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Abstract

Assume that, in a parabolic or hyperbolic equation, the right-hand side is analytic in time
and the coefficients are analytic in time at each fixed point of the space. We show that the
infinitely differentiable solution to this equation is also analytic in time at each fixed point
of the space. This solution is given in the form of the Taylor expansion with respect to time
t with coefficients depending on x. The coefficients of the expansion are defined by recursion
relations, which are obtained from the condition of compatibility of order k = co. The value
of the solution on the boundary is defined by the right-hand side and initial data, so that it is
not prescribed. We show that exact regular and weak solutions to the initial-boundary value
problems for parabolic and hyperbolic equations can be determined as the sum of a function
that satisfies the boundary conditions and the limit of the infinitely differentiable solutions
for smooth approximations of the data of the corresponding problem with zero boundary
conditions. These solutions are represented in the form of the Taylor expansion with respect
to t. The suggested method can be considered as an alternative to numerical methods of
solution of parabolic and hyperbolic equations.

Key words: Parabolic equation, hyperbolic equation, smooth solution, regular solution,
Taylor expansion.

1 Introduction

Initial-boundary value (mixed) problems for parabolic and hyperbolic equations have since
long ago led to a great number of works; see e.g. the monographs [21,22,28,41,46] and the
references therein.

This paper is devoted to construction of infinitely differentiable solutions to parabolic
and hyperbolic equations, and its applications to construction of regular and weak solutions
to initial-boundary problems for these equations.

We consider problems with regular coefficients, right-hand sides, and boundary data. It
should noted that there is an extensive literature that makes clear what happens for parabolic,
hyperbolic, and also elliptic equations in the case where the coefficients, the right-hand side



and boundary data are not regular enough. For this, see the following recent works, which
also contain references to previous investigations: [1,3,4,6,8,11-17,19,20, 25-27,29-37,44].

It is well known that, for the existence of a smooth solution to parabolic or hyper-
bolic equation, the compatibility condition of an order k € N, corresponding to the
smoothness of the solution to the problem, should be satisfied. _

The compatibility condition of order £ means that the functions ‘g—gj o
0,1,2,...,k (u being the solution, ¢ time), which are determined from the equation,
initial data, and the right-hand side, should be equal on the boundary to % o’
1=20,1,2,... k, where u, is the given function of values of the solution on the bound-
ary. In the case where the solution is infinitely differentiable, one has k& = oo.

We consider problems in a bounded domain €2 in R” with a boundary S of the C*
class on the time interval (0,7), T' < oc.

We suppose that the coefficients of the equation, the right-hand side, and the initial
data are infinitely differentiable, and furthermore the coefficients of the equation and
the right—hand side are given in the form of the Taylor expansion with respect to time
t with the origin at the point t = 0 and with coefficients depending on z, where x is a
point in the space. Then the solution to the problem under consideration is informally
given in the form of the Taylor expansion with respect to ¢ in which coefficients depend
on x, i.e.,

7 =

u(z,t) = Z 1, g” (z, 0)¢". (1.1)

The coefficients %1? (+,0) are determined by recurrence relations, more exactly, they are

determined by the derivatives with respect to time ¢ at ¢ = 0 of the right-hand side f,
the coefficients of the equation, and by the initial data ug for a parabolic equation and
ug, w1 for a hyperbolic equation.

We prove converges of the series (1.1) in the space C*°(Q), Q = Q x (0,T) by using
the existence of an infinitely differentiable solution to the problem. So that, the value
of the solution u on the boundary u| sx(or) = U is uniquely determined by f and ug
for a parabolic equation, and by f, ug and u; for a hyperbolic equation.

This peculiarity is for the first time shown in our work. In the usual, accepted
approach, one prescribes for parabolic and hyperbolic equations a right-hand side,
initial, and boundary conditions.

For the zero Dirichlet boundary condition, we assume that uy and u; are elements
of D(2) and f € C*(]0,T];D(2)). Then the compatibility condition of order k& = oo
is satisfied, and the solution to parabolic and hyperbolic equations can be represented
in the form of (1.1).

It is known that the space C**(Q) is dense both in W(Q) and in the space (W(Q))*,
1/¢+1/g =1, that is the dual of W;(Q) for any [ € N, ¢ > 2. By the corollary to the
Weierstrass—Stone theorem, the set of products of polynomials with respect to  and
polynomials with respect to ¢ is dense in C*(Q). Therefore, the set of functions that
are represented in the form of the Taylor expansion with respect to ¢ with coefficients




which are elements of the space C*(€), is dense in C*®(Q), in WHQ), and in (W(Q))*.

Because of these properties, one can approximate smooth and non-smooth data of
the problem and the coefficients of equation by corresponding infinitely differentiable
functions with an arbitrary accuracy.

We apply the Taylor representation (1.1) to construction of regular and weak so-
lutions to parabolic and hyperbolic equations for which we prescribe the right-hand
side, initial, and boundary conditions. We consider well-posed parabolic and hyper-
bolic problems for which the solution depends continuously on the data of the problem.
The problems with inhomogeneous boundary conditions are reduced to problems with
homogeneous boundary conditions. The data of these problems are approximated by
corresponding infinitely differentiable functions for which the compatibility condition of
order k = oo is satisfied. The solution to the problem with homogeneous boundary con-
dition is constructed in the form (1.1). The solution to the problem with non-smooth
data is determined as a limit of solutions for smooth approximated data.

The convergence of the Taylor series in the corresponding spaces is proved on the
basis of the existence result for corresponding data.

Numerical solution of a parabolic problem with large convection, when one of the
coefficients of the equation by the derivative with respect to some z; is large for the
norm of L>®(Q), is a very difficult problem. There are many publications dealing
with these problems. Many methods s where developed for numerical solution of such
problems; see e.g. [2,7,18]. However, for significantly large convection, this problem is
practically not solved.

The method proposed in this paper permits one to construct exact solutions to such
problems for infinitely differentiable approximations of the right-hand side f and initial
data ug. Moreover, if an approximation of f is represented in the form of a finite sum
of terms in the Taylor expansion in t with coefficients depending on x, then the exact
solution for this approximation of f is also represented in the form of a finite sum of
the Taylor expansion. The exact solution to the problem for given data is the limit of
solutions for smooth approximations of f and wuy.

Thus, the suggested method of construction of solutions to parabolic and hyperbolic
equations is an alternative to methods of numerical solution of parabolic and hyperbolic
equations.

Below in Section 2, we consider problems for linear and nonlinear parabolic equa-
tions. Regular solutions to these equations with homogeneous and nonhomogeneous
boundary conditions are constructed. In the case of a nonhomogeneous boundary
condition, the solution is represented as a sum of a function satisfying the boundary
condition and a limit of solutions to the this problem with zero boundary condition for
infinitely differentiable data. These solutions are represented in the form (1.1)

In much the same way, we construct regular solutions to a system of parabolic
equations in Section 3.

In Section 4, we consider an initial boundary value problem for a system of hyper-
bolic equations for homogeneous and nonhomogeneous boundary conditions. Solutions



to these problems are constructed.

In Section 5, we formulate a nonlinear problem on vibration of an orthotropic plate
in a viscous medium. We show that there exists a unique solution to this problem, and
this solution is obtained as a limit of solutions u” to this problem for corresponding
approximations of the data of the problem; the functions u™ are computed in the form
of Taylor expansion.

In Section 6, we consider a 3-dimensional problem for Maxwell equations and a
problem on diffraction of electromagnetic wave by a superconductor, i.e., a slotted
antenna’s problem. Solutions to these problems are constructed.

The authors are grateful to the anonymous referee for suggesting the related bibli-

ography.

2 Parabolic equations

2.1 Linear problem and Taylor expansion

Let © be a bounded domain in R™ with a boundary S of the class C*. Let Q =
Q2 x (0,T), where T' € (0,00). Consider the problem: Find u such that

du 0*u du ,
i a;j(x,t) M + a;(z,t) pr +a(z,t)u=f in Q, (2.1)
ul=o = up in Q, u(-,0)|s = ugls- (2.2)

Here and below the Einstein convention on summation over repeated index is applied.
As seen from (2.2), we prescribe the value of the function u on the boundary at the
point ¢t = 0 only.

Since the boundary S is of the class C'*°, we can assume that the coefficients of
equation (2.1) and the right-hand side f are given in a bounded domain @ = ; X
(0,T), where Q; D Q, and uy is prescribed in €, see [40], Theorem 9.1, Chapter 1.

We denote the space of infinitely differentiable functions with support in €; by
D(Q4), and the space of infinitely differentiable functions on €y x [0, 7] with support
in Q for each t € [0,7] by C*([0,T]; D(%1)).

Topologies in both D(£2;)) and C*°([0,T];D(£2;)) are defined by the families of
corresponding seminorms.

