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waves is developed, with particular focus on shockwaves and their spinning analogues,

gyratons. Memory, which may be of position or velocity-encoded type, characterises the

residual separation of neighbouring ‘detector’ geodesics following the passage of a gravi-

tational wave burst, and retains information on the nature of the wave source. Here, it

is shown how memory is encoded in the Penrose limit of the original gravitational wave

spacetime and a new ‘timelike Penrose limit’ is introduced to complement the original plane

wave limit appropriate to null congruences. A detailed analysis of memory is presented for

timelike and null geodesic congruences in impulsive and extended gravitational shockwaves

of Aichelburg-Sexl type, and for gyratons. Potential applications to gravitational wave

astronomy and to quantum gravity, especially infra-red structure and ultra-high energy

scattering, are briefly mentioned.
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1 Introduction

Gravitational memory is becoming an increasingly important topic in gravitational wave

physics, not only because of its potential observation in gravitational waves from astronom-

ical sources, but also for its importance in theoretical issues in quantum gravity, including

notably soft-graviton theorems, quantum loop effects and Planck energy scattering.

In this paper, we develop a geometric formalism for the description of gravitational

memory which goes beyond the conventional weak-field analysis and is applicable to strong

gravitational waves, especially gravitational shockwaves and their spinning generalisa-

tions, gyratons.

Gravitational memory refers to the residual separation of ‘detectors’ following the

passage of a gravitational wave burst. This may take the form of a fixed change in position,

or a constant separation velocity, or both. We refer to these as ‘position-encoded’ [1, 2]

and ‘velocity-encoded’ [3, 4] memory respectively. From a geometric point of view, such

idealised detectors are represented as neighbouring geodesics in a timelike congruence. The

description of memory is therefore part of the more general geometric analysis of geodesic

deviation. To be precise, the separation of nearby detectors is identified as the connecting

vector ∆zi of neighbouring geodesics, which for a null congruence is given in suitable Fermi

normal coordinates as

∆zi =

∫ u

−∞
du Ω̂i

j(u) zj , (1.1)

where Ω̂ij = 1
2 θ̂ + σ̂ij + ω̂ij defines the expansion, shear and twist optical tensors which

characterise the congruence. A similar expression holds for timelike congruences with the

lightlike coordinate u replaced by time t. Memory resides in the value of ∆zi, and ∆żi,

in the future region following the interaction with the gravitational wave burst, and is

determined by integration of the optical tensors through the interaction region. Here, we

develop the theory of geodesic deviation and memory for both null and timelike geodesic

congruences in strong gravitational waves.

Central to this analysis is the observation that the geometry of geodesic deviation

around a chosen null geodesic γ in a given background spacetime is encoded in its Penrose

limit [5–8]. This limit is a plane wave [9, 10], so the description of memory for null observers

in a general spacetime can be reduced to that in an equivalent gravitational plane wave. For

timelike observers, we define here a new ‘timelike Penrose limit’ with the same property.

Moreover, we show that if the original spacetime is itself in the general class of pp waves,

the transverse geodesic equations defining memory are in fact the same for both timelike

and null congruences.

We set out this general theory in section 2, defining the null and timelike Penrose

limits and relating our approach to the conventional analysis of weak gravitational waves

considered so far in astrophysical applications [11–15]. The important, and very general,

rôle of gravitational plane waves in encoding memory is discussed in some detail. Closely

related work on geodesics and gravitational plane waves, including memory effects, may be

found in [8, 16–26]) .

– 2 –
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Motivated primarily by issues in quantum gravity, our focus in this paper then turns, in

section 3, to gravitational shockwaves. These are described by generalised Aichelburg-Sexl

metrics of the form [27, 28],

ds2 = 2 du dv + f(r)χF (u) du2 + dr2 + r2dφ2 , (1.2)

where the potential f(r) is fixed by the Einstein equations through the relation Ruu =

8πGTuu = −1
2∆f(r)χF (u). (Here, ∆ denotes the two-dimensional Laplacian.) With the

profile function χF (u) chosen to be impulsive, χF (u) = δ(u), this is the original Aichelburg-

Sexl metric describing the spacetime around an infinitely-boosted source localised on the

surface u = 0.

For a particle source, f(r) = −4GE log (r/r0)2, and metrics of this type are important

in analyses of Planck energy scattering. At such ultra-high energies, scattering is dominated

by gravitational interactions and the leading eikonal behoviour of the scattering amplitude,

generated by ladder diagrams representing multi-graviton exchange, can be reproduced by

identifying the corresponding phase shift with the discontinuous lightcone coordinate jump

∆v of test geodesics as they interact with the shockwave [29–31]. While this simply requires

the solution for a single null geodesic in the Aichelburg-Sexl background, ultra-high energy

scattering in an interacting quantum field theory including loop contributions depends on

the geometry of the full congruence. These QFT effects, the geometry of the relevant

Penrose limits, and their importance in resolving fundamental issues with causality and

unitarity, have been studied extensively in the series of papers [18, 32–35].

Several generalisations are also of interest, giving rise to different potentials f(r) and

distinguishing between an extended profile χF (u) typical of a sandwich wave and its im-

pulsive limit δ(u). For example, an infinitely-boosted Schwarzschild black hole [27] gives

a shockwave metric with f(r) ∼ log r and χF (u) → δ(u), while other black holes such as

Reissner-Nordström [36], Kerr [37–40], Kerr-Newman [41–43] and dilatonic [44] also give

impulsive shockwaves with modified potentials of the form f(r) ∼ log r + 1/r + O(1/r2).

It would be interesting if such shockwaves from extremely fast-moving black holes have

an important rôle in astrophysics. Also note that in certain higher-dimensional theories

of gravity, the Planck scale can be lowered to TeV scales, in which case the formation of

trapped surfaces [45–48] in the scattering of such shockwaves becomes a model for black

hole production at the LHC or FCC.

A natural extension of the Aichelburg-Sexl shockwave metric is to ‘gyratons’ [49–51].

These are a special class of gravitational pp waves with metric,

ds2 = 2 du dv + f(r)χF (u) du2 − 2JχJ(u) du dφ+ dr2 + r2dφ2 . (1.3)

These describe the spacetime generated by a pulse of null matter carrying an angular

momentum, related to J . They are the simplest models in which to study the gravitational

effect of spin in ultra-high energy scattering.1 In this case, however, it is necessary to choose

1Note that this is not achieved by, for example, infinitely boosting a black hole with spin (the Kerr

metric), since as mentioned above this simply modifies f(r) in the Aichelburg-Sexl metric while retaining

the impulsive profile δ(u).
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the spin profile χJ(u) to be extended. This is because the curvature component Rruφu
from (1.3) involves χ′J(u), so an impulsive profile χJ(u) ∼ δ(u) would give an unphysically

singular curvature. This also allows the spin in the metric time to act on the scattering

geodesic (detector) imparting an angular momentum. In section 4, we study these orbiting

geodesics and the associated null and timelike congruences in detail, determining the optical

tensors, the relevant Penrose limits, and the eventual gravitational memory. A particular

question is whether the gyraton spin gives rise to a ‘twist memeory’ in which the final

∆zi would be determined by a non-vanishing twist ω̂ij in the optical tensors characterising

the congruence.

We include three appendices. In appendix A, we review the relation of the scattering

amplitude A(s, t) for Planck energy scattering to the lightlike coordinate shift ∆v for a null

geodesic in an Aichelburg-Sexl spacetime, illustrating the origin of the poles at complex

integer values of the CM energy s, and calculate the leading corrections arising from an

extended profile χF (u). In appendix B, we describe the symmetries associated with the

shockwave and corresponding plane wave metrics, in particular considering potential en-

hanced symmetries for impulsive profiles. Finally, in appendix C, we consider more general

gyraton metrics showing especially how the curvature constrains the the form of the profiles

χF (u) and χJ(u) and motivating the particular choice of metric (1.3) considered here.

2 Memory, optical tensors and Penrose limits

Gravitational memory concerns the separation of neighbouring geodesics following the pas-

sage of a gravitational wave burst, either an extended (sandwich) wave or, in the impulsive

limit, a shockwave. The appropriate mathematical description of memory is therefore the

geometry of geodesic congruences, in particular geodesic deviation characterised by the

optical tensors in the Raychoudhuri equations.

In this section, we describe in quite general terms the geometry of geodesic congruences

for the class of gravitational waves of interest. We focus particularly on two examples of

pp waves — the Aichelburg-Sexl shockwave and its non-impulsive extension, and gyratons.

We consider both timelike geodesics, relevant for the interpretation in terms of detectors

for astrophysical gravitational waves, and null geodesics, which will also be appropriate

for more foundational questions involving shockwaves and Planck energy scattering. We

also discuss the difference in the origin of position-encoded memory, in which neighbouring

geodesics acquire a fixed separation after the gravitational wave has passed, and velocity-

encoded memory, in which they separate or focus with fixed velocity.

A key observation is that the geometry of geodesic deviation around a given null

geodesic in a curved spacetime background is encoded in the corresponding Penrose plane

wave limit. This implies the remarkable simplification that the properties of memory for

a general background spacetime may be entirely described by studying congruences in an

appropriate plane wave background. We also describe here a generalisation of the Penrose

limit construction for the case of timelike geodesics.

– 4 –
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2.1 Geodesic deviation

Consider a congruence centred on a chosen (null or timelike) geodesic γ with tangent vector

kµ. Let zµ be the ‘connecting vector’ specifying the orthogonal separation to a neighbouring

geodesic. By definition, the Lie derivative of zµ along γ vanishes, i.e.

Lkzµ = k.Dzµ − (Dνk
µ)zµ = 0 , (2.1)

where Dµ is the covariant derivative. It follows that

k.Dzµ = Ωµ
νz
ν , (2.2)

where we define the tensor Ωµν = Dνkµ which will be fundamental to our analysis. Differ-

entiating (2.2), and using the geodesic equation k.Dkµ = 0, we find

(k.D)2zµ = −Rµρνσkρkσzν , (2.3)

which is the Jacobi equation for geodesic deviation. In more familiar form, if the geodesic

is affine parametrised as xµ(λ) and the tangent vector is given by kµ = dxµ/dλ, this is

written in terms of the intrinsic derivative along γ as

D2zµ

Dλ2
= −Rµρνσ ẋρ ẋσ zµ , (2.4)

where the dot denotes a derivative w.r.t. λ. The consistency of (2.2), (2.3) is ensured by

the identity,

k.DΩµ
ν + Ωµ

λΩλ
ν = −Rµρνσkρkσ , (2.5)

which holds in general given only that kµ satisfies the geodesic equation. This is in essence

the Raychoudhuri equation.

The next step is to establish a frame adapted to the chosen congruence. That is, we

choose a pseudo-orthonormal frame eA which is parallel-propagated along γ. This will

define Fermi normal coordinates (FNCs) in the neighbourhood of γ. For lightlike γ, we

choose a frame such that the metric in the neighbourhood of γ is2

gµν
∣∣
γ

= ηAB e
A
µ e

B
ν , ηAB =


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1


= euµ e

v
ν + evµ e

u
ν + δij e

i
µ e

j
ν , i, j = 1, 2 (2.6)

2At a point, this is identified with a Newman-Penrose (null) basis (`µ, nµ,mµ, m̄µ) through

`µ = kµ = euµ , nµ = −evµ , mµ =
1√
2

(e1µ ± ie2µ) ,

with the usual contractions `.n = −1, m.m̄ = 1, `2 = n2 = m2 = m̄2 = 0. The FNC basis is just this NP

basis parallel-propagated along γ, i.e. we impose k.DeAµ = 0 for all A = u, v, 1, 2. In our previous work on

Penrose limits [8, 22], we used this NP notation extensively.
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with euµ = kµ chosen to be tangent to the geodesic γ, and where the basis vectors satisfy

k.DeAµ = 0. This defines null FNCs (u, v, xi).

For timelike γ, we choose

gµν
∣∣
γ

= ηAB e
A
µ e

B
ν , ηAB = diag (−1, 1, 1, 1)

= −e0
µ e

0
ν + δrs e

r
µ e

s
ν , r, s = 1, 2, 3 (2.7)

with e0µ = kµ and k.DeAµ = 0, defining timelike FNCs (t, xr).

