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Abstract

We study the crucial role of membrane fluctuations in maintaining a narrow gap between a

fluid membrane tube and an enclosed solid particle. Solvent flows can occur in this gap,

hence giving rise to a finite particle mobility along the tube. While our study has relevance

for how cells are able to transport large organelles or other cargo along connecting mem-

brane tubes, known as tunneling nanotubes, our calculations are also framed so that they

can be tested by a specific in vitro experiment: A tubular membrane tether can be pulled

from a membrane reservoir, such as an aspirated Giant Unilamellar Vesicle (GUV), e.g.

using a conjugated bead that binds to the membrane and is held in a laser trap. We compute

the subsequent mobility of colloidal particles trapped in the tube, focusing on the case when

the particle is large compared to the equilibrium tube radius. We predict that the particle

mobility should scale as� σ−2/3, with σ the membrane tension.

Introduction

There has been a great deal of interest over recent years in the structure and dynamics of fluid

membrane tubes. These can be generated by in-vitro tether-pulling experiments [1–7]. It has

also been shown that cells exchange enclosed material between themselves via the formation of

similar long, narrow fluid membrane tubes known as tunneling nanotubes (TNTs) [8–10].

Such membrane tubes typically possess diameters of 50 nm to 200 nm and can extend over

tens of microns. The transport of pathogens between cells using TNTs is also implicated in

many important diseases, such as HIV, cancer, bacterial infection, prion, neuronal and

immune disorders [8–11]. Bulges are observed in the diameter of TNTs at the position of an

enclosed organelle or other object with a size larger than the equilibrium diameter of the

enclosing fluid membrane tube [12–15]. Such ‘bulges’ are also observed in the transport of sili-

con microparticles [16] between cells. Our work may therefore also be relevant to understand-

ing the role of TNTs in disease and drug delivery.

In this work we consider an experimental setup in which a colloidal particle (assumed to be

spherical) is trapped inside a tubular tether. This tether is closed at the distal end, near where

an elongation force is applied to generate and maintain it, e.g. via a conjugated bead held in a

laser trap. Typically the tube is pulled from a Giant Unilamellar Vesicle (GUV) that is aspirated

by an attached micropipette, controlling the pressure, and hence the membrane tension. Large
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tension results in a narrow membrane tube (and vice versa). In-vitro tube diameters are typi-

cally in the tens to hundreds of nanometers range and hence can be much narrower than mod-

estly sized colloidal particles. Some of the fluid trapped in the tube between the colloidal

sphere and the closed end of the tube must flow past the sphere if it is to move relative to the

tube. We consider a tethered tube of fixed length made up of membrane under a surface ten-

sion σ and with intrinsic rigidity κ, see Fig 1. For a large solid sphere enclosed in a narrow

fluid membrane tube, the gap in which fluid flows is necessarily small. However, at non-zero

temperature an entropic, steric repulsion operates between the membrane and the sphere due

to the presence of membrane fluctuations. These fluctuations maintain a finite average gap

size between the spherical particle and the enclosing membrane. The existence of such a gap

enables fluid to flow around the sphere and therefore endows the sphere with a finite mobility,

and corresponding axial diffusion coefficient via the Einstein relation. In this work we estimate

the size of this membrane gap self-consistently, and then use this to calculate the drag on a

slowly moving enclosed sphere using low Reynolds number hydrodynamics. This allows us to

compute the particle mobility. This is found to depend on the membrane tension as� σ−2/3.

For the interested reader, related works in the literature on the hydrodynamics of mem-

branes, and membrane bound inclusions, can be found in [17–20], for example. Additionally,

it is conceivable, within the wider context of cell biology, that the fluid enclosed by the mem-

brane could contain cytoplasm, and hence possibly give a non-Newtonian fluid response [21].

In this work we assume low Reynolds number, Newtonian fluid behaviour, and leave the theo-

retically challenging possibility of modelling any non-Newtonian fluid response to future

work. Moreover, it was recently found in [22] that Newtonian flows were sufficient to describe

cytoplasmic streaming in C. elegans, for example.

