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Software meta-language engineering and CBS

Peter D. Mosses1

Department of Computer Science, Swansea University,
Computational Foundry, Bay Campus, Swansea SA1 8EN, United Kingdom

Abstract

The SLE conference series is devoted to the engineering principles of software languages: their design,
their implementation, and their evolution. This paper is about the role of language specification in SLE. A
precise specification of a software language needs to be written in a formal meta-language, and it needs to
co-evolve with the specified language. Moreover, different software languages often have features in common,
which should provide opportunities for reuse of parts of language specifications. Support for co-evolution
and reuse in a meta-language requires careful engineering of its design.
The author has been involved in the development of several meta-languages for semantic specification,

including action semantics and modular variants of structural operational semantics (MSOS, I-MSOS). This
led to the PLanCompS project, and to the design of its meta-language, CBS, for component-based semantics.
CBS comes together with an extensible library of reusable components called ‘funcons’, corresponding to
fundamental programming constructs. The main aim of CBS is to optimise co-evolution and reuse of
specifications during language development, and to make specification of language semantics almost as
straightforward as context-free syntax specification.
The paper discusses the engineering of a selection of previous meta-languages, assessing how well they

support co-evolution and reuse. It then gives an introduction to CBS, and illustrates significant features.
It also considers whether other current meta-languages might also be used to define an extensible library of
funcons for use in component-based semantics.

Keywords: semantics of programming languages, meta-languages, modularity

1. Introduction

In general, it is good engineering practice to pro-
duce a full design specification of a new artefact be-
fore starting its construction. If the design needs to
be adjusted during the construction, or a new ver-
sion of the artefact is subsequently required, the de-
sign specification is updated accordingly. Moreover,
a design often makes extensive use of pre-existing
components that have precisely specified properties.
In software language engineering, however, de-

velopers seldom produce complete and precise lan-
guage design specifications. This seems to be at

Email address: p.d.mosses@swansea.ac.uk
(Peter D. Mosses)

1Present address: EEMCS, Programming Languages,
Delft University of Technology, P.O. Box 5031,
2600 GA Delft, The Netherlands

least partly because of the effort required to specify
a major software language in full detail, and sub-
sequently co-evolve the specification together with
the specified language. Perhaps a component-based
approach could reduce the effort, and encourage
language developers to specify the designs of new
languages before implementing them?

The rest of this section recalls some general fea-
tures of formal language specification, and dis-
cusses the relationship between formality and co-
evolution. Section 2 examines some previous meta-
languages, pointing out issues with co-evolution
and reuse. Section 3 introduces CBS, a component-
based framework for language specification; it illus-
trates how CBS facilitates co-evolution, then gives
an overview of the initial library of reusable com-
ponents provided with CBS. Section 4 indicates
the current status of CBS and plans for its further
development.
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This article is based on the author’s keynote at
SLE 2017, extending [1]. Its contribution is an anal-
ysis of the support for co-evolution and reuse in
selected meta-languages, together with an explana-
tion of relevant CBS features; it does not present
previously unpublished research results.

1.1. Formal language specification
A language specification defines requirements

on implementations: which texts an implementa-
tion is to accept as well-formed, and what be-
haviour should be exhibited when executing such
texts.2 For conventional high-level programming
languages, well-formedness may be divided into
lexical syntax, context-free phrase structure, and
context-sensitive constraints, all to be checked be-
fore program execution starts; the behavioural re-
quirements generally include the relation between
input and output, but exclude properties such as
how much time or space program execution should
take. Context-sensitive constraints are also referred
to as static semantics, and behavioural require-
ments as dynamic semantics.
A precise specification of a software language

needs to be written in a formal meta-language (a
language for specifying languages) and validated for
consistency and completeness: natural language,
however carefully formulated, is inherently impre-
cise, and not amenable to validation, hence unsuit-
able as a meta-language. Language reference man-
uals often specify lexical and context-free syntax
using formal grammars, written in some variant of
the BNF meta-language; validation is supported by
tools that generate parsers from grammars.
Developers of major software languages have

themselves produced complete formal specifications
of semantics in only a few cases. An early exam-
ple was Ada 83: the US Department of Defense
required the developers to deliver a formal spec-
ification of the language semantics together with
the implementation [2]. Another example was Stan-
dard ML, where the language developers voluntarily
specified its semantics [3, 4]. But for Haskell, the
developers wrote [5]:

One of our explicit goals was to produce a
language that had a formally defined type
system and semantics. We were strongly

2Software languages and meta-languages can both be tex-
tual and/or graphical; we here consider purely textual lan-
guages, for simplicity.

motivated by mathematical techniques in
programming language design. We were
inspired by our brothers and sisters in the
ML community, who had shown that it
was possible to give a complete formal def-
inition of a language [. . . ]. Nevertheless,
we never achieved this goal. [. . . ] No one
undertook the work, and in practice the
language users and implementers seemed
to manage perfectly well without it.

In fact the developers did make use of formal se-
mantics for fragments of the language (ibid.):

[. . . ] at many times during the design of
Haskell, we resorted to denotational se-
mantics to discuss design options, as if
we all knew what the semantics of Haskell
should be, even if we didn’t write it all
down formally.

A recent example where language developers have
found it worthwhile to produce a complete formal
specification is WebAssembly [6]: the language doc-
umentation uses formal meta-languages to specify
both the static and dynamic semantics. However,
WebAssembly is quite small, and not intended as a
programming language; the developers of most ma-
jor programming languages (C, C++, C#, Java,
OCaml, Scala, etc.) appear to be as reluctant as
the Haskell developers to produce complete design
specifications.

1.2. Co-evolution of languages and specifications
Major software languages always evolve – some

slowly, others quite rapidly. New versions often
reflect significant changes. For example, Ada 95
added object-orientation to Ada 83; further evolu-
tion led to new versions in 2005 and 2012. Stan-
dard ML, originally released in 1990, was revised
only once, in 1997. Also the original version of
Haskell was released in 1990, but by 1997 there
had already been four further versions of the lan-
guage design; the Haskell 98 Report was published
in 1999 (and with minor revisions in 2002). Starting
with Haskell 2010 [7], the language was supposed to
evolve in small, agreed steps, with annual revisions
of the Haskell Report, but somehow that did not
happen – a new version is currently planned for
2020.

