟𝑘 sin (
2𝜋𝑡(𝑖)

𝑇𝑟

+ 𝜑𝑟𝑘) 

where 𝑡(𝑖) is the discrete time for the simulation. 𝜙𝑟𝑘 and 𝜑𝑟𝑘 represent the individual elements of the 𝑟th eigenvector and its 

corresponding phase angle respectively. In Eq. (25), 𝑇𝑟 is the vibration period of the 𝑟th mode [64]. The discrete time is also 

defined as 

𝑡(𝑖) = [0: ∆𝑡: 𝑡𝑠] 

where ∆𝑡 is time step, 𝑖 is the index for the number of time data points and 𝑡𝑠 is the vibration simulation time. By using the 

total energies from Eqs. (23) and (24), the mean values of the total energies of the global rotor system and the gearbox can be 

computed as 

𝐿𝑟 =
1

𝑛
∑ 𝐿𝑟(𝑖),

𝑛

𝑖=1

 

𝐿𝑟
𝑔

=
1

𝑛
∑ 𝐿𝑟

𝑔(𝑖)

𝑛

𝑖=1

. 

 

 

(22) 

(23) 

(28) 

(25) 

(26) 

(27) 

(24) 
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The modal energy percentage of the gearbox then becomes 

𝜀 =
𝐿𝑟

𝑔

𝐿𝑟

× 100 

which allows an estimate of the gearbox contribution to the overall dynamic response of the system. It should be noted that 

damping will be neglected in the following numerical analysis, since it does not affect the presented results significantly and 

the modal energy defined in Eq. (29) can be computed for undamped cases. 

Table 1: Parameters of the planetary geared rotor system 

Parameter Output Shaft Input Shaft Carrier  Ring Planets Sun 

Length [m] 2 2 0.02 0.1 0.1 0.1 

Outer Diameter [m] 0.2 0.2 0.63 0.7 0.2 0.23 

Inner Diameter [m]   0.23 0.63 0.18 0.2 

Material density [kg/m3] 7800 7800 7800 7800 7800 7800 

Young`s modulus [GPa] 211 211     

Shear modulus [GPa] 81.2 81.2     

Proportional damping 𝛼1 constant 0 0 0 0 0 0 

Proportional damping 𝛼2 constant 0 0 0 0 0 0 

Bearing radial stiffness [N/m] 109 109 109 109 109 109 

Bearing axial stiffness [N/m] 109 109 109 109 109 109 

Bearing tilting stiffness [N.m/rad] 107 107 107 107 107 107 

Bearing torsional stiffness [N.m/rad] 0 0 1011 0 0 0 

Bearing radial damping [N/(m/s)] 0 0 0 0 0 0 

Bearing axial damping [N/(m/s)] 0 0 0 0 0 0 

Bearing tilting damping [N.m/(rad/s)] 0 0 0 0 0 0 

Bearing torsional damping [N.m/(rad/s)] 0 0 0 0 0 0 

Helix angle 𝛽 [deg]    30 30 30 

Transverse pressure angle 𝜙 [deg]    22.5 22.5 22.5 

Mesh Stiffness [N/m]    108 108 108 

Number of planets     4  

Number of beam elements 18 18     

3.2.1 Helical Planetary Geared Rotor 

Modal analysis of the helical planetary gearbox on its own, and also the corresponding geared rotor system were conducted.  

Initially, an undamped non-rotating (static) case with the model parameters given in Table 1 was considered. The shafts from 

Figure 1 were modelled with 36 finite Timoshenko beam elements, and the planetary gearbox was modelled with seven rigid 

masses which represent the ring, carrier, sun and four planet gears. Modal analysis results are given for the first thirty modes 

in Table 2 where natural frequencies and mode types of the planetary gearbox and the planetary geared rotor system are listed. 

It should be noted that the first mode of the planetary geared rotor and the gearbox on its own are rotational rigid body modes 

due to the free rotation of the shafts and gears in rotational 𝜃𝑍 direction. In addition, the modal energy percentage of the 

planetary gearbox for each global mode was also computed using Eq. (29), and is shown in Table 2. 

