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Abstract

Assume that, in a parabolic or hyperbolic equation, the right-hand side is analytic in time
and the coefficients are analytic in time at each fixed point of the space. We show that the
infinitely differentiable solution to this equation is also analytic in time at each fixed point
of the space. This solution is given in the form of the Taylor expansion with respect to time
t with coefficients depending on x. The coefficients of the expansion are defined by recursion
relations, which are obtained from the condition of compatibility of order k =∞. The value
of the solution on the boundary is defined by the right-hand side and initial data, so that it is
not prescribed. We show that exact regular and weak solutions to the initial-boundary value
problems for parabolic and hyperbolic equations can be determined as the sum of a function
that satisfies the boundary conditions and the limit of the infinitely differentiable solutions
for smooth approximations of the data of the corresponding problem with zero boundary
conditions. These solutions are represented in the form of the Taylor expansion with respect
to t. The suggested method can be considered as an alternative to numerical methods of
solution of parabolic and hyperbolic equations.

Key words: Parabolic equation, hyperbolic equation, smooth solution, regular solution,
Taylor expansion.

1 Introduction

Initial-boundary value (mixed) problems for parabolic and hyperbolic equations have since
long ago led to a great number of works; see e.g. the monographs [21, 22, 28, 41, 46] and the
references therein.

This paper is devoted to construction of infinitely differentiable solutions to parabolic
and hyperbolic equations, and its applications to construction of regular and weak solutions
to initial-boundary problems for these equations.

We consider problems with regular coefficients, right-hand sides, and boundary data. It

should noted that there is an extensive literature that makes clear what happens for parabolic,

hyperbolic, and also elliptic equations in the case where the coefficients, the right-hand side
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and boundary data are not regular enough. For this, see the following recent works, which

also contain references to previous investigations: [1, 3, 4, 6, 8, 11–17,19,20,25–27,29–37,44].
It is well known that, for the existence of a smooth solution to parabolic or hyper-

bolic equation, the compatibility condition of an order k ∈ N, corresponding to the
smoothness of the solution to the problem, should be satisfied.

The compatibility condition of order k means that the functions ∂iu
∂ti

∣∣
t=0

, i =
0, 1, 2, . . . , k (u being the solution, t time), which are determined from the equation,

initial data, and the right-hand side, should be equal on the boundary to ∂iub
∂ti

∣∣
t=0

,
i = 0, 1, 2, . . . , k, where ub is the given function of values of the solution on the bound-
ary. In the case where the solution is infinitely differentiable, one has k =∞.

We consider problems in a bounded domain Ω in Rn with a boundary S of the C∞

class on the time interval (0, T ), T <∞.
We suppose that the coefficients of the equation, the right-hand side, and the initial

data are infinitely differentiable, and furthermore the coefficients of the equation and
the right–hand side are given in the form of the Taylor expansion with respect to time
t with the origin at the point t = 0 and with coefficients depending on x, where x is a
point in the space. Then the solution to the problem under consideration is informally
given in the form of the Taylor expansion with respect to t in which coefficients depend
on x, i.e.,

u(x, t) =
∞∑
i=0

1

i!

∂iu

∂ti
(x, 0)ti. (1.1)

The coefficients ∂iu
∂ti

(·, 0) are determined by recurrence relations, more exactly, they are
determined by the derivatives with respect to time t at t = 0 of the right-hand side f ,
the coefficients of the equation, and by the initial data u0 for a parabolic equation and
u0, u1 for a hyperbolic equation.

We prove converges of the series (1.1) in the space C∞(Q), Q = Ω× (0, T ) by using
the existence of an infinitely differentiable solution to the problem. So that, the value
of the solution u on the boundary u

∣∣
S×(0,T )

= ub is uniquely determined by f and u0

for a parabolic equation, and by f , u0 and u1 for a hyperbolic equation.
This peculiarity is for the first time shown in our work. In the usual, accepted

approach, one prescribes for parabolic and hyperbolic equations a right-hand side,
initial, and boundary conditions.

For the zero Dirichlet boundary condition, we assume that u0 and u1 are elements
of D(Ω) and f ∈ C∞([0, T ];D(Ω)). Then the compatibility condition of order k = ∞
is satisfied, and the solution to parabolic and hyperbolic equations can be represented
in the form of (1.1).

It is known that the space C∞(Q) is dense both inW l
q(Q) and in the space (W l

g(Q))∗,
1/q + 1/g = 1, that is the dual of W l

q(Q) for any l ∈ N, q ≥ 2. By the corollary to the
Weierstrass–Stone theorem, the set of products of polynomials with respect to x and
polynomials with respect to t is dense in C∞(Q). Therefore, the set of functions that
are represented in the form of the Taylor expansion with respect to t with coefficients
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which are elements of the space C∞(Ω), is dense in C∞(Q), in W l
q(Q), and in (W l

g(Q))∗.
Because of these properties, one can approximate smooth and non-smooth data of

the problem and the coefficients of equation by corresponding infinitely differentiable
functions with an arbitrary accuracy.

We apply the Taylor representation (1.1) to construction of regular and weak so-
lutions to parabolic and hyperbolic equations for which we prescribe the right-hand
side, initial, and boundary conditions. We consider well-posed parabolic and hyper-
bolic problems for which the solution depends continuously on the data of the problem.
The problems with inhomogeneous boundary conditions are reduced to problems with
homogeneous boundary conditions. The data of these problems are approximated by
corresponding infinitely differentiable functions for which the compatibility condition of
order k =∞ is satisfied. The solution to the problem with homogeneous boundary con-
dition is constructed in the form (1.1). The solution to the problem with non-smooth
data is determined as a limit of solutions for smooth approximated data.

The convergence of the Taylor series in the corresponding spaces is proved on the
basis of the existence result for corresponding data.

Numerical solution of a parabolic problem with large convection, when one of the
coefficients of the equation by the derivative with respect to some xi is large for the
norm of L∞(Q), is a very difficult problem. There are many publications dealing
with these problems. Many methods s where developed for numerical solution of such
problems, see e.g. [2,7,18]. However, for significantly large convection, this problem is
practically not solved.

The method proposed in this paper permits one to construct exact solutions to such
problems for infinitely differentiable approximations of the right-hand side f and initial
data u0. Moreover, if an approximation of f is represented in the form of a finite sum
of terms in the Taylor expansion in t with coefficients depending on x, then the exact
solution for this approximation of f is also represented in the form of a finite sum of
the Taylor expansion. The exact solution to the problem for given data is the limit of
solutions for smooth approximations of f and u0.

Thus, the suggested method of construction of solutions to parabolic and hyperbolic
equations is an alternative to methods of numerical solution of parabolic and hyperbolic
equations.

Below in Section 2, we consider problems for linear and nonlinear parabolic equa-
tions. Regular solutions to these equations with homogeneous and nonhomogeneous
boundary conditions are constructed. In the case of a nonhomogeneous boundary
condition, the solution is represented as a sum of a function satisfying the boundary
condition and a limit of solutions to the this problem with zero boundary condition for
infinitely differentiable data. These solutions are represented in the form (1.1)

In much the same way, we construct regular solutions to a system of parabolic
equations in Section 3.

In Section 4, we consider an initial boundary value problem for a system of hyper-
bolic equations for homogeneous and nonhomogeneous boundary conditions. Solutions
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to these problems are constructed.
In Section 5, we formulate a nonlinear problem on vibration of an orthotropic plate

in a viscous medium. We show that there exists a unique solution to this problem, and
this solution is obtained as a limit of solutions un to this problem for corresponding
approximations of the data of the problem; the functions un are computed in the form
of Taylor expansion.

In Section 6, we consider a 3-dimensional problem for Maxwell equations and a
problem on diffraction of electromagnetic wave by a superconductor, i.e., a slotted
antenna’s problem. Solutions to these problems are constructed.

The authors are grateful to the anonymous referee for suggesting the related bibli-
ography.

2 Parabolic equations

2.1 Linear problem and Taylor expansion

Let Ω be a bounded domain in Rn with a boundary S of the class C∞. Let Q =
Ω× (0, T ), where T ∈ (0,∞). Consider the problem: Find u such that

∂u

∂t
− aij(x, t)

∂2u

∂xi∂xj
+ ai(x, t)

∂u

∂xi
+ a(x, t)u = f in Q, (2.1)

u|t=0 = u0 in Ω, u(·, 0)|S = u0|S. (2.2)

Here and below the Einstein convention on summation over repeated index is applied.
As seen from (2.2), we prescribe the value of the function u on the boundary at the
point t = 0 only.

Since the boundary S is of the class C∞, we can assume that the coefficients of
equation (2.1) and the right-hand side f are given in a bounded domain Q1 = Ω1 ×
(0, T ), where Ω1 ⊃ Ω, and u0 is prescribed in Ω1, see [40], Theorem 9.1, Chapter 1.

We denote the space of infinitely differentiable functions with support in Ω1 by
D(Ω1), and the space of infinitely differentiable functions on Ω1 × [0, T ] with support
in Ω1 for each t ∈ [0, T ] by C∞([0, T ];D(Ω1)).

Topologies in both D(Ω1)) and C∞([0, T ];D(Ω1)) are defined by the families of
corresponding seminorms.

We assume that
(f, u0) ∈ U, (2.3)

where

U =
{

(f, u0) | f ∈ C∞([0, T ];D(Ω1)), f(x, t) =
∞∑
k=0

1

k!

∂kf

∂tk
(x, 0)tk,

(x, t) ∈ Ω1 × [0, T ] = Q1, u0 ∈ D(Ω1)
}
, (2.4)
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aij ∈ C∞(Q1), aij(x, t) =
∞∑
k=0

1

k!

∂kaij
∂tk

(x, 0)tk, i, j = 1, . . . , n,

aij(x, t)ξiξj ≥ µξ2, µ > 0, (x, t) ∈ Q1, ξi, ξj ∈ R, ξ2 = ξ2
1 + · · ·+ ξ2

n, (2.5)

ai ∈ C∞(Q1), ai(x, t) =
∞∑
k=0

1

k!

∂kai
∂tk

(x, 0)tk,

a ∈ C∞(Q1), a(x, t) =
∞∑
k=0

1

k!

∂ka

∂tk
(x, 0)tk. (2.6)

A topology on U is defined by the product of the topologies of C∞([0, T ];D(Ω1)) and
D(Ω1).

Denote

A

(
x, t,

∂

∂x

)
u = aij(x, t)

∂2u

∂xi∂xj
− ai(x, t)

∂u

∂xi
− a(x, t)u. (2.7)

Then equation (2.1) can be represented in the form

∂u

∂t
− A

(
x, t,

∂

∂x

)
u = f in Q. (2.8)

We differentiate equation (2.8) in t k − 1 times and set t = 0. This gives the
following recurrence relation:

∂ku

∂tk
(·, 0) =

(
∂k−1

∂tk−1

(
A

(
x, t,

∂

∂x

)
u

))
(·, 0) +

∂k−1f

∂tk−1
(·, 0)

=
k−1∑
j=0

Cj
k−1

(
∂jA

∂tj

(
x, t,

∂

∂x

))
(·, 0)

(
∂k−1−j

∂tk−1−j u

)
(·, 0) +

∂k−1f

∂tk−1
(·, 0), k = 1, 2, . . .