How about co-evolution of languages and their
specifications? It appears this was not even at-
tempted for Ada: only Ada 83 was formally speci-
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fied. (The developers specified the sequential sub-
language themselves [8], but left the concurrency
constructs to other projects [9].)
The developers of Standard ML successfully co-

evolved their specification with the language revi-
sion in 1997 [4]:

In the 1990 Definition it was predicted that
further versions of the Definition would
be produced as the language develops, with
the intention to minimise the number of
versions. This is the first revised version,
and we foresee no others.

There were no changes at all to the parts of the
specification concerned with constructs that were
unaffected by the language revision.
The Haskell developers regarded the need for co-

evolution of specifications with language revisions
as a hindrance to evolution [5]:

[. . . ] we always found it a little hard
to admit that a language as principled as
Haskell aspires to be has no formal def-
inition. But that is the fact of the mat-
ter, and it is not without its advantages.
In particular, the absence of a formal lan-
guage definition does allow the language
to evolve more easily, because the costs
of producing fully formal specifications of
any proposed change are heavy, and by
themselves discourage changes.

Simon Peyton Jones expanded on that last point in
a subsequent interview [10, page 196]:

We keep changing Haskell. If I have to
formalize every aspect of that change, that
is quite a big brake on the changes in the
language, and that’s actually happened to
ML. It’s quite hard to change ML, pre-
cisely because it has a formal description.

When the SML/NJ implementation of Stan-
dard ML was extended with concurrency primi-
tives, it turned out to be impossible to co-evolve
the language definition to include their specifica-
tion [11, §5], and the definition of the Concur-
rent ML language involved a complete reformula-
tion of the dynamic semantics of Standard ML con-
structs [12, 13]. However, that was due to the (big-
step) relational style of semantics used in the Defi-
nition of Standard ML, rather than the formality of

the specification: when using a (small-step) transi-
tional style, a functional language can in fact be ex-
tended with concurrency constructs – even without
requiring any changes at all to the formal specifica-
tion of the original constructs [14, 15].

2. Some previous meta-languages

In this section, we recall the main features of sev-
eral meta-languages used for specifying dynamic se-
mantics, and discuss their support for co-evolution
and reuse. Section 2.1 considers some particular
styles of denotational semantics; Sect. 2.2 focuses
on structural variants of operational semantics; and
Sect. 2.3 is about a hybrid of denotational and op-
erational semantics called action semantics.

We illustrate each meta-language with a simple
running example: let-expressions, with the follow-
ing syntax:

E ::= let I=E inE | . . .

The meta-variable E ranges over the set Expr of all
expressions. Informally, the intended behaviour of
evaluating ‘let I=E1 inE2’ is first to evaluate E1
to some value v, then evaluate E2 with the identi-
fier I bound to v. Such let-expressions allow multi-
ple references to the value of an expression without
its re-evaluation. Expression evaluation could have
side-effects, such as assignment to imperative vari-
ables (as in ML) or spawning concurrent processes
(as in Concurrent ML); the development of a new
language might start with simple expressions that
have no side-effects, but introduce them at a later
stage.

The current bindings of identifiers can be repre-
sented mathematically by an environment ρ : Env
mapping identifiers to values determined by their
respective declarations: constants, variables, pro-
cedures, etc. Similarly, the current assignments
to mutable variables can be represented by a store
σ : S mapping locations of variables to their values.
(The distinction between identifiers and locations is
motivated not only by fundamental concepts of pro-
gramming languages, but also by allowing a simple
specification of aliasing: different identifiers can be
mapped by the environment to the same location.)
The environment ρ[v/I] maps the identifier I to v,
and other identifiers as ρ.

2.1. Denotational semantics
The main general feature of the meta-language

used in denotational semantics is the inductive def-
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inition of families of semantic functions Fi that map
phrases of programs to mathematical entities (usu-
ally continuous functions on Scott-domains) repre-
senting their behaviour. The definition of each Fi
is presented as a set of semantic equations of the
form:

FiJ. . . t1 . . . tn . . .K = . . .Fi1Jt1K . . .FinJtnK . . .

Each equation specifies how the denotations of
phrases are composed from the denotations of their
subphrases. The lack of dependence on the form of
the subphrases ensures compositionality: replacing
a sub-phrase by one with the same denotation does
not affect the denotation of the enclosing phrase.
For example, when the semantic function E maps

expressions Ei to their denotations, the denotations
of let-expressions are specified by an equation of the
form:

EJlet I=E1 inE2K = . . . EJE1K . . . EJE2K . . .

The notation used on the right usually employs
some variant of λ-notation, where ‘λx. . . . x . . . ’ ex-
presses a function of an argument x. Note that
‘fxy’ is grouped as ‘(fx)y’, and ‘λx.fy’ as ‘λx.(fy)’.

Scott–Strachey style. In the original style proposed
by Dana Scott and Christopher Strachey [16], the
denotation EJEK of an expression E in a pure func-
tional language could be an element of the domain
Env → V , where the environment ρ : Env deter-
mines the values of identifiers used in E. Then the
semantics of let-expressions can be defined thus:

EJlet I=E1 inE2K =
λρ.strict(λv.EJE2K(ρ[v/I]))(EJE1Kρ)

(1)

where strictf is the function whose value is unde-
fined when its argument is undefined, and otherwise
as given by f .
In fact Scott and Strachey (ibid.) considered a

language that included mutable variables and as-
signment statements. Suppose that expressions can
inspect the values assigned to variables. We can
easily change the definition of the domain of deno-
tations to Env → S → V , but the semantic equa-
tions for all expressions then need reformulating
accordingly. For example, (1) becomes:

EJlet I=E1 inE2K =
λρ.λσ.strict(λv.EJE2K(ρ[v/I])σ)(EJE1Kρσ)

(2)

If expressions can also assign to variables, we can
change the domain to Env → S → (V × S), where

the resulting store reflects any side-effects of ex-
pression evaluation – the denotation of a constant
simply returns the pair of its value and the un-
changed store. Scott and Strachey defined an infix
operation ‘∗’ such that (f ∗ g)(σ) = f(v)(σ′) when
g(σ) = (v, σ′), otherwise undefined. Using this op-
eration, (2) can be reformulated thus:

EJlet I=E1 inE2K =
λρ.((λv.EJE2K(ρ[v/I])) ∗ EJE1Kρ)

(3)

For any ρ and σ, when EJE1Kρσ = (v, σ′)
and EJE2K(ρ[v/I])σ′ = (v′, σ′′) we have
EJlet I=E1 inE2Kρσ = (v′, σ′′).