We assume that

(f,uo) €U, (2.3)
where
U= {(f.u0) | 7 € C¥(0.7:D@), fe.) =Y & T w0
k=0
(2,8) € x [0,T] = Qy, up € D(Ql)}, (2.4)
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0
aij(xvt)figj > :u€27 w > 07 (.I',t) € Qh éiafj S Ra 52 = 5% +- 4+ 627 (25)

a; € COO(@I)? ai<x7t) = Z H atk(xao)tku
k=0
— =, 1 dka
ac COO(QI)? &(l‘,t) = Z H ?(x70)tk (26)
k=0

A topology on U is defined by the product of the topologies of C*°([0,7]; D(£2)) and
D(y).
Denote
9, 0*u u
A(x, t, %)u = a;;(z, t)m —a;(z, t)a—xz —a(z, t)u. (2.7)

Then equation (2.1) can be represented in the form

0 0
a—?—A(x,t, %)u:f in Q. (2.8)

We differentiate equation (2.8) in ¢t & — 1 times and set ¢ = 0. This gives the
following recurrence relation:

o*u ok—1 o 8k_1f
W“m - (atk—1 (A($7t7 g)u)) (-,0) + W(”O)
k—1 : '
o (O07A 0 ok—1-i o1 ¢
= jzo C;J.C_1 (% (x, t, %))(, 0) (atk_l—ju) (-7 O) + SpE=1 (.7 0)’ k=1,2,...

(2.9)

Here u(-,0) = wuy, C’,{_l are the binomial coefficients, %%(x,t, 8%) is the operator ob-
tained from the operator A by differentiation of its coefficients in ¢ j times.

A smooth solution u satisfies the condition

o™mu 8mub

For m = 0, we get up(x) = up(z,0), z € S.

We say that the compatibility condition of order k is satisfied if (2.10) holds for
m=20,1,2,... k.

For infinitely differentiable solutions the compatibility condition of order k = oo is
satisfied.



Theorem 2.1. Let Q be a bounded domain in R™ with a boundary S of the class C*
and T € (0,00). Suppose that the conditions (2.3)—(2.6) are satisfied. Then there ezists
a unique solution to the problem (2.1), (2.2) such that u € C=(Q), and this solution
is represented in the form of a Taylor expansion

— 1 a’f i _
u(z, t) = up(x +Z @ (z,t) € Q. (2.11)

The coefficients 2 atk #(-,0) are defined by the recurrence relation (2.9). Furthermore, the
boundary condition function u, = u|s,, St =S x [0,T], is determined as follows:

up(z,t) = i%
k=1

The function (f,uo) — u defined by the solution to the problem (2.1), (2.2) is a con-
tinuous mapping of U into C*(Q).

0)th, xeS, tel0,T]. (2.12)

QJ‘QJ

Proof. We consider the problem: Find @ satisfying

ou o\. ..
2 4o L)o=1 n

Uli=g = up in 4y, g, =0, (2.13)

where Sy = S; x [0,T], S; is the boundary of Q;. By (2.4), S; is of the class C*. Tt
follows from (2.3), (2.9) and (2.13) that the compatibility condition of any order k € N
is satisfied, and by [28], Theorem 5.2, Chapter IV and [46], Theorem 5.4, Chapter V,

there exists a umque solution to the problem (2.13) such that @ € W (1), kH(Ql),

ke N=1{0,1,2,...}, ¢ > 2. Therefore, 1 € C>(Q,).
The functions ‘g’;,”j( 0) are defined by formula (2.9) in which Q is replaced by €2

and u by @. (2.4) implies 2 atk £(-,0) € D(Y), k € N.
Informally, the solution to the problem (2.13) is represented in the form of a Taylor
expansion
— 1 0"
u(x,t) = uo(z __u (x,t) € Q1. (2.14)
“— k! Ot*
The function @ defined by (2.14) represents a smooth solution to the problem (2.13)
for all points ¢ € [0, 7] such that the series (2.14) converges at t in D().

Let us prove this. Denote

U (2, 1) = up(z Zm:kl

k=1

Q)
¢

(2.15)

Q’\



(2.9) and (2.15) imply that the function ,, is a solution to the problem

Oy, 0\ . .
T A(%ﬁ %> Upm-1 = fm-1 i Qy,
ﬂm|t:0 = Up in Ql, ﬂm|51T = 0, (216)
where
m—1 1 8kf i
fmfl(flf,t) = £ E w(ﬂl’,(})t y (SU,t) S Ql' (217)
It follows from (2.4) that
fm — [ in C([0,T]; D(2)). (2.18)

It is known that the solution of a parabolic problem depends continuously on the
data of the problem f,uy, ug, see [28], Theorem 5.2, Chapter IV and [46], Theorem 5.4,
Chapter V. Because of this, (2.13) and (2.16) yield

Hﬂ - ﬂmHqu(kH),kH(Ql) < CHfm - fHWq%,k(Ql), ke N, q > 2. (2.19)

Therefore
U — 0 i W2EDHHQy), 1EN, ¢>2,

and 1, — % in C*°(Q),). The function u = | is a solution to the problem (2.1), (2.2),
and it is determined by (2.9) and (2.11). This solution is unique.

It follows from [28] and [46] that the function (f,ug) — @ defined by the solution
to the problem (2.13), is a continuous mapping of U into W,f(lﬂ)’lH(Ql) for any [ € N,
q > 2. Therefore, the function (f,ug) — u, where u is the solution to the problem

(2.1), (2.2), is a continuous mapping of U into C*°(Q). O

Remark 2.1. It is customary to prescribe for a parabolic equation the functions f,ug
and the boundary condition u,. However, it follows from Theorem 2.1 that under the
conditions of this theorem, one prescribes only f and ug. In this case, there exists a
unique solution to the problem (2.1), (2.2) that is represented in the form (2.11) and
the function wu, is determined by f and .

Corollary 2.1. Let f be a function in Q) that is represented in the form of the Taylor
expansion in t with coefficients depending on x. Let u be a solution to the problem (2.1)
such that u € C=(Q). Then, for any fived point x € Q, the partial function t + u(z,t)
is analytical, and u is represented in the form (2.11).

Proof. Indeed, in this case, f € C*(Q), up € C*(2), the compatibility condition of
order infinity is satisfied, and it follows from the Theorem 2.1 that u represented in
the form (2.11). O



Consider the following problem on existence of an infinitely differentiable solution
to a parabolic problem with given boundary and initial conditions:

ou 0 .
FTi A(:E, t, %) u=f inQ. (2.20)
Ulsy = up,  ule=o = uo. (2.21)

Here A( x,t, a%) is defined by (2.7).
We define the following spaces:

X = {u | u e C™(Q,), suppu(-,t) C Qy, t €[0,T],

= 1 0" & —
U<I,t) - £ E %(ZE,O)t ) ((L’,t) € Q1}7
Xo={u]|uelX, u‘ST:(), u(-,0) = 0},
Z ={(v,w) |v="n(-0)|g, w=hls., he X} (2.22)

We define an operator v : X — Z by

Y(u) = (u(-,0)[g, uls,)-

Note that X is the kernel of the operator 7.
Let X/Xj be the factor space. If u! and u? are elements of X such that u' —u? € X,
then u' and u? belong to the same class in X/X,, say u. We say that u is of class

(up, up) € Z if y(u) = (ug,up) for all uw € w. The result bellow follows from Theorem
2.1.

Corollary 2.2. Let (ug,up) € Z and let u be the class (ug,up) from X/Xo. Then any
function u € E{Q is the solution to the problem (2.20), (2.21) for ug, up, and f that is
determined as follows:

=~ 1 o~If . _
flo,t)=>" T @0 @Hed, (2.23)
k=1
where
oF-1f o u L /9iA 0
W(l'?()) = wCC,O) - - C]jc_l (W (l’,t, a—x>)($,0>
J:
k—1—j
X <%) (z,0), =€ (2.24)



Define the following set:

Uy = { () | £ € C¥(0.TF D). Fwt) =3 e 0

(2,8) € A% [0,T] = Q, up € D(Q), up = o}. (2.25)

We consider the problem: Given (f,ug,u;) € Uy, find u such that

ue C™(Q),
ou ou
s —A(m t, at)U—f,
Ulpmo = g, U|s, = Up. (2.26)

The following result follows from the proof of Theorem 2.1:

Corollary 2.3. Let 2 be a bounded domain in R™ with a boundary S of class C*.
Suppose that the conditions (2.5), (2.6) are satisfied, and (f,uo,up) € Uy. Then there
exists a unique solution to the problem (2.26) that is represented in form (2.11), and
the function (f,uo,0) — u is a continuous mapping of Uy into C*°([0,T]; D(R)).

2.2 Solution of initial-boundary value problems in Sobolev
space

We consider the problem (2.20), (2.21) in which we are given f,ug,u,. We suppose
that

FELXQ), we HY(Q), uy€H2i(Sr), up(x)=uy(z,0) z€S.  (2.27)

In this case, the compatibility condition of order zero is satisfied.