Three main mode families can be identified from the modal analysis of the helical planetary gearbox, consisting of (i) rotational-

axial, (ii) translational-tilting and (iii) planet modes. This definition is in accordance with Eritenel and Parker [7], where for 

the planet modes, the central members (ring, carrier and sun) do not move in any direction while the planets can freely move 

in all directions. In the case of the rotational-axial mode, the central members only move in rotational and axial directions while 

the planets move in all directions. Likewise, if the mode is translational-tilting, the central members only move in the 

translational and tilting directions, and the planets move in all directions. These coupling effects in the gearbox will have a 

significant impact on the geared rotor system, since it can lead to coupling terms in the equation of motion, and consequently 

lead to coupling between the two rotors that are connected via the gearbox. It is worth stating that this mode identification is 

valid for applications with more than one planet because one planet leads to coupled translational-tilting-rotational-axial modes. 

(29) 
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As listed in Table 2, the mode shapes of the helical planetary geared rotor systems can be classified as (i) torsional-axial, (ii) 

lateral (bending) and (iii) gearbox modes. Figure 5 shows the first nine mode shapes of the rotor system. As stated, the first 

mode is a pure torsional rigid body mode, where the two shafts rotate around their axes as rigid bodies, and the gearbox 

determines the speed ratio. The following lateral modes of the shafts come in orthogonal pairs, and they are coupled due to the 

translational and tilting motion of the gearbox. Due to the helical configuration of the gearbox, an axial motion of the rotor can 

lead to a torsional motion and vice versa, which in turn leads to a torsional-axial mode coupling, as can be seen in Figure 5 for 

modes 6, 7 and 8. In the coupled torsional-axial modes, mode shape decoupling in the axial direction can also be seen between 

the two shafts due to the relatively high shaft stiffness compared to the gearbox. The final set of observed modes shapes for the 

geared rotor system are the isolated gearbox modes, which are associated with the planet modes of the gearbox itself. As 

previously discussed for the gearbox planet modes, the central members do not move, and consequently no vibration 

transmission from the planets to the shafts can occur. Since these modes are independent from the rotor system, the resonance 

frequencies are identical to the gearbox only computation.   

Table 2: Modes of the helical planetary geared rotor and just the gearbox 

 Helical Planetary Geared Rotor  Helical Planetary Gearbox 

Mode # 
Gearbox Modal 

Energy %  

Natural 

Frequency 

[Hz] 

Mode Type  
Natural 

Frequency 

[Hz] 

Mode Type 

1 27 0 Torsional (Rigid Body)   0 Rotational (Rigid Body) 

2 10 114 Lateral   299 Translational - Tilting  

3 10 114 Lateral   299 Translational - Tilting  

4 10 115 Lateral   324 Translational - Tilting  

5 10 115 Lateral   324 Translational - Tilting  

6 60 220 Torsional - Axial    524 Rotational - Axial  

7 29 301 Torsional - Axial   633 Rotational - Axial  

8 27 318 Torsional - Axial   642 Translational - Tilting  

9 94 322 Lateral   642 Translational - Tilting  

10 94 322 Lateral   711 Translational - Tilting  

11 17 333 Lateral   711 Translational - Tilting  

12 17 333 Lateral   735 Rotational - Axial  

13 15 346 Lateral   908 Planet  

14 15 346 Lateral   1018 Translational - Tilting  

15 20 466 Torsional - Axial   1018 Translational - Tilting  

16 62 508 Lateral   1227 Rotational - Axial  

17 62 508 Lateral   1895 Translational - Tilting  

18 97 595 Torsional - Axial   1895 Translational - Tilting  

19 23 601 Lateral   1905 Rotational - Axial  

20 23 601 Lateral   2263 Translational - Tilting  

21 32 649 Lateral   2263 Translational - Tilting  

22 32 649 Lateral   2332 Planet  

23 84 710 Lateral   2367 Rotational - Axial  

24 84 710 Lateral   2428 Planet  

25 18 782 Torsional - Axial   2437 Translational - Tilting  

26 28 873 Lateral   2437 Translational - Tilting  

27 28 873 Lateral   2464 Planet  

28 100 908 Gearbox    2484 Rotational - Axial  

29 18 943 Lateral   2869 Translational - Tilting  

30 18 943 Lateral   2869 Translational - Tilting  
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Figure 5 also shows that there is an asymmetric motion in the two shafts despite the fact that the planetary gearbox is located 

between the identical two shafts. This phenomenon occurs due the different mass and inertia properties of the input and output 

members of the planetary gearbox itself. 