Continuation-passing style. For languages where
the flow of control can change abruptly (e.g., due
to jumps to labels), Strachey and Christopher
Wadsworth proposed using continuations as deno-
tations [17]. In this style, the denotation of an ex-
pression could be an element of Env → K → C,
where the domain K = (V → C) represents con-
tinuations dependent on values of expressions, and
the domain C = (S → S) represents continuations
that simply map stores to stores.
The denotation of a constant with value v, argu-

ment continuation κ, and current store σ, returns
the store κvσ determined by the continuation κ,
which corresponds to “the rest of the program”; the
denotation of an expression that is to terminate the
whole program abruptly can simply ignore κ and re-
turn σ. The semantics of let-expressions (3) should
now be reformulated as follows:

EJlet I=E1 inE2K =
λρ.λκ.EJE1Kρ(λv.EJE2K(ρ[v/I])κ)

(4)

If EJE1Kρκ1σ = κ1vσ
′, where

κ1 = λv.EJE2K(ρ[v/I])κ, and κ1vσ
′ = κv′σ′′,

we have EJlet I=E1 inE2Kρκσ = κv′σ′′.

Monadic style. Eugenio Moggi proposed using el-
ements of monads as denotations [18]. In this
style, the denotation of an expression could be
an element of the monad EnvT Env (StateT S Id)V
where EnvT EnvM transforms a monad M into
one that supports dependence on an environment
ρ : Env, StateT SM transforms M into a monad
that supports mutable stores σ : S, and Id is the
monad for pure dataflow. The semantic equation
for let-expressions can then be written:

EJlet I=E1 inE2Kρ =
EJE1K then
λv.rdEnv(λρ.inEnv(ρ[v/I])(EJE2K))

(5)

4



We have EnvT Env (StateT S Id)V = Env → S →
(V × S); the functions ‘then’, ‘rdEnv’, and ‘inEnv’
are defined by (f then g)ρ = (gρ) ∗(fρ) (using Scott
and Strachey’s ‘∗’ operation), rdEnv(f) = f , and
inEnv(ρ′)(f)ρ = fρ′.

Co-evolution: With both the original Scott–
Strachey style and the continuation passing
style, changes or extensions to the specified
language may require extra components in the
domains of denotations, which entails modifi-
cation to all semantic equations that involve
those denotations. The patterns of λ-notation
used to express denotations of language con-
structs generally depend on the structure of
the domains, and become ill-formed when that
structure changes.
Also changing from the original Scott–Strachey
style to continuation-passing style requires re-
formulation of all semantic equations. Adding
concurrency constructs would require the use
of domains that represent power sets, and sig-
nificant further reformulation of the semantic
equations.
In contrast, the monadic style supports co-
evolution rather well: adding an extra monad
transformer to provide a richer monad of de-
notations, or transforming to a monad for con-
tinuations, does not require any changes at all
to the semantic equations. However, opera-
tions such as ‘rdEnv’ may need to be redefined,
to lift them through the new monad layer (or
operations of the new monad through the envi-
ronment layer, depending on the order of com-
position).

Reuse: With the Scott–Strachey and
continuation-passing styles, the only reusable
items are those provided by Scott-domains:
constructors for sums, products, and (con-
tinuous) function domains, and an extended
λ-notation for expressing elements of those
domains.
Using the monadic style, collections of monad
transformers could be made available for reuse.
The names and notation for monad trans-
formers, and for the operations that it sup-
ports, might vary between collections, so lan-
guage specifications reusing monad transform-
ers would need to refer to a specific collection,
or copy and paste the required definitions.

2.2. Structural operational semantics
An operational semantics for a software language

usually represents program behaviour by a set of
states and a transition relation, and a computa-
tion consists of a sequence of transitions between
states. A state records previously computed val-
ues, together with the syntax of the program be-
ing executed (possibly discarding those parts of the
program which have already been executed). The
potential flow of control through the program may
be represented directly (e.g., by moving a pointer
through the program, as in Abstract State Ma-
chines) or left implicit in a set of rules for locating
which part of the program is next to be executed.

In structural operational semantics (SOS), the
potential transitions for a phrase of the program
are determined by inference rules, and they may
depend only on the potential transitions for sub-
phrases. This dependency determines the potential
flow of control without use of an explicit program
pointer. In reduction semantics, the potential flow
of control is specified by a context-free grammar for
reduction contexts.

Gordon Plotkin introduced structural opera-
tional semantics for programming languages in a
lecture course in 1981. The lecture notes (eventu-
ally published in a journal [19]) illustrate the speci-
fication of a wide range of programming constructs
using unlabelled transitions; Plotkin has also given
an SOS for Communicating Sequential Processes
using labelled transitions.

In SOS, environments ρ represent the current
bindings, and stores σ represent the values of muta-
ble variables (as in denotational semantics, except
that in SOS, bound or stored values are required
to be finite entities). In a language without muta-
ble variables, stores are not needed, and the SOS of
let-expressions can be specified using transition for-
mulae ρ ` E → E′, holding when a state consisting
of E and ρ can make a transition to E′ (ρ is im-
plicitly preserved). The meta-variables V1, V2 used
below range over expressions that correspond to
computed values (e.g., Boolean constants and lit-
eral numbers), which are terminal states with no
transitions.