In terms of these coordinates, where by the definition of FNCs the Christoffel symbols

vanish locally along γ, the Jacobi equations (2.4) become simply

z̈i = −Riuju u̇ u̇ zj , z̈r = −Rr0s0 ṫ ṫ z
s , (2.8)

for null, timelike congruences respectively.

2.2 Optical tensors

Geodesic deviation, and therefore gravitational memory, is described in terms of the optical

tensors — expansion, shear and twist — characterising the congruence. For a null congru-

ence, the transverse space spanned by the connecting vector is two-dimensional. Taking

a cross-section through the congruence, those geodesics at fixed separation from γ form a

“Tissot ring” [21] — initially a circle, this distorts as the gravitational wave burst passes

displaying clearly the effects of expansion, shear and twist. For a timelike congruence, the

transverse space and optical tensors are in general three-dimensional although, as we shall

see, the special symmetry characterising pp waves means that this space remains effectively

two-dimensional and the optical tensors are identical to the null case.

The optical tensors are defined from the projections of Ωµν onto the appropriate trans-

verse subspace (see e.g. [52]). For a null congruence, we have the projection matrix

ĝµν ≡ gµν − euµevν − evµeuν = δij e
i
µe
j
ν , (2.9)

and define

Ω̂µν = (ĝΩ ĝ)µν . (2.10)

It is readily checked that Ω̂µνe
uν = 0 and Ω̂µνe

vν = 0, so Ω̂ is effectively two-dimensional.

We define the optical tensors from the decomposition of

Ω̂ij ≡ eiµΩ̂µνejν = eiµΩµνejν (2.11)

as

Ω̂ij =
1

2
θ̂ δij + σ̂ij + ω̂ij . (2.12)

Here, the shear σ̂ij is symmetric and traceless, the twist ω̂ij is antisymmetric, while the

expansion θ̂ = tr Ω̂. The relation (2.5) is then seen to be equivalent to the Raychoudhuri

equation for the optical tensors, since for null FNCs it is simply,

d

du
Ω̂ij = −(Ω̂2)ij −Riuju . (2.13)

– 6 –
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Figure 1. Illustration of the effect of the optical tensors on the Tissot circle. From left to right,

the figures show the expansion θ̂, + oriented shear σ̂+, × oriented shear σ̂×, and the twist ω̂.

Since the transverse space is two-dimensional, we can further simplify this description

by writing Ω̂ij as

Ω̂ij =

(
1
2 θ̂ + σ̂+ σ̂× + ω̂

σ̂× − ω̂ 1
2 θ̂ − σ̂+

)
, (2.14)

defining the optical scalars θ̂ (expansion), σ̂+ and σ̂× (shear with + and × oriented axes),

and ω̂ (twist). Their action on the Tissot ring is indicated schematically in figure 1.

For a timelike congruence, the analogous projection matrix is

ĝµν ≡ gµν + k̂µk̂ν = δrs e
r
µ e

s
ν , (2.15)

where we normalise k̂2 = −1. In this case,

Ω̂µν = (ĝΩ ĝ)µν , (2.16)

defines three-dimensional optical tensors through

Ω̂rs ≡ erµΩ̂µνesν = erµΩµνesν , (2.17)

as

Ω̂rs =
1

3
θ̂ δrs + σ̂rs + ω̂rs . (2.18)

The timelike Raychoudhuri equations follow straightforwardly. Again, however, note that

with the defining symmetry of the pp waves considered here, we will find only the com-

ponents Ω̂rs with r, s = 1, 2 are non-vanishing, so the optical tensors remain effectively

two-dimensional and can also be visualised with a Tissot ring.

2.3 Penrose limits for null and timelike congruences

For null congruences, the geometry of geodesic deviation is encoded in the Penrose limit

of the background geometry with the chosen geodesic γ. An elegant construction of the

Penrose limit in terms of Fermi null coordinates is given in [7].

In the neighbourhood of a null geodesic γ, and choosing null FNCs according to the

construction described above, we can expand the metric as follows [7, 52]

ds2 =2dudv + δijdx
idxj (2.19)

−
(
Rαuβu

∣∣
γ
xαxβdu2 +

4

3
Rαγβu

∣∣
γ
xαxβdudxγ +

1

3
Rαγβδ

∣∣
γ
xαxβdxγdxδ

)
+O(x3) ,

(2.20)

– 7 –
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where xα ≡ (v, xi) here. Note that the curvatures are evaluated on the geodesic γ and are

therefore functions of u only.

The conventional (null) Penrose limit follows from the rescaling u → u, v → κ−2v,

xi → κ−1xi, [5, 6]. Keeping only those terms in ds2 which scale as κ−2, i.e. neglecting

O(κ−3, κ−4), leaves the following truncation of (2.20):

ds2
P = 2dudv + δijdx

idxj −Riuju
∣∣
γ
xixjdu2 . (2.21)

We immediately see that this truncation leaves only the curvature components Riuju, pre-

cisely those that determine geodesic deviation through the Jacobi equation (2.8). The

second key property of the Penrose limit metric (2.21) is that it describes a gravitational

plane wave expressed in Brinkmann coordinates, i.e.

ds2
P = 2dudv + hij(u)xixjdu2 + δijdx

idxj , (2.22)

with the profile function hij(u) identified in terms of the curvature tensor of the original

spacetime evaluated on γ as hij(u) = −Riuju
∣∣
γ
.

The geodesic equation for the transverse Brinkmann coordinates xi in the plane wave

metric (2.21) is well known:

d2xi

dλ2
− hij(u)

(
du

dλ

)2

xj = 0 . (2.23)

This is identical to the geodesic deviation equation (2.8) around γ in the original metric,

where we identify the connecting vector zi in FNCs with the Brinkmann xi in the plane

wave.

This confirms the claim that the Penrose limit captures precisely the geometry of

geodesic deviation. The ability to analyse physical effects controlled by geodesic deviation

(such as quantum loop corrections in QFT in curved spacetime [18, 32–35]) entirely in the

simpler and well-studied case of plane waves has proved to be extremely powerful. Here,

we demonstrate this in the context of gravitational memory.

Given this description of geodesic deviation for null congruences, it is now natural to

repeat the construction for timelike congruences, defining what we may call the “timelike

Penrose limit”. Using the timelike FNCs defined above, we expand the original background

metric in the neighbourhood of a chosen timelike geodesic γ as [52]:

ds2 =− dt2 + δrsdx
rdxs (2.24)

−
(
Rr0s0

∣∣
γ
xrxsdt2 +

2

3
Rrps0

∣∣
γ
xrxsdtdxp +

1

3
Rrpsq

∣∣
γ
xrxsdxpdxq

)
+O(x3) . (2.25)

Without invoking a scaling argument as in the original Penrose limit derivation, we may

simply make an analogous truncation of (2.25) keeping only the curvature terms which

enter the Jacobi equation. This leaves

ds2
P = −dt2 −Rr0s0

∣∣
γ
xrxsdt2 + δrsdx

rdxs . (2.26)

– 8 –
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In general, therefore, we define the timelike Penrose limit as a metric of the form

ds2
P = −

(
1− hrs(t)xrxs

)
dt2 + δrsdx

rdxs , (2.27)

with hrs(t) = −Rr0s0
∣∣
γ
.

The geodesic equation for the coordinates xr derived from the metric (2.27) is

d2xr

dλ2
− hrs(t)

(
dt

dλ

)2

xs = 0 , (2.28)

which is identical to the timelike geodesic deviation equation (2.8) for the connecting vector

zr in the original spacetime. This confirms that the timelike Penrose limit metric (2.27)

fully captures the geometry of geodesic deviation. Moreover, for the pp waves of interest

here, we find that only the two-dimensional transverse components hij(t) with i, j = 1, 2

are non-zero, since for these backgrounds we have R3030 = R30i0 = 0.3

Of course, introducing the Penrose limit metric (2.22) does not in principle give any

information that is not already present in the original derivation of the optical tensors from

Ωij . However, it does allow us to exploit the whole body of knowledge on the geometry

of gravitational plane waves, and to expose a large measure of universality in phenomena

controlled by geodesic deviation. In particular, the enhanced symmetries of plane waves

(expressed as an extended Heisenberg algebra [7, 22] or Carroll symmetry [19]), and their

classification, brings considerable insight into the nature of the geodesic solutions and

congruences and, by extension, into the form of gravitational memory. The symmetries of

shockwaves and their plane wave Penrose limits are described in appendix B. The same

benefits should also arise for the timelike Penrose limit (2.27) although, to our knowledge,

metrics of this form have not been so widely studied in the general relativity literature.

2.4 Gravitational plane waves

The discussion above shows that memory for null observers in a general curved spacetime

background can be reduced to the simpler case of the Penrose limit plane wave. The

geometry of geodesic congruences in plane waves is well understood and we present here

only a brief summary of some key results. Of course, gravitational plane waves are an

important physical example in their own right.

The full set of geodesic equations for the metric (2.22) are

ü = 0 ,

v̈ +
1

2
hijx

ixj u̇2 + 2hijx
j ẋi u̇ = 0 ,

ẍi − hijxj u̇2 = 0 . (2.29)

This allows us to immediately take u = λ as an affine parameter, simplifying (2.29).

3To complete the demonstration that the two-dimensional optical tensors are the same for the null and

timelike cases, we need the further observation that whereas in the null case (2.22) we have ü = 0 and can

simply take u = λ as the affine parameter (so u̇ = 1 in (2.8)), for the geodesics in the metric (2.27) we only

have ẗ = O(xr)2 and can at best parametrise such that ṫ = 1 + O(xr)2 in (2.8). However, this is sufficient

to establish the equivalence of the optical tensors defined in the neighbourhood of γ and given by Ωij .

– 9 –
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The solutions are then written in terms of a zweibein Eia(u), a = 1, 2, as

v = V + ηu− 1

2
Ωab(u)XaXb ,

xi = Eia(u)Xa , (2.30)

where the integration constants V,Xa label the geodesic and η = 0 (η < 0) for null

(timelike) geodesics. The zweibein satisfies the key ‘oscillator equation’,

Ëia(u)− hij(u)Eja(u) = 0 . (2.31)

In (2.30), Ωab = (ET ΩE)ab with Ωij defined as Ωij = (ĖE−1)ij (the dot now signifying

d/du). It follows immediately that

ẋi = ĖE−1x = Ωi
j x

j (2.32)

so we see that the definition of Ωij here precisely matches that given in (2.2). We therefore

use the same notation for economy. Using (2.31), these Ωij are readily seen to satisfy

Ω̇ij + (Ω2)ij = hij , (2.33)

to be compared with (2.5).

With η = 0, the expressions (2.30) give the change of variables from Brinkmann

coordinates (u, v, xi) to Rosen coordinates (u, V,Xa) (referred to as “BJR” coordinates

in [19–21]), in terms of which the plane wave metric takes the form,

ds2 = 2 du dV + Cab(u) dXa dXb . (2.34)

The metric components Cab = (ETE)ab are used to contract the transverse Rosen indices.

The nature of the congruences is determined by the particular solutions of (2.31) for the

zweibein Eia(u) for specified boundary conditions. This is discussed in detail in [22, 53],

the former reference focusing on geodesics exhibiting twist. It is convenient to consider

the complete set of solutions f i(r) and gi(r) (r = 1, 2) defined with canonical ‘parallel’ and

‘spray’ boundary conditions respectively, as given in (B.10) and (B.11) in appendix B. In

general, the zweibein is a linear combination of these f i(r) and gi(r) solutions. The choice

of zweibein corresponding to an initially parallel congruence, as appropriate in the flat

spacetime region before an encounter with a shockwave, is therefore Eia(u) = f i(r)(u)δra.

Now, it is shown in [22] that the Wronskian associated with a particular choice of

zweibein is

Wab =
(
ET Ė − ĖTE

)
ab

=
(
ET (Ω− ΩT )E

)
ab

=
(
Ω−ΩT

)
ab

= 2ω̂ab , (2.35)

where ω̂ab = ET ω̂E is the twist in Rosen coordinates. It follows that for a congruence to

exhibit twist, the Wronskian of the zweibein must not vanish. However, noting that the
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Wronskian is u-independent and can therefore be evaluated at any value of u, it follows

from (2.35) and the boundary conditions f i(r)(u0) = δir, ḟ
i
(r)(u0) = 0, that Wab(u0) = 0, so

an initially parallel congruence can never develop a non-vanishing twist.