 

Figure 5: Mode shapes of the helical planetary geared rotor system 

In order to better understand the gearbox contribution to the overall mode shape of the rotor system, the gearbox modal energy 

values from Table 2 can be considered. The planetary gearbox modal energy of the global system is 100% for each gearbox 

mode. These modes coincide with the planet modes of the gearbox itself. For example, the 13th mode of the planetary gearbox 

is a planet mode at 908 Hz, and also seen as the 28th mode of the planetary geared rotor system as a gearbox mode. There is no 

deflection on the shaft in any direction for these particular gearbox modes. There are also some other global modes in which 

gearbox has higher modal energies. For instance, the gearbox has higher modal energies for the 9th, 10th, 18th, 23rd and 24th 

global modes where the modal energy percentages are  94%, 94%, 97%,  84% and  84% respectively. The 9th and 10th modes 

are lateral modes at 322 Hz and they are very close to the 4th and 5th mode (transverse-tilting) of the gearbox at 324 Hz. 

Similarly, the 23rd and 24th modes of the global rotor system are the lateral mode at 710 Hz which is very close to the gearbox 

transverse-tilting mode at 711 Hz. These results show that some global torsional-axial and lateral modes are highly coupled 

with some of the rotational-axial and transverse-tilting modes of the planetary gearbox respectively. 

The distribution of the total and the gearbox modal energy during a vibration cycle is shown in Figure 6 for the first nine modes. 

Not surprisingly, the total modal energy of the global rotor system is constant during the vibration period (transfer of energy 

from potential to kinetic and back, no losses in the undamped system) while the modal energy of the gearbox is fluctuating 

except for the 1st mode, which is a rigid body torsional mode. This makes perfect sense since the modal analysis was carried 

out for the global rotor system, and the modal energy of the global rotor system should be constant. However, the planetary 

gearbox is a part of the global rotor system and the modal analysis of the system was not carried out using the mass and stiffness 

matrices of the gearbox. Therefore, the modal energy of the planetary gearbox fluctuates during the vibration cycle.  To capture 

this fluctuation, the time domain approach is used. Then, the mean value of the modal energy of the planetary gearbox was 

computed for each global mode by averaging the fluctuating modal energy, using the Eq. (28). 
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Figure 6: Modal energy of the helical planetary geared rotor system over time 

3.2.2 Spur Planetary Geared Rotor 

Modal analyses of the spur planetary geared rotor system and the planetary gearbox were carried out by setting the helix angle 

of all gears zero. The system and gearbox parameters from Table 1 and the assumptions from Section 3.2.1 were used for the 

analysis. The results in Table 3 show that modes of the shafts for the spur planetary geared rotor system are identified as 

torsional, axial, lateral and gearbox modes for the first thirty modes. Moreover, modes of the spur planetary gearbox are also 

identified as rotational, axial, translation, tilting and planet modes. The modes which are rotational-axial and translational-

tilting in the helical planetary gearboxes become uncoupled in spur planetary gearboxes as rotational, axial, translational and 

tilting. Therefore, there is no coupling between the torsional, axial and lateral modes of the shafts. 

 

Figure 7: Mode shapes of the spur planetary geared rotor system 

As seen in Figure 7, the first mode is once more the torsional rigid body mode. The other modes are torsional, axial and lateral 

modes. The 7th and 8th axial modes show that the input and output shafts have independent dynamic behaviour since there is 
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no deflection in the input shaft for the 7th axial mode and in the output shaft for the 8th mode. The reason for this phenomenon 

is that the axial component of the gear mesh stiffness is zero due to the zero-helix angle in the spur gear configuration. As a 

result, there cannot be vibration transmission between the output and input shafts in these independent axial modes. In other 

words, no axial response occurs in one shaft due to the axial excitation from the other shaft. The asymmetric motion described 

for the helical planetary geared rotor is also seen for the spur planetary geared rotor in Figure 7. 