Results

We calculate the mobility of a spherical particle moving in a membrane tube with an equilib-

rium radius that is much smaller than that of the moving particle. This corresponds to a mem-

brane tension σ that is sufficiently small so that the equilibrium tube radius r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ð2sÞ

p
is

much smaller than the particle radius R0, with κ the membrane rigidity. For typical values of

the bending modulus κ = 20kBT and surface tension σ = 10−5Jm−2 (although this can be varied

Fig 1. Sketch of a large solid sphere of radius R0 enclosed in a narrow fluctuating membrane tube. The undeformed section of membrane

tube has a radius r0� R0, while the highly deformed portion of membrane enclosing the solid sphere possesses (on average) a radius of �R > R0

due to membrane fluctuations. The degree of wrapping of the solid sphere by the enclosing membrane is characterised by the angle Δθ� 1.

(Membrane fluctuation extent shown is exaggerated, for purposes of illustration).

https://doi.org/10.1371/journal.pone.0210259.g001
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by at least two orders of magnitude by aspiration of the GUV from which the tether is pulled),

a typical membrane tube radius is r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ð2sÞ

p
� 60nm and therefore even relatively small

colloidal particles can fall in the regime of validity of our calculation. Our primary result is that

the mobility is reduced in a way that is sensitive to membrane tension. A particle moving in

bulk solvent has a diffusion constant that is greater than a similar particle moving in a mem-

brane tube filled with the same solvent by a factor K ¼ 32
R2

0
ks

ðkBTÞ
2

� �2=3

.

Discussion

We calculate the linear mobility, characterised by the diffusion constant D. As usual we assume

that all fluid flows are adiabatically slow, such that membrane elasticity and membrane fluctua-

tion contributions completely dominate over any hydrodynamic effects when calculating the

membrane gap conformation. This means that the fluctuation force dominates any changes in

the hydrostatic pressure at leading order and that we can set J and C to be constants. We

assume that dissipation is dominated by flows inside the tube, as may be confirmed a
posteriori.

We can also estimate the dissipation due to fluid flow within the membrane as follows. We

let the membrane fluid with velocity um and viscosity μm occupy a region with between �R and

�R þ h, where h is the membrane thickness. Even though the solvent (water) viscosity μ is small

(μ/μm� 10−3) the sphere is large compared to the membrane thickness h/R0� 1 (with

h� 5nm) and this plays a geometrical role, with the dissipation due to flow within the mem-

brane shown to be negligible for the purposes of computing the overall hydrodynamic drag

force on the body.

Passive transport of large colloidal bodies bodies enclosed inside membrane tethers is

extremely slow, with passive diffusion over distances� 10μm taking�months. This suggests

that transport requires active propulsion, such as provided by polymerising fibers of actin or

tubulin, molecular motors, or surface tension or pressure differences, leading to membrane or

fluid flows, respectively [23]. The work presented here may be relevant to the use of micropar-

ticles for novel methods of drug delivery. Most directly, the theoretical work presented here

provides testable predictions for the calibration of mobility in tether-pulling experiments.

These can be used to directly study the role of membrane fluctuations, something that is other-

wise not straightforward to achieve.

For the purposes of the work presented here, we assume from the outset that the particle

has already overcome any possibly existing initial entropic barrier effects, and is therefore nec-

essarily well inserted inside the enclosing membrane tube. Naturally, this can be accomplished

via direct experimental manipulation, if required, thus obviating the need for any additional

entropic cost analyses in this work. Such an interesting and non-trivial entropic cost analysis,

suggesting conditions under which a particle might partition within the tether, rather than

being excluded from the confinement, is left to future work. Another interesting question is to

ask how multiple particles within a single tube might organize to lower the elastic cost, and

how any aggregation might affect particle mobilities. Clearly this highly challenging problem is

beyond the scope of the work presented here, and is also left to future work. Additionally, how

a particle confined in a tube containing phase separating membrane molecules, which produce

domains of differing bending rigidities and thus different tensions, might repartition to mini-

mize the energy, is another interesting question one might like to address. Again, this highly

non-trivial problem is beyond the scope of the work presented here, and is thus similarly left

to future work.

Tubular membrane transport
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Model

Self-consistent calculation of the membrane gap

In the following section we outline a self consistent mean field analysis of the radial membrane

fluctuations. The purpose of this is to calculate the average size of the gap that exists between

the spherical particle and the fluctuating membrane; in some places the gap will be smaller and

others it will naturally be larger. Our approach will be to use the average gap size as an approxi-

mation for a (constant) gap size, everywhere around the sphere. In our model the average

radial extent of the membrane is governed by membrane fluctuations that drive it slightly

away from the surface of the enclosed spherical particle. A similar approach has proved highly

successful for planar membranes [24, 25], as well as membrane tubes [26].