Indeed, this is already apparent from expanding (2.33) into the individual Raychoud-

huri equations for expansion, shear and twist, viz.

d

du
θ̂ = −1

2
θ̂2 − tr σ̂2

ij − tr ω̂2
ij −Ruu ,

d

du
σ̂ij = −θ̂ σ̂ij − Ciuju ,

d

du
ω̂ij = −θ̂ ω̂ij , (2.36)

where Ruu = −trhij and the Weyl tensor is Ciuju = −hij + 1
2trh δij . It follows that while a

non-vanishing expansion and shear can be induced as the congruence encounters a region

of non-vanishing curvature such as a shockwave, the twist remains zero by virtue of the

last equation of (2.36). Similar considerations apply to timelike congruences, following the

discussion in section 2.3.

The implications for gravitational memory are that since we start with detectors form-

ing a twist-free congruence in flat spacetime, and since their subsequent evolution is gov-

erned by the appropriate Penrose limit spacetime, the congruence will remain twist-free

during and after its encounter with the impulsive gravitational wave. This rules out gravi-

tational twist memory, showing that the evolution of the Tissot ring is always determined

by expansion and shear alone.

As discussed in refs. [18, 22, 32–35], this description of geodesic congruences in the

plane wave spacetime can be developed in many ways, notably in calculating the Van Vleck-

Morette matrix which enters the loop-corrected propagators needed for QFT applications.

Here, we focus on the plane waves which arise as Penrose limits of various gravitational

shockwave backgrounds and discuss in detail how they determine gravitational memory.

2.5 Weak gravitational waves

A very natural class of gravitational waves from an observational point of view are of course

the weak gravitational waves, viewed as a small perturbation around flat spacetime. Here,

we briefly review geodesic deviation and memory for weak gravitational waves from the

viewpoint of the general formalism developed in this section.

A weak gravitational wave is described by the metric,

ds2 = 2dudV +
(
δab + hab(u)

)
dXadXb , a, b = 1, 2

= 2dudV +
(
dX1 dX2

) ( 1 + h+(u) h×(u)

h× 1− h+(u)

) (
dX1

dX2

)
, (2.37)

that is, the perturbation hab(u) is transverse and traceless. The ‘weak’ condition means

that we may work to O(h) only.
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We immediately recognise the metric (2.37) as a plane wave in Rosen coordi-

nates (2.34), with

Cab =

(
1 + h+ h×
h× 1− h+

)
. (2.38)

Writing Cab =
(
ETE

)
ab

in terms of the zweibein Eia, we find

Eia(u) =

(
1 + 1

2h+
1
2h×

1
2h× 1− 1

2h+

)
+ O(h2) . (2.39)

This allows us to re-express the metric (2.37) in Brinkmann form. Defining Ωij =
(
ĖE−1

)
ij

and hij =
(
ËE−1

)
ij

, we clearly have, to O(h2),

Ωij =
1

2

(
ḣ+ ḣ×
ḣ× −ḣ+

)
, hij =

1

2

(
ḧ+ ḧ×
ḧ× −ḧ+

)
. (2.40)

The Brinkmann plane wave metric is therefore

ds2 = 2dudv + ḧij(u)xixj du2 + δijdx
idxj . (2.41)

With the metric in this form, we can simply transcribe everything we have described

for plane waves in general, substituting the specific forms (2.39), (2.40) for Eia, Ωij and

hij . In particular, we can read off the optical tensors from Ωij . This gives (see (2.14)),

θ̂ = 0 σ̂+ =
1

2
ḣ+ , σ̂× =

1

2
ḣ× , ω̂ = 0 , (2.42)

and we see immediately that for these weak gravitational waves, the geodesic congruences

exhibit shear, but no expansion. This is a direct consequence of the perturbation hij having

zero trace.

Gravitational memory is usually discussed in this context by integrating the Jacobi

equation (2.4) in the weak-field limit. That is, starting from

z̈i(u) = −Riuju(u) zj(u) , (2.43)

where zi(u) is the transverse connecting vector,4 and recognising that Riuju and żi are of

O(h), we can set zi(u) = 〈zj〉+O(h) in (2.43) , with 〈zi〉 constant, and integrate to give

żi(u) = −
∫ u

−∞
du′Riuju(u′) 〈zj〉 + O(h2) . (2.44)

If we now consider the relevant case of an initially parallel congruence with żi(−∞) = 0

and spacetime with ḣ(−∞) = 0, we find

∆zi(u) ≡ zi(u)− zi(−∞)

= −
∫ u

−∞
du′

∫ u′

−∞
du′′Riuju(u′′) 〈zj〉 + O(h2) . (2.45)

4For definiteness, we write the equations for a null congruence. The timelike case is essentially the same,

with the curvature replaced by Ri0j0(t) corresponding to the time coordinate along the geodesic γ.
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Writing Riuju = −1
2 ḧij(u), these simplify to give

∆żi(u) =
1

2
ḣij(u) 〈zj〉 , (2.46)

∆zi(u) =
1

2

(
hij(u)− hij(−∞)

)
〈zj〉 . (2.47)

Considering this in the context of a gravitational wave burst confined to a finite region of

u, say ui ≤ u ≤ uf , we see that in order to find a purely position-encoded memory, the

integral in (2.44) should vanish for u > uf while (2.45) is non-zero. From (2.46), (2.47) this

requirement in terms of the metric amplitudes is that ḣij(uf ) = 0 but ∆hij ≡ hij(uf ) −
hij(ui) 6= 0. If ḣij(uf ) 6= 0, we have in addition a velocity-encoded memory.

These moments of the curvature can be related to specific astrophysical sources of

gravitational waves, e.g. flybys, core-collapse supernovae, black hole mergers, etc. These

are discussed at length in the literature; see e.g. [11–15] for a selection.

2.6 Gravitational memory

We now generalise this conventional description of gravitational memory to the case of

potentially strong gravitational wave bursts, especially shockwaves. This finds a very

natural realisation in the language of Penrose limits developed here.

As in section 2.1, we start with the most general form of the Jacobi equation for

geodesic deviation, and immediately adopt the description in terms of Fermi normal co-

ordinates. Again, we present results for a null congruence, the timelike case following in

an exactly analogous way. The connecting vector zi(u) from a reference null geodesic γ

therefore satisfies,
d2zi

du2
= hij(u) zj , (2.48)

with hij = −Riuju
∣∣
γ
. As we have seen in (2.5), it is always possible to express the curvature

in the form

hij =
d

du
Ωij +

(
Ω2
)
ij
, (2.49)

for some Ωij . This is satisfied by Ωij = Djki, where kµ is the tangent vector to the geodesic

γ. Then (2.48) can be immediately integrated5 with solution,

dzi

du
= Ωi

j(u)zj , (2.50)

where we impose the initial condition of an initially parallel congruence, żi(u < ui) = 0.

This is simply the defining equation for the connecting vector following from the alternative

characterisation in terms of the vanishing of its Lie derivative along γ, i.e. Lkzi = 0.

5Explicitly, we have the self-consistent solution,

żi(u)− żi(−∞) =

∫ u

−∞
du′

(
Ω̇ + Ω2

)
ij
zj

=

∫ u

−∞
du′

(
Ω̇z + Ωż

)i
= (Ωz)

∣∣∣u
−∞

.
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Now, provided only that we can write Ωij in the form Ωij =
(
ĖE−1

)
ij

, we can inte-

grate (2.50) directly, giving

zi(u) = Eia(u)Xa , (2.51)

for some integration constants Xa. Of course, expressing Ωij in this form necessarily

implies hij =
(
ËE−1

)
ij

, which is just the defining oscillator equation Ëia − hij(u)Eja = 0

for Eia(u).

As explained above, these expressions are precisely those following from the geodesic

equations for the Brinkmann transverse coordinate xi(u) in the Penrose limit of the original

spacetime. Memory for a general background spacetime is therefore entirely encoded in an

appropriate gravitational plane wave.

To describe gravitational memory, we need to compare the relative positions and ve-

locities of neighbouring geodesics before and after an encounter with a gravitational wave

burst confined to ui ≤ u ≤ uf . The velocity-encoded memory is then,

∆żi(u) = Ėia(u > uf )Xa , (2.52)

and the position-encoded memory is

∆zi(u) =
(
Eia(u > uf )− Eia(u < ui)

)
Xa , (2.53)

determined entirely by the zweibein Eia(u).

The subtle point here is that we are considering gravitational wave bursts and shock-

waves which in the initial u < ui and final u > uf regions are simply flat spacetime.

Nevertheless, gravitational memory requires Eia(u > uf ) 6= Eia(u < ui). These regions

must therefore be described by two different, non-equivalent, descriptions of flat spacetime.

This is best seen in the Rosen metric (2.34), where Cab =
(
ETE

)
ab

. The corresponding

curvature is Raubu = (ET Ë)ab and vanishes for a zweibein which is at most linear in u. Any

metric of the form (2.34) with such a zweibein is therefore diffeomorphic to flat spacetime,

being related by the Brinkmann-Rosen coordinate transformation (2.30). In effect, the orig-

inal spacetime links inequivalent and distinguishable copies of flat spacetime, gravitational

memory being the physical signature. In the language adopted in discussions of memory

in Bondi-Sachs gravitational wave backgrounds (for a review, see [54]), these metrics de-

scribe inequivalent gravitational vacua. All this is especially evident in the Aichelburg-Sexl

shockwave considered below, where the full spacetime may be described by a Penrose ‘cut

and slide’ construction, dividing flat spacetime along the shockwave localised on u = 0.

Now consider how these forms of the zweibein give rise to memory. For a purely

position-encoded memory, an idealised form which realises (2.53) would be

Eia(u) ∼ δia + aia θ(u) . (2.54)

The corresponding velocity change proportional to δ(u) would be localised at u = 0 and so

would not affect the future memory region. However, taken literally, the form (2.54) would

require a too-singular dependence Riuju ∼ δ′(u) for the curvature, so a physical realisation

would have to be smoothed. Even so, Riuju would necessarily be negative for some values
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of u, and to be compatible with the null energy condition for the source we would still need

to impose the non-trivial constraint Ruu = trRiuju ≥ 0.

Next, consider zweibeins of the form

Eia(u) ∼ δia + aia u θ(u) . (2.55)

In this case, Ėia(u) ∼ θ(u), so we have velocity-encoded memory [8, 18, 23]. This solution

corresponds to a localised source with curvature Riuju ∼ δ(u), which is characteristic of an

impulsive gravitational shockwave. Clearly, the same comments apply to a smoothed or

extended wave burst, where we would find both position and velocity memory.

In the following sections, we will see how all this is realised in two important examples

of gravitational wave bursts — the Aichelburg-Sexl shockwave (including non-impulsive

extensions) and its spinning generalisation, the gyraton.

3 Gravitational shockwaves

This brings us to the main topic of this paper, the characterisation of memory, via the

optical tensors and Penrose limits, for important classes of gravitational wave bursts. In

this section, we consider in detail the Aichelburg-Sexl shockwave [27], together with a

smoothed (sandwich wave) extension in which the impulsive limit is relaxed.

We therefore consider the metric,

ds2 = 2dudv + f(r)χF (u)du2 + dr2 + r2dφ2 , (3.1)

This has a manifest symmetry with Killing vector ∂V and is a pp wave. The Christoffel

symbols are

Γvuu =
1

2
f(r)χ′F (u) , Γvur =

1

2
f ′(r)χF (u) ,

Γruu = −1

2
f ′(r)χF (u) , Γrφφ = −r , Γφrφ = 1/r , (3.2)

while the non-vanishing curvature components are

Rruru = −1

2
f ′′(r)χF (u) , Rφuφu = −1

2
rf ′(r)χF (u) , (3.3)

and

Ruu = −1

2
∆f χF (u) , (3.4)

with ∆ denoting the two-dimensional Laplacian in polar coordinates (r, φ).