(2.9)

Here u(·, 0) = u0, Cj
k−1 are the binomial coefficients, ∂jA

∂tj
(x, t, ∂

∂x
) is the operator ob-

tained from the operator A by differentiation of its coefficients in t j times.
A smooth solution u satisfies the condition

∂mu

∂tm
(x, 0) =

∂mub
∂tm

(x, 0), x ∈ S. (2.10)

For m = 0, we get u0(x) = ub(x, 0), x ∈ S.
We say that the compatibility condition of order k is satisfied if (2.10) holds for

m = 0, 1, 2, . . . , k.
For infinitely differentiable solutions the compatibility condition of order k =∞ is

satisfied.
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Theorem 2.1. Let Ω be a bounded domain in Rn with a boundary S of the class C∞

and T ∈ (0,∞). Suppose that the conditions (2.3)–(2.6) are satisfied. Then there exists
a unique solution to the problem (2.1), (2.2) such that u ∈ C∞(Q), and this solution
is represented in the form of a Taylor expansion

u(x, t) = u0(x) +
∞∑
k=1

1

k!

∂ku

∂tk
(x, 0) tk, (x, t) ∈ Q. (2.11)

The coefficients ∂ku
∂tk

(·, 0) are defined by the recurrence relation (2.9). Furthermore, the
boundary condition function ub = u|ST

, ST = S × [0, T ], is determined as follows:

ub(x, t) = u0(x) +
∞∑
k=1

1

k!

∂ku

∂tk
(x, 0) tk, x ∈ S, t ∈ [0, T ]. (2.12)

The function (f, u0) 7→ u defined by the solution to the problem (2.1), (2.2) is a con-
tinuous mapping of U into C∞(Q).

Proof. We consider the problem: Find ǔ satisfying

∂ǔ

∂t
− A

(
x, t,

∂

∂x

)
ǔ = f in Q1,

ǔ|t=0 = u0 in Ω1, ǔ|S1T
= 0, (2.13)

where S1T = S1 × [0, T ], S1 is the boundary of Ω1. By (2.4), S1 is of the class C∞. It
follows from (2.3), (2.9) and (2.13) that the compatibility condition of any order k ∈ N
is satisfied, and by [28], Theorem 5.2, Chapter IV and [46], Theorem 5.4, Chapter V,

there exists a unique solution to the problem (2.13) such that ǔ ∈ W
2(k+1),k+1
q (Q1),

k ∈ N = {0, 1, 2, . . . }, q ≥ 2. Therefore, ǔ ∈ C∞(Q1).

The functions ∂kǔ
∂tk

(·, 0) are defined by formula (2.9) in which Ω is replaced by Ω1

and u by ǔ. (2.4) implies ∂kǔ
∂tk

(·, 0) ∈ D(Ω1), k ∈ N.
Informally, the solution to the problem (2.13) is represented in the form of a Taylor

expansion

ǔ(x, t) = u0(x) +
∞∑
k=1

1

k!

∂kǔ

∂tk
(x, 0)tk, (x, t) ∈ Q1. (2.14)

The function ǔ defined by (2.14) represents a smooth solution to the problem (2.13)
for all points t ∈ [0, T ] such that the series (2.14) converges at t in D(Ω1).

Let us prove this. Denote

ǔm(x, t) = u0(x) +
m∑
k=1

1

k!

∂kǔ

∂tk
(·, 0) tk. (2.15)

6



(2.9) and (2.15) imply that the function ǔm is a solution to the problem

∂ǔm
∂t
− A

(
x, t,

∂

∂x

)
ǔm−1 = fm−1 in Q1,

ǔm|t=0 = u0 in Ω1, ǔm|S1T
= 0, (2.16)

where

fm−1(x, t) =
m−1∑
k=0

1

k!

∂kf

∂tk
(x, 0) tk, (x, t) ∈ Q1. (2.17)

It follows from (2.4) that

fm → f in C∞([0, T ];D(Ω1)). (2.18)

It is known that the solution of a parabolic problem depends continuously on the
data of the problem f, ub, u0, see [28], Theorem 5.2, Chapter IV and [46], Theorem 5.4,
Chapter V. Because of this, (2.13) and (2.16) yield

‖ǔ− ǔm‖W 2(k+1),k+1
q (Q1)

≤ c‖fm − f‖W 2k,k
q

(Q1), k ∈ N, q ≥ 2. (2.19)

Therefore
ǔm → ǔ in W 2(l+1),l+1

q (Q1), l ∈ N, q ≥ 2,

and ǔm → ǔ in C∞(Q1). The function u = ǔ|Q is a solution to the problem (2.1), (2.2),
and it is determined by (2.9) and (2.11). This solution is unique.

It follows from [28] and [46] that the function (f, u0) 7→ ǔ defined by the solution

to the problem (2.13), is a continuous mapping of U into W
2(l+1),l+1
q (Q1) for any l ∈ N,

q ≥ 2. Therefore, the function (f, u0) 7→ u, where u is the solution to the problem
(2.1), (2.2), is a continuous mapping of U into C∞(Q).

Remark 2.1. It is customary to prescribe for a parabolic equation the functions f, u0

and the boundary condition ub. However, it follows from Theorem 2.1 that under the
conditions of this theorem, one prescribes only f and u0. In this case, there exists a
unique solution to the problem (2.1), (2.2) that is represented in the form (2.11) and
the function ub is determined by f and u0.

Corollary 2.1. Let f be a function in Q that is represented in the form of the Taylor
expansion in t with coefficients depending on x. Let u be a solution to the problem (2.1)
such that u ∈ C∞(Q). Then, for any fixed point x ∈ Ω, the partial function t 7→ u(x, t)
is analytical, and u is represented in the form (2.11).

Proof. Indeed, in this case, f ∈ C∞(Q), u0 ∈ C∞(Ω), the compatibility condition of
order infinity is satisfied, and it follows from the Theorem 2.1 that u represented in
the form (2.11).
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Consider the following problem on existence of an infinitely differentiable solution
to a parabolic problem with given boundary and initial conditions:

∂u

∂t
− A

(
x, t,

∂

∂x

)
u = f in Q. (2.20)

u|ST
= ub, u|t=0 = u0. (2.21)

Here A

(
x, t, ∂

∂x

)
is defined by (2.7).

We define the following spaces:

X =
{
u | u ∈ C∞(Q1), suppu(·, t) ⊂ Ω1, t ∈ [0, T ],

u(x, t) =
∞∑
k=0

1

k!

∂ku

∂tk
(x, 0) tk, (x, t) ∈ Q1

}
,

X0 = {u | u ∈ X, u
∣∣
ST

= 0, u(·, 0) = 0},
Z = {(v, w) | v = h(·, 0)|Ω, w = h|ST

, h ∈ X}. (2.22)

We define an operator γ : X → Z by

γ(u) = (u(·, 0)|Ω , u|ST
).

Note that X0 is the kernel of the operator γ.
Let X/X0 be the factor space. If u1 and u2 are elements of X such that u1−u2 ∈ X0,

then u1 and u2 belong to the same class in X/X0, say u. We say that u is of class
(u0, ub) ∈ Z if γ(u) = (u0, ub) for all u ∈ u. The result bellow follows from Theorem
2.1.

Corollary 2.2. Let (u0, ub) ∈ Z and let u be the class (u0, ub) from X/X0. Then any
function u ∈ u

∣∣
Q

is the solution to the problem (2.20), (2.21) for u0, ub, and f that is

determined as follows:

f(x, t) =
∞∑
k=1

1

(k − 1)!

∂k−1f

∂tk−1
(x, 0) tk−1, (x, t) ∈ Q, (2.23)

where

∂k−1f

∂tk−1
(x, 0) =

∂ku

∂tk
(x, 0)−

k−1∑
j=0

Cj
k−1

(
∂jA

∂tj

(
x, t,

∂

∂x

))
(x, 0)

×
(
∂k−1−ju

∂tk−1−j

)
(x, 0), x ∈ Ω. (2.24)
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Define the following set:

U1 =
{

(f, u0, ub) | f ∈ C∞([0, T ];D(Ω)), f(x, t) =
∞∑
k=0

1

k!

∂kf

∂tk
(x, 0)tk,

(x, t) ∈ Ω× [0, T ] = Q, u0 ∈ D(Ω), ub = 0
}
. (2.25)

We consider the problem: Given (f, u0, ub) ∈ U1, find u such that

u ∈ C∞(Q),

∂u

∂t
− A

(
x, t,

∂u

∂t

)
u = f,

u|t=0 = u0, u|ST
= ub. (2.26)

The following result follows from the proof of Theorem 2.1:

Corollary 2.3. Let Ω be a bounded domain in Rn with a boundary S of class C∞.
Suppose that the conditions (2.5), (2.6) are satisfied, and (f, u0, ub) ∈ U1. Then there
exists a unique solution to the problem (2.26) that is represented in form (2.11), and
the function (f, u0, 0) 7→ u is a continuous mapping of U1 into C∞([0, T ];D(Ω)).

2.2 Solution of initial-boundary value problems in Sobolev
space

We consider the problem (2.20), (2.21) in which we are given f, u0, ub. We suppose
that

f ∈ L2(Q), u0 ∈ H1(Ω), ub ∈ H
3
2
, 3
4 (ST ), u0(x) = ub(x, 0) x ∈ S. (2.27)

In this case, the compatibility condition of order zero is satisfied.
For the sake of simplicity, we assume that the coefficients of the equation (2.20) are

elements of C∞(Q), and they are represented in the form of Taylor expansion in t with
coefficients depending on x, i.e., (2.5), (2.6) hold, and the boundary S is of the class
C∞.

It follows from the corollary to the Stone–Weierstrass theorem that the set of tensor
products of polynomials in x and polynomials in t is dense in C∞(Q). Therefore,
the solution to the equation with non-smooth coefficients is obtained as the limit of
solutions of equations with smooth coefficients as above.

By analogy, a non-smooth boundary S can be approximated by boundaries of the
class C∞. In this case, solutions for smooth boundaries converge to the solution for
non-smooth boundary in the corresponding space, see [42].
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It follows from the known results, see e.g. [41], Chapter 4, Theorems 2.3 and 6.2, [46],
Chapter V, Theorem 5.4 that, under the above conditions, there exists a unique solution
to the problem (2.20), (2.21) such that

u ∈ H2,1(Q). (2.28)

We define the following function:

w(x, t) =

{
ub(Px, t)e

1− a2

a2−(x−Px)2 if |x− Px| < a,

0 if |x− Px| ≥ a.
(2.29)

Here x ∈ Ω, t ∈ (0, T ), P is the operator of projection of points of Ω onto S, a is a
small positive constant. Note that w ∈ H2,1(Q).