Table 3: Modes of the spur planetary geared rotor and just the gearbox 

 Spur Planetary Geared Rotor  Spur Planetary Gearbox 

Mode # 
Gearbox Modal 

Energy % 

Natural 

Frequency 

[Hz] 

Mode Type  
Natural 

Frequency 

[Hz] 

Mode Type 

1 27 0 Torsional (Rigid Body)   0 Rotational (Rigid Body) 

2 10 113 Lateral    281 Tilting  

3 10 113 Lateral    281 Tilting  

4 8 114 Lateral    340 Tilting  

5 8 114 Lateral    340 Tilting  

6 57 256 Torsional    638 Axial  

7 29 298 Axial    640 Translational  

8 25 311 Axial    640 Translational  

9 16 333 Lateral    666 Axial  

10 16 333 Lateral    692 Rotational  

11 100 340 Gearbox    738 Translational  

12 100 340 Gearbox   738 Translational  

13 10 345 Lateral    1077 Planet   

14 10 345 Lateral    1081 Translational  

15 21 473 Torsional    1081 Translational  

16 62 509 Lateral    1462 Rotational  

17 62 509 Lateral    1790 Axial  

18 24 601 Lateral    1971 Translational  

19 24 601 Lateral    1971 Translational  

20 100 638 Gearbox    2197 Tilting  

21 24 655 Lateral    2197 Tilting  

22 24 655 Lateral    2332 Planet  

23 89 727 Lateral    2376 Planet 

24 89 727 Lateral    2385 Rotational  

25 17 789 Torsional    2461 Translational  

26 28 880 Lateral    2461 Translational  

27 28 880 Lateral    2524 Planet  

28 13 948 Lateral    2550 Rotational  

29 13 948 Lateral    2835 Axial  

30 100 1077 Gearbox   2898 Tilting  

In some modes, modal energies of the planetary gearbox were also computed as 100%, which are the 11th, 12th, 20th, 30th 

gearbox modes respectively. These modes are associated with the 4th, 5th, 6th and 13th modes of the planetary gearbox and they 

were observed at exactly the same frequency for the global modes. Among these modes, the 4th, 5th and 6th modes are identified 

as carrier-planet, which means the carrier and planets can move freely and the 13th mode is identified as a planet mode, meaning 

that only the planets can move freely. Since the ring and sun gears do not move for these modes, no rotation or displacement 

occurs on the shafts. As a result, these modes are isolated from the shafts. The gearbox modal energies in Table 3 further 

highlight that even in the spur gear case some significant modal energy can be stored in the gearbox for some of the modes, 

highlighting the importance of the gearbox for the overall dynamic behaviour of the rotor system.  
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3.3. High Speed Modal Behaviour of the Helical Planetary Geared Rotor 

Planetary geared rotors can work at higher operating speeds, and therefore gyroscopic moments can significantly affect their 

dynamic behaviour. To investigate the high speed dynamic behaviour of the helical planetary geared rotor system, modal 

analysis was carried out at 8000 rpm input speed and mode shapes are plotted for the first twelve modes in Figure 8. The speed 

ratio between the two shafts was determined as 3.04 based on the gear geometry given in Table 1. As a result, the input shaft 

rotates faster than the output shaft in this rotating system. 

 

Figure 8: Mode shapes of the helical planetary geared rotor system at 8000 rpm 

In contrast to the previous investigation, which focused on a static case, the orthogonal modes now combine to give lateral 

backward (BW) and forward (FW) whirling modes, while the coupled torsional-axial and torsional rigid body modes remain 

the same. The natural frequencies of the lateral backward and forward whirling modes are dependent on the shaft speeds due 

to the gyroscopic effect. On the other hand, there is no gyroscopic term in the axial and torsional components of the gyroscopic 

matrix, which leads to speed independent coupled torsional-axial modes.   

Table 4: Low and high speed dynamic behaviour of the planetary geared rotor system 

 100 rpm  8000 rpm 

Mode 

# 

Natural Frequency 

[Hz] 
Mode Type 

 Frequency 

Shift % 
 Natural Frequency 

[Hz] 
Mode Type 

 Frequency 

Shift % 

1 0.0 Torsional  0.000  0.0 Torsional  0.000 

2 113.8 Lateral BW 0.001  113.4 Lateral BW 0.281 

3 113.8 Lateral FW 0.000  113.5 Lateral FW 0.222 

4 115.0 Lateral BW 0.001  115.2 Lateral BW 0.182 

5 115.0 Lateral FW 0.001  115.3 Lateral FW 0.292 

6 219.8 Torsional - Axial  0.000  219.8 Torsional - Axial 0.000 

7 300.7 Torsional - Axial  0.000  300.7 Torsional - Axial  0.000 

8 318.2 Torsional - Axial 0.000  317.8 Lateral BW 1.406 

9 322.2 Lateral BW 0.017  318.2 Torsional - Axial  0.000 

10 322.3 Lateral FW 0.017  326.6 Lateral FW 1.327 

11 332.6 Lateral BW 0.003  331.8 Lateral BW 0.244 

12 332.6 Lateral FW 0.003  333.3 Lateral FW 0.210 
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The speed dependent property of the lateral modes leads to a frequency split in the Campbell diagrams in Figure 9 where the 