The original Aichelburg-Sexl shockwave describes an impulsive gravitational wave lo-

calised on the lightcone u = 0, corresponding to the profile χF (u) = δ(u). The most

important case is the shockwave formed by an infinitely boosted particle,6 with energy-

momentum tensor Tuu = ρ(r)δ(u) = Eδ2(x)δ(u). Solving the Einstein equations using (3.4)

gives

f(r) = −4GE log

(
r

r0

)2

, (3.5)

for some short-distance cut-off scale r0.
6It is also interesting to consider a homogeneous beam source [18, 55, 56] for which Tuu = ρδ(u) with ρ

constant, for which f(r) = −4πGρ r2.
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3.1 Geodesics for gravitational bursts and shockwaves

The geodesic equations for a general profile are

v̈ +
1

2
f(r)χ′F (u) + f ′(r)χF (u)ṙ = 0 ,

r̈ − 1

2
f ′(r)χF (u)− rφ̇2 = 0 ,

φ̈+
2

r
ṙφ̇ = 0 , (3.6)

and we can immediately write the integrated expression for v̇ directly from the metric as

2v̇ + f(r)χF (u) + ṙ2 + r2φ̇2 = 2η , (3.7)

with η = 0 for a null geodesic, η < 0 for a timelike geodesic.

The cylindrical symmetry of the original metric (3.1) allows the φ̈ equation to be

integrated, implying

r2φ̇ = ` = const. , (3.8)

where ` is the conserved angular momentum about the r = 0 axis. In what follows, we

choose the natural initial condition (before the incidence of the gravitational wave burst

on the test particle described by (3.6)) φ̇(u) = 0. Then ` = 0 and the geodesics are curves

with φ(u) constant, taking φ = 0 for the chosen geodesic γ.

Now focus on the Aichelburg-Sexl (AS) shockwave with profile χF (u) = δ(u). In this

case we can solve the geodesic equations exactly. For the first integrals of (3.6) we have

v̇ = η − 1

2
f(b)δ(u)− 1

8
f ′(b)2θ(u) , ṙ =

1

2
f ′(b)θ(u) , (3.9)

and so

v = V + ηu− 1

2
f(b)θ(u)− 1

8
f ′(b)2uθ(u) ,

r = b+
1

2
f ′(b)uθ(u) , (3.10)

where b is the impact parameter for the chosen geodesic γ.

For f ′(b) < 0, which follows from (3.4), (3.5) provided the null energy condition Tuu >

0 is respected, the geodesics converge towards the source at r = 0 after encountering

the shockwave at u = 0. The focal point, at u = −2b/f ′(b), depends on the impact

parameter. The most striking feature of the solution, however, is the ‘back in time’ jump

∆v = −1
2f
′(b) in v at the instant of collision. This raises immediate questions concerning

causality in these shockwave spacetimes. This has been thoroughly explored in our previous

papers [18, 35, 56] (see also [57, 58]) both classically and including the special issues arising

from vacuum polarisation in QFT in these spacetimes.
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It is also interesting to relax the impulsive limit and consider an extended pulse of

duration L in the lightcone coordinate u, centred on u = 0. For definiteness, we consider7

χF (u) = Θ(u, L) ≡ 1

L

(
θ

(
u+

L

2

)
− θ

(
u− L

2

))
, (3.11)

which, like δ(u), is normalised so that
∫
duΘ(u, L) = 1 and has the impulsive limit

limL→0 Θ(u, L) = δ(u). In this case, analytic solutions may still be found8 but are at

first sight less illuminating than in the impulsive limit, so below we show plots of the

geodesics found from numerical solutions of (3.6).

We now present illustrations of these solutions for both null and timelike geodesics, and

for both the impulsive and extended profiles χF (u). Numerical values of the parameters

(GE, L and subsequently J) are chosen purely to demonstrate the key general properties

of the geodesics.

In figure 2 we show the radial coordinate r(u) for three values of the impact parameter

b for both χF (u) = δ(u) and χF (u) = Θ(u, L). Notice that outside the gravitational wave

burst, the metric simply describes flat spacetime so the trajectories are straight lines, and

may continue unperturbed through r = 0. The radial geodesics are also insensitive to the

parameter η, so are the same for null and timelike geodesics. Note that the asymptotic

slope of the geodesics for equal b but different χF (u) are different, as illustrated in figure 3.

The final geodesic remembers the nature of the gravitational wave burst.

Figure 4 shows the 3-dim behaviour of a circle of geodesics with the same impact

parameter but different initial angles to the shockwave axis. The focusing of the geodesics

is clearly seen.

The behaviour of v(u) is shown in figure 5 for null geodesics and with impulsive and

extended profiles. A similar behaviour is seen for timelike geodesics, but of course with v(u)

not constant before the arrival of the gravitational wave, as given in (3.10). The notable

7For numerical results, we frequently use a smoothed version

Θ(u, L) ∼ 1

2L

(
tanh

(
α

(
u+

L

2

))
− tanh

(
α

(
u− L

2

)))
where L gives the duration of the burst and the parameter α can be adjusted to smooth the profile.

8With the extended profile χF (u) = Θ(u, L), we solve the geodesic equations piecewise in the three

regions before, during and after the wave burst and match at the boundaries. In the interaction region

−L/2 < u < L/2, we can solve the radial equation in (3.6) with f(r) for the particle source in terms of the

inverse error function to give

r(u) = b exp

[
−

(
erf−1

(
1

b

√
8GE

πL
ũ

))2]
,

with ũ = u+ L/2. Substituting into (3.6) and integrating then gives v(u) in the form

v(u) = V +
4GE

L
(log b− 1) ũ+ b

√
8GE

L
erf−1

(
1

b

√
8GE

πL
ũ

)
exp

[
−

(
erf−1

(
1

b

√
8GE

πL
ũ

))2]
.

These analytic forms reproduce the numerical plots shown in figures 2 and 5 for the extended profile. The

shift ∆v across the interaction region is easily found (see appendix A) from this expression for v(u), with

the log b term reproducing the Aichelburg-Sexl shift.
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Figure 2. The left-hand plot shows the behaviour of the radial coordinate r(u) of geodesics

with different impact parameters b as the corresponding test particle is struck by an impulsive

gravitational shockwave at u = 0. The right-hand plot shows the same result for an extended

gravitational wave burst with profile χF (u) = Θ(u, L) indicated (with a different vertical scale) by

the grey curve. In this and all subsequent plots, we have taken L = 10.

Figure 3. The final transverse velocity of the test particle has a memory of the gravitational wave

profile, and is greater for the extended wave burst.

Figure 4. The red curve shows the trajectory of a geodesic in the background of a gravitational

wave burst with extended profile Θ(u, L). The parameters match those of the r(u) plots in figure 2.

The shaded surface is mapped out by geodesics with the same impact parameter b but with different

angles φ around the gravitational wave source on the r = 0 axis. The focusing effect for geodesics

with the same impact parameter is evident.
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Figure 5. The lightcone coordinate v(u) of a test particle exhibits a jump as it encounters the

gravitational wave burst, for both impulsive (left-hand figure) and extended (right-hand figure)

profiles. Note the discontinuous (and backwards in time) jump in the impulsive gravitational

shockwave case.

feature is the discontinuous jump in the lightcone coordinate v(u) in the impulsive shock-

wave case, not least since the jump is backwards in the corresponding time coordinate. This

immediately raises issues of causality and observability. Further discussion of these trajec-

tories, and especially their implications for ‘time machines’, may be found in [18, 35, 56].

In appendix A, we discuss briefly how this shift ∆v across the shockwave allows us

to compute the scattering amplitude in the eikonal limit for ultra-high energy particle

scattering, which is mediated by graviton exchange. In this picture, ∆v is directly related

to the scattering phase Θ(s, b), which depends on the CM energy and impact parameter b.

For the Aichelburg-Sexl shockwave, (3.10) immediately gives ∆v = −1
2f(b).

This summarises the properties of a single geodesic in a gravitational shockwave back-

ground. To describe gravitational memory, however, we need to find the relative motion

of neighbouring geodesics. We therefore need to describe the full congruence centred on a

chosen geodesic and determine the optical tensors.

3.2 Optical tensors and memory

To find the optical tensors, we start by calculating Ωµν = Dνkµ for the congruence centred

on a chosen geodesic γ. Here, kµ is a vector field, the tangent vector to the individual

geodesics in the congruence. With the generalised shockwave metric (3.1), we have

kµ =


1

v̇

ṙ

φ̇

 , kµ = gµνk
ν =


v̇ + f(r)χF (u)

1

ṙ

r2φ̇

 , (3.12)

and we can immediately use angular momentum conservation to set φ̇ = 0.

Taking the covariant derivatives (using the Christoffel symbols given in (3.2), a detailed

calculation using in particular the expression (3.7) for v̇, now shows

Ωµν =


ṙΩrrṙ 0 −Ωrrṙ 0

0 0 0 0

−ṙΩrr 0 Ωrr 0

0 0 0 Ωφφ

 , (3.13)
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where

Ωrr = ∂rkr − Γλrrkλ = ∂rṙ ,

Ωφφ = ∂φkφ − Γλφφkλ = rṙ . (3.14)

3.2.1 Null congruences

Before evaluating these expressions more explicitly, we first introduce Fermi Normal Coor-

dinates and take the transverse projection Ω̂ij = (ĝΩ ĝ)ij as described in (2.10) and (2.16).

While the final results for Ω̂ij will be the same for both null and timelike congruences, for

definiteness we consider the null case first.

The null FNC basis vectors can be chosen in this case as eA, A = u, v, xi, where by

definition euµ = kµ. Imposing φ̇ = 0 immediately, we have

euµ =


1

v̇

ṙ

0

 , evµ =


0

−1

0

0

 , e1µ =


0

−ṙ
1

0

 , e2µ =


0

0

0

1/r

 . (3.15)

It is readily checked that they satisfy the appropriate orthonormality condition

gµνe
AµeBν = ηAB, with ηAB as in (2.6). These all follow as purely algebraic conditions

except for the lightcone identity gµνe
uµeuν = k2 = 0, which requires the null geodesic

condition (3.7) for v̇.

We also need to verify that this set of basis vectors is parallel transported along the

null geodesic γ, that is, k.DeAµ = 0. The first identity, k.Deuµ = k.Dkµ = 0 is simply the

defining geodesic equation itself so is satisfied by definition. The remaining identities for

evµ and eiµ are readily verified using the Christoffel symbols (3.2).

With the FNC basis established, we can construct the projection matrix ĝµν according

to (2.9). The required transverse components Ω̂ij which determine the optical tensors are

then given directly from (2.11) as

Ω̂ij = eiµΩµνe
jν , (3.16)

with Ωµν in (3.13) and eiµ in (3.15). It follows directly that

Ω̂ij =

(
Ωrr 0

0 1
r2

Ωφφ

)
, (3.17)

and the optical tensors are read off from the decomposition (2.12).

We see immediately that Ω̂ij is symmetric and therefore unsurprisingly the congruence

has vanishing twist, ω̂ij = 0. Explicitly, the expansion is

θ̂ = tr Ω̂ = Ωrr +
1

r2
Ωφφ , (3.18)

leaving the shear as

σ̂ij =
1

2

(
Ωrr −

1

r2
Ωφφ

) (
1 0

0 −1

)
. (3.19)
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3.2.2 Timelike congruences

For a timelike congruence, we need an FNC basis eA, A = 0, 3, i, such that gµνe
AµeBν =

ηAB with ηAB = diag(−1, 1, 1, 1) and e0µ = kµ/
√
−2η, the normalisation being fixed

by (3.7) such that k2 = 2η. In this case, a suitable choice which also satisfies the par-

allel transport condition k.DeAµ = 0 is

e0µ =
1√
−2η


1

v̇

ṙ

0

 , e3µ =
√
−2η


0

−1

0

0

− e0µ , e1µ =


0

−ṙ
1

0

 , e2µ =


0

0

0

1/r

 .