For the sake of simplicity, we assume that the coefficients of the equation (2.20) are
elements of C*(Q)), and they are represented in the form of Taylor expansion in t with
coefficients depending on z, i.e., (2.5), (2.6) hold, and the boundary S is of the class
C.

It follows from the corollary to the Stone-Weierstrass theorem that the set of tensor
products of polynomials in 2 and polynomials in ¢ is dense in C*°(Q). Therefore,
the solution to the equation with non-smooth coefficients is obtained as the limit of
solutions of equations with smooth coefficients as above.

By analogy, a non-smooth boundary S can be approximated by boundaries of the
class C*°. In this case, solutions for smooth boundaries converge to the solution for
non-smooth boundary in the corresponding space, see [42].



It follows from the known results, see e.g. [41], Chapter 4, Theorems 2.3 and 6.2, [46],
Chapter V, Theorem 5.4 that, under the above conditions, there exists a unique solution
to the problem (2.20), (2.21) such that

u € H*(Q). (2.28)

We define the following function:

-yt
w(, ) = {ub(P:B,t)e ?=@=pPa)?  if |x — Px| < a, (2.29)

0 if |z — Pz| > a.

Here z € Q, t € (0,T), P is the operator of projection of points of {2 onto S, a is a
small positive constant. Note that w € H**(Q).
Let
o =u—w. (2.30)

(2.28), (2.29) imply
i€ H*Y(Q), s, =0, @m0 = up— wli=o € Hy(Q). (2.31)

The function « is the solution to the following problem:

ot o\. =
E_A(l‘7tag)u_fa

ils, =0, ili—o = uo — w]img € Hy (), (2.32)
where 9 P
~ w
— 2= — L*(Q). 2.
F=r- 5w u e Q) (289

(2.27), (2.30), (2.32) imply
u(z,0) = up(z,0) —w(xz,0) =0, z€S. (2.34)

Therefore, the compatibility condition of order zero is satisfied, and there exists a
unique solution to the problem (2.32) such that @ € H>'(Q), ulg, = 0.
Let { fm, tom} be a sequence such that

e CXOT)DQ), Fulet) =3 5 w0, s Fin 12(Q),
k=0

Tom € D(Q),  Tgm — o — w|i—o in Hy(€2). (2.35)
Consider the problem: Find u,, such that

10



Dy oN.
W — A(l’,t, %>Um = fm,
(-, 0) = Gigm. (2.36)

We can assume that the functions f;n and g, are extended by zero to domains @)
and Q so that (fy,, lom) € U, see (2.4). Then by Theorem 2.1, there exists a unique
solution to our problem in @), and it is determined by (2.14), where the functions @
and 1 are replaced by i, and dg,,. Thus, the solution to the problem (2.36) belongs

to C*(Q) and it is represented in the form

i (,1) = iom () + ia U 0V, (2,1) € Q. (2.37)

where 8;?,? are determined by (2.9).

(2.32), (2.36) and [46], Theorem 5.4, Chapter V imply

i — all 22y < e(llfin = Fllz2@) + llfom — o + wle=ollmy o). (2.38)

Now, (2.35) yields
Uy — @ in H*H(Q). (2.39)

Thus, we have proved the following result:

Theorem 2.2. Let Q) be a bounded domain in R™ with a boundary S of the class C*™,
T € (0,00), and let the conditions (2.5), (2.6) be satisfied. Let also the conditions
(2.27) be satisfied. Then, there exists a unique solution to the problem (2.20), (2.21)

that satisfies (2.28), and it is represented in the form u = u + w, where w is given by
(2.29), and @ is determined by (2.39).

Remark 2.2. When applying Theorem 2.2 in practice, one can compute the solution to
the problem (2.36) directly by (2.37) and (2.9), without the extension that was used
to prove converges of the series.

Remark 2.3. Theorem 2.2 also holds in the case where u, = 0. Indeed, we just need to
take w = 0 in the above computations.

Remark 2.4. In practical applications the data of the problem are usually not accurately
given, often they are determined by intuition, or even are plucked out of thin air.
Therefore, in such a case, it makes no sense to solve the problem (2.36) for a series of
functions { Foms Uom } which satisfy the condition (2.35). It is sufficient to solve problem
(2.36) for one or two pairs fim, Tiom which are close to f and @y with not a high precision.
Moreover, here fm can be taken in a form of a finite sum of the Taylor expansion, which
is suitable for a given T'. In this case, if fm = fml, where

~ l k f
fa(z,t) =) i' 9 fm (z,0)tF, (2.40)



then exact solution to the problem (2.36) is the function @, (z,t) = tmq41)(2,t) where

I+1 N
1 0%y,

_—<x70)tk7 (I7t> c Q7 (241)
231 ot

am(l-{—l) (x7 t) - aOm(x) +

see (2.15), (2.16), (2.17).

Remark 2.5. Numerical solution of the problem (2.20), (2.21) in the case of a large
convection, when the norm of one of the coefficients a; of the operator A is large in
L*>(Q) is a very hard problem. Our method permits one to construct the exact solution
to the problem (2.36) in the form (2.37). Moreover, if f,, = fn is represented in the
form (2.40), then the solution to the problem (2.36) is represented in the form (2.41).

2.3 Nonlinear parabolic equation

We consider the following problem:

ou 8 9 ou

ou Ou .
+ byj(z, t)8 8:10]))\ finQ, i,7=12,...,n, (2.42)
Uli—o = g, u|s, = 0. (2.43)

As before, @ = Q x (0,7), Q is a bounded domain in R" with a boundary S of the
class C*, T < oc.

We suppose that A(z,t,:2) is defined by (2.7) and the conditions (2.5), (2.6) are
satisfied. Furthermore,

- =1 akf

— >\ 1 0%

e C¥@), tolwt) =Y 1 SR, 0)
k=0

— = 1 9%

b & ; — — ! k ) —
eC (Q) bz(xat) ; Lkl Otk (fL’,O)t y v 172a y 1,

bi; € C(Q), byl t)—ilakb”( 0)t*, i,j=1,2 (2.44)
2] ] .ZU, _kzo k?' 6tk Ia ) Z7.]_ ) 7"'7”7 .

and \ is a small positive parameter, A € (0, A], A > 0. We define the following mapping:

M (u) = bou® + b; Ou (2.45)



Equation (2.42) can be represented in the form

g_:f _ A< ai) W AM(u) = f. (2.46)

We differentiate equation (2.46) in ¢ £ — 1 times and set ¢ = 0. We obtain the relations
aku akfl i akfl akfl
20 = (g (a2 ) ) )0 = A M0 )00+ s 0
k=1,2,..., (2.47)

where

ak albo ak—l—lu2 albl ak—l—l ou
otk—1 T M Z Ci 1( Ot otk—1-1 - ot Otk—1-1 (0_231 u)
8lbij 8’“ 1= ou Ou
— == =] ) 2.48
o0 o (@xi axj)) (2.48)
Theorem 2.3. Let Q) be a bounded domain in R™ with a boundary S of the class C*°.
Suppose that the conditions (2.5), (2.6), (2.44) are satisfied. Then for any l, q such that

leN, (n+2)/2q <1, ¢ > 2, there is A\g > 0 such that, for any X € (0, \g), there exists
a unique solution u = uy to the problem (2.42), (2.43) such that uy € W2>41(Q) and

°°1

where %t}j(m 0) is determined by (2.47) and (2.48). Furthermore, X\ — uy is s contin-

uous mapping of (0, \e) into W2H>H1(Q).

(z,t) € Q, (2.49)

QD‘QJ

Proof. We consider the problem: Find u), satisfying

8U)\ 0 .
e A< 8:13) uy + AM(uy) = f in @, (2.50)
Uplt—o = up In Q, uy|s, =0. (2.51)
Denote
o _2
W2HQ) = {w | w e W2HN(Q), w(-t) € Wy *(€) ae. in (0,T),

n —+ 2
> — > 2
TR },

2-2 2l+2ﬁ

where V(f/zH 7(Q) is the closure of D(2) in W, — ().
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The function M maps the space W;ZOH’ZH(Q) nto VVQIJrl e (Q). Let u,h be ele-
ments of W;IOH’ZH(Q). We have

lim M) = M) oy (0 On
=0 ¥ ox; ox;

Ou Oh  Ou Oh ,
+ by (8_3518_% + 8_1:]3I1> = M'(u) h.

It is easy to see that

M+ h) = M) = M@ orieg ) < el

q,0

(@°

Therefore, the operator M is a Fréchet continuously differentiable mapping of W(i IOHJH (Q)

o W21+1 l+2(Q).

By Corollary 2.4, for A = 0, there exists a unique solution to the problem (2.50),
(2.51) that belongs to C*°([0,T]; D(2)), and it is determined by (2.11).