The membrane fluctuates about a spherical shape around the particle (bulge) except near

the two “necks” where it joins smoothly onto the walls of the membrane tube, see Fig 1. In

order to describe the energetics of the membrane we write the Hamiltonian H =HE +HS, with

HE ¼

Z

sþ
k

2
c2

h i
ffiffiffi
g
p

d�dy ð1Þ

and

HS ¼

Z

Aþ J�R2 Rð�; yÞ � �Rð Þ þ
C
2

Rð�; yÞ � �R

!2 #

d� sin ydy ð2Þ

"

Here HE is the usual Hamiltonian for membrane elasticity [25, 27], containing both surface

tension (σ) and rigidity (κ) controlled terms. The mean curvature is given by c, and g is the

determinant of the metric tensor det(gab). The steric part,HS, contains a harmonic potential

with strength C that confines the size of the membrane fluctuations in a narrow region around

the average membrane sphere radius �R. It also contains a fluctuation pressure with strength J,
which controls the average radius �R of the membrane sphere. This term can also be used to

include any hydrostatic or osmotic pressure differences between the inside and outside of the

membrane, although we set these to zero for clarity in what follows. Additionally, HS contains

a term involving A which is convenient for normalisation of the steric potential. This, most

general harmonic potential, will be used to model the steric interactions between our mem-

brane and enclosed spherical particle by way of a mean-field approach. As we are dealing in

this work with an almost completely enveloped spherical particle, we can approximate the

energy by computing the membrane Hamiltonian over the entire sphere. An analogous treat-

ment has proven to be remarkably successful in describing the steric repulsion between flat

membranes [24, 25], as well as between membrane tubes and an enclosed rod [26]. We pro-

ceed from Eq (1) by writing Rð�; yÞ ¼ �R þ dRð�; yÞ and expanding the energyH to quadratic

order [28] in the radial perturbation δR(ϕ, θ) about the average membrane radius �R. Using

spherical harmonics, we write dRð�; yÞ ¼
P

lmdRlmY
m
l ð�; yÞ, which yields the total membrane

energy as a perturbative expansion H =H0 + δH + δ2H + . . . with

H0 ¼ 8pkþ 4ps�R2 þ 4pA

dH ¼ 0) hdRi ¼ 0) J ¼ � 2s=�R

d
2H ¼

1

2

X

lm

jdRlmj
2Klm

ð3Þ
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involving a kernel

Klm ¼ ðl � 1Þðl þ 2Þ
k

�R2
lðlþ 1Þ þ s

� �
þ C ð4Þ

The first order perturbative contribution is required to vanish so that �R indeed represents

the true average (or ground state) membrane radius [28]. This condition then implies (from

Eq (3)) that the fluctuation pressure is J ¼ � 2s=�R, as required to satisfy Laplace’s law. The

quadratic fluctuations in the radial displacement (around �R), contribute at order δ2H, and

depend on the strength of the harmonic potential in Eq (1), via the parameter C which is estab-

lished as follows. The presence of the enclosed solid spherical particle sterically constrains the

membrane radius, R(ϕ, θ), to remain always greater than the particle radius R0, see Fig 1. The

mean squared amplitude of the fluctuations, hδR2i, depends on the parameter C, as can be seen

from Eq (3), which we must determine self consistently. In employing a harmonic potential,

controlled by the parameter C, we adopt an approximate phenomenological treatment of the

steric interactions.

By integrating out the membrane fluctuations, the free energy of the tube F =H0 + ΔF can

be shown to involve the correction term:

DF ¼
1

2
k
B
T
X

lm
log Klmð Þ ð5Þ

We can now physically motivate an explicit choice for the parameter A as follows. We aim

to calculate the free energy difference between the case when the enclosed spherical particle is

present and when it is absent (and the membrane is unconstrained). In the latter case the steric

harmonic potential (of strength C) vanishes, as do terms involving C that appear in Knm. Thus

we choose the parameter A so that in the limit C ! 0 we obtain ΔF! 0 for consistency. We

must then choose

A ¼ �
1

8p
k
B
T
X

lm
log KlmjC¼0

� �
ð6Þ

After we have integrated out all radial membrane fluctuations we therefore obtain

F ¼ 8pkþ 4ps�R2 þ
1

2
k
B
T
X

lm
log

Klm
KlmjC¼0

 !