(3.20)

Ωµν as given in (3.13), (3.14) is unchanged, so we can project the three-dimensional

transverse components in the same way from

Ω̂rs = erµ Ωµν e
sν , r, s = 3, 1, 2 . (3.21)

A simple calculation with the basis vectors (3.20) now shows that the components Ω̂33 and

Ω̂3i vanish, leaving

Ω̂rs =

 0 0 0

0 Ωrr 0

0 0 1
r2

Ωφφ

 (3.22)

For this metric, the three-dimensional transverse space in the timelike case becomes

effectively two-dimensional. The deeper reason for this, which is a property of pp waves,

becomes clear below when we present the description of geodesic deviation from the per-

spective of the Penrose limits. The optical tensors for the timelike congruence are therefore

identical to those in the null case, and can be visualised as before in terms of deformations

of a Tissot ring.

3.2.3 Aichelburg-Sexl shockwave

We can now evaluate the optical tensors explicitly for the null congruence in the Aichelburg-

Sexl metric in the impulsive, shockwave limit. The only subtlety is that we have to use the

geodesic solution (3.10) for r(u; b) to define a vector field describing the whole congruence

rather than a single geodesic specified by the fixed impact parameter b.

To achieve this, we invert the solution

r = b+
1

2
f ′(b)uθ(u) , (3.23)

implicitly to define b(u, r), i.e. given a geodesic passing through the point (u, r), this spec-

ifies the corresponding impact parameter. Then, we may write

ṙ =
1

2
f ′(b)θ(u) =

1

u
(r − b(u, r) ) , (3.24)

and so,

Ωrr = ∂r ṙ =
1

u

(
1− ∂b(u, r)

∂r

)
. (3.25)
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Taking the partial derivative of (3.23) now gives

1 =
∂b(u, r)

∂r

(
1 +

1

2
f ′′(b)uθ(u)

)
, (3.26)

and so we find

Ωrr =
1

2
f ′′(b)θ(u)

(
1 +

1

2
f ′′(b)uθ(u)

)−1

. (3.27)

The Ωφφ = rṙ component is found directly from (3.23), (3.24).

From (3.17), we therefore determine the projections Ω̂ij which specify the optical

tensors for the null congruence centred on the geodesic γ with impact parameter b as

Ω̂11 =
1

2
f ′′(b)

(
1 +

1

2
f ′′(b)u

)−1

θ(u) ,

Ω̂22 =
1

2

f ′(b)

b

(
1 +

1

2

f ′(b)

b
u

)−1

θ(u) . (3.28)

Defining the optical scalars θ̂ (expansion) and σ̂+ (shear) as in section 2.2, we find for

a general profile f(r) that

θ̂ =
1

2

1(
1 + 1

2f
′′(b)u

) (
1 + 1

2
f ′(b)
b u

) (f ′′(b) +
1

2

f ′(b)

b
+ f ′′(b)

f ′(b)

b
u

)
θ(u) ,

σ̂+ =
1

4

1(
1 + 1

2f
′′(b)u

) (
1 + 1

2
f ′(b)
b u

) (f ′′(b)− f ′(b)

b

)
θ(u) . (3.29)

Evaluating for the particle shockwave, we find (the negative sign for θ̂ indicating focusing),

θ̂ = − 2(4GE)2 u θ(u)

b4 − (4GE)2u2
,

σ̂+ =
4GEb2 θ(u)

b4 − (4GE)2u2
. (3.30)

We illustrate these properties of the congruence in figures 6, 7 after we have derived

these results in the Penrose limit formalism. Note immediately the singular feature at

u = b2/4GE where the congruence focuses in one direction while diverging in the orthog-

onal direction.

It is interesting to consider other shockwave sources, for example a uniform density

beam [8, 18, 35, 55, 56], for which Tuu = ρ δ(u) and f(r) = −4πGρ r2. In this case the

congruence has only expansion and no shear, and there is a single focal point for all the

geodesics independent of their impact parameter.9

9For the beam shockwave, we have f ′′(b) = f ′(b)/b = −8πGρ and so σ̂+ = 0. The focal point is at

u = 1/4πGρ and the expansion is

θ̂ = − 8πGρ

1− 4πGρu
θ(u) .
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Interpreting in terms of gravitational memory, we see immediately that after the pas-

sage of the shockwave the relative position of neighbouring geodesics, visualised by the

Tissot ring, is u-dependent. That is, the memory associated with an impulsive shockwave

is of the purely velocity-encoded type. After the encounter with the shockwave, neighbour-

ing test particles (recall that the null and timelike optical tensors are identical) fly apart

with fixed velocities, in a pattern exhibiting both expansion (focusing) and shear.

3.3 Penrose limits and memory

The Penrose limit of the generalised shockwave metric (3.1) is readily found using the FNC

method described in section 2.3. This is already known from our previous work [8], where

it was derived using an alternative method involving the construction of the Rosen form of

the plane wave metric. Indeed most of the results of this subsection are already known from

our earlier papers on causality and quantum field theoretic effects in QED in shockwave

backgrounds [8, 18, 35].

3.3.1 Null congruences and plane waves

We consider first the FNC construction of the Penrose limit corresponding to null geodesics.

With the identification of Brinkmann coordinates for the plane wave metric with FNCs

along the geodesic γ in the original spacetime, the plane wave profile function hij is simply

the projection onto the FNC basis of the relevant components of the shockwave curvature

tensor Rρµσν . That is, the Penrose limit metric is

ds2 = 2dudv + hij(u)xixjdu2 + δijdx
idxj , (3.31)

with

hij = −Rρuσu
∣∣
γ
eiρejσ , (3.32)

where the eiµ are the basis vectors in (3.15). The only non-vanishing components of the

curvature are Rruru and Rφuφu given in (3.3) and we immediately find

hij =

(
h11 0

0 h22

)
, (3.33)

with

h11 = −Rruru
∣∣
γ

=
1

2
f ′′(r)

∣∣
γ
χF (u)

h22 = − 1

r2
Rφuφu

∣∣
γ

=
1

2

f ′(r)

r

∣∣∣
γ
χF (u) . (3.34)

In these expressions, the function r(u) is the solution of the geodesic equation (3.6) defining

γ. For the Aichelburg-Sexl shockwave only, where χF (u) → δ(u), we can replace f(r) →
f(b) for constant impact parameter b.

The geodesics for the transverse coordinates are then,

ẍi − hij(u)xj = 0 , (3.35)

as described in section 2.4, and solutions are plotted in figure 6 below.
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Our key assertion is that the geodesics in this plane wave metric are the same as those

of the congruence in the tubular neighbourhood of the null geodesic with impact parameter

b in the original shockwave spacetime (3.1).

To see this explicitly in the impulsive limit, recall from section 2.4 that the solutions

of the geodesic equations for the xi(u) in the plane wave are written in terms of a zweibein

Eia(u) which solves the oscillator equation

Ëia − hijEja = 0 . (3.36)

The solutions with hij(u) given by (3.34) with χF (u) = δ(u) are easily found and, with

boundary conditions appropriate for a congruence of initially parallel geodesics, we have

Eia(u) diagonal with [8]:

E1
1(u) = 1 +

1

2
f ′′(b)u θ(u) ,

E2
2(u) = 1 +

1

2

f ′(b)

b
u θ(u) . (3.37)

The optical tensors in this plane wave are found from the tensor Ωij ≡ (ĖE−1)ij . Evalu-

ating this, we find

Ω11 =
1

2
f ′′(b)

(
1 +

1

2
f ′′(b)u

)−1

θ(u) ,

Ω22 =
1

2

f ′(b)

b

(
1 +

1

2

f ′(b)

b
u

)−1

θ(u) . (3.38)

This confirms the identification of Ωij in the Penrose limit plane wave and the Ω̂ij

of (3.28) established directly in the full shockwave spacetime.

The optical tensors are therefore identical, and we can directly verify the Raychoudhuri

equations, written here as

Ω̇ij + (Ω)2
ij = hij . (3.39)

This discussion therefore confirms how for null geodesics, geodesic deviation and gravita-

tional memory is entirely encoded in the corresponding Penrose limit plane wave.

3.3.2 Timelike congruences

For timelike geodesics, corresponding to massive test particles/detectors, we use the anal-

ogous formalism from section 2.3. What we have called the ‘timelike Penrose limit’ has the

metric (2.27),

ds2 = − (1− hrs(t)xrxs) dt2 + δrsdx
rdxs , (3.40)

where hrs(t) is the projection of the curvature tensor of the shockwave onto the timelike

FNC basis vectors (3.20), i.e.

hrs(t) = −Rr0s0
∣∣
γ

= −Rρµσν
∣∣
γ
erρe0µesσe0ν . (3.41)

We now see immediately that hrs = 0 if either r or s is 3. This follows from the symmetries

of the curvature tensor together with the fact that there is no non-vanishing v component
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in Rρµσν . In turn, this can be traced to the v-translation symmetry of the shockwave

metric, the existence of the corresponding Killing vector ∂v being a defining property of

pp waves. It is therefore a general feature of pp waves, including the shockwave, that hrs
is effectively two-dimensional.

Then, evaluating as before, we find

hrs =

 0 0 0

0 h11 0

0 0 h22

 , (3.42)

with

h11 = −Rruru
∣∣
γ
, h22 = − 1

r2
Rφuφu

∣∣
γ
. (3.43)

Following section 2.3, we now see that the geodesics for the transverse coordinates

xi(u) in the metric (3.40) are identical (for small xi, see footnote 3) to those in the null

Penrose limit. This confirms that the optical tensors are the same for the null and timelike

congruences in the shockwave metric, as is already implicit in section 3.2.

3.3.3 Congruences and memory for the gravitational shockwave

As we have seen, the behaviour of nearby geodesics in the congruence, and therefore the

gravitational memory, is described by the geodesic equations (3.35) in the appropriate

Penrose limit metric.

We illustrate this here by solving (3.35) explicitly for the impulsive Aichelburg-Sexl

shockwave, with χF (u) = δ(u), and the generalisation with an extended profile, χF (u) =

Θ(u, L). Analytic solutions have been given above for the impulsive limit, whereas in

the extended (sandwich wave) case a numerical solution is used. This is necessary since

the functions f(r) in the Penrose limit geodesic equation (3.35) involve the solutions r(u)

characterising the geodesic γ with impact parameter b in the original metric.

In figure 6, we show the behaviour of xi(u) (specifying the null congruence for definite-

ness) in the impulsive and extended cases. This demonstrates the initial convergence in

the x2 direction and divergence in x1 implied by (3.35) and governed by the optical scalars

given in (3.30).

The behaviour of the Tissot ring is illustrated in figure 7. This clearly shows the

combination of shear and (initially negative) expansion described above. The initial circle

squashes due to the + oriented shear, and contracts up to the point in u where the geodesics

in the x1 direction focus on to the original geodesic γ (with xi(u) = 0 by definition) before

diverging as the denominator in (3.29) changes sign. For the impulsive shockwave, this

degenerate line is reached at u = b2/4Gµ.

In terms of memory, it is evident from figures 6 and 7 that after the passage of the

gravitational wave burst, there is a velocity-encoded memory with neighbouring geodesics

eventually diverging with straight-line trajectories. In the case of the extended-profile wave,

there is in addition a shift in position in the geodesics compared immediately before and

after the interaction with the gravitational wave burst. This is in accord with the general

expectations discussed in section 2.6.
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Figure 6. These plots show the behaviour of the transverse coordinates x1(u) and x2(u) of a

geodesic in the neighbourhood of γ (with xi = 0) through the encounter with a gravitational wave

burst. The green curves denote x1(u) and exhibit an initial focusing followed by divergence, while

the blue curves denoting x2(u) show a divergence. The left-hand figure refers to the Penrose limit

plane wave with impulsive profile χF (u) = δ(u), while the right-hand figure describes the case of

an extended profile χF (u) = Θ(u, L).

Figure 7. Illustration of the evolution of the Tissot ring of geodesics through the passage of

an extended plane-wave burst. The red curve shows a single geodesic described by (x1, x2) as in

figure 6. The combination of expansion θ̂ and shear σ̂+ causes the Tissot circle to deform to an

ellipse, degenerate to a line, then form an expanding ellipse in the far memory region following the

gravitational wave burst. (Note that the u axis has been rescaled by a factor 5 compared to the

previous figures for clarity.)

4 Gyratons

4.1 Gyraton metric

The special form of the gyraton metric we consider here is the simplest extension of the

Aichelburg-Sexl shockwave to accommodate a spinning source [49–51]. The motivations for

this choice are described briefly in appendix C together with a discussion of more general

gyraton metrics.