By applying the implicit function theorem, see e.g. [45], Theorem 25, Chapter III,
we obtain that for any [, ¢ such that ”2—22 <l,q>2,1€N, thereis \yg > 0 such that
for any A € (0, \g), there exists a unique solution uy to the problem (2.50), (2.51) such
that uy € WZZOH’ZH(Q), and the function A\ — wu, is a continuous mapping of (0, \)
into WZZOH’ZH(Q).

Informally, the solution to the problem (2.42), (2.43) is represented in the form
(2.49). Define u,, as follows:

1
U (2, 1) = kz::k?_

(2.47) and (2.52) imply that

th (z,t) €Q. (2.52)

QJ‘QJ

U, i, k A
aat (x,t) — A(x,t, (%) Um—1(x,t) + )\Z % (% (M(u))) (2,0)t" = fr_1(z, 1),

(2.53)
where
fm-1(z,t) 3 k_a_ : (2.54)
It follows from (2.44) that
fm—1 = [ in C([0, TT; D(Q)). (2.55)

By (2.44) and (2.47), we have u,, € C*([0,T]; D(R)).

14



We apply the implicit function theorem to the case where A is from a small vicinity
of zero in the set of nonnegative numbers, and the right-hand side of (2.42) belongs to
a small vicinity of f in W;IOZ(Q) Then (2.55) yields

U, — uy in W;l()+2’l+1(Q). (2.56)

Therefore, the series (2.49) converges in W; L2 (), and gives the solution to the
problem (2.42), (2.43). O

We remark that, in the case f € L*(Q) and ug € Hy(€2), the solution to the problem
(2.42), (2.43) can be defined as the limit of solutions to this problem for f = f,, and
Uy = Ugm that are determined by (2.35) with w = 0.

2.4 Construction of functions of D((2)

Let ©y be a domain in R” such that Qy € Q, and S, be the boundary of €2,. We
suppose that
d(x,S) = 2a for any x € Sy, (2.57)

where
n 3

d(l’, S) = min (Z (:C’L - yZ)Z) y Y= (yh cee 7yn> € S: (258)
i=1
and a is a small positive constant.
Define the following function:

1, if d(z,S2) >0, = € Q,
ga() = ' T @m? | if d(z,S) € [0,a), v € Q\ Qy, (2.59)
0, if d(xz,5) > a, v €Q\ Q.

The function g, belongs to D(Q), and if f € C*(Q), then w = f - g, € D(2), and
the set{P,, - go}, m € N, a > 0 is dense in H}(Q), | € N, (2.60)

where P, is any polynomial in x such that the order of polynomial in z;,i =1,--- | n,
does not exceed m.

In the general case, a smooth boundary S is defined by local cards, i.e., by local
coordinate systems (yF,--- ,4*) and mappings Fy, k= 1,--- , 3, such that

Yk = Fulyf, ..y, (2.61)

and by a corresponding partition of unity, see e.g. [40,45,46].
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For a ball or a paraboloid, the boundary S is defined by

n

oz
wb(x):fo—CQZO, wpzz%—c220, (2.62)
i=1 b

i=1

where b; and c are positive constants.
Polyhedral domains are widely used in practical computations. For convex polyhe-
dron, whose faces are defined by equations

fr(x) = Z appr; —c, =0, k=1...,m, (2.63)
i=1
where a;, and ¢, are constants, the boundary S is given as follows:

Wep(x) = £ H fr(z) ==+ H Z a;px; — ¢ =0, (2.64)

k=1 i=1

where the sign is chosen so that we,(z) > 0 in €.

The domain §25 of polyhedron is the polyhedron with the boundary Sy that satisfies
the condition (2.57). In this case, (2.60) holds.

The boundary of polyhedron is infinitely differentiable everywhere with exception
of angular points, at which it is not differentiable. Nevertheless, in small vicinities of
angular points this boundary can be regularized by convolution of the function Fy, see
(2.61), with an infinitely differentiable function with a small support, in particular,
with the bump function.

If the boundary of a polyhedron is not regularized, then the computation of the
solution to the problem in exteriors of any small vicinities of angular points can be
fulfilled.

For the case of non-convex polyhedron, one can identify the faces of the polyhedron
with local cards, without using a partition of unity. That is, one assumes that f; are
the identity mappings of the sets

G ={a | fu(x) =0, fi(z) € S}

onto itself, and G}, are defined so that | J;—, G, = S.

3 System of parabolic equations

Let us consider the following problem for a system of equations that are parabolic in

the sense of Petrowski: Find u = (uy, us, ..., uy) such that
ou; 0 ou; ; ou; ; ,
ot ox (aijrm(l"»t) ﬁ) + bj, (2, 1) ﬁ +g;(@, hu; = fi inQ,

16



i,j=1,....,.N, rm=1,...,n, (3.1)
Ulimo = up in Q, u|g, = up. (3.2)
As before, @@ = Q x (0,7, Q is a bounded domain in R™ with a boundary S of the

class C*, T € (0, 00).
We suppose that

F=fr, o fr) € LAQN, up= (uor,...,uon) € H(QV,

w, = (Upy, - .., upy) € H? %(ST) , uo(z) = up(z,0), z €8, (3.3)
and

o/ .10 amm k —
ijrm € C°(Q1), Qijrm(@,1) = T o z,0)t", (z,t) € Qy,

n N
Qijrm (T, )& Empv; > “Z 522%, r,t)€Q, &, ER, y ER, u >0, (3.4)

r=1 i=1
b € C¥@)), thle) =S & 0@ 0, (n.1) €Q, (35)
k=0
; (A i — 1 8kg§. k =
g, eC (Q1)7 g]<5(],t) = Z E Otk ([E,O)t ) (I,t) S Ql? (36>

(3.3) yields that, the compatibility condition of order zero is satisfied. It follows from
[46] that there exists a unique solution to the problem (3.1), (3.2) such that u €

H2’1(Q)N.

Informal differentiation of (3.1) in ¢ gives the following relations:

8’%1 k1 0 o1,

e (8 )0 (o

o
T (50, k=12 (3.7)

o 2o (e )1

0 0 ou; ; ou; ; ,
Bi(m,t, %)u = a—xr(amm(x,t) (9%1) — U (2, 1) &U; —giu;, i=1,...,N.
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We mention that the inequality for a;;,, in (3.4) is the condition of strong ellipticity
of the operator B .
Equations (3.1) are represented in the form

0 U;
ot

—Bi(a;,t,%>u:fi in Q,i=1,... N. (3.9)

The existence of a unique solution to the problem (3.1), (3.2) such that v € H>}(Q)Y
follows from [46].

By analogy with (2.29), we define the following vector-function w = (wy, ..., wy):
a2 . .
i, 1) = up; (Px,t) exp (1 - m), ?f |v — Px|<a,i=1,...,N, (3.10)
0, if |x — Px| > a.
Then w € H(Q)N.
Let
U=u—w. (3.11)
The function @ is the solution to the problem
ae H*H(Q)",
ou; d\. & .
81; — Bz <$,t, %)u = fz'; m Q,
ils, =0, i|y—o = uop — wi—o € H(Q)", (3.12)
where 5 5
i=fi— 5+ Bix,t, o~ LA(QM). 3.13
o=t G B Yo e 22Q) 313

Let ( Fns Uom) be a sequence such that

N . _ . 10k,
fm eC ([OvT]7D(Q))N7 fm($7t) - e E W

Giom € DY, T — o — w|—o in HF(Q)N. (3.14)

(x,0)t*,  frn — fin LXQ)V,

Consider the problem: Find ,, such that

i € C%((0,T]; D(Q)",

aamz a ~ 7 .
ot _Bz(matag)um_fmz m Q?
i (-, 0) = digm. (3.15)
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It follows from [46] that there exists a unique solutions to the problem (3.15). By
analogy with the above, we get that

T (0, 1) = T () + (z,0)t",  (z,t) € Q, (3.16)

where a(’;% are determined by (3.7) with u and f being replaced by u,, and fim, TC-
spectively. .

Since the solution to the problem (3.15) depends continuously on f,,, g, formulas
(3.12), (3.14), and (3.15) imply

Ty — @ in H2H(Q)Y. (3.17)
Thus, we have proved

Theorem 3.1. Let Q be a bounded domain in R™ with a boundary S of the class C*
and T € (0,00). Suppose that the conditions (3.3)—(3.6) are satisfied. Then there exists
a unique solution to the problem (3.1), (3.2) such that u € H**(Q)Y, and this solution
is represented in the form u = 4 + w, where 4 = lim 4, and w is given by (3.10).