ð7Þ

We can now state quantitatively the physical condition that we wish to impose on our

membrane to mimic the steric influence of the enclosed solid sphere (with radius R0):

�R �
ffiffiffiffiffiffiffiffiffiffiffi
hdR2i

p
¼ R0

ð8Þ

This gives the necessary self-consistency condition for the strength of the harmonic poten-

tial given that

hdR2i ¼
1

4p
k
B
T
X

lm
K � 1

lm ð9Þ

In order to calculate the average radius �R for the membrane tube we merely need to mini-

mise F by setting @F
@ �R ¼ 0.

For a large sphere inside a narrow tube, the average radius of the membrane is almost equal

to the radius of the enclosed spherical particle (�R=R0 ’ 1). The steric effects of the sphere in

Tubular membrane transport
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this limit should therefore be very strong, and the strength of the self-consistent, confining,

harmonic potential becomes very large (C�R2=k� 1). Using
Pm¼l

m¼� l ¼ 2l þ 1, we can approxi-

mate the resultant sum over l in Eq (9) as an integral by defining a new variable ρ = l2, such

that:

ð�R � R0Þ
2

R2
0

’
1

4pk
k
B
T
Z 1

0

dr
1

r2 þ
C�R2

k

!
1

8
k
B
T

ffiffiffiffiffiffiffiffiffiffiffi
1

kC�R2

r

as C !1

ð10Þ

Hence in this narrow gap limit, C ¼ R2
0

64k

ðkBTÞ
2

ð�R � R0Þ
4, to leading order. Substituting this value of

C into Eq (7), and approximating the sum required by an integral as in Eq (10), we obtain the

following result to leading order

F ¼ 8pkþ 4psR2
0
þ 8psR0ð

�R � R0Þ þ ðkBTÞ
2 pR2

0

16k

1

ð�R � R0Þ
2 ð11Þ

A contribution to the energy that scales as the inverse squared distance, similar to the one

appearing here, is well known for planar membranes at small inter-membrane separation

[24, 29–31], as well as membrane tubes in close proximity to an enclosed rod [26].

Minimising Eq (11) w.r.t. �R, we find to leading order:

�R ¼ R0 þ
R0ðkBTÞ

2

64ks

!1
3

ð12Þ

0

@

In closing, note that the distal portions of membrane tube, unaffected by the presence of the

enclosed large spherical particle, can easily be shown [26] to possess a cylindrical radius of

r0 ¼
ffiffiffiffi
k

2s

p
.

Fluid hydrodynamics

Here we analyse the fluid hydrodynamics around the moving particle within the tube. This

will allow us to calculate the diffusion constant of the spherical particle. The low Reynolds

number hydrodynamics of the fluid within the membrane tube is governed by Stokes’ equa-

tion, along with the constraint of incompressibility [32–35]:

� rpþ mr2u ¼ 0

r � u ¼ 0
ð13Þ

with fluid velocity u, hydrostatic pressure p, and viscosity μ. Utilising symmetry consider-

ations, we work in spherical polar coordinates, and assume that uϕ = 0, and @u/@ϕ = 0. In the

‘narrow-gap’ approximation of interest here, we can also assume that uR = 0, such that the

fluid flow in the gap can be described by the component uθ alone. Utilising this approximation,

Tubular membrane transport
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and taking into account the geometrical setup of our problem, Eq (13) becomes:

�
1

R
@p
@y
þ
m

R2

@

@R
R2 @uy
@R

� �

¼ 0

1

R sin y
@

@y
uy sin yð Þ ¼ 0

ð14Þ

The incompressibility condition in Eq (14) can be satisfied straightforwardly by defining

uy ¼
FðRÞ
sin y, such that the z component of the flow (along the tube axis) becomes simply: uz = −uθ

sin θ = −F(R). Using this expression for uθ, we find that the equation governing the fluid flow

and pressure can now be re-arranged into the following form:

sin y
@p
@y
¼
m

R
@

@R
R2 @F

@R

� �

¼ a ð15Þ

The most general solution to Eq (15) can easily be shown to be: FðRÞ ¼ a
2m
R � c