The metric in the vacuum region outside the spinning source centred at r = 0 is

ds2 = 2dudv + f(r)χF (u)du2 − 2JχJ(u)dudφ+ dr2 + r2dφ2 , (4.1)

where χF (u) and χJ(u) are profile functions, which in this case may be chosen indepen-

dently. The angular momentum of the source is proportional to J .

– 26 –



J
H
E
P
1
2
(
2
0
1
8
)
1
3
3

The non-vanishing Christoffel symbols of this gyraton metric are

Γvuu =
1

2
f(r)χ′F (u)− J2

r2
χJ(u)χ′J(u) , Γvur =

1

2
f ′(r)χF (u) , Γvrφ =

J

r
χJ(u) ,

Γruu = −1

2
f ′(r)χF (u) , Γrφφ = −r , Γφuu = − J

r2
χ′J(u) , Γφrφ =

1

r
, (4.2)

while the curvature components are

Rruru = −1

2
f ′′(r)χF (u) , Rφuφu = −1

2
rf ′(r)χF (u) , Rruφu =

J

r
χ′J(u) , (4.3)

and

Ruu = −1

2
∆f(r)χF (u) = 0 , (4.4)

in the vacuum region where ∆f(r) = 0 as in the Aichelburg-Sexl case.

The fact that the profiles χF (u) and χJ(u) may be chosen independently is actually

a consequence of the cylindrical symmetry we have assumed for the metric. In the more

general case, the Einstein equations link χF (u) and χJ(u) (see appendix A) and there is a

constraint χF (u) ∼ χ′J(u), which raises issues with the null energy condition.

Now as we show below, the impulsive choice χJ(u) = δ(u) is of relatively little in-

terest as the effect on a test particle is merely to give it a sideways kick. On the other

hand, an extended χJ(u) typical of a sandwich wave produces an orbital motion in the

geodesics. It is of particular interest to verify explicitly how, despite this orbital motion

for a single geodesic, the corresponding congruence does not acquire a non-vanishing twist,

in accordance with the general theory of section 2.4. We therefore choose

χJ(u) = Θ(u, L) , (4.5)

with Θ(u, L) as in (3.11), together with the smoothed form for some of the numerical

plots. For the most part, we also use the same form for the profile χF (u), rather than the

impulsive limit.

4.2 Geodesics and orbits

We now study the geodesics, null and timelike, for the gyraton metric (4.1), extending our

earlier analysis for the spinless gravitational shockwave.

The geodesics are

v̈ +
1

2
f(r)χ′F (u)− J2

r2
χJ(u)χ′J(u) + f ′(r)χF (u)ṙ +

2J

r
χJ(u)ṙφ̇ = 0 ,

r̈ − 1

2
f ′(r)χF (u)− rφ̇2 = 0 ,

φ̈− J

r2
χ′J(u) +

2

r
ṙφ̇ = 0 , (4.6)

where we have immediately exploited the v-translation symmetry of the metric, which

implies the geodesic equation ü = 0, to choose u as the affine parameter. It is usually

simpler to use the integrated form of the v equation directly from the metric, viz.

2v̇ + f(r)χF (u) + ṙ2 − J2

r2
χ2
J(u) = 2η , (4.7)

where η = 0 (< 0) for a null (timelike) geodesic and we have already used (4.8).
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The azimuthal equation is also immediately integrable, giving the angular momentum

`(u) as

`(u) = r2φ̇ = JχJ(u) . (4.8)

Substituting back into the radial geodesic gives a characteristic orbit equation

r̈ +
∂

∂r
Veff(u, r) = 0 , (4.9)

with

Veff(u, r) = −1

2
f(r)χF (u) +

1

2

J2

r2
χJ(u)2 , (4.10)

independently of whether the geodesic is null or timelike.

Now, we can readily see that in order to find solutions for which the test particle

exhibits orbital motion rather than simply receiving a kick at first encounter with the

gyraton and a second kick as it passes,10 we need both profiles to be extended. Choosing

both χF (u) and χJ(u) to be Θ(u, L), and considering a particle source for the gyraton

shockwave, we then have

Veff(u, r) =

(
4GE log

r

r0
+

1

2

J2

r2

)
Θ(u, L) ≡ Ṽeff(r) Θ(u, L) . (4.11)

This becomes a typical central force problem with a logarithmic attractive potential pro-

vided by f(r) and gives a bound orbit in the region of u where Θ(u, L) = 1. For a central

potential, Bertrand’s theorem states that every bound orbit is periodic for potentials pro-

portional to r2 or 1/r only. So the orbit corresponding to (4.11) will precess (in contrast

to that with a homogeneous beam source for the gyraton, where f(r) ∼ r2 and we find a

stable, closed orbit).

To be more explicit, integrating (4.9) gives

d

du

(
1

2
ṙ2 + Veff(u, r)

)
=

∂

∂u
Veff(u, r)

≡ Ṽeff(r)

(
δ

(
u+

L

2

)
− δ

(
u− L

2

))
. (4.12)

So away from the initial and final kicks from the straight line trajectories for the initial

region u < −L/2 and into the ‘memory’ region u > L/2 after the passage of the gyraton,

we have
1

2
ṙ2 + Ṽeff(r) = E , (−L/2 < u < L/2) (4.13)

with E = const.
10For example, if we take f(r) = 0 and just keep the angular momentum term with χJ(u) = Θ(u, L), we

can solve the geodesic equations exactly in the region −L/2 < u < L/2, giving

v(u) = v0 +

(
η − 1

2

J2

b2

)
ũ+ J arctan

(
Jũ

b2

)
,

r(u) = b

(
1 +

J2ũ2

b4

)1/2

,

φ(u) = arctan

(
Jũ

b2

)
,

for impact parameter b and initial v = v0. Here, ũ = u+ L/2. This describes a straight line trajectory.
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Figure 8. The left-hand plot shows the behaviour of r(u) through the encounter with a gyraton

with profile χF (u) = χJ(u) = Θ(u, L), shown here with L = 10. The right-hand plot shows the

test particle following a precessing orbit around the gyraton axis before emerging as a straight line

in the memory region after the passage of the gyraton.

Figure 9. The red curve shows a single geodesic orbiting around the gyraton centred on r = 0.

The shaded envelope is the set of geodesics with the same impact parameter b but different initial

angles φ to the gyraton axis.

For the logarithmic potential characterising the particle-source gyraton, we do not

have analytic expressions for the geodesic orbits, so we illustrate the key features with

numerical solutions. A typical orbiting solution is shown in figure 8 (for a slightly smoothed

approximation to Θ(u, L)), clearly showing the precessing orbit and the final kick at u =

L/2 into the memory region. Figure 9 shows the form of the geodesic as it evolves with

the lightcone coordinate u.

All this clearly illustrates the difference between the geodesics in the Aichelburg-Sexl

shockwave and the gyraton. While the initial and final trajectories are of course straight
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Figure 10. Plots of the lightcone coordinate v(u) through the encounter with a gyraton. The left-

hand plot is for relatively small angular momentum J , with the bumpy change in v(u) reflecting

the number of orbits. The right-hand plot is for bigger J and covers a single orbit.

lines with the test particle being deflected by its encounter with the gyraton, the angular

momentum of the gyraton metric induces an orbital motion for the test particle geodesics

in the region where the gyraton profiles χF (u) and χJ(u) are non-vanishing.

In figure 10, we show the analogue of the jump in the lightcone coordinate v(u) we

found for the Aichelburg-Sexl or extended shockwave in figure 5, for different values of

the angular momentum parameter J in the gyraton metric. Naturally, for a trajectory

covering several orbits, v(u) reflects the oscillations in r(u). Note also that depending on

the metric parameters, the jump in v(u) as the gyraton passes may have either sign. See

appendix A for a brief discussion of the relevance of the jump ∆v in ultra-high energy

gravitational scattering.

With this description of the behaviour of an individual geodesic in the gyraton back-

ground, we now move on to analyse the congruence in the neighbourhood of such a geodesic,

in particular to see whether this rotation is inherited in the optical tensors in the form of

memory with twist.

4.3 Optical tensors and memory

The first step in calculating the optical tensors for the gyraton background is to evaluate

Ωµν = Dνkµ, where kµ is the tangent vector field corresponding to the geodesics in a

congruence based on the solutions described above.

With the gyraton metric, we have

kµ =


1

v̇

ṙ

φ̇

 , kµ = gµνk
ν =


v̇ − JχJ(u)φ̇+ f(r)χF (u)

1

ṙ

r2φ̇− JχJ(u)

 , (4.14)

where kµ is given by the first integrals of the geodesic equations (4.6). From (4.7) and (4.8)

we can immediately express v̇ and φ̇ in terms of ṙ, since

v̇ = −1

2
ṙ2 − 1

2
f(r)χF (u) +

1

2

J2

r2
χJ(u)2 + η ,

φ̇ =
J

r2
χJ(u) . (4.15)
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In particular, this gives

ku = −1

2
ṙ2 +

1

2
f(r)χF (u)− 1

2

J2

r2
χJ(u)2 + η ,

kφ = 0 , (4.16)

while kv = 1, kr = ṙ as in (4.14).

Given the Christoffel symbols for the gyraton metric in (4.2), we may now evaluate

Ωµν . After some calculation, we find that Ωµν may be expressed in the form

Ωµν =


Ωuu 0 Ωur 0

0 0 0 0

Ωru 0 Ωrr Ωrφ

0 0 Ωφr Ωφφ

 , (4.17)

with

Ωuu = ṙΩrr ṙ + ṙΩrφ φ̇+ φ̇Ωφr ṙ + φ̇Ωφφ φ̇ ,

Ωur = Ωru = −Ωrr ṙ − Ωrφ φ̇ ,

Ωrr = ∂rṙ , Ωrφ = Ωφr = −rφ̇ , Ωφφ = rṙ , (4.18)

where φ̇ = JχJ(u)/r2. At this point, we have not yet had to specify ṙ, and the result holds

for both null and timelike congruences.

Next we need to find a basis for Fermi normal coordinates. We show this explicitly for

the null congruence, with FNCs for the timelike congruence being constructed similarly as

described in section 3.2. These give the same result for the optical tensors in the effectively

two-dimensional transverse space.

It is relatively straightforward to see that an appropriate basis which satisfies the

required orthonormality conditions (2.6) at a point is (compare (3.20) for the spinless

shockwave),

ẽuµ =


1

v̇

ṙ

φ̇

 , ẽvµ =


0

−1

0

0

 , ẽ1µ =


0

−ṙ
1

0

 , ẽ2µ =


0

JχJ(u)/r − rφ̇
0

1/r

 ,

(4.19)

to be compared with (3.20) for the spinless shockwave. However, this basis is not parallel

transported along the chosen geodesic γ with tangent vector kµ. While k.Dẽuµ = 0 and

k.Dẽvµ = 0, a short calculation shows that in fact

k.Dẽ1µ = φ̇ ẽ2µ , k.Dẽ2µ = −φ̇ ẽ1µ . (4.20)

It follows that the correct choice of FNC basis with k.De1µ = 0 and k.De2υ = 0 is a rotated

set defined by (
e1µ

e2µ

)
=

(
cosφ − sinφ

sinφ cosφ

) (
ẽ1µ

ẽ2µ

)
, (4.21)
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that is,

eiµ = Oij ẽ
jµ , (4.22)

where Oij , i, j = 1, 2 is the orthogonal matrix in (4.21). Note that in Oij , the angle φ(u)

is a solution of the geodesic equation, φ̇(u) = Jχj(u)/r(u).

Now, following the construction described in section 2.2, we define the optical tensors

from the projection

Ω̂ij = eiµ Ωµν e
jν , (4.23)

with the basis vectors defined in (4.22). We find,

Ω̂ij = O

(
Ωrr

1
rΩrφ

1
rΩφr

1
r2

Ωφφ

)
OT . (4.24)

This is a very natural generalisation of Ω̂ij for the ordinary shockwave to incorporate

the spin inherent in the gyraton spacetime. This is evident first in the appearance of

the off-diagonal terms Ω̂rφ = Ω̂φr, and in the φ(u)-dependent rotation of the FNC basis.