ρ ` E1 → E′1
ρ ` let I=E1 inE2 → let I=E′1 inE2

(6)

ρ[V1/I] ` E2 → E′2
ρ ` let I=V1 inE2 → let I=V1 inE′2

(7)

ρ ` let I=V1 inV2 → V2 (8)

5



If mutable variables can be inspected but not as-
signed by expressions, transition formulae can be
changed to ρ ` 〈E, σ〉 → E′, to reflect dependence
on the current store σ, and the specified rules for
evaluating let-expressions need to be reformulated
thus:

ρ ` 〈E1, σ〉 → E′1
ρ ` 〈let I=E1 inE2, σ〉 → let I=E′1 inE2

(9)

ρ[V1/I] ` 〈E2, σ〉 → E′2
ρ ` 〈let I=V1 inE2, σ〉 → let I=V1 inE′2

(10)

ρ ` 〈let I=V1 inV2, σ〉 → V2 (11)

When expressions can also assign to variables, tran-
sition formulae become ρ ` 〈E, σ〉 → 〈E′, σ′〉, and
all the rules need reformulating again:

ρ ` 〈E1, σ〉 → 〈E′1, σ′〉
ρ ` 〈let I=E1 inE2, σ〉 → 〈let I=E′1 inE2, σ′〉

(12)

ρ[V1/I] ` 〈E2, σ〉 → 〈E′2, σ′〉
ρ ` 〈let I=V1 inE2, σ〉 → 〈let I=V1 inE′2, σ′〉

(13)

ρ ` 〈let I=V1 in V2, σ〉 → 〈V2, σ〉 (14)

Adding concurrency constructs to expressions
would require further components of transition for-
mulae (usually written as labels above the arrows),
with corresponding reformulation of all the rules;
similarly for abrupt flow of control.

Co-evolution: As with the original Scott–
Strachey style of denotational semantics,
changes or extensions to the specified lan-
guage may require changes to transition
formulae, and modification of all inference
rules that involve those formulae. However,
specification of non-determinism in SOS is
straightforward, as SOS is based on relations
(rather than functions), and evolving from a
deterministic language to a non-deterministic
one does not require reformulation of previous
rules.
Reduction semantics using evaluation contexts
generally supports co-evolution better than
SOS, and appears to be particularly well-suited
to specifying obscure control flow, e.g., delim-
ited continuations. However, changing from
SOS to reduction semantics usually involves
definition of notation for substitution (e.g.,

[E1/I]E2), and the elimination of environ-
ments. For example, a reduction semantics for
let-expressions might specify the following rule:

let I=V1 inE2 → [V1/I]E2 (15)

together with a grammar for evaluation con-
texts allowing reduction of E1 (but not E2) in
let I=E1 inE2.

Reuse: The inference rules that specify the transi-
tions for a particular programming language
construct are generally independent of the
rules for other constructs, and might be con-
sidered as reusable when specifying other lan-
guages that include the same construct, pro-
vided that the states have the same com-
ponents. However, the (abstract or con-
crete) syntax grammar for constructs that have
the same behaviour often varies between lan-
guages, which can prevent verbatim reuse.

Modular SOS. The author has developed a vari-
ant of SOS with a high degree of modularity [14].
The original motivation was that the original SOS
definition of the action notation (AN) used in ac-
tion semantics (see Sect. 2.3) had poor modularity.
Keith Wansbrough and John Hamer had given a
highly modular denotational semantics for AN in
the monadic style [20]; unless the SOS of AN could
be made equally modular, there would be strong
pressure to switch to a denotational semantics for
AN. Fortunately, a solution was found, and the re-
sulting Modular SOS (MSOS) meta-language was
used to give a revised operational definition of AN
[21].

MSOS is based the use of labelled transitions

E
{··· }−−−→ E′.

The MSOS notation for labels introduced in [22]
uses ‘· · · ’ to stand for the unmentioned entities, and
‘−’ to indicate that a transition does not have any
effect on the unmentioned entities. A complete la-
bel is enclosed in braces, e.g., ‘{ρ, · · · }’, with enti-
ties separated by commas.

6



Evaluation of let-expressions (regardless of
whether expressions can inspect or assign to muta-
ble variables) can be specified as follows in MSOS:

E1
{··· }−−−→ E′1

let I=E1 inE2
{··· }−−−→ let I=E′1 inE2

(16)

E2
{ρ=ρ0[V1/I],··· }−−−−−−−−−−→ E′2

let I=V1 inE2
{ρ=ρ0,··· }−−−−−−−→ let I=V1 inE′2

(17)

let I=V1 in V2
{−}−−→ V2 (18)

Superficially, the only differences from SOS are
that states are now purely syntactic (enriched with
computed values) and that entities (environments,
stores, etc.) can now be written only in the labels
on transitions. To ensure modularity, however, la-
bels should not mention entities that are irrelevant
to the construct being executed. For example, the
transition formulae in (17) above necessarily involve
environments, but it is irrelevant to let-expressions
whether expression evaluation might inspect or up-
date the current store, so no mention is made of σ;
and in (16) and (18), there is no mention of any
entities at all.
In SOS, the labels on adjacent transitions in

a computation are generally unconstrained. In
MSOS, in contrast, they are required to be compos-
able:3 entities like environments have to be identi-
cal; and entities such as pairs of stores (represent-
ing potential changes to assigned values) have to be
joined-up.

Co-evolution: MSOS fully supports co-evolution:
adding new entities for use in the specification
of new constructs does not require any changes
at all to the rules for existing constructs.
For example, when a pure functional language
is extended with mutable variables and/or
concurrency primitives, the specified MSOS
transition rules do not change [14, 15].4

Reuse: The inference rules that specify the tran-
sitions for a particular programming language

3Formally: each entity corresponds to a morphism of
a category, labels are morphisms of indexed product cate-
gories, and traces of computations are required to be paths
in the label category.

4The cited references use a less perspicuous notation for
labels than that illustrated above, but the difference does
not affect co-evolution.

construct are more reusable than in SOS, since
ignored entities do not need to be made ex-
plicit. However, the (abstract or concrete)
syntax for constructs that have the same be-
haviour often varies between languages, which
can prevent verbatim reuse.

