

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa48023

Conference contribution :

Crick, T. (2010). Provably Optimal Code Generation using Logic Programming. House of Commons, London, UK:

SET for Britain 2010.

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa48023
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Provably Optimal Code Generation using
Logic Programming

Tom Crick
Department of Information Systems

University of Wales Institute, Cardiff (UWIC)
tcrick@uwic.ac.uk

The Optimisation Problem

W ITHIN the field of compilers, the term optimisation is something of a misnomer. During
the compilation process, compilers attempt to improve (with respect to both size and per-

formance) the sequences of machine-level instructions it generates by applying a fixed set of
transforms, reductions and equivalences. In many modern compilers, this can result in significant
improvements, but it is unlikely to produce optimal sequences of instructions; and if it does, it will
not be possible to determine that they are indeed optimal.

IN a significant range of applications, this approach to code generation is not sufficient; exam-
ples include resource-critical environments such as embedded domains, optimising compilers

for the increasingly complex modern machine architectures and high-performance computing.

SUPEROPTIMISATION [4,5] is an approach that views code generation for acyclic code se-
quences as a combinatorial search problem. Rather than starting with crudely generated

code and improving it, a superoptimiser starts with the specification of a function and performs
a directed search for a sequence of instructions that meets this specification. Superoptimisation
provides a fresh approach to the optimisation problem by aiming for optimality from the outset.

Answer Set Programming

ANSWER Set Programming (ASP) [1] is a declarative programming paradigm that allows rea-
soning about possible world views in the absence of complete information. It is a powerful

and intuitive non-monotonic logic programming language for modelling, reasoning and verification
tasks.

ASP describes a problem as a logic program in AnsProlog, a set of axioms and a goal state-
ment, under the answer set semantics of logic programming in such a way that solving the

problem is reduced to computing the answer sets of the program.

DUE to the increasing efficiency of its heuristic domain tools, known as solvers (such as
CLASP, SMODELS, CMODELS and SUP), ASP is particularly suited to difficult (primarily NP-

hard) search problems, making a number of problems tractable in the general case.

E XAMPLE applications of ASP to real-world problems include diagnostic reasoning, multi-agent
systems, phylogenetics, biological networks, automatic music composition, evolutionary his-

tory of languages, cryptography, security engineering, instruction scheduling, program analysis
and decision support systems for the NASA Space Shuttle.

Solution: TOAST

T HE Total Optimisation using Answer Set Technology (TOAST) [2,3] system uses ASP as the
modelling and computational framework to solve the superoptimisation search problem. The

motivation for the TOAST system is as follows:

New structured approach to optimisation

Lack of proven optimality of existing techniques

Emergence of new performance-critical domains

Modelling and computational power of ASP

T OAST consists of modular interacting components that generate AnsProlog programs, start-
ing with a model of the microprocessor architecture, its instruction semantics and the original

sequence to be optimised. A controlling interface utilises these components to generate a shorter,
superoptimised version of the original sequence using off-the-shelf domain solving tools.

TOAST Framework

Experimental Results

T HE sequence5 test is a sequence that is already optimal, giving an approximate ceiling on
the performance of the system in searching over the large instruction space. verifytest1

tests the (non-trivial) equivalence of two code sequences, while verifytest2 tests the non-
equivalence of two code sequences that only differ on one set of inputs. The table below presents
timings for these search and verification tests for the SPARC V8, a popular 32-bit RISC architec-
ture; solver time outs occurred after 200 hours.

sequence5 verifytest1 verifytest2
Solver 1 2 3 4 5 8 bit 16 bit 32 bit 8 bit 16 bit 32 bit
clasp-1.2.1 0.28 2.01 189 5211 20625 0.46 0.48 15.81 0.31 0.37 8.67
cmodels-3.97 0.37 6.89 1019 4314 21699 0.51 0.58 22.19 0.41 0.67 10.22
smodels-2.33 0.28 7.57 6100 t/o t/o 0.18 11.33 t/o 0.20 4.75 t/o
smodels-ie-1.0.0 0.21 6.91 2279 t/o t/o 0.20 11.08 t/o 0.21 4.79 t/o
sup-0.4 0.44 3.15 177 5596 23012 0.40 3.38 t/o 0.15 0.14 8.70
Atoms 853 1411 2098 2941 4196 904 2212 6940 1030 1526 2518
Rules 42740 118779 238212 410902 662049 1622 4870 17122 3591 6591 12583

Analysis

SUPEROPTIMISATION naturally decom-
poses into two sub-problems: search-

ing for sequences that meet specific crite-
ria and then verifying which of these candi-
dates are functionally equivalent to the orig-
inal sequence.

T HE TOAST system is currently able to
superoptimise sequences of five in-

structions in a practical time with current
solving tools; this is a significant result con-
sidering empirical evidence for the average
size of basic blocks (between 5-6 instruc-
tions). This can also be extended to super-
optimise superblocks of instructions.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5

Ti
m

e
(s

ec
)

Sequence length

sequence5 search timings on aquila for SPARC V8

clasp-1.2.1
cmodels-3.79
smodels-2.33

smodels-ie
sup-0.4

Conclusions and Future Work
Development of a structured approach and adaptable framework to generating truly optimal

code sequences is an important development for the domain.

Superoptimisation of code is achievable in the general case and can be used to generate
provably optimal code sequences for 32-bit architectures (and that doing the same for 64-bit
architectures is also tractable).

ASP is an appropriate paradigm for reasoning about large-scale, real-world problems. The
flexibility of AnsProlog allows arbitrary constraints to be added to the search with minimal effort,
something that is very difficult in the case of procedural superoptimisers.

With further advances in solver technology and search heuristics, it is hoped that TOAST can
be built into a competitive superoptimising system, especially for use as a peephole superop-
timiser, via the generation of equivalence classes of code sequences with buildMultiple).

Key future application areas would be in compiler toolchains such as GCC and JIT compil-
ers, along with extensions to the modelling framework to handle multi-threaded and mult-core
architectures. Also, focusing on the embedded domain, such as the ARM family of processors.

References
[1] Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-

bridge University Press, 2003.

[2] Martin Brain, Tom Crick, Marina De Vos and John Fitch. TOAST: Applying Answer Set
Programming to Superoptimisation. In ICLP 2006, volume 4079 of LNCS, pages 270–284.
Springer, 2006.

[3] Tom Crick, Martin Brain, Marina De Vos and John Fitch. Generating Optimal Code using
Answer Set Programming. In LPNMR 2009, volume 5753 of LNCS, pages 554–559. Springer,
2009.

[4] Torbjörn Granlund and Richard Kenner. Eliminating Branches using a Superoptimizer and the
GNU C Compiler . In Proceedings of the ACM SIGPLAN 1992 Conference on Programming
Language Design and Implementation (PLDI’92), pages 341–352. ACM Press, 1992.

[5] Henry Massalin. Superoptimizer: A Look at the Smallest Program. In Proceedings of the 2nd
International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS II), pages 122–126. IEEE Computer Society Press, 1987.

SET for Britain 2010, House of Commons, 8 March 2010