Let
ũ = u− w. (2.30)

(2.28), (2.29) imply

ũ ∈ H2,1(Q), ũ|ST
= 0, ũ|t=0 = u0 − w|t=0 ∈ H1

0 (Ω). (2.31)

The function ũ is the solution to the following problem:

∂ũ

∂t
− A

(
x, t,

∂

∂x

)
ũ = f̃ ,

ũ|ST
= 0, ũ|t=0 = u0 − w|t=0 ∈ H1

0 (Ω), (2.32)

where

f̃ = f − ∂w

∂t
+ A

(
x, t,

∂

∂x

)
w ∈ L2(Q). (2.33)

(2.27), (2.30), (2.32) imply

ũ(x, 0) = ub(x, 0)− w(x, 0) = 0, x ∈ S. (2.34)

Therefore, the compatibility condition of order zero is satisfied, and there exists a
unique solution to the problem (2.32) such that ũ ∈ H2,1(Q), u|ST

= 0.
Let {f̃m, ũ0m} be a sequence such that

f̃m ∈ C∞([0, T ],D(Ω)), f̃m(x, t) =
∞∑
k=0

1

k!

∂kf̃m
∂tk

(x, 0)tk, f̃m → f̃ in L2(Q),

ũ0m ∈ D(Ω), ũ0m → u0 − w|t=0 in H1
0 (Ω). (2.35)

Consider the problem: Find ũm such that

ũm ∈ C∞([0, T ];D(Ω)),
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∂ũm
∂t
− A

(
x, t,

∂

∂x

)
ũm = f̃m,

ũm(·, 0) = ũ0m. (2.36)

We can assume that the functions f̃m and ũ0m are extended by zero to domains Q1

and Ω1 so that (f̃m, ũ0m) ∈ U , see (2.4). Then by Theorem 2.1, there exists a unique
solution to our problem in Q1, and it is determined by (2.14), where the functions ǔ
and ǔ0 are replaced by ũm and ũ0m. Thus, the solution to the problem (2.36) belongs
to C∞(Q) and it is represented in the form

ũm(x, t) = ũ0m(x) +
∞∑
k=1

1

k!

∂kũm
∂tk

(x, 0)tk, (x, t) ∈ Q, (2.37)

where ∂kũm
∂tk

are determined by (2.9).
(2.32), (2.36) and [46], Theorem 5.4, Chapter V imply

‖ũm − ũ‖H2,1(Q) ≤ c(‖f̃m − f̃‖L2(Q) + ‖ũ0m − ũ0 + w|t=0‖H1
0 (Ω). (2.38)

Now, (2.35) yields
ũm → ũ in H2,1(Q). (2.39)

Thus, we have proved the following result:

Theorem 2.2. Let Ω be a bounded domain in Rn with a boundary S of the class C∞,
T ∈ (0,∞), and let the conditions (2.5), (2.6) be satisfied. Let also the conditions
(2.27) be satisfied. Then, there exists a unique solution to the problem (2.20), (2.21)
that satisfies (2.28), and it is represented in the form u = ũ + w, where w is given by
(2.29), and ũ is determined by (2.39).

Remark 2.2. When applying Theorem 2.2 in practice, one can compute the solution to
the problem (2.36) directly by (2.37) and (2.9), without the extension that was used
to prove converges of the series.

Remark 2.3. Theorem 2.2 also holds in the case where ub = 0. Indeed, we just need to
take w = 0 in the above computations.

Remark 2.4. In practical applications the data of the problem are usually not accurately
given, often they are determined by intuition, or even are plucked out of thin air.
Therefore, in such a case, it makes no sense to solve the problem (2.36) for a series of
functions {f̃m, ũ0m} which satisfy the condition (2.35). It is sufficient to solve problem
(2.36) for one or two pairs f̃m, ũ0m which are close to f̃ and ũ0 with not a high precision.
Moreover, here f̃m can be taken in a form of a finite sum of the Taylor expansion, which
is suitable for a given T . In this case, if f̃m = f̃ml, where

f̃ml(x, t) =
l∑

k=0

1

k!

∂kf̃m
∂tk

(x, 0)tk, (2.40)
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then exact solution to the problem (2.36) is the function ũm(x, t) = ũm(l+1)(x, t) where

ũm(l+1)(x, t) = ũ0m(x) +
l+1∑
k=1

1

k!

∂kũm
∂tk

(x, 0)tk, (x, t) ∈ Q, (2.41)

see (2.15), (2.16), (2.17).

Remark 2.5. Numerical solution of the problem (2.20), (2.21) in the case of a large
convection, when the norm of one of the coefficients ai of the operator A is large in
L∞(Q) is a very hard problem. Our method permits one to construct the exact solution
to the problem (2.36) in the form (2.37). Moreover, if f̃m = ˜fml is represented in the
form (2.40), then the solution to the problem (2.36) is represented in the form (2.41).

2.3 Nonlinear parabolic equation

We consider the following problem:

∂u

∂t
− A

(
x, t,

∂

∂x

)
u+

(
b0(x, t)u2 + bi(x, t)

∂u

∂xi
u

+ bij(x, t)
∂u

∂xi

∂u

∂xj

)
λ = f in Q, i, j = 1, 2, . . . , n, (2.42)

u|t=0 = u0, u|ST
= 0. (2.43)

As before, Q = Ω × (0, T ), Ω is a bounded domain in Rn with a boundary S of the
class C∞, T <∞.

We suppose that A
(
x, t, ∂

∂x

)
is defined by (2.7) and the conditions (2.5), (2.6) are

satisfied. Furthermore,

f ∈ C∞([0, T ];D(Ω)), f(x, t) =
∞∑
k=0

1

k!

∂kf

∂tk
(x, 0) tk, u0 ∈ D(Ω),

b0 ∈ C∞(Q), b0(x, t) =
∞∑
k=0

1

k!

∂kb0

∂tk
(x, 0) tk,

bi ∈ C∞(Q), bi(x, t) =
∞∑
k=0

1

k!

∂kbi
∂tk

(x, 0) tk, i = 1, 2, . . . , n,

bij ∈ C∞(Q), bij(x, t) =
∞∑
k=0

1

k!

∂kbij
∂tk

(x, 0) tk, i, j = 1, 2, . . . , n, (2.44)

and λ is a small positive parameter, λ ∈ (0, λ̌], λ̌ > 0. We define the following mapping:

M(u) = b0u
2 + bi

∂u

∂xi
u+ bij

∂u

∂xi

∂u

∂xj
. (2.45)
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Equation (2.42) can be represented in the form

∂u

∂t
− A

(
x, t,

∂

∂x

)
u+ λM(u) = f. (2.46)

We differentiate equation (2.46) in t k− 1 times and set t = 0. We obtain the relations

∂ku

∂tk
(·, 0) =

(
∂k−1

∂tk−1

(
A

(
x, t,

∂

∂x

)
u

))
(·, 0)− λ

(
∂k−1

∂tk−1
M(u)

)
(·, 0) +

∂k−1

∂tk−1
f(·, 0),

k = 1, 2, . . . , (2.47)

where

∂k−1

∂tk−1
M(u) =

k−1∑
l=0

C l
k−1

(
∂lb0

∂tl
∂k−1−lu2

∂tk−1−l +
∂lbi
∂tl

∂k−1−l

∂tk−1−l

(
∂u

∂xi
u

)
+
∂lbij
∂tl

∂k−1−l

∂tk−1−l

(
∂u

∂xi

∂u

∂xj

))
. (2.48)

Theorem 2.3. Let Ω be a bounded domain in Rn with a boundary S of the class C∞.
Suppose that the conditions (2.5), (2.6), (2.44) are satisfied. Then for any l, q such that
l ∈ N, (n+ 2)/2q < l, q ≥ 2, there is λ0 > 0 such that, for any λ ∈ (0, λ0), there exists
a unique solution u = uλ to the problem (2.42), (2.43) such that uλ ∈ W 2l+2,l+1

q (Q) and

uλ(x, t) = u0(x) +
∞∑
k=1

1

k!

∂ku

∂tk
(x, 0) tk, (x, t) ∈ Q, (2.49)

where ∂ku
∂tk

(x, 0) is determined by (2.47) and (2.48). Furthermore, λ 7→ uλ is s contin-
uous mapping of (0, λ0) into W 2l+2,l+1

q (Q).

Proof. We consider the problem: Find uλ satisfying

∂uλ
∂t
− A

(
x, t,

∂

∂x

)
uλ + λM(uλ) = f in Q, (2.50)

uλ|t=0 = u0 in Ω, uλ|ST
= 0. (2.51)

Denote

W 2l+2,l+1
q,0 (Q) =

{
w | w ∈ W 2l+2,l+1

q (Q), w(·, t) ∈
◦
W

2l+2− 2
q

q (Ω) a.e. in (0, T ),

l >
n+ 2

2q
, q ≥ 2

}
,

where
◦
W

2l+2− 2
q

q (Ω) is the closure of D(Ω) in W
2l+2− 2

q
q (Ω).
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The function M maps the space W 2l+2,l+1
q,0 (Q) into W

2l+1,l+ 1
2

q,0 (Q). Let u, h be ele-

ments of W 2l+2,l+1
q,0 (Q). We have

lim
γ→0

M(u+ γh)−M(u)

γ
= 2b0uh+ bi

(
∂u

∂xi
h+ u

∂h

∂xi

)
+ bij

(
∂u

∂xi

∂h

∂xj
+
∂u

∂xj

∂h

∂xi

)
= M ′(u)h.

It is easy to see that

‖M(u+ h)−M(u)−M ′(u)h‖
W

2l+1,l+1
2

q,0 (Q)
≤ c‖h‖2

W 2l+2,l+1
q,0 (Q)

.

Therefore, the operatorM is a Fréchet continuously differentiable mapping ofW 2l+2,l+1
q,0 (Q)

into W
2l+1,l+ 1

2
q,0 (Q).

By Corollary 2.4, for λ = 0, there exists a unique solution to the problem (2.50),
(2.51) that belongs to C∞([0, T ];D(Ω)), and it is determined by (2.11).

By applying the implicit function theorem, see e.g. [45], Theorem 25, Chapter III,
we obtain that for any l, q such that n+2

2q
< l, q ≥ 2, l ∈ N, there is λ0 > 0 such that

for any λ ∈ (0, λ0), there exists a unique solution uλ to the problem (2.50), (2.51) such
that uλ ∈ W 2l+2,l+1

q,0 (Q), and the function λ 7→ uλ is a continuous mapping of (0, λ0)

into W 2l+2,l+1
q,0 (Q).

Informally, the solution to the problem (2.42), (2.43) is represented in the form
(2.49). Define um as follows:

um(x, t) = u0(x) +
m∑
k=1

1

k!

∂ku

∂tk
(x, 0) tk, (x, t) ∈ Q. (2.52)

(2.47) and (2.52) imply that

∂um
∂t

(x, t)− A
(
x, t,

∂

∂x

)
um−1(x, t) + λ

m−1∑
k=0

1

k!

(
∂k

∂tk
(M(u))

)
(x, 0) tk = fm−1(x, t),

(2.53)
where

fm−1(x, t) =
m−1∑
k=0

1

k!