Implicitly-modular SOS. The I-MSOS meta-
language, developed in collaboration with Mark
New [23], makes a significant notational improve-
ment on MSOS. In I-MSOS, rules are written
using the conventional SOS notation for transition
formulae, but interpreted as the corresponding
MSOS rules. This provides formal foundations for
the common convention of leaving entities implicit
in SOS transition rules when they are simply prop-
agated between premises and conclusions. I-MSOS
also eliminates the somewhat clumsy label notation
used in MSOS. The rules for let-expressions now
look as simple as possible:

E1 → E′1
let I=E1 inE2 → let I=E′1 inE2

(19)

ρ[V1/I] ` E2 → E′2
ρ ` let I=V1 inE2 → let I=V1 inE′2

(20)

let I=V1 in V2 → V2 (21)

Rule (19) above merely specifies that E1 is eval-
uated before E2; it could be implied by a so-
called strictness annotation in the grammar of let-
expressions, following the K framework [24], or by
a grammar for evaluation contexts [25].

Support for co-evolution and reuse in I-MSOS is
exactly as in MSOS: the only drawback is the de-
pendence of transition rules on the grammar of the
specified language, which can prevent their verba-
tim reuse.

2.3. Action semantics

The action semantics framework was initially de-
veloped in collaboration with David Watt [26, 27].
Here, the behaviour of program phrases is defined
by translation to actions, expressed in a notation
that provides a rich collection of action primitives
and combinators (including dataflow, control flow,
binding, storing, nondeterminism, process spawn-
ing, and asynchronous message-passing). The in-
tended interpretation of action notation was defined
operationally, using a combination of SOS and al-
gebraic equations.
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For example, the infix action combinator ‘A1 then
A2’ passes the value computed by A1 to A2, where it
can be referenced as ‘the given value’; the compos-
ite action ‘furthermore A1 hence A2’ overrides the
current bindings for A2 by those computed by A1.
The action semantics of let-expressions is specified
as follows.

evaluateJ“let” I:Id “=” E1:Expr “in” E2:ExprK =
furthermore
(evaluate E1 then bind I to the given value)
hence evaluate E2

(22)

Co-evolution: Action semantics was developed to
support co-evolution. The above specification
of the action semantics of let-expressions (22)
necessarily makes use of a combinator that (im-
plicitly) affects the current bindings. But it is
independent of whether expressions might in-
spect or update mutable variables, send or re-
ceive messages, or spawn processes. The type
‘value’ can include whatever types of data are
expressible in the specified language.

Reuse: The definitions of the actions and data
types provided by the framework are implicitly
reused in all language specifications. However,
action notation is not extensible: an action se-
mantics for a language has to translate it to the
pre-defined action primitives and combinators.
‘Constructive’ action semantics was subse-
quently developed in collaboration with Mark
van den Brand and Jørgen Iversen [28]. Here,
programming languages are translated to BAS,
an open-ended collection of ‘basic abstract syn-
tax’ constructors. The semantics of each con-
structor is defined using action notation, inde-
pendently of any programming language. Con-
structive action semantics was the direct pre-
cursor of CBS, which uses a variant of I-MSOS
(instead of action notation) to define funda-
mental programming constructs, as explained
in the next section.

3. CBS: Component-based semantics

The CBS meta-language for component-based se-
mantics has been developed by the PLanCompS
project [29]. CBS comes together with an extensi-
ble library of reusable components called ‘funcons’,

corresponding to fundamental programming con-
structs. Languages are specified in CBS by trans-
lating their constructs to (combinations of) fun-
cons. When a language evolves, co-evolution re-
quires updating only the translation of its affected
constructs. The specifications of the funcons are
fixed, and do not change when funcons are used
together.

Conjecture. A component-based semantic meta-
language such as CBS can significantly reduce the
effort of formally specifying languages and their
evolution.

The CBS meta-language was engineered to opti-
mise co-evolution and reuse, and to make language
semantics almost as straightforward as context-free
syntax. Careful comparison of CBS examples with
specifications of the same languages in other frame-
works could provide solid evidence for the above
conjecture; but that has not yet been carried out,
and we have to leave evaluation of the credibility of
the conjecture to the reader’s judgement.

The notion of ‘component’ in CBS is somewhat
simpler than in component-based software engi-
neering (CBSE) or component-based development
(CBD). The interface for using a funcon is just its
signature, determining how many arguments it can
take, their types, and the type of values that it may
compute. Well-formed funcon terms can be freely
composed: no ‘contracts’ are specified regarding re-
quirements and guarantees on the potential effects
when funcons are executed.5

Note especially that groups of funcons are not
encapsulated in modules (although related funcons
are generally specified in the same file, and files may
be divided into sections, for convenience of brows-
ing). Moreover, CBS has no explicit import mech-
anism: all funcons are globally visible. Crucially,
each funcon is to have a fixed definition in the li-
brary, so occurrences of the same funcon name al-
ways refer to the same definition; this is possible
because of the inherent modularity of operational
specifications in CBS, which are based on I-MSOS.

In Sect. 3.1, we give some simple examples to il-
lustrate how CBS supports language specification
and co-evolution, and how the same funcon can
be used in the specification of different language

5Behavioural properties of funcons (e.g., associativity of
sequential composition) can be proved from their definitions
[30].
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Syntax 
  E : expr ::= 'let' id '=' expr 'in' expr | ...

Semantics  
  eval[[ _ : expr ]] : =>values

Rule
  eval[[ 'let' I '=' E1 'in' E2 ]] =
    scope(bind-value(I, eval[[E1]]), eval[[E2]])

Table 1: CBS of let-expressions

constructs. In Sect. 3.2, we introduce the library
of funcons developed by the PLanCompS project.
Section 3.3 illustrates how funcons are specified in
CBS. In Sect. 3.4, we consider whether other meta-
languages could be used to specify funcons.
Further examples of CBS specifications of lan-

guages (including MiniJava and OCaml Light), are
available online at https://plancomps.github.
io/CBS-beta, together with an initial library of
funcons. The CBS of OCaml Light is an update of a
specification of the Caml Light language in an ear-
lier version of CBS, presented in [31]. OCaml Light
and Caml Light are substantial languages in the ML
family; their specifications in CBS demonstrate how
translation to funcons scales up for medium-sized
languages. A further case study (C#) has been ini-
tiated to test how well CBS can cope with a major
programming language.
After the current review period for the beta-

release of CBS and the initial library of funcons,
the notation and specifications of those funcons are
to be fixed, to provide a solid basis for their reuse
in further language specifications. Further funcons
can subsequently be developed, but they will be
added to the library only after rigorous validation
of their specifications and reusability.