natural frequencies of the lateral modes change with respect to the shaft speed whilst the torsional-axial modes are not affected 

by the shaft speeds. The forward whirling mode thereby experiences an increase in frequency, while the backward whirling 

mode sees a decrease in frequency.  

 

 

Figure 9: Campbell diagram, a) and b) with gearbox gyroscopic effect, c) and d) without gearbox gyroscopic effect for two 

different frequency ranges. 

Gyroscopic moments can originate from the shafts and the rigid disk elements inside the planetary gearbox (gears and carrier). 

To understand the impact of the gearbox gyroscopic moments on the frequency response, Campbell diagrams were generated 

with and without gearbox gyroscopic effects for two frequency ranges in Figure 9. For instance, a significant gearbox 

gyroscopic effect is seen for the 9th and 10th lateral BW and FW modes (numbering from the static case). When plotting the 

Campbell diagram without the gearbox gyroscopic effect, the natural frequency change becomes very small for these modes. 

A small frequency change can still be observed due to the gyroscopic effects from the shafts. The frequency shifts between the 

static case and 8000 rpm for these modes are 1.41% and 1.33% respectively, as seen in Table 4. On the other hand, the gearbox 

gyroscopic effect is just visible for the 2nd, 3rd, 4th, 5th, 11th, 12th lateral modes. The frequency shifts between the static case and 

8000 rpm are 0.28%, 0.22%, 0.18%, 0.29%, 0.24%, 0.21% for these modes, as seen in Table 4. The highest gearbox gyroscopic 

effect within the first twelve modes is observed for the 9th and 10th mode (in the static case) and the gearbox has a higher modal 

energy of about 94% for these modes. However, the gearbox has a lower modal energy at a value of 10% for the 2nd, 3rd, 4th 

b) d) 

a) c) 
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and 5th modes and 17% for the 11th and 12th modes. It can be concluded that the planetary gearbox gyroscopic effect is much 

more dominant in some modes where the planetary gearbox has higher modal energy.  

Table 4 also provides data for a low speed (100 rpm) modal analysis, where the natural frequencies, mode types and frequency 

shifts can be compared to the high speed case (8000 rpm). It is clear that there is a natural frequency shift between the low and 

high speeds. To better understand the impact of the gyroscopic effects on the mode shapes, the Modal Assurance Criteria 

(MAC) is used to compare the eigenvectors at low and high speeds. The MAC formula is [65] 

𝑀𝐴𝐶(𝐿, 𝐻) =
|{𝜙𝐿}𝑟

𝑇{𝜙𝐻}𝑞|
2

({𝜙𝐿}𝑟
𝑇{𝜙𝐿}𝑟)({𝜙𝐻}𝑞

𝑇{𝜙𝐻}𝑞)
 

where 𝜙𝐿 and 𝜙𝐻 are the low and high speed eigenvectors respectively, and r and q represent the corresponding mode number. 

The resulting MAC matrices with and without gyroscopic effects in the gearbox are shown in Figures 10a and b respectively. 

              

Figure 10: MAC matrices for low (100 rpm) and high (8000 rpm) speeds, a) with planetary gearbox gyroscopic effect, b) 

without planetary gearbox gyroscopic effect 

The MAC matrix in Figure 10a shows that modes eight and nine reverse their order due to the crossing in Campbell diagram 

(veering), while the other modes do not seem to be affected by the shaft speed. A further reduction in speed dependence can 

be observed when the gyroscopic effects of the gearbox are neglected, leading to a nearly 100% MAC diagonal in Figure 10b. 

The MAC is not 100% in Figure 10b because there is a small gyroscopic effect from the two shafts. In summary, it can be said 

that the rotor dynamic behaviour is only mildly affected by the rotational speed, and for modes with a high gearbox contribution 

stronger splitting of the frequencies may lead to unexpected mode veering regions. 