∂kf

∂tk
(x, 0)tk. (2.54)

It follows from (2.44) that

fm−1 → f in C∞([0, T ]; D(Ω)). (2.55)

By (2.44) and (2.47), we have um ∈ C∞([0, T ]; D(Ω)).
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We apply the implicit function theorem to the case where λ is from a small vicinity
of zero in the set of nonnegative numbers, and the right-hand side of (2.42) belongs to
a small vicinity of f in W 2l,l

q,0 (Q). Then (2.55) yields

um → uλ in W 2l+2,l+1
q,0 (Q). (2.56)

Therefore, the series (2.49) converges in W 2l+2,l+1
q,0 (Q), and gives the solution to the

problem (2.42), (2.43).

We remark that, in the case f ∈ L2(Q) and u0 ∈ H1
0 (Ω), the solution to the problem

(2.42), (2.43) can be defined as the limit of solutions to this problem for f = f̃m and
u0 = ũ0m that are determined by (2.35) with w = 0.

2.4 Construction of functions of D(Ω)

Let Ω2 be a domain in Rn such that Ω2 ⊂ Ω, and S2 be the boundary of Ω2. We
suppose that

d(x, S) = 2a for any x ∈ S2, (2.57)

where

d(x, S) = min

( n∑
i=1

(
xi − yi

)2
) 1

2

, y = (y1, . . . , yn) ∈ S, (2.58)

and a is a small positive constant.
Define the following function:

ga(x) =


1, if d(x, S2) > 0, x ∈ Ω2,

e
1− a2

a2−(d(x,S2))
2 , if d(x, S2) ∈ [0, a), x ∈ Ω \ Ω2,

0, if d(x, S2) ≥ a, x ∈ Ω \ Ω2.

(2.59)

The function ga belongs to D(Ω), and if f ∈ C∞(Ω), then w = f · ga ∈ D(Ω), and

the set{Pm · ga}, m ∈ N, a > 0 is dense in H l
0(Ω), l ∈ N, (2.60)

where Pm is any polynomial in x such that the order of polynomial in xi, i = 1, · · · , n,
does not exceed m.

In the general case, a smooth boundary S is defined by local cards, i.e., by local
coordinate systems (yk1 , · · · , ykn) and mappings Fk, k = 1, · · · , β, such that

ykn = Fk(y
k
1 , . . . , y

k
n−1), (2.61)

and by a corresponding partition of unity, see e.g. [40,45,46].
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For a ball or a paraboloid, the boundary S is defined by

ωb (x) =
n∑
i=1

x2
i − c2 = 0, ωp =

n∑
i=1

x2
i

b2
i

− c2 = 0, (2.62)

where bi and c are positive constants.
Polyhedral domains are widely used in practical computations. For convex polyhe-

dron, whose faces are defined by equations

fk(x) =
n∑
i=1

aikxi − ck = 0, k = 1, . . . ,m, (2.63)

where aik and ck are constants, the boundary S is given as follows:

ωcp(x) = ±
m∏
k=1

fk(x) = ±
m∏
k=1

n∑
i=1

aikxi − ck = 0, (2.64)

where the sign is chosen so that ωcp(x) > 0 in Ω.
The domain Ω2 of polyhedron is the polyhedron with the boundary S2 that satisfies

the condition (2.57). In this case, (2.60) holds.
The boundary of polyhedron is infinitely differentiable everywhere with exception

of angular points, at which it is not differentiable. Nevertheless, in small vicinities of
angular points this boundary can be regularized by convolution of the function Fk, see
(2.61), with an infinitely differentiable function with a small support, in particular,
with the bump function.

If the boundary of a polyhedron is not regularized, then the computation of the
solution to the problem in exteriors of any small vicinities of angular points can be
fulfilled.

For the case of non-convex polyhedron, one can identify the faces of the polyhedron
with local cards, without using a partition of unity. That is, one assumes that fk are
the identity mappings of the sets

Gk = {x | fk(x) = 0, fk(x) ∈ S}

onto itself, and Gk are defined so that
⋃m
k=1Gk = S.

3 System of parabolic equations

Let us consider the following problem for a system of equations that are parabolic in
the sense of Petrowski: Find u = (u1, u2, . . . , uN) such that

∂ui
∂t
− ∂

∂xr

(
aijrm(x, t)

∂uj
∂xm

)
+ bijm (x, t)

∂uj
∂xm

+ gij(x, t)uj = fi in Q,
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i, j = 1, . . . , N, r,m = 1, . . . , n, (3.1)

u|t=0 = u0 in Ω, u|ST
= ub. (3.2)

As before, Q = Ω × (0, T ), Ω is a bounded domain in Rn with a boundary S of the
class C∞, T ∈ (0,∞).

We suppose that

f = (f1, . . . , fN) ∈ L2(Q)N , u0 = (u01, . . . , u0N) ∈ H1(Ω)N ,

ub = (ub1, . . . , ubN) ∈ H
3
2
, 3
4 (ST )N , u0(x) = ub(x, 0), x ∈ S, (3.3)

and

aijrm ∈ C∞(Q1), aijrm(x, t) =
∞∑
k=0

1

k!

∂kaijrm
∂tk

(x, 0) tk, (x, t) ∈ Q1,

aijrm(x, t)ξrξmνjνi ≥ µ
n∑
r=1

ξ2
r

N∑
i=1

ν2
i , (x, t) ∈ Q1, ξr ∈ R, νi ∈ R, µ > 0, (3.4)

bijm ∈ C∞(Q1), bijm(x, t) =
∞∑
k=0

1

k!

∂kbijm
∂tk

(x, 0) tk, (x, t) ∈ Q1, (3.5)

gij ∈ C∞(Q1), gij(x, t) =
∞∑
k=0

1

k!

∂kgij
∂tk

(x, 0) tk, (x, t) ∈ Q1, (3.6)

(3.3) yields that, the compatibility condition of order zero is satisfied. It follows from
[46] that there exists a unique solution to the problem (3.1), (3.2) such that u ∈
H2,1(Q)N .

Informal differentiation of (3.1) in t gives the following relations:

∂kui
∂tk

(·, 0) =

(
∂k−1

∂tk−1

(
Bi

(
x, t,

∂

∂x

)
u

))
(·, 0) +

∂k−1fi
∂tk−1

(·, 0)

=
k−1∑
j=0

Cj
k−1

(
∂jBi

∂tj

(
x, t,

∂

∂x

))
(·, 0)

(
∂k−1−ju

∂tk−1−j

)
(·, 0)

+
∂k−1fi
∂tk−1

(·, 0), k = 1, 2, . . . , (3.7)

where

B

(
x, t,

∂

∂x

)
u =

{
Bi

(
x, t,

∂

∂x

)
u
}N
i=1
,

Bi

(
x, t,

∂

∂x

)
u =

∂

∂xr

(
aijrm(x, t)

∂uj
∂xm

)
− bijm(x, t)

∂uj
∂xm

− gij uj, i = 1, . . . , N.

(3.8)
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We mention that the inequality for aijrm in (3.4) is the condition of strong ellipticity
of the operator B .

Equations (3.1) are represented in the form

∂ui
∂t
−Bi

(
x, t,

∂

∂x

)
u = fi in Q, i = 1, . . . , N. (3.9)

The existence of a unique solution to the problem (3.1), (3.2) such that u ∈ H2,1(Q)N

follows from [46].
By analogy with (2.29), we define the following vector-function w = (w1, . . . , wN):

wi(x, t) =

{
ubi(Px, t) exp

(
1− a2

a2−(x−Px)2

)
, if |x− Px| < a, i = 1, . . . , N,

0, if |x− Px| ≥ a.
(3.10)

Then w ∈ H2,1(Q)N .
Let

ũ = u− w. (3.11)

The function ũ is the solution to the problem

ũ ∈ H2,1(Q)N ,

∂ũi
∂t
−Bi

(
x, t,

∂

∂x

)
ũ = f̃i, in Q,

ũ|ST
= 0, ũ|t=0 = u0 − w|t=0 ∈ H1

0 (Q)N , (3.12)

where

f̃i = fi −
∂wi
∂t

+Bi

(
x, t,

∂

∂x

)
w ∈ L2(QN). (3.13)

Let (f̃m, ũ0m) be a sequence such that

f̃m ∈ C∞([0, T ];D(Ω))N , f̃m(x, t) =
∞∑
k=0

1

k!

∂kf̃m
∂tk

(x, 0)tk, f̃m → f̃ in L2(Q)N ,

ũ0m ∈ D(Ω)N , ũ0m → u0 − w|t=0 in H1
0 (Ω)N . (3.14)

Consider the problem: Find ũm such that

ũm ∈ C∞([0, T ];D(Ω))N ,

∂ũmi
∂t
−Bi(x, t,

∂

∂x
)ũm = f̃mi in Q,

ũm(·, 0) = ũ0m. (3.15)
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It follows from [46] that there exists a unique solutions to the problem (3.15). By
analogy with the above, we get that

ũm(x, t) = ũ0m(x) +
k=∞∑
k=1

1

k!

∂kũm
∂tk

(x, 0)tk, (x, t) ∈ Q, (3.16)

where ∂kũm
∂tk

are determined by (3.7) with u and f being replaced by ũm and f̃m, re-
spectively.

Since the solution to the problem (3.15) depends continuously on f̃m, ũ0m formulas
(3.12), (3.14), and (3.15) imply

ũm → ũ in H2,1(Q)N . (3.17)

Thus, we have proved

Theorem 3.1. Let Ω be a bounded domain in Rn with a boundary S of the class C∞

and T ∈ (0,∞). Suppose that the conditions (3.3)–(3.6) are satisfied. Then there exists
a unique solution to the problem (3.1), (3.2) such that u ∈ H2.1(Q)N , and this solution
is represented in the form u = ũ+ w, where ũ = lim ũm and w is given by (3.10).

4 System of hyperbolic equations

4.1 Problem with boundary condition at t = 0

We consider the problem: Find u = (u1, u2, . . . , uN) such that

∂2ui
∂t2
−Bi

(
x, t,

∂

∂x

)
u = fi in Q, i = 1, 2, . . . , N, (4.1)

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x), x ∈ Ω, u0(x) = ub(x, 0), x ∈ S. (4.2)

Here Bi

(
x, t, ∂

∂x

)
are the components of the operator B

(
x, t, ∂

∂x

)
that are defined in

(3.8).
We assume that the coefficients of the operator B

(
x, t, ∂

∂x

)
satisfy the conditions

(3.4)–(3.6) and

(f, u0, u1) ∈ U2,

U2 =
{

(f, u0, u1) | f = (f1, . . . , fN) ∈ C∞([0, T ];D(Ω1))N ,

f(x, t) =
∞∑
k=0

1

k!