3.1. Language specification in CBS
The example in Table 1 illustrates how let-

expressions can be specified in CBS. ‘Syntax’ in-
troduces one or more grammar productions for the
context-free syntax of the language, together with
meta-variables ranging over the associated sorts of
phrases. The notation corresponds closely to that
used for abstract syntax in other meta-languages:
E is the stem for meta-variables of sort ‘expr’, and
terminal symbols are quoted.
‘Semantics’ introduces a declaration of a seman-

tic function that translates language phrases to fun-
con terms. The notation ‘=>values’ here speci-
fies that the funcon terms produced by the seman-
tic function ‘eval’ may compute any values; in a

Syntax
  S : stmt ::= 'while' '(' expr ')' stmt | ...

Semantics
  exec[[ _ : stmt ]] : =>null-type

Rule
  exec[[ 'while' '(' E ')' S ]] = 
    while-true(eval[[E]], exec[[S]])

Table 2: CBS of simple while-statements with Boolean con-
ditions

Rule
  exec[[ 'while' '(' E ')' S ]] =
    while-true(not is-equal(0, eval[[E]]), exec[[S]])

Table 3: Co-evolution of CBS of simple while-statements for
numeric conditions

complete language specification, ‘values’ could be
replaced by a language-specific type of expressible
values.

‘Rule’ introduces an equation defining a transla-
tion function on phrases matching a specified pat-
tern. The symbols ‘scope’ and ‘bind’ are names
of funcons defined in the PLanCompS library. Dif-
ferent meta-variables of the same sort are distin-
guished by suffixed digits, e.g., E1 , E2 .
To illustrate co-evolution and reuse in CBS,

consider the CBS specification of simple while-
statements in Table 2. When execution of
a statement terminates normally, it computes
‘null-value’ of type ‘null-type’, which represents
the lack of an ordinary value.

The signature of the funcon ‘while-true’ re-
quires its first argument to compute only Boolean
values; the result of the translation of a while-
statement with a numerical test expression would
be an ill-typed funcon term. If a language de-
veloper wanted to change the semantics of while-
statements to have numerical test expressions, the
specification of the translation rule would be up-
dated as shown in Table 3. The language specifi-
cation of the while-statement has thus co-evolved,
whereas the specification of the ‘while-true’ fun-
con is reused unchanged. An alternative would be
to define a new funcon ‘while-non-zero’ corre-
sponding directly to the desired semantics of while-
statements, and change the original translation rule
to use this new funcon instead of ‘while-true’.

A more radical evolution of the while-statement
is to allow a break-statement in its body to ter-
minate iteration abruptly. Such behaviour could
be specified using general funcons for throwing and
handling exceptions, but funcons specifically for
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Syntax
  S : stmt ::= 'while' '(' expr ')' stmt | 'break' | ...

Semantics
  exec[[ _ : stmt ]] : =>null-type

Rule
  exec[[ 'break' ]] = break
Rule
  exec[[ 'while' '(' E ')' S ]] =
    handle-break(while-true(eval[[E]], exec[[S]]))

Table 4: Co-evolution of CBS of while-statements with
break-statements

breaks are already provided by the PLanCompS li-
brary, allowing the particularly simple co-evolution
of the specification of the translation shown in Ta-
ble 4. It would be equally straightforward to add a
continue-statement. Specifying the required seman-
tics using such combinations of funcons in transla-
tions seems preferable to naming the combinations
and adding them to the funcons library.
The PLanCompS library of funcons is strictly cu-

rated: before a funcon can be added, it has to be
carefully specified, and the specification validated
by unit tests and by examples of its use in at least
one validated language specification.
Language developers are free to define funcons for

their own use within a particular language specifica-
tion, but these are local, and cannot be referenced
from other language specifications: the only way to
reuse them is by copy-and-paste. This is because
language specifications are allowed to evolve, and
thus do not provide a solid basis for reuse. A funcon
defined in a language specification might change, or
even disappear, thereby undermining any other lan-
guage specification that referred to it. A local fun-
con may also be introduced merely to abbreviate a
particular combination of funcons that is required
for the semantics of many constructs in the same
language; such funcons are unlikely to be useful in
other language specifications.

3.2. Funcons
This section gives an overview of the initial li-

brary of funcons developed by the PLanCompS
project.
Funcons correspond to fundamental program-

ming concepts. They are language-independent,
and each funcon has fixed behaviour. New funcons
can be introduced without affecting the behaviour
of the existing funcons.

Computations. The CBS library provides funcons
for expressing and composing various kinds of com-

putations. The following classification of funcons
reflects whether they are concerned with normal or
abnormal flow of control, and the kinds of entities
generally required by their computations.

Normal computation: Funcons compute (se-
quences of) values on normal termination. The
funcons provided for expressing normal com-
putation correspond to fundamental program-
ming constructs for normal flow of control,
data flow, binding, storing, and interactive in-
put and output. (Funcons for threads and pro-
cesses are currently under development.)

Abnormal computation: Funcons may termi-
nate abruptly, causing abnormal flow of con-
trol until a corresponding handler is encoun-
tered. Particular cases of abrupt termination
include failing, throwing exceptions, returning
values, breaking, and continuing. The handlers
for failure and thrown exceptions execute spec-
ified funcon terms when activated, whereas the
others merely terminate normally. Funcons us-
ing control signals support specification of de-
limited continuations and related constructs.

Values. The CBS library provides funcons for ex-
pressing and computing various kinds of values.

Primitive values: Booleans, integers, floats,
characters, and a null value.

Composite values: algebraic datatypes, includ-
ing tuples, lists (strings are lists of charac-
ters), vectors, trees, references (pointers or
null), records, variants, classes, objects, bit-
vectors; and built-in collection types, including
sets, maps, multisets, and (directed) graphs.