Writing (4.24) in full we therefore have

Ω̂ij =

(
cosφ − sinφ

sinφ cosφ

) (
∂rṙ −J

r χJ(u)

−J
r χJ(u) 1

r ṙ

) (
cosφ sinφ

− sinφ cosφ

)
. (4.25)

To interpret this, recall that r(u), ṙ(u) and φ(u) are the solutions of the geodesic equations

for the chosen geodesic γ, which we take as the null geodesic with initial conditions r = b,

φ = 0. The optical tensors — expansion, shear and twist — are then read off from (4.25)

with the usual definitions,

Ω̂ij =
1

2
θ̂ δij + σ̂ij + ω̂ij . (4.26)

We see immediately that Ω̂ij is symmetric, so the twist ω̂ij vanishes. Even in the

gyraton background, the fact that an individual geodesic orbits around the source does not

imply a relative rotation of neighbouring geodesics in the congruence.

The expansion is given by the trace of Ω̂ij , so we simply find

θ̂ = tr Ω̂ij = ∂rṙ + ṙ/r , (4.27)

since the rotation of the FNC basis plays no rôle. The presence here of the off-diagonal

terms proportional to Ωrφ = −JχJ(u)/r however means that in this case we have non-

vanishing shear in both + and × orientations. Of course, since Ω̂ij is symmetric, it can

be diagonalised to find a rotating basis in which the shear is non-vanishing in a single

orientation only — however, this does not coincide with the basis defining the FNC coor-

dinates. Explicitly,

σ̂+ =
1

2

(
∂r ṙ −

1

r
ṙ

)
cos 2φ+

J

r
χJ(u) sin 2φ ,

σ̂× =
1

2

(
∂r ṙ −

1

r
ṙ

)
sin 2φ− J

r
χJ(u) cos 2φ . (4.28)
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To evaluate further we would need to find explicit solutions for r(u) and φ(u) along

the geodesic γ and carry through an analysis analogous to section 3.2.3. These are not

known in analytic form for a logarithmic central potential. Instead, we first re-express

these results in terms of the Penrose limit, then study the behaviour of the congruences

numerically.

4.4 Penrose limit and memory

The Penrose limit is now readily found given the gyraton curvature tensors (4.3) and the

FNC basis (4.19), (4.22). Recall that for the null geodesic γ,11 the Penrose limit metric is

the plane wave,

ds2 = 2dudv + hij(u)xi xj du2 + δij dx
i dxj , (4.29)

with profile function,

hij = −Rρuσu eiρ ejσ

= −O

(
Rruru

1
rRruφu

1
rRφuru

1
r2
Rφuφu

)
OT , (4.30)

with O defined in (4.21), (4.22). Explicitly,

hij = O(φ)


1
2f
′′(r)χF (u) − J

r2
χ′J(u)

− J
r2
χ′J(u) 1

2
f ′(r)
r χF (u)

 OT (φ) . (4.31)

Now according to the general theory in section 2, we should have

hij =
d

du
Ω̂ij + Ω̂2

ij , (4.32)

with Ω̂ij as in (4.25). To verify this, note first that

d

du
Ω̂ij = O

(
d

du
Ω̃−

[
ε, Ω̃
]
φ̇

)
OT , (4.33)

where εij is the antisymmetric symbol and we use the temporary notation Ω̂ = O Ω̃OT .

We can then verify (4.32) component by component. Equation (4.33) implies h = O h̃OT

with, for example,

h̃12 =
d

du

(
1

r
Ωrφ

)
+

(
Ωrr −

1

r2
Ωφφ

)
φ̇+

1

r
ΩrrΩrφ +

1

r3
ΩrφΩφφ

= φ̈+

(
∂rṙ −

1

r
ṙ

)
φ̇− φ̇ ∂rṙ −

1

r
ṙ φ̇

= −φ̈− 2

r
ṙ φ̇

= − J
r2
χ′J(u) , (4.34)

11The timelike case follows in the same way as in section 3.3. The fact that the gyraton is also a pp

wave again means that the v-components of the curvature tensor vanish, so the three-dimensional hrs in

section 2.3 degenerates to a two-dimensional hij identical to that considered here for the null congruence.
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Figure 11. The left-hand plot shows the behaviour of the transverse coordinates x1(u) (in green)

and x2(u) (in blue) of a geodesic in the neighbourhood of γ through the passage of the gyraton,

shown here with profile χF (u) = χJ(u) = Θ(u, L) with L = 10. Parameters are chosen such that

the reference geodesic γ makes one orbit of the gyraton axis between u = −5 and u = 5. The

right-hand plot shows this motion in the transverse (x1, x2) plane.

using the geodesic equation (4.6) in the final step. The other components follow similarly

and we confirm the link between the derivatives of the optical tensors found directly from

Ω̂ij and the geodesic congruences in the Penrose plane wave limit. These are found by

solving the plane wave geodesic equations,

ẍi − hij(u) ẋj = 0 , (4.35)

wuth hij defined in (4.31). We have solved these equations numerically for the extended

profiles χF (u) = χJ(u) = Θ(u, L), and the particle source f(r) = −4GE log r2/r2
0.

The results are illustrated in the following figures. Figure 11 shows the behaviour of

the transverse coordinates for a member of the geodesic congruence as the gyraton passes

through. We have chosen parameters so that the evolution of (x1, x2) shown covers a single

orbit of the original geodesic γ around the gyraton axis. The right-hand plot shows the

how the transverse position of the geodesic, i.e. the connecting vector, evolves. Clearly,

there is a position shift from before to after the encounter with the gyraton. Subsequently

the geodesic follows a straight line, exhibiting velocity-encoded memory.

The evolution of the Tissot circle is shown in figure 12. Here, under the influence of

non-vanishing and u-dependent expansion θ̂ and both orientations σ̂+ and σ̂× of shear,

the Tissot circle is deformed in a complicated way during the passage of the gyraton.

Eventually, in the far memory region, the Tissot ring settles to become an expanding

ellipse, whose orientation is governed by diagonalising the shear matrix. Despite superficial

appearances, this change in orientation is not due to any twist of the congruence, simply to

the interplay of the two directions of shear, confirming the general analysis in section 2.4.

5 Discussion

In this paper, we have developed the geometric description of gravitational memory in a

formalism which encompasses strong gravitational waves, and have applied our results to

shockwave spacetimes.
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Figure 12. The evolution of the Tissot circle through the passage of the gyraton. The red curve

shows a single geodesic in the congruence as described in figure 11. In this case, the Tissot circle

evolves to an expanding ellipse in the far memory region, with orientation determined by the

interplay of the two shear scalars σ̂+ and σ̂×.

A key observation is that memory is encoded in the Penrose limit of the original grav-

itational wave spacetime. For null congruences, the Penrose limit is a plane wave so our

analysis enhances the range of applications of existing studies involving geodesic devia-

tion and memory in plane wave spacetimes, which include the weak-field approximations

relevant for gravitational wave observations in astronomy. For timelike congruences, we

defined a new ‘timelike Penrose limit’ spacetime, which is less well-studied. However, we

showed that if the original spacetime is in the wide class of pp waves, then the transverse

geodesic equations determining memory are the same as those for the plane waves in the

null Penrose limit.

The geometric formalism was applied to two examples of strong gravitational waves

of particular interest — gravitational shockwaves of the Aichelburg-Sexl type and their

spinning generalisations, gyratons. Analytic and numerical methods were used to illustrate

the evolution of null and timelike geodesic congruences through their encounter with the

gravitational wave burst, and the optical tensors — expansion, shear and twist — were

used to characterise the eventual gravitational memory.

Gravitational wave astronomy has been revolutionised with the recent LIGO and Virgo

observations of gravitational waves from black hole mergers [59, 60] and neutron star inspi-

rals [61]. As well as the observed oscillatory signal, these and other astrophysical sources

may also produce a gravitational memory effect, potentially observable at LIGO/Virgo [13–

15] and more certainly with satellite detectors such as eLISA [62] (see also [63, 64]). Of

course, these observed signals are weak-field gravitational waves, but it may be hoped that

our analysis of gravitational shockwaves may also eventually find applications in astro-

physics. As discussed earlier, these shockwaves would be produced, for example, by fly-bys

of extremely highly-boosted black holes.
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One theoretical area of intense current interest is the relation of gravitational memory

and soft graviton theorems, and more generally with the infra-red physics of quantum

gravity (for a review, see [54]). Much of the research in this area has focused on the

asymptotic symmetries of radially propagating gravitational waves, described by the Bondi-

Sachs spacetime. Here, we have established the geometric foundations to apply similar

ideas to gravitational memory in shockwave spacetimes. In particular, the Aichelburg-Sexl

spacetime may be viewed as Minkowski spacetime cut along the u = 0 plane and with

the past and future halves glued back with a coordinate displacement ∆v. These two flat

spacetime regions are described in Rosen coordinates by different metrics, distinguished

by the metric coefficient Cab = (ETE)ab in which the zweibein Eia(u) is at most linear in

u. In the language of [54], we may say that the shockwave localised at u = 0 represents a

domain wall separating diffeomorphic but physically inequivalent copies of flat spacetime,

i.e. gravitational vaciua. The shockwave scattering phase reflects this map between ‘gauge

inequivalent’ flat regions. The full web of connections between symmetries, vacua and

gravitational memory on one hand and scattering amplitudes and soft graviton theorems

on the other is, however, left for future work.

Finally, we have shown in previous work [18, 32–35] how quantum loop contributions to

photon propagation, and to Planck energy scattering, are governed by the same geometry

of geodesic deviation that determines gravitational memory. Here, we have extended the

analysis of gravitational memory in the Aichelburg-Sexl shockwaves relevant for ultra-high

energy scattering to include spin effects in the form of gyratons. The nature of gravitational

memory in the gyraton background was clearly illustrated through the evolution of the

Tissot circle in figure 12 and displays both position and velocity-encoded memory. This

establishes the essential geometric framework for future investigations of gravitational spin

effects in quantum field theory.
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A Planck energy scattering

One of the most interesting applications of the gravitational shockwave geometry is in

ultra-high energy scattering. At CM energies of order the Planck mass, particle scattering

is dominated by the gravitational interactions. As shown in [29–31] (see also [18, 35] for

QFT loop effects), in the eikonal limit where the interaction may be approximated by a sum

of ladder graviton-exchange diagrams, the phase shift determining the scattering amplitude

may be calculated from the shift ∆v in the lightcone coordinate for a null geodesic in the

Aichelburg-Sexl shockwave background.12 One of our principal motivations in studying

12In Brinkmann coordinates, ∆v represents the shift by which the future and past Minkowski spacetimes

are displaced when they are glued back together along u = 0 to form the global AS metric in the Penrose
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geodesics in the gyraton metric is to develop some insight into how the gravitational effects

of particle spin would influence Planck energy scattering amplitudes.

To see what is involved, recall the formula for the scattering amplitude A(s, t) in terms

of the phase Θ(s, b), which depends on the CM energy through s = 4EE′, where E,E′ are

the energies of the scattering particles and b is the (vector) impact parameter:

A(s, t) = −2is

∫
d2b eiq.b

(
eiΘ(s,b) − 1

)
. (A.1)

Here, t = −q2, where q is the exchanged transverse momentum.

In the shockwave picture, the phase is identified (with our metric conventions) as

Θ(s, b) = −2E′∆v(E, b). Evaluating the integral over the angular dependence of b then

gives,

A(s, t) = −4πis

∫ ∞
0

db b
(
e−2iE′∆v(E,b) − 1

)
J0(qb) . (A.2)

Given the shift ∆v as a function of the impact parameter, we can therefore determine the

scattering amplitude by performing the Hankel transform in (A.2).