∂kf

∂tk
(x, 0) tk, (x, t) ∈ Q1,

u0 = (u01, . . . , u0N) ∈ D(Ω1)N , u1 = (u11, . . . , u1N) ∈ D(Ω1)N
}
. (4.3)
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We differentiate equations (4.1) in t k − 2 times, k ≥ 3, and set t = 0. This gives
the following recurrence relation:

∂kui
∂tk

(·, 0) =
∂k−2fi
∂tk−2

(·, 0) +

(
∂k−2

∂tk−2

(
Bi

(
x, t,

∂

∂x

)
u

))
(·, 0)

=
∂k−2fi
∂tk−2

(·, 0) +
k−2∑
j=0

Cj
k−2

(
∂jBi

∂tj

(
x, t,

∂

∂x

))
(·, 0)

∂k−2−ju

∂tk−2−j (·, 0). (4.4)

Here u(·, 0) and ∂u
∂t

(·, 0) are prescribed.

Theorem 4.1. Let Ω be a bounded domain in Rn with a boundary S of the class C∞

and T ∈ (0,∞). Suppose that the conditions (4.3) (3.4)-(3.6) are satisfied. Then there
exists a unique solution to the problem (4.1), (4.2) such that u ∈ C∞(Q)N , and this
solution is represented in the form of the Taylor expansion

u(x, t) = u0(x) + u1(x)t+
∞∑
k=2

1

k!

∂ku

∂tk
(x, 0) tk, (x, t) ∈ Q. (4.5)

The coefficients ∂ku
∂tk

(·, 0) are determined by the recurrence relations (4.4). Furthermore,
the boundary condition function ub = u|ST

is determined as follows:

ub(x, t) = u0(x) + u1(x)t+
∞∑
k=2

1

k!

∂ku

∂tk
(x, 0) tk, (x, t) ∈ ST . (4.6)

The function (f, u0, u1) 7→ u that is defined by the solution to the problem (4.1), (4.2)
in the form (4.5) is a continuous mapping of U2 into C∞(Q)N .

Proof. We consider the problem: Find ǔ satisfying

∂2ǔi
∂t2
−Bi

(
x, t,

∂

∂x

)
ǔ = fi in Q1, i = 1, 2, . . . , N, (4.7)

ǔ(x, 0) = u0(x),
∂ǔ

∂t
(x, 0) = u1(x), x ∈ Ω1, ǔ|S1T

= 0, (4.8)

where (f, u0, u1) ∈ U2.
It follows from [41], Chapter 5, Theorem 2.1, that under the conditions

f ∈ H0,1(Q1)N , u0 ∈ H2(Ω1)N ∩H1
0 (Ω1)N , u1 ∈ H1(Ω1)N , (4.9)

there exists a unique solution to the problem (4.7), (4.8) such that

ǔ ∈ L2(0, T ;H2(Ω1))N ,
∂2ǔ

∂t2
∈ L2(Q1)N , (4.10)
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i.e. ǔ ∈ H2,2(Q1)N , and the function (f, u0, u1) 7→ ǔ is a continuous mapping of
H0,1(Q1)N ×H2(Ω1)N ∩H1

0 (Ω1)N ×H1(Ω1)N into H2,2(Q1)N .
Informally, the solution to the problem (4.7), (4.8) is represented in the form

ǔ(x, t) = u0(x) + u1(x)t+
∞∑
k=2

1

k!

∂kǔ

∂tk
(x, 0) tk, (x, t) ∈ Q1. (4.11)

The function ǔ defined by (4.11) and the formula (4.4) with u replaced by ǔ is a solution
to the problem (4.7), (4.8) for all t ∈ [0, T ] such that the series (4.11) converges at t in
the corresponding space.

Taking that into account, we conclude by analogy with the above that the series
(4.11) converges in H2,2(Q1)N .

Consider the problem: Find a function û = (û1, . . . , ûN) given in Q1 that solves the
problem

∂2û

∂t2
−B

(
x, t,

∂

∂x

)
û =

∂2f

∂t2
in Q1, (4.12)

û(x, 0) =
∂2ǔ

∂t2
(x, 0),

∂û

∂t
(x, 0) =

∂3ǔ

∂t3
(x, 0), x ∈ Ω1,

û(x, t) = 0, (x, t) ∈ S1T , (4.13)

where ∂2ǔ
∂t2

(x, 0) and ∂3ǔ
∂t3

(x, 0) are determined by (4.4).
Again, (4.3) and [41] imply that there exists a unique solution to the problem (4.12),

(4.13) such that û ∈ H2,2(Q1)N . As û = ∂2ǔ
∂t2

, by (4.11) it is represented in the form

û(x, t) =
∞∑
k=2

1

(k − 2)!

∂kǔ

∂tk
(x, 0) tk−2, (x, t) ∈ Q1, (4.14)

and
∂4ǔ

∂t4
∈ L2(Q1)N ,

∂4ǔ

∂t2∂x2
i

∈ L2(Q1)N , i = 1, . . . , N. (4.15)

Now consider the problems: Find functions ũj = (ũj1, . . . , ũjN) given in Q1 such
that

∂2ũji
∂t2

−Bi

(
x, t,

∂

∂x

)
ũj =

∂2fi
∂x2

j

in Q1, j = 1, . . . , n, i = 1, . . . , N, (4.16)

ũj(x, 0) =
∂2ǔ

∂x2
j

(x, 0) =
∂2u0

∂x2
j

(x),
∂ũj
∂t

(x, 0) =
∂3ǔ

∂t∂x2
j

(x, 0) =
∂2u1

∂x2
j

(x),

j = 1, . . . , n, x ∈ Ω1, ũj(x, t) = 0, (x, t) ∈ S1T . (4.17)

The preceding arguments show the existence of a unique solution to this problem such
that ũj ∈ H2,2(Q1)N . Since ũj = ∂2ǔ

∂x2j
, j = 1, . . . , n, we obtain

∂4ǔ

∂x4
j

∈ L2(Q1)N , j = 1, . . . , n.
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From here and (4.15), we get ǔ ∈ H4,4(Q1)N .
By analogy, we obtain that ǔ ∈ H2k,2k(Q1)N for any k ∈ N, and ǔ ∈ C∞(Q1)N ,

and the series (4.11) converges to ǔ in C∞(Q1)N . The function (f, u0, u1) 7→ ǔ is a
continuous mapping of U2 into C∞(Q1)N , and u = ǔ|Q.

4.2 Problem with given boundary conditions

We first consider the following problem with homogeneous boundary conditions:

∂2ui
∂t2
−Bi

(
x, t,

∂

∂x

)
u = fi in Q, i = 1, 2, . . . , N,

u|t=0 = u0,
∂u

∂t

∣∣∣
t=0

= u1,

u|ST
= 0. (4.18)

We suppose
f ∈ L2(Q)N , u0 ∈ H1

0 (Ω)N , u1 ∈ L2(Ω)N . (4.19)

Theorem 4.2. Let Ω be a bounded domain in Rn with a boundary S of the class C∞

and T ∈ (0,∞). Suppose that the conditions (3.4)–(3.6) and (4.19) are satisfied. Then
there exists a unique solution to the problem (4.18) and furthermore

(f, u0, u1)→
(
u,
∂u

∂t

)
is a linear continuous mapping of

(L2(Q)N ×H1
0 (Ω)N × L2(Q)N) into L2(0, T ;H1

0 (Ω)N × L2(Q)N . (4.20)

Let {fm, um0 , um1 }∞m=1 be a sequence that satisfies the following conditions:

fm ∈ C∞([0, T ];D(Ω))N , fm(x, t) =
∞∑
k=0

1

k!

∂kfm

∂tk
(x, 0)tk, (x, t) ∈ Q,

fm → f in L2(Q)N , um0 ∈ D(Ω)N , um0 → u0 in H1
0 (Ω)N ,

um1 ∈ D(Ω)N , um1 → u1 in L2(Ω)N . (4.21)

Let also um be the solution to the problem

∂2umi
∂t2

−Bi

(
x, t,

∂

∂x

)
um = fmi , i = 1, 2, . . . , N,

um(x, 0) = um0 (x),
∂um

∂t
(x, 0) = um1 (x), x ∈ Ω. (4.22)

Then um ∈ C∞([0, T ];D(Ω))N and um → u in L2([0, T ];H1
0 (Ω))N , ∂um

∂t
→ ∂u

∂t
in L2(Q)N ,

where u is the solution to the problem (4.18).

22



Proof. The existence of a unique solution to the problem (4.18) such that u ∈ L2([0, T ];H1
0 (Ω))N ,

∂u
∂t
∈ L2(Q)N and (4.20) holds follows from [39], Chapter 4, Theorem 1.1. Informally,

the solution to the problem (4.22) is represented in the form

um(x, t) = um0 (x) + um1 (x)t+
∞∑
k=2

1

k!

∂kum

∂tk
(x, 0)tk, (x, t) ∈ Q. (4.23)

Let (f̂m, ûm0 , û
m
1 ) be an extension of (fm, um0 , u

m
1 ) to Q1 and Ω1, respectively, such that

(f̂m, ûm0 , û
m
1 ) ∈ U2. Then, by using Theorem 4.1, we obtain that um ∈ C∞(Q)N and

the series (4.23) converges in C∞(Q)N .
Since the solution to the problem (4.18) depends continuously on the data of the

problem, we obtain from (4.21) that um → u in L2([0, T ];H1
0 (Ω))N and ∂um

∂t
→ ∂u

∂t
in

L2(Q)N .

Consider now the problem with inhomogeneous boundary conditions: Find u sat-
isfying

∂2ui
∂t2
−Bi

(
x, t,

∂

∂x

)
u = fi in Q, i = 1, 2, . . . , N,

u|t=0 = u0,
∂u

∂t

∣∣∣
t=0

= u1, u|ST
= ub. (4.24)

We suppose that

f ∈ L2(Q)N , ub ∈ H
3
2
, 3
2 (ST )N , u0 ∈ H1(Ω)N ,

u1 ∈ L2(Ω)N , u0(x) = ub(x, 0), x ∈ S. (4.25)

We use the function w defined in (3.10). Since ub ∈ H
3
2
, 3
2 (ST )N , we have w ∈

H2,2(Ω)N . We set
û = u− w. (4.26)

Then

∂2ûi
∂t2
−Bi

(
x, t,

∂

∂x

)
û = f̂i in Q, i = 1, 2, . . . , N,

û|t=0 = û0 = u0 − w]t=0,
∂û

∂t

∣∣∣
t=0

= û1 = u1 −
∂w

∂t

∣∣∣
t=0
, û|ST

= 0, (4.27)

where

f̂i = fi −
∂2wi
∂t2

+Bi

(
x, t,

∂

∂x

)
w. (4.28)

Then
f̂ ∈ L2(Q)N , û0 ∈ H1

0 (Ω)N , û1 ∈ L2(Ω)N .
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It follows from Theorem 4.2 that, there exists a unique solution to the problem
(4.27) such that

û ∈ L2(0, T ;H1
0 (Ω))N ,

∂û

∂t
∈ L2(Q)N , (4.29)

and

(f̂ , û0, û1)→ (û,
∂û

∂t
) is a linear continuous mapping of

L2(Q)N ×H1
0 (Ω)N ,×L2(Ω)N into L2(0, T ;H1

0 (Ω))N × L2(Q)N . (4.30)

Let (f̂m, û0m, û1m) be a sequence such that

f̂m ∈ C∞([0, T ],D(Ω))N , f̂m(x, t) =
∞∑
k=0

1

k!