Abstraction values: general abstractions,
thunks, functions, and patterns.

Types: values representing sets of values.

Further types of values are provided in connection
with particular kinds of computation (e.g., simple
and composite variables for storing values).

Funcons can take sequences of values and com-
putations as arguments, and compute sequences of
values as results. A trivial value sequence of length
one is equivalent to its only element. The empty
value sequence represents the lack of a well-defined
result (e.g., the head of an empty list).
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Funcon
  while-true(_:=>booleans, _:=>null-type) : =>null-type

Rule
  while-true(B, X)
    ~> if-true-else(B, sequential(X, while-true(B, X)), null-value)

Table 5: CBS of a funcon for while-statements

Funcon
  if-true-else(_:booleans, _:=>T, _:=>T) : =>T

Rule
  if-true-else(true, X, Y) ~> X
Rule
  if-true-else(false, X, Y) ~> Y

Table 6: CBS of a funcon for conditional choice

3.3. Funcon specification in CBS
This section shows how funcons are specified in

CBS. The examples include all the computational
funcons used in the illustrations of language speci-
fications given in Sect. 3.1.
Consider the specification of the funcon for while-

loops with Boolean tests in Table 5.
‘Funcon’ introduces a declaration of a fresh fun-

con name together with its signature. The signa-
ture of the ‘while-true’ funcon specifies that the
funcon takes a sequence of two computation argu-
ments. The first argument is required to compute a
value of type ‘booleans’, whereas the second argu-
ment corresponds to a statement executed only for
its effect, always computing ‘null-value’ of type
‘null-type’ on normal termination.

‘Rule’ here introduces a formula or inference
rule defining the operational behaviour of a fun-
con. A formula written with infix ‘~>’ is a context-
independent rewrite, whereas general transition for-
mulae are written with ‘--->’, possibly involving
explicit entities such as environments and stores
(using conventional SOS notation). As in I-MSOS,
entities are implicitly propagated when omitted in
transition formulae.
Only one rule is needed to specify the

‘while-true’ funcon. Atypically, the rule involves
two other funcons, which are specified indepen-
dently of ‘while-true’, as shown in Tables 6 and 8.
The signature of ‘if-true-else’ specifies that the
funcon takes a sequence of three arguments. In con-
trast to ‘while-true’, the first argument is here
specified to be a value of type ‘booleans’, rather
than a computation of type ‘=>booleans’. Con-
ceptually, a value type ‘T ’ in a signature specifies
a call-by-value argument, whereas a computation

Rule
                         B ---> B′
  -------------------------------------------------------
  if-true-else ( B, X, Y ) ---> if-true-else ( B′, X, Y )

Table 7: A CBS rule implied by an argument type

Funcon
  sequential(_:null-type, _:=>T) : =>T

Rule
  sequential(null-value, Y) ~> Y

Table 8: CBS of a funcon for sequential execution

type ‘=>T ’ specifies a call-by-name argument (as in
the Scala language).

The intended semantics of ‘if-true-else(B , X ,
Y )’ is to compute either X or Y , depending on the
value of B , so the second and third arguments have
computation types ‘=>T ’. Here, T is a type vari-
able ranging over arbitrary types of values. When
T is instantiated with an ordinary value type, this
funcon can be used to specify the semantics of con-
ditional expressions; with T as ‘null-type’, it cor-
responds to conditional statements.

Rules for evaluating arguments having value
types are left implicit. The rule shown in Table 7
does not have to be specified, since the first argu-
ment of ‘if-true-else’ has a value type. If the sig-
nature of ‘if-true-else’ had been specified with
the computation type ‘=>booleans’ for the first ar-
gument, the above rule would have to be specified.

Leaving the rules for computing value arguments
implicit significantly increases the conciseness of
CBS specifications. For example, Table 8 shows a
complete CBS specification of a binary funcon that
computes its arguments sequentially, discarding the
value computed by the first argument.

For funcons whose signature specifies more than
one argument with a value type, the implicit rules
allow interleaving the computations of those argu-
ments. For example, the signature of a binary log-
ical conjunction funcon ‘and’ specifies both argu-
ments with value type ‘booleans’.
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Funcon
  left-to-right(X*:(=>T)*) : =>(T)*

Rule
                              Y ---> Y′
  ------------------------------------------------------------
  left-to-right(V*:(T)*, Y, Z*) ---> left-to-right(V*, Y′, Z*)
Rule
  left-to-right(V*:(T)*) ~> V*

Table 9: CBS of a funcon for sequential argument evaluation

Type
  environments ~> maps(identifiers, values?)

Entity
  environment(_:environments) |- _ ---> _

Funcon
  bind-value(I:identifiers, V:values) : =>environments
    ~> { I |-> V }

Funcon
  scope(_:environments, _:=>T) : =>T
Rule
  environment(map-override(Rho1, Rho0)) |- X ---> X′
  ---------------------------------------------------------------------
  environment(Rho0) |- scope(Rho1:environments, X) ---> scope(Rho1, X′)
Rule
  scope(_:environments, V:T) ~> V

Table 10: CBS of some funcons for binding

Datatype
  breaking ::= broken

Funcon
  break : =>empty-type ~> abrupt(broken)

Funcon
  handle-break(_:=>null-type) : =>null-type
Rule
                X --abrupted( )-> X′
  ------------------------------------------------
  handle-break(X) --abrupted( )-> handle-break(X′)
Rule
                X --abrupted(broken)-> _
  ---------------------------------------
  handle-break(X) --abrupted( )-> null-value
Rule
                X --abrupted(V:~breaking)-> X′
  ------------------------------------------------
  handle-break(X) --abrupted(V)-> handle-break(X′)
Rule
  handle-break(null-value) ~> null-value

Table 11: CBS of the funcons for breaks

The funcon ‘left-to-right’, specified in Ta-
ble 9 can be combined with any funcon to com-
pute the arguments in the order in which they are
written. The postfix ‘*’ specifies that sequences
of any length are allowed.6 For example, the fun-
con term ‘and(left-to-right(B1 , B2 ))’ expresses
the sequential variant of logical conjunction; con-

6The PLanCompS library specifies a slightly more general
signature for this funcon, allowing each argument to compute
a sequence of values.

ditional conjunction, which does not compute its
second argument when the value of the first argu-
ment is ‘false’, is expressed by ‘if-true-else(B1 ,
B2 , false)’.