4 System of hyperbolic equations

4.1 Problem with boundary condition at t =0

We consider the problem: Find u = (uq,us,...,uy) such that
2, .
%;Z—Bi<x,t,%>u:fi n Q, i=12... N, (4.1)
0 _
u(z, 0) = up(2), 8—?(% 0) = ui(2), © €9, uplw) = up(z,0), €S (4.2)

Here B; (x,t, a%) are the components of the operator B(m,t, aa_x) that are defined in

(3.8).
We assume that the coefficients of the operator B(x,t, a%) satisfy the conditions
(3.4)—(3.6) and

(f,uo,u1) € Uy,
Uy = {(f,uo,ua) | f = (i, fn) € C=([0, T}, D())"Y,

> k
fen =3 20wk @neq
k=0
Ug = (U01, S ,U()N) < D(Ql)N, Uy = (ull, .. ,UlN) € D(Ql)N} (43)
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We differentiate equations (4.1) in t k — 2 times, k > 3, and set ¢ = 0. This gives
the following recurrence relation:

0Fu;

o2, k=2 0
otk —5 (5 0) = W(HO) + <W (Bz‘ <$,t, %)U>>(,O)
6’“‘2fz ) oh—2-iy
- Otk—2 " +Z Cljc 2( ot (%t%))(',@w(-,@). (4,4)

Here u(-,0) and 2(-,0) are prescribed.

Theorem 4.1. Let 2 be a bounded domain in R™ with a boundary S of the class C*
and T € (0,00). Suppose that the conditions (4.3) (3.4)-(3.6) are satisfied. Then there
exists a unique solution to the problem (4.1), (4.2) such that u € C(Q)N, and this
solution is represented in the form of the Taylor expansion

o k
u(z,t) = up(x) + uy (z)t + Z kl' gtk . (x,t) € Q. (4.5)

The coefficients 2 atk £(-,0) are determined by the recurrence relations (4.4). Furthermore,
the boundary condition function u, = u|s, is determined as follows:

up(x,t) = up(x) + ur (z t+z o 8tk (z,0)t*, (x,t) € Sp. (4.6)

The function (f,ug,u1) — u that is defined by the solution to the problem (4.1), (4.2)
in the form (4.5) is a continuous mapping of Uy into C(Q)N.

Proof. We consider the problem: Find @ satisfying

9%, d . : ,

5 —Bi(ﬂj,t,%>U—fi in @, 1=12,...,N, (4.7)
. ou _

(z,0) = up(x), 5 —(2,0) = uy(x), x€Q, t|s, =0, (4.8)

where (f, ug,u1) € Us.
It follows from [41], Chapter 5, Theorem 2.1, that under the conditions

f e H Q)Y uo € H* ()" N Hy()Y, wi € H' ()", (4.9)
there exists a unique solution to the problem (4.7), (4.8) such that

2v
w € L*(0,T; H* ()N, g? c L*(Q1)", (4.10)
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ie. uw € H?**Q.)", and the function (f, ug, uy) ~ @ is a continuous mapping of
HOHQ)Y x H*(Q)N N Hy ()Y x H'(Q)Y into H>*(Q1)".
Informally, the solution to the problem (4.7), (4.8) is represented in the form

a(z,t) = up(x) + wi (x t+z o (%k L, 00tk (2,t) € Q. (4.11)

The function @ defined by (4.11) and the formula (4.4) with u replaced by @ is a solution
to the problem (4.7), (4.8) for all ¢ € [0, 7] such that the series (4.11) converges at ¢ in
the corresponding space.

Taking that into account, we conclude by analogy with the above that the series
(4.11) converges in H>?(Q)".

Consider the problem: Find a function @ = (4, ..., uy) given in ¢y that solves the
problem
0?1 o\. O*f |
W-B(l’,t, %)u: W m Qb (412)
. 0% ou oAt
U(fﬂ,O) = W(l‘?[))? ot (SC O) O3 (i[) 0) S Qla
ﬁ($7t) - 07 (:L‘,t) S SlT7 (413)

where gté‘ (x,0) and gté‘(x 0) are determined by (4.4).
Again, (4.3) and [41] imply that there exists a unique solution to the problem (4.12),

(4.13) such that @ € H>*(Q1)N. As i = 22 by (4.11) it is represented in the form

oo

) 1 ok e 2
t) = —_— t t 4.14
U(ZE? ) kz:; (l{—Q)' 8tk< 0) (JZ, ) EQl, ( )
and . -
2 N u N
wGL (Ql) , 8252—0.1'1261;2(@1) , Z—l,...,N. (415)
Now consider the problems: Find functions @; = (@j1,...,%;n) given in @)1 such
that
Oty o\. fi . : .
Gt; _Bi(x’t’%>uj_3_x§ inQ, j=1,....n,i=1,..., N, (4.16)
82 7 82u0 Ju, 8322 82u1
j=1,...,n, z€, u;zt)=0, (z,t)¢€ SlT. (4.17)

The preceding arguments show the existence of a unique solution to this problem such
that @; € H*?(Q1)". Since @; = &- 2, j=1,...,n, we obtain

84\/ 2
—€e L =1,...,n.
81’ € (Ql) ) J ) ,
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From here and (4.15), we get & € H**(Q;)V.

By analogy, we obtain that 4 € H?*2¢(Q,)N for any k € N, and @ € C>®(Q,)",
and the series (4.11) converges to % in C*(Q,)". The function (f,up,u1) + i is a
continuous mapping of Us into C*=(Q,)Y, and u = 1i|g. ]

4.2 Problem with given boundary conditions

We first consider the following problem with homogeneous boundary conditions:

2
%Zf —Bi<x,t,%) w=f in Q i=12,.. N,
ou
uli=0 = up, Ot im0 = Uy,
uls,; = 0. (4.18)
We suppose
fe Ll Q)Y up e Hy ()N, uy € LAH(Q)N. (4.19)

Theorem 4.2. Let Q be a bounded domain in R"™ with a boundary S of the class C*
and T € (0,00). Suppose that the conditions (3.4)—(3.6) and (4.19) are satisfied. Then
there ezists a unique solution to the problem (4.18) and furthermore

ou\ . , . :
(f,uo,ur) = | u, o) @ linear continuous mapping of

(L2(Q)N x HI ()N x LAH(Q)N) into L*(0,T; Hy ()N x L2 (Q)". (4.20)

Let {f™, uf, u"}5°_, be a sequence that satisfies the following conditions:

m 0 N ¢m — 1 ok fm k
f eC ([O,T],D(Q)) ) f (l‘,t) - e E W (J],O)t ’ (Z‘,t) € Qa
™= f i L2Q), ul e DOV, ul' = uy in Hy(Q)N,
u" € DN, ul = uy in LA(Q)N. (4.21)

Let also u™ be the solution to the problem

OPum B
Y —Bi(x,t,—)um: moi=1,2,...,N,

ot? Oz
ou™
u™(z,0) = ug'(x), W(m,()) =u'(z), z€f. (4.22)
Thenu™ € C*=([0,T); D())N andu™ — u in L*([0,T]; HY ()Y, 2= — %4 in LX(Q)N,
where u is the solution to the problem (4.18).
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Proof. The existence of a unique solution to the problem (4.18) such that u € L2([0, T; H} ()Y,
% € L*(Q)"N and (4.20) holds follows from [39], Chapter 4, Theorem 1.1. Informally,
the solution to the problem (4.22) is represented in the form

> 1 9Fym
u™(z,t) = ug'(x) + ui' (@)t + Z o (z,0)0t",  (z,t) € Q. (4.23)

Let (fm, ug', i) be an extension of (f™, uf', u!") to Q1 and €y, respectively, such that
(f™, 4, @™) € U,. Then, by using Theorem 4.1, we obtain that v™ € C*°(Q)N and
the series (4.23) converges in C=(Q)".