4. DISCUSSION 

The main focus of this investigation is to understand the impact of an equally spaced planetary gearbox on the global dynamic 

behaviour of a planetary geared rotor system. Mode shapes of the helical planetary geared rotors are identified as coupled 

torsional-axial, lateral and gearbox modes whereas mode shapes with the spur gearbox become torsional, axial, lateral and 

gearbox. The main difference between the spur and helical planetary geared rotors is the presence of coupling between torsional 

and axial modes in the latter due to the helix angle. The helix angle effect can be clearly seen in the composition of the global 

stiffness matrix of the planetary geared rotors in Figure 11. Here, it is clear that zero helix angle makes the gear mesh stiffness 

zero in the axial directions. Therefore, the input and output shafts have independent dynamic behaviours from each other in the 

axial modes, and the axial vibrations cannot transmit between them. Moreover, making the helix angle zero cancels the coupling 

term between the axial and torsional directions, resulting in uncoupled torsional, axial and lateral modes. In the case of helical 

gears, axial thrust forces can create unexpected torsional excitations on the shaft, which can be of great significance for geared 

turbofan engines where planetary gearboxes are commonly used [56]. 

A further feature of the modes for both spur and helical planetary geared rotors is the asymmetric motion in the two shafts, 

although the planetary gearbox is located at the middle of the system and the shafts have identical properties. This breaking of 

(30) 

a) b) 
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the symmetry can be attributed to the different mass and inertia properties of the input and output members of the planetary 

gearbox itself, which are directly attached to the two shafts.  

 

Figure 11: Helix angle effect on the global stiffness matrix, a) spur, b) helical 

To better understand the contribution of the gearbox to the global modes of the system, the modal energy of the gearbox 

compared to the total modal energy of the system has been computed. Table 2 and 3 summarise the results of this analysis for 

a) the helical and b) the spur gear configuration. It shows that there are some global modes in which no motion of the shaft is 

observed and all the energy is stored in the gearbox. These modes can be directly related to the internal modes of the planetary 

gearbox where the planets or planets and carrier move in the case of the helical or spur planetary gearbox respectively, while 

the central members do not move, leading to a decoupling of the gearbox and the shafts. They are classified as gearbox modes 

in the global rotor system. In contrast to these internal gearbox modes, the other modes in which the planetary gearbox has 

higher modal energy are highly coupled with the shafts. For these modes, the natural frequencies of the rotor system and 

planetary gearbox are very close to each other.  

An additional effect that needs to be considered when studying the dynamics of a geared rotor system is the gyroscopic effect 

originating from the planetary gearbox. This can lead to a mode veering phenomenon in the MAC comparison between low 

(100 rpm) and high (8000 rpm) speeds. In addition, they can significantly influence the natural frequencies of the backward 

and forward lateral modes of the geared rotor system, particularly for the modes with higher gearbox modal energy.  

5. CONCLUSION 

The dynamic behaviours of two shaft rotor systems with equally spaced spur and helical planetary gearboxes were investigated 

in detail by considering the gyroscopic effects and neglecting damping. For this purpose, a six degrees of freedom dynamic 

model was presented, combining a lumped parameter model of the planetary gearbox with Timoshenko beam elements for the 

shafts. Members of the planetary gearbox, which are the ring, planet and sun gears and carrier, were assumed to be rigid disks 

and the gear contacts were considered as flexible. The generated model was used to conduct a modal analysis of the global 

response of the geared rotor system to study the impact of the planetary gearbox on the modal behaviour of the shafts. On the 

basis of mode shapes of the shafts, mode identification of the rotor system was carried out for the static case and the rotating 

case (including gyroscopic effects). The effect of the planetary gearbox on each global rotor mode was then quantified for the 

static case by a modal energy analysis. The effect of the planetary gearbox gyroscopic terms on the global rotor modes was 

also investigated.  

The modal analysis of the planetary geared rotor system highlighted the strong modal coupling introduced by the gearbox. 