The CBS specifications of the remaining funcons
used in Sect. 3.1 are shown in Tables 10 and 11;
explanatory comments are provided on the PLan-
CompS CBS-beta website.

3.4. Funcon specification in other meta-languages
Perhaps other meta-languages than CBS could

be used to specify an extensible library of reusable
funcons? A specification of the translation of a
language to funcons defines a component-based se-
mantics of the language in any meta-language that
defines the required funcons. The following meta-
languages appear to be promising candidates for
specifying funcons.

• The DynSem meta-language [32] supports im-
plicit propagation of entities in rules, much as
in I-MSOS, so it might appear to be a partic-
ularly relevant alternative to CBS.
However, DynSem is primarily for specifying
big-step operational rules. Although many
funcons can be specified using big-step rules,
DynSem treats the premises as sequential, so
it does not provide the intended semantics for
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funcons whose CBS rules allow interleaving.
Specifying funcons for threads and processes
might not be possible in DynSem.
Nevertheless, it would still be useful to specify
a sequential sub-library of funcons in DynSem,
as many languages are themselves sequential,
and their translations do not require interleav-
ing of computations. The integrated support
for DynSem in the Spoofax Language Work-
bench [33] makes DynSem especially attrac-
tive, since tool support for generating editors
and translators from CBS language specifica-
tions have also been implemented in Spoofax.

• The K Framework [24] is based on small-step
term rewriting, and supports specification of
interleaving and concurrency. Entities stored
in the state are implicitly propagated by rules.
However, rules are unconditional, so environ-
ments need to be explicitly stacked and un-
stacked in connection with nested scopes.
Ferdinand Vesely and the author have experi-
mented with specifying a translation from the
SIMPLE language to funcons in K, along with
the semantics of the required funcons [34]. The
experiment was successful, and it would be in-
teresting to try extending the specifications to
the rest of the funcons library.

• PLT/Redex [25] is based on specifying (small-
step) reduction rules. As in CBS, mutable
entities can be omitted in reduction rules for
constructs that do not affect or inspect them.
PLT/Redex supports specification of interleav-
ing, and includes tools to explore nondetermin-
istic semantics.
The main potential difficulty with defining a
library of independently specified funcons in
PLT/Redex is specifying the required gram-
mars for reduction contexts. Moreover, the
supporting tools appear to rely on specifying
the semantics of programming language con-
structs directly, rather than by translation to
another language.

• Specifying funcons using monads and monad
transformers should be possible. One poten-
tial issue is that composing monad transform-
ers in different orders can give different seman-
tics, whereas funcon specifications are not com-
bined in a specific order. Another issue could

be the need for widespread use of so-called re-
sumptions to specify interleaving.

Further meta-languages for dynamic semantics
with a high degree of modularity include abstract
state machines [35] and algebraic effects [36]; inves-
tigation of the possibility of using them to define
libraries of funcons is left to future work.

4. Conclusion

In CBS, the dynamic semantics of programming
language constructs is specified by translating them
to funcon terms. This appears to be significantly
less effort than specifying their semantics directly
using other meta-languages. When the specified
language evolves, co-evolution of the translation af-
fects only the specifications of the constructs con-
cerned: the difference between two versions of a
translation pinpoints what has changed, which (in
conjunction with version control) should be useful
as documentation during language development.

The definitions of individual funcons are highly
reusable components of language specifications. Af-
ter funcons have been made available for reuse,
their definitions cannot be changed, so proposals
for adding new funcons to a public library need
to be carefully validated. (A language specifica-
tion can include tentative local definitions of unval-
idated new funcons, but these cannot be referenced
from other language specifications.) Crucially, the
modular variant of structural operational seman-
tics used in CBS allows new funcons to be defined
without changing previous funcon definitions.

The CBS meta-language for component-based se-
mantics has been under development by the PLan-
CompS project [29] since 2011, although the main
principles were envisaged already in 2004 [37]. A
beta-release of the meta-language, together with an
initial library of funcon specifications and some ex-
amples of language descriptions, was made avail-
able in July 2018 at https://plancomps.github.
io/CBS-beta, to solicit comments and suggestions
for improvement before the full release (currently
planned for early 2019). Changes to the meta-
language and the funcon specifications are possible
during the beta-release period; after the full release,
the specifications of the funcons in the initial library
will be fixed, and made freely available for anybody
to use. Tool support for using CBS is to be released
at the same time; see [38] for a description of an
early version.
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CBS appears to be well suited for specifying dy-
namic semantics of funcons (and thereby of pro-
gramming language constructs via translation to
funcons). However, the signatures of funcons spec-
ify well-formedness for funcon terms only with re-
gard to the types of argument sequences: properties
of funcons that depend on bindings (such as decla-
ration before use) are not specified in signatures,
and not implied by well-formedness. Conventional
typing rules for funcons have previously been spec-
ified [31], ensuring the expected properties of bind-
ings, but it was unclear how to add (and implicitly
propagate) checks for other aspects of static seman-
tics (e.g., definite assignment). When a satisfactory
approach to modular static semantics has been de-
veloped, it should be straightforward to add the ap-
propriate rules to the funcon specifications, without
affecting their dynamic semantics.
This article has focused entirely on the seman-

tics of textual programming languages. However,
a component-based approach might also be appli-
cable to other kinds of software languages, such as
domain specific languages and modelling languages
with graphical elements. The current funcons for
specifying flow of data and control should be useful
for specifying any language that has an operational
interpretation.
PLanCompS is an open international collabora-

tion, and welcomes new participants interested in
contributing to the development of CBS, its library
of funcons, or examples of language specifications
using CBS. Developers of other meta-languages
could contribute by providing their own definitions
of the PLanCompS funcons (or of alternative li-
braries), thereby allowing their users to exploit the
proposed component-based approach to language
specification.
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