Since the solution to the problem (4.18) depends continuously on the data of the
problem, we obtain from (4.21) that u™ — w in L*([0,T]; Hj(Q))N and 22~ — 2 in

12(Q)N. =

Consider now the problem with inhomogeneous boundary conditions: Find u sat-
isfying

0%u; 0
u—Bi(xt )u—fl in Q, i=1,2.. N,
ox
Ult:() = Ug, = U, U|ST = Up. (4.24)

We suppose that

feL*Q)Y, weH»:(Sr)N, ue H(Q)Y,
up € L2(Q)Y, uo(x) = up(2,0), x€8S. (4.25)

M\w

We use the function w defined in (3.10). Since u, € H22(Sp)N, we have w €

H>2(Q)N. We set

U=u—w. (4.26)
Then
0%, 0
a;‘ Bl(xtax)a—fz nQ, i=12.. N,
o = 0 o S, =0 s, =0, (420
U)ymo = g = ug — w —| =d=u — — ilg, = :
t=0 0 0 t=0> 1 1 (915 :07 St 9
where o 5
~ W;
i = Ji — L+ Bi| z,t, — . 4.28
fi=1 ot? + <x 3x>w (4.28)
Then



It follows from Theorem 4.2 that, there exists a unique solution to the problem
(4.27) such that
ou

i€ L*(0,T; Ho ()™, -

c L*(Q)N, (4.29)

and

~

A _0u
(Fuigsin) = (3, 20

L2(Q)N x Hy ()N, x L*(Q)N into L*(0,T; Hy ()N x L*(Q)". (4.30)

is a linear continuous mapping of

Let (fm, Uom, U1m) be a sequence such that

A » =10 A 5
o € CXONLDO fur) =3 I a0, o Fin (@
ﬁOm S D(Q)N, ﬂgm — U() — w|t:0 n H&(Q)N,
Gim € DN, Gy — ug — aa_@; in L2(Q)N. (4.31)
t=0

Consider the problem: Find 4, satisfying

82 mi a ~ r .
62;2 _Bl(xum%)um:fml m Q7 Z.:1727"'7]\[7

X . Otlyy,
Um|t:0 = Uom, 7

= Gy, (4.32)

t=0

It follows from Theorem 4.2 that, there exists the unique solution to the problem
(4.32) such that 1, € C*=(Q)". This solution is presented in the form

o0 k
n00) = o (0) + 0+ Lm0k, Q. (43

and by (4.31)
Gy — @ in L2(0,T; HY(Q))Y, =2 — — in L*(Q)". (4.34)

Thus, we have proved the following result:

Theorem 4.3. Let Q2 be a bounded domain in R™ with a boundary S of the class C*
and T € (0,00). Suppose that the conditions (3.4)—(3.6) and (4.25) are satisfied. Then
there exists the unique solution to the problem (4.24) such that u € L*(0,T; H'(Q))V,
% € L*(Q)N. This solution is presented in the form u = 4 + w, where w is defined in
(3.10) and @ is determined by (4.32) and (4.34).
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5 Problem on vibration of an orthotropic plate in
a viscous medium.

Plates fabricated from composite materials are used in modern constructions. Such
plates are orthotropic. The strain energy of the orthotropic plate is defined by the
following formula, see [42]

1 02u\ 2 0*u 0%*u 02u\ 2 P2u \?
) = — Dl — 2Dy — —+Dy| — 2D . (5.1
(u) Q/Q ( 1(835%) tel 03 8x§+ 2(835%) + 3(8361 8:62) ) dr. (5.1)

Here  is the midplane of the plate,  is a bounded domain in R? with a boundary S,

h3E; 3G
————— i=1,2, Dis = pusDy = 1Dy, D3 = ——
12(1 — M1M2)7 ? ) 4y 12 Hal/q H1l/2, 3 6 9
Ey, Es, G, py, po being the elasticity characteristics of the material, h the thickness of
the plate,

dr = dlL’l dl’g, Dz =

E,, Ey, G are positive constants, p; and po are constants, 0 < pu; < 1,7=1,2, (5.2)

u is the function of deflection, i.e., the function of displacements of points of the
midplane in the direction perpendicular to the midplane.
We suppose that

heC>®(Q), e <h<ey ey, e arepositive constants. (5.3)

Variation of the strain energy of the plate determines the following bilinear form

2, 92 2. 92 2. 92 2, 92
a(u,v)_/[Dlauav+D8u8v D12(8u(9v+8u81})
Q

2o oon P\ oz Tz o
0%u 0%v
81’1 8.732 (9951 8x2

19D,

] dx. (5.4)

In our case a(u,u) = 2P (u).
We assume that the plate is clamped. Thus,
0u‘

=0, 5

=0 5.5
S b ( )
where v is the unit outward normal to S.

One can easily see that, on the set of smooth functions which satisfy the condition
(5.5), the following equality holds.

a(u,v) = (Au,v) = (u, Av). (5.6)
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Here (-, -) is the scalar product in L?(2), and the operator A given as follows:

0? J%u 0? 0%u 0? 9%u
A=z (Dl axl) "o (DQ axz) " 023 (D” a_>

0? 0%u 0? 0%u
D 2 D — _F. .
* 0z? ( " 022 ) * D1 Oxo ( ® Ory axg) (5:7)

F.. = —Au is the resistance force induced by the elasticity for the function of displace-
ment wu.

The viscous medium resists the vibration of the plate. The resistance force Fj.,
that it induces is opposite in direction to the velocity %¢ ‘9“ , Fom = —¢ a?, where ¢ is the
resistance coefficient which is an increasing function of | | that takes positive values.

We take the resistance force in the form

ou\?\ ou
Frm = (CLO —|—a1<8t) ) E, (58)

where ag and a, are positive constants.
The D’Alembert inertia force is given by

0%u

En:_ h_7
P o

(5.9)
p being the density, a positive constant.

Let K be an exterior transverse force that acts on the plate. According to the
D’Alembert principle, the sum of an active force that is applied at any point at each
instant of time and the internal and inertia forces which it induces is equal to zero.
Therefore,

Foo+ Fop + Fn + K =0. (5.10)
From here, we obtain the following equation on vibration of the orthotropic plate in a
viscous medium: ) )
0 u ou
Dividing both sides of equation (5.11) by ph gives
?u Ou o\’ ou
M — = 5.12
g T TG T (at> o= (5.12)
where %
Qo aq
ph u, Qo oh 831 oh f oh
According to (5.5), the boundary conditions have the form
ou
=0, — =0. 5.13
Use =% Guls, (5.13)
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We set the initial conditions in the form

u’t:O =uo, S| =w (5.14)

We suppose
e, Aer e ren @) (5.15)
ug € Hy(Q), wup € HZ(RQ). (5.16)

Theorem 5.1. Let Q be a bounded domain in R? with a boundary S of the class C°,
T € (0,00). Suppose that the conditions (5.2), (5.3), (5.15), (5.16) are satisfied. Then
there exists a unique solution u to the problem (5.12), (5.13), (5.14) such that v € W,
where

W= {u | v e L0, T; H4(Q) N H2(Q)), g— (0, T; H2(Q)),
gi” e L0, T; L*(9 } (5.17)

and

(f, uo,u1) = u is a continuous mapping of H®'(Q) x Hy(2) x HF(Q) into W.

(5.18)
Let { fim, Uom, Uim, hm } be a sequence such that
€ CHO.TEDE), fulet) =3 = LI @ o)it, (1)eQ
m 9 ) I m ) - pard k/" 8tk I ) I )
fn = f in HOYQ), uom € D(Q) ugm — uog in Hy(Q)
Ut € D), Upm — ur 0 HY(Q),
hm € C(Q), e1 < hp<es, hm—h in C3Q). (5.19)
Let u,, be the solution to the problem
u,, Oy, Ot \ > Ot
Mm m m A, “Qa, — Jm,
oz Mt & Gom 7 (at) T
Oy,
m == Y, - — Y, 2
Um|spr =0 5 s, 0 (5.20)

where M,, = LmAm, Qo = /)‘;L—Om, ayy = 2, A, is defined by (5.7), where h is

ph phm ’
replaced by h,,. Then

Uy —u in L0, T; HY(Q) N HZ(Q)),
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Qom0 o0, 7 H2(QY)),

ot at
82um 0?*u -
5 " aE ™ L>(0,T; L*(Q)). (5.21)

Proof. The existence of a unique solution u to the problem (5.12), (5.13), (5.14) such
that «w € W and (5.18) holds is proved by a small modification of the proofs of Theorem
2.1, Chapter 5 in [41] or Theorem 3.1, Chapter 1 in [38]. In this case, we take into
account that

ullz ey = alu,w) > erulldsqy, u € HES),

use the Faedo-Galerkin approximations, and the theorem on compactness, see Theorem
5.1, Chapter 1 in [38], is applied to pass to the limit in the nonlinear term of (5.12).
Informally, the solution to the problem (5.20) is represented in the form

= 1 9Fu,, —
U (2, 1) = Uom () + Urm () + Z o aj;‘k 2,0)t%,  (z,1) € Q, (5.22)
where 62?,;" (z,0) are determined by the following recurrence relations

*u,, 021, 2 M, u,, o,
5 (-,0) = o2 (-,0) = = (-,0) = e (-,0)

O (Oun\*7, O M,
—alggozz[aﬂ(at)}(-,mwc,ox k=23....
J

The convergence of the series (5.22) is proved by analogy with the proof of Theorem
2.3. In this case, we consider the functions

laum

Unme (2, 1) = Ugm () + Uty (2 t+z z,0)t*,  (z,t) € Q (5.23)

and apply the infinite function theorem. Then we obtain that u,,. — u, in W as
e — 0.