Modes of the helical planetary geared rotors are identified as coupled torsional-axial, lateral and gearbox modes whereas spur 

planetary geared rotors have uncoupled modes, which are classified as axial, torsional, lateral modes and gearbox modes. The 

gear helix angle is the main coupling parameter in planetary geared rotor systems, which makes torsional and axial modes 

a) b) 
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coupled. It is also found that axial vibrations of the input and output shafts are uncoupled from each other in spur planetary 

geared rotors. In helical planetary geared rotors, coupled torsional-axial modes can also result in mode shape decoupling in the 

axial direction between the input and output shafts of the planetary gearbox due to the lower axial stiffness of the planetary 

gearbox compared to the shaft stiffness. Gearbox modes are fully isolated from the shafts because no dynamic interaction 

between the shafts and gearbox occurs for these modes. Also, no displacement and rotation occur on the shafts for the gearbox 

modes. Therefore, the modal energy of the planetary gearbox for the gearbox modes is 100%. The natural frequencies of the 

gearbox modes, computed with a global rotor modal analysis, are directly associated with the planet modes, computed with an 

independent modal analysis of the planetary gearbox. Apart from the gearbox modes, the planetary gearbox has higher modal 

energy in some other modes where the coupling level between the gearbox and shafts is much higher. At these modes, natural 

frequencies of the planetary geared rotor system and the planetary gearbox are close to each other. This clearly shows that 

gearbox is dominant when there is a highly coupling between the global rotor system and gearbox. As a result of the dominancy 

of the gearbox, the natural frequencies computed from the independent modal analysis of the gearbox and the global rotor 

system become closer to each other. For the high speed dynamic behaviour, the global backward and forward lateral modes in 

which the planetary gearbox has higher modal energy can experience significant gyroscopic effects due to the gearbox 

members. This can lead to significant changes in natural frequencies of the global system. When compared to the gyroscopic 

effects originating from the shafts, the gyroscopic effects of the planetary gearbox can result in a mode veering phenomenon. 

It can be concluded that for an accurate dynamic response prediction of a planetary geared rotor system, it is absolutely 

necessary to incorporate a reasonably detailed planetary gearbox model in the system in order to capture the detected 

complicated mode coupling events and the frequency shifting and mode veering phenomena at higher speeds. Not including 

these effects will lead to significantly less accurate results.  
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NOMENCLATURE 

𝑞 Generalized coordinates 

𝜉 Natural coordinates 

𝑑 Diameter of shaft 

𝑙𝑒 Length of a beam element 

𝜌𝑒 Material density of beam elements 

𝐴𝑒 Cross section area of beam elements 

𝐼𝑒  Second moment of area of beam elements 

𝐽𝑒 Polar moment of area of beam elements 

𝐸𝑒 Elasticity modulus of beam elements 

𝐺𝑒 Shear modulus of beam elements 

𝜈𝑒 Poisson`s ratio 

𝛼1, 𝛼2  Proportional damping constants 

N Number of planets 

𝑟𝑐  Radius of carrier 

𝑚 Mass 

𝐼𝑑 Diametral mass moment of inertia 

𝐼𝑝 Polar mass moment of inertia 

𝛀 Rotating speed of elements 

𝑘𝑥 Support bearing stiffness in 𝑥 direction 

𝑘𝑦 Support bearing stiffness in 𝑦 direction 

𝑘𝑧 Support bearing stiffness in 𝑧 direction 

𝑘𝑄𝑥
 Support bearing stiffness in 𝑄𝑥 direction 

𝑘𝑄𝑦
 Support bearing stiffness in 𝑄𝑦  direction 

𝑘𝑄𝑧
 Support bearing stiffness in 𝑄𝑧 direction 

𝑐𝑥 Support bearing damping in 𝑥 direction 

𝑐𝑦 Support bearing damping in 𝑦 direction 

𝑐𝑧 Support bearing damping in 𝑧 direction 

𝑐𝑄𝑥
 Support bearing damping in 𝑄𝑥 direction 

𝑐𝑄𝑦
 Support bearing damping in 𝑄𝑦  direction 

𝑐𝑄𝑧
 Support bearing damping in 𝑄𝑧 direction 

𝑇 Kinetic energy 

𝑉 Potential energy 

𝐿 Total energy 

𝜀 Modal energy ratio 

rpm Revolution per minute 

DOF Degree of freedom 

  

Subscripts   

ℎ = 𝑟, 𝑐, 𝑠 Central member index 

𝑟 Ring gear 

𝑐 Carrier 

𝑠 Sun gear 

𝑝 Planet gear 
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