Rþ d, and

pðyÞ ¼ bþ a
2
ln 1� cosy

1þcos y

� �
, where a, b, c, and d are constants. For convenience, we choose to

work in the lab frame with respect to which the enclosed solid sphere is moving. Furthermore,

we need to take into account the fluid flow in the spherical gap between the enclosed sphere

and the membrane, and the membrane fluid flow in the spherically deformed membrane, the z
component of which is written as um, such that the boundary conditions satisfied by the fluid

are as follows:

uzjR¼R0
¼ u0

uzjR¼�R ¼ um
ð16Þ

The membrane tube is held stationary at its end by, e.g. a conjugated bead held in an optical

trap. This means that the membrane tube is not growing in length, and that the sum of the

length of tube in front of the moving sphere and the length behind it must always add up to a

constant, the total tube length. The sphere is assumed to be moving such that the tube length

in front of the moving sphere decreases while the tube length behind it increases. The tube and

its contents remain stationary everywhere except very close to the sphere, while the enclosed

fluid and membrane must flow around the sphere. If the length of tube in front of the sphere is

L0 at time t = 0 then it is L(t) = L0 − u0t at some later time t. Thus the volume in the leading

tube is pr2
0
LðtÞ and depends on time, which demands a flow around the sphere to balance vol-

ume (with a similar argument for the membrane flow).

The surface tension gradient, expressed as a difference between the tension in the leading

and trailing tubes, is O(u0), i.e. small. Because the membrane flow is effectively one dimen-

sional, the membrane velocity is entirely determined by (i) membrane incompressibility (and

geometry) and (ii) the radii of the leading and trailing tubes, from which the membrane is

extracted/deposited so as to leave the membrane in both tubes stationary everywhere (except

around the sphere). This means that the membrane flow can only depend on the surface

tension difference via the leading and trailing tube radii, and here these are both of order

r0(1 + O(u0)), i.e. equal to r0 to leading order. Thus we can safely ignore membrane tension

gradients set up by the flow itself, and therefore any concomitant differences in the leading or

trailing tube radii.

In the lab frame, the fluid is stationary everywhere in both leading and trailing tubes. How-

ever, due to the change in membrane tube length in front of the moving sphere this means that

there must be a volumetric back-flow of fluid in the gap around the sphere (¼ u0pr2
0
), in order

Tubular membrane transport
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to avoid fluid accumulating in the leading tube. Thus, volumetric flow balance leads to:

pr2
0
u0 ¼ 2p

Z �R

R0

uzðRÞRdR ð17Þ

The important point to note in Eq (17) is that from the definition of the volumetric flow

rate being:
R 2p

0
d�
R �R
R0
uy sin yRdR, the integrand in Eq (17) is independent of the angle θ.

Additionally, in the lab frame, the membrane fluid is stationary everywhere along both

leading and trailing tubes. However, this means that there must also be a volumetric back-flow

of membrane around the sphere (= u02πr0h), with h the membrane thickness, to avoid mem-

brane accumulating on the leading tube. Volumetric flow balance in this case therefore leads

to:

2pu0r0h ¼ 2p

Z �Rþh

�R
uzðRÞRdR ð18Þ

which we evaluate in the limit where the membrane thickness h becomes vanishingly small.

By utilising all of the above boundary conditions, we can find all the integration constants

required in order to compute the drag force on the membrane enclosed sphere:

a
2m

¼
3u0

ð�R � R0Þ
3
r2

0
� ð�R � R0ÞðR0 þ r0Þ

� �

b ¼
1

2
p Dyð Þ þ p p � Dyð Þð Þ

c ¼ �
R0u0

ð�R � R0Þ
3

3r2

0
�R � ð�R � R0Þ r0ð2�R þ R0Þ þ

�Rð�R þ 2R0Þð Þ
� �

d ¼ �
u0

ð�R � R0Þ
3

3r2

0
ð�R þ R0Þ � 2ð�R � R0Þ r0ð�R þ 2R0Þ þ R0ð2

�R þ R0Þð Þ
� �

ð19Þ

where Δθ� r0/R0 is the small angle subtended by the neck of the tube, see Fig 1. In terms of

these constants, the fluid velocity and pressure become:

uyðRÞ ¼
1

sin y
u0

ð�R � R0Þ
3

3R r2

0
� ð�R � R0ÞðR0 þ r0Þ

� ��

þ
R0

R
3r2

0
�R � ð�R � R0Þ r0ð2�R þ R0Þ þ

�Rð�R þ 2R0Þð Þ
� �

� ð3r2
0
ð�R þ R0Þ � 2ð�R � R0Þðr0ð

�R þ 2R0Þ þ R0ð2
�R þ R0ÞÞÞÞ

pðyÞ ¼
1

2
p Dyð Þ þ p p � Dyð Þð Þ þ

3u0m

ð�R � R0Þ
3
r2

0
� ð�R � R0ÞðR0 þ r0Þ

� �
ln

1 � cos y
1þ cos y

� �

ð20Þ

Calculation of drag

The drag force f0 is determined by the integration of the fluid stress components (TRR, TRθ)
over the surface of the solid sphere (R = R0) as:

f0 ¼ 2pR2
0

Z p� Dy

Dy

dy sin yðTRR cos y � TRy sin yÞ ð21Þ
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where TRR = −p(θ), as given in Eq (20), and TRy ¼ mR @