∂kf̂m
∂tk

(x, 0)tk, f̂m → f̂ in L2(Q)N ,

û0m ∈ D(Ω)N , û0m → û0 − w|t=0 in H1
0 (Ω)N ,

û1m ∈ D(Ω)N , û1m → u1 −
∂w

∂t

∣∣∣
t=0

in L2(Ω)N . (4.31)

Consider the problem: Find ûm satisfying

∂2ûmi
∂t2

−Bi

(
x, t,

∂

∂x

)
ûm = f̂mi in Q, i = 1, 2, . . . , N,

ûm|t=0 = û0m,
∂ûm
∂t

∣∣∣
t=0

= û1m. (4.32)

It follows from Theorem 4.2 that, there exists the unique solution to the problem
(4.32) such that ûm ∈ C∞(Q)N . This solution is presented in the form

ûm(x, t) = û0m(x) + û1m(x)t+
∞∑
k=2

1

k!

∂kûm
∂tk

(x, 0)tk, (x, t) ∈ Q, (4.33)

and by (4.31)

ûm → û in L2(0, T ;H1
0 (Ω))N ,

∂ûm
∂t
→ ∂û

∂t
in L2(Q)N . (4.34)

Thus, we have proved the following result:

Theorem 4.3. Let Ω be a bounded domain in Rn with a boundary S of the class C∞

and T ∈ (0,∞). Suppose that the conditions (3.4)–(3.6) and (4.25) are satisfied. Then
there exists the unique solution to the problem (4.24) such that u ∈ L2(0, T ;H1(Ω))N ,
∂u
∂t
∈ L2(Q)N . This solution is presented in the form u = û+ w, where w is defined in

(3.10) and û is determined by (4.32) and (4.34).
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5 Problem on vibration of an orthotropic plate in

a viscous medium.

Plates fabricated from composite materials are used in modern constructions. Such
plates are orthotropic. The strain energy of the orthotropic plate is defined by the
following formula, see [42]

Φ(u) =
1

2

∫
Ω

(
D1

(
∂2u

∂x2
1

)2

+2D12
∂2u

∂x2
1

∂2u

∂x2
2

+D2

(
∂2u

∂x2
2

)2

+2D3

(
∂2u

∂x1 ∂x2

)2)
dx. (5.1)

Here Ω is the midplane of the plate, Ω is a bounded domain in R2 with a boundary S,

dx = dx1 dx2, Di =
h3Ei

12(1− µ1µ2)
, i = 1, 2, D12 = µ2D1 = µ1D2, D3 =

h3G

6
,

E1, E2, G, µ1, µ2 being the elasticity characteristics of the material, h the thickness of
the plate,

E1, E2, G are positive constants, µ1 and µ2 are constants, 0 ≤ µi < 1, i = 1, 2, (5.2)

u is the function of deflection, i.e., the function of displacements of points of the
midplane in the direction perpendicular to the midplane.

We suppose that

h ∈ C∞(Ω), e1 ≤ h ≤ e2, e1, e2 are positive constants. (5.3)

Variation of the strain energy of the plate determines the following bilinear form

a(u, v) =

∫
Ω

[
D1

∂2u

∂x2
1

∂2v

∂x2
1

+D2
∂2u

∂x2
2

∂2v

∂x2
2

+D12

(
∂2u

∂x2
1

∂2v

∂x2
2

+
∂2u

∂x2
2

∂2v

∂x2
1

)
+ 2D3

∂2u

∂x1 ∂x2

∂2v

∂x1 ∂x2

]
dx. (5.4)

In our case a(u, u) = 2Φ(u).
We assume that the plate is clamped. Thus,

u
∣∣
S

= 0,
∂u

∂ν

∣∣∣
S

= 0, (5.5)

where ν is the unit outward normal to S.
One can easily see that, on the set of smooth functions which satisfy the condition

(5.5), the following equality holds.

a(u, v) = (Au, v) = (u,Av). (5.6)
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Here (·, ·) is the scalar product in L2(Ω), and the operator A given as follows:

Au =
∂2

∂x2
1

(
D1

∂2u

∂x2
1

)
+

∂2

∂x2
2

(
D2

∂2u

∂x2
2

)
+

∂2

∂x2
2

(
D12

∂2u

∂x2
1

)
+

∂2

∂x2
1

(
D12

∂2u

∂x2
2

)
+ 2

∂2

∂x1 ∂x2

(
D3

∂2u

∂x1 ∂x2

)
= −Fre, (5.7)

Fre = −Au is the resistance force induced by the elasticity for the function of displace-
ment u.

The viscous medium resists the vibration of the plate. The resistance force Frm

that it induces is opposite in direction to the velocity ∂u
∂t

, Frm = −ϕ ∂u
∂t

, where ϕ is the
resistance coefficient which is an increasing function of |∂u

∂t
| that takes positive values.

We take the resistance force in the form

Frm = −
(
a0 + a1

(
∂u

∂t

)2)
∂u

∂t
, (5.8)

where a0 and a1 are positive constants.
The D’Alembert inertia force is given by

Fin = −ρh ∂
2u

∂t2
, (5.9)

ρ being the density, a positive constant.
Let K be an exterior transverse force that acts on the plate. According to the

D’Alembert principle, the sum of an active force that is applied at any point at each
instant of time and the internal and inertia forces which it induces is equal to zero.
Therefore,

Fre + Frm + Fin +K = 0. (5.10)

From here, we obtain the following equation on vibration of the orthotropic plate in a
viscous medium:

ρh
∂2u

∂t2
+ Au+

(
a0 + a1

(
∂u

∂t

)2)
∂u

∂t
= K. (5.11)

Dividing both sides of equation (5.11) by ρh gives

∂2u

∂t2
+Mu+ α0

∂u

∂t
+ α1

(
∂u

∂t

)2
∂u

∂t
= f, (5.12)

where

Mu =
1

ρh
Au, α0 =

a0

ρh
, α1 =

a1

ρh
, f =

K

ρh
.

According to (5.5), the boundary conditions have the form

u
∣∣
ST

= 0,
∂u

∂ν

∣∣∣
ST

= 0. (5.13)
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We set the initial conditions in the form

u
∣∣
t=0

= u0,
∂u

∂t

∣∣∣
t=0

= u1. (5.14)

We suppose

f ∈ L2(Q),
∂f

∂t
∈ L2(Q), i.e, f ∈ H0,1(Q), (5.15)

u0 ∈ H4
0 (Ω), u1 ∈ H2

0 (Ω). (5.16)

Theorem 5.1. Let Ω be a bounded domain in R2 with a boundary S of the class C5,
T ∈ (0,∞). Suppose that the conditions (5.2), (5.3), (5.15), (5.16) are satisfied. Then
there exists a unique solution u to the problem (5.12), (5.13), (5.14) such that u ∈ W ,
where

W =
{
v | v ∈ L∞(0, T ;H4(Ω) ∩H2

0 (Ω)),
∂v

∂t
∈ L∞(0, T ;H2

0 (Ω)),

∂2v

∂t2
∈ L∞(0, T ;L2(Ω))

}
, (5.17)

and

(f, u0, u1) 7→ u is a continuous mapping of H0,1(Q)×H4
0 (Ω)×H2

0 (Ω) into W.
(5.18)

Let {fm, u0m, u1m, hm} be a sequence such that

fm ∈ C∞([0, T ];D(Ω)), fm(x, t) =
∞∑
k=0

1

k!

∂kfm
∂tk

(x, 0)tk, (x, t) ∈ Q,

fm → f in H0,1(Q), u0m ∈ D(Ω) u0m → u0 in H4
0 (Ω)

u1m ∈ D(Ω), u1m → u1 in H2
0 (Ω),

hm ∈ C∞(Ω), e1 ≤ hm ≤ e2, hm → h in C3(Ω). (5.19)

Let um be the solution to the problem

∂2um
∂t2

+Mmum + α0m
∂um
∂t

+ α1m

(
∂um
∂t

)2
∂um
∂t

= fm,

um|ST
= 0,

∂um
∂ν

∣∣∣
ST

= 0, (5.20)

where Mm = 1
ρhm

Am, α0m = a0
ρhm

, α1m = a1
ρhm

, Am is defined by (5.7), where h is
replaced by hm. Then

um → u in L∞(0, T ;H4(Ω) ∩H2
0 (Ω)),
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∂um
∂t
→ ∂u

∂t
in L∞(0, T ;H2

0 (Ω)),

∂2um
∂t2

→ ∂2u

∂t2
in L∞(0, T ;L2(Ω)). (5.21)

Proof. The existence of a unique solution u to the problem (5.12), (5.13), (5.14) such
that u ∈ W and (5.18) holds is proved by a small modification of the proofs of Theorem
2.1, Chapter 5 in [41] or Theorem 3.1, Chapter 1 in [38]. In this case, we take into
account that

c‖u‖2
H2

0 (Ω) ≥ a(u, u) ≥ c1‖u‖2
H2

0 (Ω), u ∈ H
2
0 (Ω),

use the Faedo–Galerkin approximations, and the theorem on compactness, see Theorem
5.1, Chapter 1 in [38], is applied to pass to the limit in the nonlinear term of (5.12).

Informally, the solution to the problem (5.20) is represented in the form

um(x, t) = u0m(x) + u1m(x)t+
∞∑
k=2

1

k!

∂kum
∂tk

(x, 0)tk, (x, t) ∈ Q, (5.22)

where ∂kum
∂tk

(x, 0) are determined by the following recurrence relations

∂kum
∂tk

(·, 0) =
∂k−2fm
∂tk−2

(·, 0)− ∂k−2Mmum
∂tk−2

(·, 0)− α0
∂k−1um
∂tk−1

(·, 0)

− α1

k−2∑
j=0

Cj
k−2

[ ∂j
∂tj

(
∂um
∂t

)2]
(·, 0)

∂k−j−1um
∂tk−j−1

(·, 0), k = 2, 3, . . .

The convergence of the series (5.22) is proved by analogy with the proof of Theorem
2.3. In this case, we consider the functions

ume(x, t) = u0m(x) + u1m(x)t+
e∑

k=2

1

k!

∂kum
∂tk

(x, 0)tk, (x, t) ∈ Q (5.23)

and apply the infinite function theorem. Then we obtain that ume → um in W as
e→∞.

Since the solution to the problem (5.12), (5.13), (5.14) depends continuously on the
data of the problem, (5.21) follows from (5.19).

6 Maxwell’s equations.

6.1 General problem.

We consider the following problem of electromagnetism: Find functions D and B such
that, see [10], [43]

∂D

∂t
− curl(µ̂B) + σξ̂D = G1 in Q, (6.1)
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∂B

∂t
+ curl(ξ̂D) = G2 in Q, (6.2)

ν ∧D = 0 on ST , (6.3)

D
∣∣∣
t=0

= D0, B
∣∣∣
t=0

= B0 in Ω. (6.4)

Here Q = Ω × (0, T ), T < ∞, Ω is a bounded domain in R3 with a boundary S,
ST = S × (0, T ), D is the electric induction, B is the magnetic induction, µ̂, ξ̂, and σ
are scalar functions of x ∈ Ω that take positive values, ν is the unit outward normal to
S.