Since the solution to the problem (5.12), (5.13), (5.14) depends continuously on the
data of the problem, (5.21) follows from (5.19). O

6 Maxwell’s equations.

6.1 General problem.

We consider the following problem of electromagnetism: Find functions D and B such
that, see [10], [43]

aﬁ_lt) — curl(aB) + OéD =G inQ, (6.1)
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o8 +curl(éD) =G, in Q, (6.2)

ot

vAD=0 on St, 6.3

D = Do, B = BO n Q (64)
t=0 t=0

Here Q = Q x (0,T), T < oo, 2 is a bounded domain in R3 with a boundary S,
St =8 x (0,T), D is the electric induction, B is the magnetic induction, /i, £, and o
are scalar functions of z € () that take positive values, v is the unit outward normal to

S.
We define the following spaces
V={v|veL*N)? curlve L*(N)*},
Vi={v|veV, vAv =0} (6.5)

The space V; is the closure of D(2)3 with respect to the norm of V/,

el = (Blfa + et ol ) (6.6

For further detail about the spaces V' andVi, see [23], Chapter 1, Sections 2,3, and [10],
Chapter 7.
Let also

X = {h | he L=(0,T;V), % € L>(0,T; L2(Q)3)} :

X, = {h | h e L=(0,T; V), g—? € L>(0,T; LQ(Q)?’)}.

The norm in X and X; is defined by

oh
It = Il + | 5 -
Lo (0,T5L%(22)?)

We suppose
G, € HO’I(Q)g, Gy € HO’I(Q)3, Dy € ‘/1, By € ‘/, (67)
peECQ), m=p>pm £€C'(Q), HG=(>6&, .
o€ LOO(Q), 5’1 2 o 2 5'2. (69)

Here 1, po, &1, &, 01, 09 are positive constants.

Theorem 6.1. Let Q be a bounded domain in R® with a boundary S of the class
C>. Suppose that the conditions (6.7)—(6.9) are satisfied. Then, there ezists a unique
solution to the problem (6.1)—(6.4) such that.

DeX, BeX. (6.10)
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Theorem 6.1 is proved in [10], Chapter 7, by using Galerkin approximations.

Let us discuss construction of the solution to the problem (6.1)-(6.4). In order to
apply our method to this problem, we should somewhat change the formulation of this
problem.

We present the function B in the form

0*B?

B=B'4+B?> BleX Be X
+ , € X1, c X, o2

c L*(Q)®. (6.11)

We consider that B! is unknown, while B? is given and satisfies the condition
B*Av=BAv in L®(0,T;H 3(5)%. (6.12)

Here B is the solution to the problem (6.1)—(6.4) together with D. Equality (6.12) has
sense for elements of X, see [10], Lemma 4.2, Chapter 7.
According to (6.11), (6.12), we set

Bo=By+ B, BycVi, BicV,
Bl = B}, B?|i—0o = B{. (6.13)

Now the problem (6.1)—(6.4) is represented as follows:

D -
aﬁ_t —curl(aB') + 0D = Gy + curl(iB?) in Q, (6.14)
Bt - B?
88_t + curl((D) = Gy — %_t in @, (6.15)
vAD=0 onSp, yAB'=0 on Sr, (6.16)
D| =D, B' =B inQ. (6.17)
t=0 t=0

The existence of a unique solution (D, B') to the problem (6.14)-(6.17) such that
D € X,, B! € X, follows from Theorem 6.1.
Thus, if the pair (D, B) is the solution to the problem (6.1)—(6.4), and

0? B*
ot?

and (6.12) is satisfied, then the pair (D, B') with B! = B — B? is the solution to the
problem (6.14)—(6.17).

On the contrary, if the couple (D, B') is the solution to the problem (6.14)-(6.17),
where B? meets (6.18), then the couple (D, B) with B = B! 4+ B? is the solution to
the problem (6.1)-(6.4), and (6.12) holds.

Therefore, the formulations (6.1)—(6.4) and (6.14)—(6.17) are equivalent in the above
sense.

B* e X, € L*(Q)?, (6.18)
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Bl

ons Fns én, 0.} be a sequence such that

= 1 9*Giy
k! Otk

—0

G1in — Gy + curl(uB?)

2

B
Gzn — G2 — 8a_t n Ho’l(Q)B,

Do, — Do in Vi, By, € D(Q)?,

Let {Gl’m G2n7 DOna

Gin(z,t) = (z,0)t*

(l’,t)EQ, i:1727

in HO4(Q)",

Dy, € D(Q)3,

By, — B in Vi,

fin € C®(Q), 1, — pin CY(Q), &, € C=(Q), & — € in C'(Q),

o, € C®(Q), 0, — 0 in L™(Q).

Consider the problem: Find functions D,, and B} such that

oD,
8t (:unB ) + O-ngnD - Gln in Qa
1
(gnDn) = G2n in Qa
vAND,=0 onSr, V/\BTll:O on S,
D,| =Dy, B: =B inQ.
t=0 t=0

(6.22)

(6.23)
(6.24)
(6.25)

Theorem 6.2. Let Q be a bounded domain, in R with a boundary S of the class C™

and T € (0,

o0). Suppose that the conditions of Theorem 6.1 and (6.11), (6.12), (6.13)

are satisfied. Let also (6.19)—(6.21) hold. Then for any n € N there exists a unique
solution (D, B}) to the problem (6.22)—(6.25) that is represented in the form

Dy (x,t) = Do, (z +i kll 8a§ (z,0)t",
B} (z,t) = By, (z +§: k1| a;il z,0)t",
where
T w.0) = curt (i) G ) 0.0 = onoli) e 0,0
8I;;Gj"(x,0), k=1,2,...,
a;ﬁ’ll (z,0) = —curl (ﬁn(x)a;;,:fn) (z,0) + 8’;;?*12” (z,0), €,

(6.26)

(6.27)



The series for D,, and B} converge in X and
D,— D inX;, B.—B' inX, (6.29)
where (D, B) is the solution to the problem (6.14)—(6.17).

Proof. The existence of the unique solution to the problem (6.22)—(6.25) follows from
Theorem 6.1. The condition of compatibility of order infinity for this problem is satis-
fied. Because of this, informally, the solution to the problem (6.22)—(6.25) is represented
in the form (6.26), (6.27) .

It follows from the proofs of Theorems 5.1 and 4.1 in [10], Chapter 7 that, in the case
where &, i, and ¢ are fixed functions that satisfy conditions (6.8), (6.9), the following
inequality for the solution to the problem (6.14)-(6.17) holds:

ID|lx, + | B!l x, < C(|G1llmor(@p + |Gallmor@y + |1 Dollvi + [ Bsllva), (6.30)

where C' depends on f , 1, and 0.

The converges of the series (6.26) and (6.27) in X; is proved analogously to the
above by using (6.19)—(6.21), and (6.30).

Taking (6.19)—(6.21) into account in the same way as it is done in [10], Theorems
4.1 and 5.1, Chapter 7, we get

IDnllx, < Ci,  ||Byllx, < Co. (6.31)

Therefore, we can extract a subsequence {D,,, B} } such that

D,, — D x-weakly in X,
Bl — B' s-weakly in X. (6.32)

Let wy and w be arbitrary elements of L?(2)3. We take the scalar products of (6.22)
and (6.23) for n = m with w; and w, respectively, in L?(2)3. This gives

(aDm,wl) — (curl(ﬂmB}n),wl) + (Omém D, w1) = (G, wy)  ace. in (0,7),

ot
(6.33)
(%?w) + <Curl(§mDm),w> = (Gom,w) a.e. in (0,7). (6.34)

Taking (6.19)—(6.21) and (6.32) into account, we pass to the limit as m — oo in
(6.33), (6.34), and (6.24), (6.25). We conclude that the pair (D, B') determined in
(6.32) is a solution to the problem (6.14)—(6.17). Since the solution to this problem is
unique in X; x X7, (6.32) is also valid when m is replaced by n.

It remains to prove (6.29).
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We subtract equalities (6.22)—(6.25) from (6.14)—(6.17), respectively. This gives

%(D —D,) — curl(iB" — ji,B}) + 0D — 0,6, D,y = Gy + curl(iB?) — Gy, (6.35)
. . B2
vA(D—-D,)=0on Sy, vA(B'—B!)=0 on Sr, (6.37)
(D-D,)| =Dy—Dy, inQ, (B'-B!) =Bj—B), inQ. (6.38)
t=0 t=0
We have
cutl(iB' — i, B,,) = curl(ii(B' — By)) + cwrl((ft — 1) By),
O-éD - O-nénDn = 0-5<D - Dn) + Dn(o-g - O-ngn)a
curl(D — €,D,,) = curl(€(D — D,,)) + curl((€ — £,)Dy,). (6.39)
We denote

Yin = — Curl((la - ﬂn)B}z) + Dn(aé - Unéﬂ)?
Yo = curl((€ — £,)D,,). (6.40)

(6.21) and (6.31) yield
Yin — 0 in L%°(0,T; Ly(2)?), Yo — 0 in L=(0,T; Ly (Q)?). (6.41)

By (6.39)—(6.41) equations (6.35), (6.36) take the form

0 A
a(D — D,) —curl(a(B' — BY)) + 0&(D — D,,) + v, = Gy + curl(iB?) — Gy,
0 . 0B?
E(Bl - Brlz) + Cllﬂ(f(D - Dn)) + Yon. = GQ - W - G2n-
From here and (6.30), taking (6.19), (6.20), and (6.41) into account, we obtain (6.29).