@R ðuy=RÞ is given as:

TRy ¼
m

sin y
u0

ð�R � R0Þ
3
�

2R0

R2

�
3r2

0
�R � ð�R � R0Þ

�
r0ð2

�R þ R0Þ þ
�Rð�R þ 2R0Þ

���

þ
1

R

�
3r2

0
ð�R þ R0Þ � 2ð�R � R0Þ

�
r0ð�R þ 2R0Þ þ R0ð2

�R þ R0Þ
���

ð22Þ

Evaluating the integrals required in Eq (21), we find to leading order, assuming

r2
0
=R2

0
< ð�R � R0Þ=R0:

f0 ¼ � 6pmu0R0

2R2
0

ð�R � R0Þ
2

cosðDyÞ þ
1

2
sin2ðDyÞ ln

1 � cosDy
1þ cosDy

� �� �

ð23Þ

where sin Δθ = r0/R0, and r0 ¼
ffiffiffiffi
k

2s

p
. Using the relationship f0 = −ξu0, and inserting in Eq (23):

�R � R0 ¼
R0ðkBTÞ

2

64ks

� �1
3

, from Eq (12), we can write for the drag ratio K = ξ/ξ0:

K ¼ x=x0 ¼ 32
kR2

0
s

ðk
B
TÞ2

 !2=3

cosðDyÞ þ
1

2
sin2ðDyÞ ln

1 � cosDy
1þ cosDy

� �� �

ð24Þ

where the free, geometrically unhindered, 3d bulk friction constant is given as usual by:

ξ0 = 6πμR0 [34]. To leading order in Δθ� 1, corresponding to particles larger than the tube

radius, this simplifies dramatically to:

K ¼ x=x0 ¼ 32

 
kR2

0
s

ðk
B
TÞ2

!2=3

ð25Þ

Note that in Eq (25) the drag ratio depends on the membrane tension as� σ2/3. This result

for the drag provides an experimentally testable prediction. Furthermore, the diffusion con-

stant D is given by D = kBT/ξ = D0/K, where D0 = kBT/6πμR0 [34], which leads to a diffusion

constant correspondingly (much) smaller than that for free 3d bulk diffusion in the same fluid.

Additionally, the algebraic expression Eq (25), explicitly demonstrates the dependence of

mobility on viscosity, such that the effect of higher viscosities than pure water, because of the

inclusion of cytoskeleton and cytoplasmic soluble macromolecules (e.g. crowding agents), can

easily be taken into account.

For typical fluid membranes we have κ� 20kBT, and we can investigate how our main

result (given by Eq (25)) behaves in the most physiologically relevant particular regimes as

follows. Given that most, generic, biophysical cargo (as depicted in Fig 1) possess a range of

sizes from R0� 0.1 − 10μm [11], while most biomembranes have surface tensions between

σ� 10−5 − 10−4Jm−2, we find that our drag ratio lies in the range K� 2 × 103 − 4 × 106. The

above, experimentally accessible, range of values therefore encompass a host of individual

case studies, or particular situations, such as (in vivo [8–16]) the transport of mitochondria

(� 0.5 − 1μm), small organelles (� 0.1μm), pathogens (� 0.1μm), viruses (� 0.1μm), silicon

microparticles (� 1μm), or other large cargo (� 1μm) in tunneling nanotubes (TNTs), as well

as (in vitro) the transport of large colloidal particles or microbeads (� 10μm) in membrane

tether-pulling experiments [1–7], for example. In addition, via Eq (12), we can calculate using

the typical parameters quoted above the expected average size of the gap that exists between

the spherical particle and the fluctuating membrane to be�1 − 10nm. This calculated gap size

compares favourably with the analogous value of� 3nm obtained from experimental work on

supported lipid bilayers [36].
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