We define the following spaces

V = {v | v ∈ L2(Ω)3, curl v ∈ L2(Ω)3},
V1 = {v | v ∈ V, v ∧ ν = 0}. (6.5)

The space V1 is the closure of D(Ω)3 with respect to the norm of V ,

‖v‖V =

(
‖v‖2

L2(Ω)3 + ‖ curl v‖2
L2(Ω)3

) 1
2

. (6.6)

For further detail about the spaces V andV1, see [23], Chapter 1, Sections 2,3, and [10],
Chapter 7.

Let also

X =

{
h | h ∈ L∞(0, T ;V ),

∂h

∂t
∈ L∞(0, T ;L2(Ω)3)

}
,

X1 =

{
h | h ∈ L∞(0, T ;V1),

∂h

∂t
∈ L∞(0, T ;L2(Ω)3)

}
.

The norm in X and X1 is defined by

‖h‖X = ‖h‖L∞(0,T ;V ) +

∥∥∥∥∂h∂t
∥∥∥∥
L∞(0,T ;L2(Ω)3)

.

We suppose

G1 ∈ H0,1(Q)3, G2 ∈ H0,1(Q)3, D0 ∈ V1, B0 ∈ V, (6.7)

µ̂ ∈ C1(Ω), µ1 ≥ µ̂ ≥ µ2, ξ̂ ∈ C1(Ω), ξ1 ≥ ξ̂ ≥ ξ2, (6.8)

σ ∈ L∞(Ω), σ̃1 ≥ σ ≥ σ̃2. (6.9)

Here µ1, µ2, ξ1, ξ2, σ̃1, σ̃2 are positive constants.

Theorem 6.1. Let Ω be a bounded domain in R3 with a boundary S of the class
C∞. Suppose that the conditions (6.7)–(6.9) are satisfied. Then, there exists a unique
solution to the problem (6.1)–(6.4) such that.

D ∈ X1, B ∈ X. (6.10)

29



Theorem 6.1 is proved in [10], Chapter 7, by using Galerkin approximations.
Let us discuss construction of the solution to the problem (6.1)–(6.4). In order to

apply our method to this problem, we should somewhat change the formulation of this
problem.

We present the function B in the form

B = B1 +B2, B1 ∈ X1, B2 ∈ X, ∂2B2

∂t2
∈ L2(Q)3. (6.11)

We consider that B1 is unknown, while B2 is given and satisfies the condition

B2 ∧ ν = B ∧ ν in L∞(0, T ;H−
1
2 (S)3). (6.12)

Here B is the solution to the problem (6.1)–(6.4) together with D. Equality (6.12) has
sense for elements of X, see [10], Lemma 4.2, Chapter 7.

According to (6.11), (6.12), we set

B0 = B1
0 +B2

0 , B1
0 ∈ V1, B2

0 ∈ V,
B1|t=0 = B1

0 , B2|t=0 = B2
0 . (6.13)

Now the problem (6.1)–(6.4) is represented as follows:

∂D

∂t
− curl(µ̂B1) + σξ̂D = G1 + curl(µ̂B2) in Q, (6.14)

∂B1

∂t
+ curl(ξ̂D) = G2 −

∂B2

∂t
in Q, (6.15)

ν ∧D = 0 on ST , ν ∧B1 = 0 on ST , (6.16)

D
∣∣∣
t=0

= D0, B1
∣∣∣
t=0

= B1
0 in Ω. (6.17)

The existence of a unique solution (D,B1) to the problem (6.14)–(6.17) such that
D ∈ X1, B1 ∈ X1 follows from Theorem 6.1.

Thus, if the pair (D,B) is the solution to the problem (6.1)–(6.4), and

B2 ∈ X, ∂2B2

∂t2
∈ L2(Q)3, (6.18)

and (6.12) is satisfied, then the pair (D,B1) with B1 = B − B2 is the solution to the
problem (6.14)–(6.17).

On the contrary, if the couple (D,B1) is the solution to the problem (6.14)–(6.17),
where B2 meets (6.18), then the couple (D,B) with B = B1 + B2 is the solution to
the problem (6.1)–(6.4), and (6.12) holds.

Therefore, the formulations (6.1)–(6.4) and (6.14)–(6.17) are equivalent in the above
sense.
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Let {G1n, G2n, D0n, B
1
0n, µ̂n, ξ̂n, σn} be a sequence such that

Gin ∈ C∞([0, T ];D(Ω)3),

Gin(x, t) =
∞∑
k=0

1

k!

∂kGin

∂tk
(x, 0)tk, (x, t) ∈ Q, i = 1, 2,

G1n → G1 + curl(µ̂B2) in H0,1(Q)3,

G2n → G2 −
∂B2

∂t
in H0,1(Q)3, (6.19)

D0n ∈ D(Ω)3, D0n → D0 in V1, B
1
0n ∈ D(Ω)3, B1

0n → B1
0 in V1, (6.20)

µ̂n ∈ C∞(Ω), µ̂n → µ̂ in C1(Ω), ξ̂n ∈ C∞(Ω), ξ̂n → ξ̂ in C1(Ω),

σn ∈ C∞(Ω), σn → σ in L∞(Ω). (6.21)

Consider the problem: Find functions Dn and B1
n such that

∂Dn

∂t
− curl(µ̂nB

1
n) + σnξ̂nDn = G1n in Q, (6.22)

∂B1
n

∂t
+ curl(ξ̂nDn) = G2n in Q, (6.23)

ν ∧Dn = 0 on ST , ν ∧B1
n = 0 on ST , (6.24)

Dn

∣∣∣
t=0

= D0n, B1
n

∣∣∣
t=0

= B1
0n in Ω. (6.25)

Theorem 6.2. Let Ω be a bounded domain, in R3 with a boundary S of the class C∞

and T ∈ (0,∞). Suppose that the conditions of Theorem 6.1 and (6.11), (6.12), (6.13)
are satisfied. Let also (6.19)–(6.21) hold. Then for any n ∈ N there exists a unique
solution (Dn, B

1
n) to the problem (6.22)–(6.25) that is represented in the form

Dn(x, t) = D0n(x) +
∞∑
k=1

1

k!

∂kDn

∂tk
(x, 0)tk, (6.26)

B1
n(x, t) = B1

0n(x) +
∞∑
k=1

1

k!

∂kB1
n

∂tk
(x, 0)tk, (6.27)

where

∂kDn

∂tk
(x, 0) = curl

(
µ̂n(x)

∂k−1B1
n

∂tk−1

)
(x, 0)− σn(x)ξ̂n(x)

∂k−1Dn

∂tk−1
(x, 0)

+
∂k−1G1n

∂tk−1
(x, 0), k = 1, 2, . . . ,

∂kB1
n

∂tk
(x, 0) = − curl

(
ξ̂n(x)

∂k−1Dn

∂tk−1

)
(x, 0) +

∂k−1G2n

∂tk−1
(x, 0), x ∈ Ω, k = 1, 2, . . . .

(6.28)
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The series for Dn and B1
n converge in X1 and

Dn → D in X1, B1
n → B1 in X1, (6.29)

where (D,B1) is the solution to the problem (6.14)–(6.17).

Proof. The existence of the unique solution to the problem (6.22)–(6.25) follows from
Theorem 6.1. The condition of compatibility of order infinity for this problem is satis-
fied. Because of this, informally, the solution to the problem (6.22)–(6.25) is represented
in the form (6.26), (6.27) .

It follows from the proofs of Theorems 5.1 and 4.1 in [10], Chapter 7 that, in the case
where ξ̂, µ̂, and σ are fixed functions that satisfy conditions (6.8), (6.9), the following
inequality for the solution to the problem (6.14)–(6.17) holds:

‖D‖X1 + ‖B1‖X1 ≤ C(‖G1‖H0,1(Q)3 + ‖G2‖H0,1(Q)3 + ‖D0‖V1 + ‖B1
0‖V1), (6.30)

where C depends on ξ̂, µ̂, and σ.
The converges of the series (6.26) and (6.27) in X1 is proved analogously to the

above by using (6.19)–(6.21), and (6.30).
Taking (6.19)–(6.21) into account in the same way as it is done in [10], Theorems

4.1 and 5.1, Chapter 7, we get

‖Dn‖X1 ≤ C1, ‖B1
n‖X1 ≤ C2. (6.31)

Therefore, we can extract a subsequence {Dm, B
1
m} such that

Dm → D ∗-weakly in X1,

B1
m → B1 ∗-weakly in X1. (6.32)

Let w1 and w be arbitrary elements of L2(Ω)3. We take the scalar products of (6.22)
and (6.23) for n = m with w1 and w, respectively, in L2(Ω)3. This gives(

∂Dm

∂t
, w1

)
−
(

curl(µ̂mB
1
m), w1

)
+ (σmξ̂mDm, w1) = (G1m, w1) a.e. in (0, T ),

(6.33)(
∂B1

m

∂t
, w

)
+
(

curl(ξ̂mDm), w

)
= (G2m, w) a.e. in (0, T ). (6.34)

Taking (6.19)–(6.21) and (6.32) into account, we pass to the limit as m → ∞ in
(6.33), (6.34), and (6.24), (6.25). We conclude that the pair (D,B1) determined in
(6.32) is a solution to the problem (6.14)–(6.17). Since the solution to this problem is
unique in X1 ×X1, (6.32) is also valid when m is replaced by n.

It remains to prove (6.29).
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We subtract equalities (6.22)–(6.25) from (6.14)–(6.17), respectively. This gives

∂

∂t
(D −Dn)− curl(µ̂B1 − µ̂nB1

n) + σξ̂D − σnξ̂nDn = G1 + curl(µ̂B2)−G1n, (6.35)

∂

∂t
(B1 −B1

n) + curl(ξ̂D − ξ̂nDn) = G2 −
∂B2

∂t
−G2n, (6.36)

ν ∧ (D −Dn) = 0 on ST , ν ∧ (B1 −B1
n) = 0 on ST , (6.37)

(D −Dn)
∣∣∣
t=0

= D0 −D0n in Ω, (B1 −B1
n)
∣∣∣
t=0

= B1
0 −B1

0n in Ω. (6.38)

We have

curl(µ̂B1 − µ̂nB1
n) = curl(µ̂(B1 −B1

n)) + curl((µ̂− µ̂n)B1
n),

σξ̂D − σnξ̂nDn = σξ̂(D −Dn) +Dn(σξ̂ − σnξ̂n),

curl(ξ̂D − ξ̂nDn) = curl(ξ̂(D −Dn)) + curl((ξ̂ − ξ̂n)Dn). (6.39)

We denote

γ1n = − curl((µ̂− µ̂n)B1
n) +Dn(σξ̂ − σnξ̂n),

γ2n = curl((ξ̂ − ξ̂n)Dn). (6.40)

(6.21) and (6.31) yield

γ1n → 0 in L∞(0, T ;L2(Ω)3), γ2n → 0 in L∞(0, T ;L2(Ω)3). (6.41)

By (6.39)–(6.41) equations (6.35), (6.36) take the form

∂

∂t
(D −Dn)− curl(µ̂(B1 −B1

n)) + σξ̂(D −Dn) + γ1n = G1 + curl(µ̂B2)−G1n

∂

∂t
(B1 −B1

n) + curl(ξ̂(D −Dn)) + γ2n. = G2 −
∂B2

∂t
−G2n.