]

According to the theory of electromagnetism, the function B should satisfy the
condition

divB=0 in Q. (6.42)

Theorem 6.3. Suppose that the conditions of Theorem 6.1 are satisfied and, in addi-
tion,

divGy =0 in@Q, divBy=0 1. (6.43)

Then the function B of the solution (D, B) to the problem (6.1)—(6.4) also meets the
condition div B = 0 in Q.
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Indeed, applying the operator div, in the sense of distributions, to both sides of
equation (6.2), we obtain

%(div B) =divGy in Q.

That is .
div B(-,t) = div By —I—/ divGy(-,7)dr =0 in (0,7).
0

Theorem 6.4. Suppose that the conditions of Theorem 6.2 are satisfied and, in addi-
tion,

F
Gy =curlF, F e L*0,T;V), aa_t € L*(0,T;V),
oP

B =culP, P e L¥(0.T: H(Q)°), - € L*(0.T: H'(Q)°).
9P ,

— € L*0,T; H'()?

gz € L0, T H (),

By =curl M', M' € HZ(Q)?, B = carl M?, M* € H*(Q)*, Pl=g = M?.  (6.44)
The corresponding functions Go, and B}, are given as follows

Gon = curl F,,  F, € C*([0,T]; D(2)%),
=\ 1 0F,

Er,t)=Y — —"(x,0)t t 6.45

w0=3 g @O, @oeQ (6.45)

P

curl ,, — curl (F — 88_15) in L*(Q)?,

OF, oF  0*P

12" o= =5 ) in Q) 4
curl .= — cur <8t (,%2) in L*(Q)°, (6.46)
By, =cwl M}, M!'eD(Q)? M — M in H}(Q). (6.47)

Then the solution D,,, B} to the problem (6.22)—(6.25) also meets the condition div B! =
0, (6.29) holds and div B = 0.

Theorem 6.4 follows from results of Theorems 6.2 and 6.3.

6.2 Slotted antenna

We consider the problem on diffraction of electromagnetic wave by a superconductor,
see [10], Chapter 7, Section 3.4. Let ©; be a bounded domain in R3, of a superconduc-
tor, the boundary S of €); is of the class C*°. We consider a problem in a domain 2 in
R? with an internal boundary S. We assume that €2 is a bounded domain.
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We seek a solution to the following problem: Find vector functions D and B such
that

oD

o curl(iB) + 0€D = G, in Q, (6.48)

0B .

v +curl(éD) =Gy in Q, (6.49)

divD=0 in@, vAD=0 onSr, (6.50)

divB=0 inQ, v-B=0 onlSr, (6.51)

D = Do, B = BO in €. (652)
t=0 t=0

We introduce the following spaces:

Xy = {h | h = curlw,w € L*(0,T;V), 38_1: € L*(0,T; V)} ,

X5 = {h | h = curlw,w € L*(0,T; H'(Q)?), (6.53)
T2 -1 w 2 1(0)3

h-v=0in L*(0,T; H 2(9)), EGL(O,T;H(Q) )} (6.54)

We assume

Gi=curlw € Xy, Gy=curlu € X3, Dy=curlp, pé€ HF(Q),
By =curlv, ve H*(Q)? curlv-v=0 onS. (6.55)

Theorem 6.5. Let Q be a bounded domain in R with a boundary S of the class C*.
Suppose that the conditions (6.55) are satisfied. Let also &, i, o be positive constants.
Then, there ezists a unique solution to the problem (6.48)—(6.52) such that

oD

D e LOO(O>T7 Hé<Q)3)7 E € LOO(()?Ta LQ(Q)B)a
B € L>(0,T; H'(Q)?), %—f € L>(0,T; L*(Q)%). (6.56)

Indeed, the existence of a unique solution to the problem (6.48), (6.49), (6.51), such
that v A D = 0 on Sy and div B = 0 in @), follows from Theorems 6.1 and 6.3. The
conditions v - B =0 on Sr, divD = 0 in @, and (6.56) follow from Theorems 5.3, 6.3
and 6.4 in [10], Chapter 7.

As before, we represent the function B in the form B = B' 4+ B?, where B? is a
given function such that

B? =curla?, o® € L™(0,T; H*(Q)®*), curla®-v =0 on Sy,
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da? Liengy  0%a?
5 € Loo(0,T5 H (Q)°), BT
2

curl ai; v=0 onSr. (6.57)

Let B, be the tangential component of the vector B on Sp. It is determined as
B, = Blg, — B -v. Since B-v = 0. we get Bls, = B, and the following boundary
condition for B:

€ L*(0,T; H'(Q)*),

B?|s, = Bls, in H?(Sp)>. (6.58)
According to (6.57), (6.58), we set

By = B} + B2, B2 = B*|;— = curla?|,—o € H'(Q)?,
By = curlv — curl o®|;—g € Hy(2)%). (6.59)

Now for the functions D, B!, we obtain the following problem:

D R
aa—t — curl(aB) + 0D = G + curl(iB?) in Q,
oB! . oB?
W + Curl(fD) = GQ — W m Q,

divD=0 in@Q, vAD=0 on Sy,
divB'=0 inQ, vAB'=0 onSr,

D| =D, B'| =B\=By—B? inQ. (6.60)
t=

t=0 0

By analogy with the above, we get the next result.

Theorem 6.6. Let Q be a bounded domain in R® with a boundary S of the class C*°.
Suppose that the conditions (6.55) and (6.57)—(6.59) are satisfied. Let also £, i, o be
positive constants. Then, there erists a unique solution (D, B') to the problem (6.60)
that meets the conditions

oD

D € L*™(0,T; Hy ()%, yr € L™(0,T; L*(Q)%),
1 0o 1 3 aBl 0o 2 3
B'e L¥(0.Ts Hy(Q)), - € L¥(0,7: L(Q)°). (6.61)

Thus, if the pair (D, B) is the solution to the problem (6.48)—(6.51), and B? meets
(6.57), (6.58), then the pair (D, B') with B! = B — B? is the solution to the problem
(6.60).

On the contrary, if the couple (D, B') is the solution to the problem (6.60), where
B? meets (6.57), then the couple (D, B) with B = B! + B? is the solution to the
problem (6.48)—(6.51), and (6.58) holds.

Therefore, the formulations (6.1)—(6.4) and (6.14)—(6.17) are equivalent in the above
sense.
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Let {Gin, Gaon, Doy, B, } be a sequence such that
Gin = curlwy,, w;, € C([0,T]; D(Q)?),

Win(z,t) = T
k=0

Gip, — Gy +curl(iB?) in H*Y(Q)?,

(‘7;70>th (I‘,t) € Qa 1= 1727

0B .01/
ng — G2 — W in H> (Q) s (662)
Dy, = curlp,, p, € D(Q)?. curlp, — curlp in H}(Q)?,
B;, = curle,, e, € D(Q)?, curle, — curlv — curl o?|,—y € Hy(Q)*. (6.63)
We consider the problem: Find functions D,, and B; such that
oD

a—t" — cwrl(iB) + 0€D,, = Gy, in Q,
1

63t ncurl(€D,) = Gop  in Q,

divD,=0 inQ, vAD,=0 onSr,
divB!=0 inQ, vAB.=0 onSr,
D,| =Dy, B! =B, inQ. (6.64)
t=0 t=0
Theorem 6.7. Let Q be a bounded domain in R® with a boundary S of the class C™.
Suppose that the conditions (6.62), (6.63) are satisfied, and let &, fi, o be positive

constants. Then for any n € N, there exists a unique solution D,,, B} to the problem
(6.64) that is represented in the form (6.26)—(6.28) and

D, D
D, — D in L>(0,T; H}(Q)*), aat — 88_t in L(0,T; L*(2)%),
OB} B!
B! — B' in L>(0,T; Hy(Q)%), e aa_t in L°(0,T; L*(Q)*).  (6.65)

The proof of this theorem is analogous to the proof of Theorem 6.2.
Remark 6.1. The problem (6.48) —(6.51) is connected with finding functions y such that
divy=0in Q, y-v=0o0n 5, see (6.54), (6.55). These functions can be determined in
the form
y = curlv + grad h, v € H(Q)*, h € H(Q), (6.66)
where h is the solution to the problem

divgrad h = Ah =0
oh
gradh-v=—| =—curlv-v. (6.67)
ovls
We mention that the suggested method based on the Taylor expansion with respect
to t can also be used to construct solutions to other equations and system of equations,

which contain derivatives with respect to time for all unknown functions.
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