From here and (6.30), taking (6.19), (6.20), and (6.41) into account, we obtain (6.29).

According to the theory of electromagnetism, the function B should satisfy the
condition

divB = 0 in Q. (6.42)

Theorem 6.3. Suppose that the conditions of Theorem 6.1 are satisfied and, in addi-
tion,

divG2 = 0 in Q, divB0 = 0 in Ω. (6.43)

Then the function B of the solution (D,B) to the problem (6.1)–(6.4) also meets the
condition divB = 0 in Q.
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Indeed, applying the operator div, in the sense of distributions, to both sides of
equation (6.2), we obtain

∂

∂t
(divB) = divG2 in Q.

That is

divB(·, t) = divB0 +

∫ t

0

divG2(·, τ)dτ = 0 in (0, T ).

Theorem 6.4. Suppose that the conditions of Theorem 6.2 are satisfied and, in addi-
tion,

G2 = curlF, F ∈ L2(0, T ;V ),
∂F

∂t
∈ L2(0, T ;V ),

B2 = curlP, P ∈ L∞(0, T ;H2(Ω)3),
∂P

∂t
∈ L∞(0, T ;H1(Ω)3),

∂2P

∂t2
∈ L2(0, T ;H1(Ω)3),

B1
0 = curlM1, M1 ∈ H2

0 (Ω)3, B2
0 = curlM2, M2 ∈ H2(Ω)3, P |t=0 = M2. (6.44)

The corresponding functions G2n and B1
0n are given as follows

G2n = curlFn, Fn ∈ C∞([0, T ];D(Ω)3),

Fn(x, t) =
∞∑
k=0

1

k!

∂kFn
∂tk

(x, 0)tk, (x, t) ∈ Q, (6.45)

curlFn → curl

(
F − ∂P

∂t

)
in L2(Q)3,

curl
∂Fn
∂t
→ curl

(
∂F

∂t
− ∂2P

∂t2

)
in L2(Q)3, (6.46)

B1
0n = curlM1

n, M1
n ∈ D(Ω)3, M1

n →M1 in H2
0 (Ω)3. (6.47)

Then the solution Dn, B1
n to the problem (6.22)–(6.25) also meets the condition divB1

n =
0, (6.29) holds and divB = 0.

Theorem 6.4 follows from results of Theorems 6.2 and 6.3.

6.2 Slotted antenna

We consider the problem on diffraction of electromagnetic wave by a superconductor,
see [10], Chapter 7, Section 3.4. Let Ω1 be a bounded domain in R3, of a superconduc-
tor, the boundary S of Ω1 is of the class C∞. We consider a problem in a domain Ω in
R3 with an internal boundary S. We assume that Ω is a bounded domain.
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We seek a solution to the following problem: Find vector functions D and B such
that

∂D

∂t
− curl(µ̂B) + σξ̂D = G1 in Q, (6.48)

∂B

∂t
+ curl(ξ̂D) = G2 in Q, (6.49)

divD = 0 in Q, ν ∧D = 0 on ST , (6.50)

divB = 0 in Q, ν ·B = 0 on ST , (6.51)

D
∣∣∣
t=0

= D0, B
∣∣∣
t=0

= B0 in Ω. (6.52)

We introduce the following spaces:

X2 =

{
h | h = curlw,w ∈ L2(0, T ;V ),

∂w

∂t
∈ L2(0, T ;V )

}
,

X3 =

{
h | h = curlw,w ∈ L2(0, T ;H1(Ω)3), (6.53)

h · ν = 0 in L2(0, T ;H−
1
2 (S)),

∂w

∂t
∈ L2(0, T ;H1(Ω)3)

}
. (6.54)

We assume

G1 = curlw ∈ X2, G2 = curlu ∈ X3, D0 = curl p, p ∈ H2
0 (Ω)3,

B0 = curl v, v ∈ H2(Ω)3, curl v · ν = 0 on S. (6.55)

Theorem 6.5. Let Ω be a bounded domain in R3 with a boundary S of the class C∞.
Suppose that the conditions (6.55) are satisfied. Let also ξ̂, µ̂, σ be positive constants.
Then, there exists a unique solution to the problem (6.48)–(6.52) such that

D ∈ L∞(0, T ;H1
0 (Ω)3),

∂D

∂t
∈ L∞(0, T ;L2(Ω)3),

B ∈ L∞(0, T ;H1(Ω)3),
∂B

∂t
∈ L∞(0, T ;L2(Ω)3). (6.56)

Indeed, the existence of a unique solution to the problem (6.48), (6.49), (6.51), such
that ν ∧ D = 0 on ST and divB = 0 in Q, follows from Theorems 6.1 and 6.3. The
conditions ν · B = 0 on ST , divD = 0 in Q, and (6.56) follow from Theorems 5.3, 6.3
and 6.4 in [10], Chapter 7.

As before, we represent the function B in the form B = B1 + B2, where B2 is a
given function such that

B2 = curlα2, α2 ∈ L∞(0, T ;H2(Ω)3), curlα2 · ν = 0 on ST ,
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∂α2

∂t
∈ L∞(0, T ;H1(Ω)3),

∂2α2

∂t2
∈ L2(0, T ;H1(Ω)3),

curl
∂α2

∂t
· ν = 0 on ST . (6.57)

Let Bτ be the tangential component of the vector B on ST . It is determined as
Bτ = B|ST

− B · ν. Since B · ν = 0. we get B|ST
= Bτ and the following boundary

condition for B2:
B2|ST

= B|ST
in H

1
2 (ST )3. (6.58)

According to (6.57), (6.58), we set

B0 = B1
0 +B2

0 , B2
0 = B2|t=0 = curlα2|t=0 ∈ H1(Ω)3,

B1
0 = curl v − curlα2|t=0 ∈ H1

0 (Ω)3). (6.59)

Now for the functions D, B1, we obtain the following problem:

∂D

∂t
− curl(µ̂B1) + σξ̂D = G1 + curl(µ̂B2) in Q,

∂B1

∂t
+ curl(ξ̂D) = G2 −

∂B2

∂t
in Q,

divD = 0 in Q, ν ∧D = 0 on ST ,

divB1 = 0 in Q, ν ∧B1 = 0 on ST ,

D
∣∣∣
t=0

= D0, B1
∣∣∣
t=0

= B1
0 = B0 −B2

0 in Ω. (6.60)

By analogy with the above, we get the next result.

Theorem 6.6. Let Ω be a bounded domain in R3 with a boundary S of the class C∞.
Suppose that the conditions (6.55) and (6.57)–(6.59) are satisfied. Let also ξ̂, µ̂, σ be
positive constants. Then, there exists a unique solution (D,B1) to the problem (6.60)
that meets the conditions

D ∈ L∞(0, T ;H1
0 (Ω)3),

∂D

∂t
∈ L∞(0, T ;L2(Ω)3),

B1 ∈ L∞(0, T ;H1
0 (Ω)3),

∂B1

∂t
∈ L∞(0, T ;L2(Ω)3). (6.61)

Thus, if the pair (D,B) is the solution to the problem (6.48)–(6.51), and B2 meets
(6.57), (6.58), then the pair (D,B1) with B1 = B − B2 is the solution to the problem
(6.60).

On the contrary, if the couple (D,B1) is the solution to the problem (6.60), where
B2 meets (6.57), then the couple (D,B) with B = B1 + B2 is the solution to the
problem (6.48)–(6.51), and (6.58) holds.

Therefore, the formulations (6.1)–(6.4) and (6.14)–(6.17) are equivalent in the above
sense.
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Let {G1n, G2n, D0n, B
1
0n} be a sequence such that

Gin = curlwin, win ∈ C∞([0, T ];D(Ω)3),

win(x, t) =
∞∑
k=0

1

k!

∂kwin
∂tk

(x, 0)tk, (x, t) ∈ Q, i = 1, 2,

G1n → G1 + curl(µ̂B2) in H0,1(Q)3,

G2n → G2 −
∂B2

∂t
in H0,1(Q)3, (6.62)

D0n = curl pn, pn ∈ D(Ω)3. curl pn → curl p in H1
0 (Q)3,

B1
0n = curl en, en ∈ D(Ω)3, curl en → curl v − curlα2|t=0 ∈ H1

0 (Ω)3. (6.63)

We consider the problem: Find functions Dn and B1
n such that

∂Dn

∂t
− curl(µ̂B1

n) + σξ̂Dn = G1n in Q,

∂B1
n

∂t
+ curl(ξ̂Dn) = G2n in Q,

divDn = 0 in Q, ν ∧Dn = 0 on ST ,

divB1
n = 0 in Q, ν ∧B1

n = 0 on ST ,

Dn

∣∣∣
t=0

= D0n, B1
n

∣∣∣
t=0

= B1
0n in Ω. (6.64)

Theorem 6.7. Let Ω be a bounded domain in R3 with a boundary S of the class C∞.
Suppose that the conditions (6.62), (6.63) are satisfied, and let ξ̂, µ̂, σ be positive
constants. Then for any n ∈ N, there exists a unique solution Dn, B1

n to the problem
(6.64) that is represented in the form (6.26)–(6.28) and

Dn → D in L∞(0, T ;H1
0 (Ω)3),

∂Dn

∂t
→ ∂D

∂t
in L∞(0, T ;L2(Ω)3),

B1
n → B1 in L∞(0, T ;H1

0 (Ω)3),
∂B1

n

∂t
→ ∂B1

∂t
in L∞(0, T ;L2(Ω)3). (6.65)

The proof of this theorem is analogous to the proof of Theorem 6.2.

Remark 6.1. The problem (6.48) –(6.51) is connected with finding functions y such that
div y = 0 in Ω, y · ν = 0 on S, see (6.54), (6.55). These functions can be determined in
the form

y = curl v + gradh, v ∈ H1(Ω)3, h ∈ H1(Ω), (6.66)

where h is the solution to the problem

div gradh = ∆h = 0

gradh · ν =
∂h

∂ν

∣∣∣
S

= − curl v · ν. (6.67)

We mention that the suggested method based on the Taylor expansion with respect
to t can also be used to construct solutions to other equations and system of equations,
which contain derivatives with respect to time for all unknown functions.
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[34] Leonardi, S., Stará, J.: Regularity results for the gradient of solutions of linear
elliptic systems with VMO-coefficients and L1,λ data. Forum Math. 22 (2010),
913–940.
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[37] Leonardi, S., Stará, J.: Higher differentiability for solutions of a class of parabolic
systems with L1,θ-data. Q. J. Math. 66 (2015), 659–676.
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