For the Aichelburg-Sexl shockwave, the discontinuous shift in the Brinkmann coordi-

nate ∆v is given by

∆v(E, b) = −1

2
f(b) = 2GE log

b2

r2
0

, (A.3)

implying (since G = 1/M2
p ),

Θ(s, b) = − s

M2
p

log
b2

r2
0

. (A.4)

We therefore have

A(s, t) = −4πis

∫ ∞
0

db b

[(
b2

r2
0

)−is/M2
p

− 1

]
J0(qb) . (A.5)

The integral is standard,13 and setting Λ = 1/r0 as the momentum cut-off, we find

A(s, t) = 8πi
s

t

(
−t
4Λ2

)is/M2
p Γ

(
1− is/M2

p

)
Γ
(
is/M2

p

) . (A.6)

It follows directly that ∣∣A(s, t)
∣∣2 = (8π)2 1

M4
p

s4

t2
. (A.7)

It is remarkable that the complex pole structure, with poles at is/M2
p = n with n =

1, 2, . . . implied by the gamma functions in the amplitude A(s, t), as well as the extremely

cut and paste construction. It is in this sense that the scattering phase reflects the map between these two

inequivalent copies of flat spacetime.
13The required Hankel tansform is∫ ∞

0

dz zpJν(az) = 2pa−1−p Γ

(
1 + p+ ν

2

)
/Γ

(
1− p+ ν

2

)
.
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simple final result for
∣∣A(s, t)

∣∣2, is reproduced so elegantly by the classical calculation of

∆v(E, b) in the Aichelburg-Sexl spacetime.

Now of course our ability to perform the Hankel transform to find A(s, t) in analytic

form depends on knowing the functional dependence of ∆v(E, b) on the impact parameter

b. For the impulsive shockwave profile, we have the simple solution (A.3) for ∆v, while

in section 3.1 we have also found an analytic solution for the extended shockwave profile

Θ(u, L). In the case of the gyraton, however, the shift ∆v across the extended shockwave is

determined by solving (4.7) for v̇(u) after substituting the solution r(u) for the precessing

geodesic orbit. Evidently, this is not so straightforward and a range of behaviours for

v(u) can arise as the impact parameter b and metric parameters E and J are varied, as

illustrated in the numerical plots in figure 10. Naturally, we can still obtain numerical

results for A(s, t), though it is not clear what insight this would bring, in contrast to

the analytic solution (A.6) for the Aichelburg-Sexl shockwave. It is therefore not obvious

at present how to make progress in this direction, and we leave further investigation of

scattering using the gyraton metric to future work.

As a first look at the effect of an extended profile on the scattering amplitude, however,

we can calculate A(s, t) for the Aichelburg-Sexl shockwave with profile χF (u) = Θ(u, L).

From the geodesic solution v(u) in footnote 8, section 3.1, we easily find the shift ∆v across

the range −L/2 < u < L/2 where the test geodesic interacts with the shockwave. This is

shown in figure 5. We find,

∆v = 4GE(log b− 1) + b

√
8GE

L
erf−1

(
1

b

√
8GEL

π

)
exp

−(erf−1

(
1

b

√
8GEL

π

))2


(A.8)

giving the exact dependence on the impact parameter b.

While we do not have an analytic form for the Hankel transform of (A.8), we can

make progress by expanding in the parameter L describing the duration of the extended

shockwave interaction. As this is equivalent to an expansion in large b, this will also give

an approximation to the scattering amplitude for small momentum exchange t. After some

reparametrisation, we find

E′∆v =
s

M2
p

[
log b − 1

3

s

M2
p

L

E′
1

b2
− 1

15

s2

M4
p

L2

E′2
1

b4
+ O(L3/b6)

]
. (A.9)

Substituting into (A.2) for A(s, t) and performing the Hankel transform, we find an expan-

sion of the form,

A(s, t) = 8πi
s

t

(
−t
4Λ2

)is/M2
p

×

[
Γ(1− is/M2

p )

Γ(is/M2
p )

+ 2i
s

M2
p

∞∑
r=1

ar

(
s t L

M2
p E
′

)r Γ(1− r − is/M2
p )

Γ(r + is/M2
p )

]
, (A.10)

where ar are numerical coefficients.
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This has an interesting effect on the pole structure, arising from the new gamma

functions in (A.10). As each new term in the series is included, an extra pole is added on

the imaginary s-axis. That is, the rth term in the series has poles at is/M2
p = −r+n, with

n = 1, 2, . . ., with the exception that there is never a pole at s = 0, where the pre-factors

impose a zero. Eq. (A.10) also shows that, for fixed s/M2
p , the expansion parameter is the

Lorentz invariant combination (t L/E′). This makes clear how the corrections due to the

extension L of the profile depend on the momentum transfer t and test particle energy E′.

To complete the calculation keeping only the leading correction, we now find explicitly,

A(s, t) = 8πi
s

t

(
−t
4Λ2

)is/M2
p

[
Γ(1− is/M2

p )

Γ(is/M2
p )

− i

6

s2

M4
p

(
t L

E′

)
Γ(−is/M2

p )

Γ(1 + is/M2
p )

+ . . .

]

= 8πi
s

t

(
−t
4Λ2

)is/M2
p Γ(1− is/M2

p )

Γ(is/M2
p )

[
1 − i

6

(
t L

E′

)
+ . . .

]
, (A.11)

and so, ∣∣A(s, t)
∣∣2 = (8π)2 1

M4
p

s4

t2

[
1 +

1

36

(
t L

E′

)2

+ . . .

]
, (A.12)

showing clearly the parametrisation of the correction due to the extended profile.

B Symmetries of gravitational shockwaves

A gravitational shockwave with an impulsive profile exhibits an enhanced symmetry com-

pared to generic pp waves. In this appendix, we describe these symmetries and discuss

similar issues for the corresponding plane waves arising as their Penrose limits.

We focus on the Aichelburg-Sexl shockwave with metric,

ds2 = 2dudv + f(r)δ(u)du2 + dx2 + dy2 . (B.1)

Evidently, this has the symmetry

v → v + α ⇒ KZ = ∂V , (B.2)

with Killing vector KZ = ∂V characteristic of pp waves. Cylindrical symmetry of f(r)

immediately implies the rotational symmetry,

x→ x− αy , y → y + αx ⇒ KJ = x∂y − y∂x . (B.3)

However, for the impulsive profile proportional to δ(u), there are two further u-dependent

translation symmetries [65]. Inspection of (B.1) shows these are,

v → v − αx , x→ x+ αu ⇒ KP1 = u∂x − x∂v
v → v − αy , y → y + αu ⇒ KP2 = u∂y − y∂v , (B.4)

where the x, y translations, which must be linear in u, must also be accompanied by a

compensating transformation of v.
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The corresponding generators satisfy the commutation relations,

[P1, J ] = P2 , [P2, J ] = −P1 , [P1, P2] = 0 ,

[Z,P1] = 0 , [Z,P2] = 0 , [Z, J ] = 0 . (B.5)

This determines the 4-parameter isometry group as ISO(2)×R. Recall that the Euclidean

group ISO(2) is the semi-direct product ISO(2) = SO(2) nR2.

Now consider the Penrose limit. This is the plane wave with metric,

ds2 = 2dudv + hij(u)xixjdu2 + (dxi)2 , (B.6)

where for the particle shockwave,

hij(u) = h

(
1 0

0 −1

)
δ(u) , (B.7)

defining h = 1
2f
′′(b) = −1

2f
′(b)/b for ease of notation.

The symmetries of general plane waves have been widely studied (see especially [19–

22, 53] for some particularly relevant recent discussions) and we follow here the approach

and notation of [22]. The generic isometry group14 for a plane wave with arbitrary profile

hij(u) is the 5-parameter Heisenberg group with generators Qr, Pr and Z (r, s = 1, 2)

satisfying the commutation relations,

[Qr, Qs] = 0 , [Pr, Ps] = 0 , [Qr, Ps] = −δrsZ ,
[Z,Qr] = 0 , [Z,Pr] = 0 . (B.8)

The corresponding symmetry transformations and Killing vectors are known

to be [22, 53],

xi → xi + α(r)f i(r) , v → v − α(r)ḟ i(r)x
i ⇒ KQr = −ḟ i(r)xi∂v + f i(r)∂i

xi → xi + α(r)gi(r) , v → v − α(r)ġi(r)x
i ⇒ KPr = −ġi(r)xi∂v + gi(r)∂i

v → v + α ⇒ KZ = ∂v , (B.9)

where f i(r) and gi(r) are independent solutions of the key oscillator equation,

f̈ i(r) − h
i
j(u)f j(r) = 0

g̈i(r) − h
i
j(u)gj(r) = 0 , (B.10)

which are conveniently chosen to satisfy the canonical boundary conditions at some

u = u0 < 0,

f i(r)(u0) = δir , ḟ i(r)(u0) = 0 ,

gi(r)(u0) = 0 , ḟ i(r)(u0) = δir . (B.11)

14Plane wave metrics with specific forms for hij(u) may possess a further symmetry. A notable case is the

extra symmetry comprising u-translations with a compensating rotation of the transverse coordinates which

arises in one of the two classes of homogeneous plane waves [22, 53], including the Ozsváth-Schücking plane

wave [66] analysed in [22]. The same symmetry also occurs in oscillatory polarised plane waves [24, 67].
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The boundary conditions for f i(r) correspond to those for a parallel congruence and we can

therefore identify the f i(r)(u) with the zweibein Eia(u) from (3.36), (3.37). The solutions

gi(r) are satisfied by ‘spray’ boundary conditions, corresponding to geodesics emanating

from a fixed point at u0 < 0.

We therefore already have the solutions f i(r)(u), given by15

f i(1) =

(
1 + hu θ(u)

0

)
, f i(2) =

(
0

1− hu θ(u)

)
. (B.12)

To determine the solutions gi(r)(u) systematically, we use the Wronskian condition,∑
i

(
f i(r) ġ

i
(s) − ḟ i(r) g

i
(s)

)
= δrs . (B.13)

A short calculation now shows that the required solutions are

gi(1) =

(
u− u0 (1 + hu θ(u))

0

)
, gi(2) =

(
0

u− u0 (1− hu θ(u))

)
. (B.14)

The explicit form for the Killing vectors is then,

KQ1 = −h θ(u)x1∂v + (1 + hu θ(u)) ∂x1

KQ2 = h θ(u)x2∂v + (1− hu θ(u)) ∂x2 , (B.15)

and

KP1 = − (1− hu0 θ(u))x1∂v +
(
u− u0 (1 + hu θ(u))

)
∂x1

KP2 = − (1 + hu0 θ(u))x2∂v +
(
u− u0 (1− hu θ(u))

)
∂x2 . (B.16)

The commutation relations are readily checked, e.g.

[KQ1 ,KP1 ] = − (1 + hu θ(u)) (1− hu0 θ(u)) ∂v +
(
u− u0 (1 + hu θ(u))

)
h θ(u) ∂v

= −∂v
= −KZ . (B.17)

These expressions for the generators and Killing vectors have already made use of

the fact that the metric coefficient hij(u) is impulsive. Nevertheless, we can ask whether

there are still more symmetries for this special profile compared to the Heisenberg alge-

bra for a generic plane wave. For example, the particular form of hij(u) characterising

a homogeneous plane wave is known to give rise to a further symmetry related to u-

transformations [22, 53] (see footnote 14).

The obvious approach is to look for analogues of the u-dependent translations of the

transverse coordinates shown for the original Aichelburg-Sexl shockwave in (B.4), that is

xi → xi + α(r)u δir , v → v − α(r)xi δir . (B.18)

15For a general source for the shockwave, we simply replace the ±h factors in the Killing vectors shown

here by 1
2
f ′′(b) and 1

2
f ′(b)/b respectively, as in (3.37).
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This is indeed a symmetry of the metric (B.6), (B.7). However, we see immediately

from (B.16) that these are simply the u0 → 0 limit of the general transformations defining

the generators Pr. No other extended symmetries are apparent. We therefore conclude that

even with an impulsive profile, the plane wave metric exhibits only the generic 5-parameter

isometry group with Heisenberg algebra (B.8).

C Gyraton metrics

In this appendix, we review briefly more general gyraton metrics and discuss issues arising

with the choice of profile functions and coordinate redefinitions.16

To motivate the choice of metric (4.1), we start with amore general gyraton metric,

viz. the pp wave with metric

ds2 = 2dudv + F (u, r, φ) du2 − 2J(u, r, φ) du dφ+ dr2 + r2 dφ2 . (C.1)

The corresponding Ricci tensor components are (with subscript commas denoting partial

derivatives),

Ruu = −1

2
∆F +

1

2r2
(J,r)

2 − 1

r2
J,uφ

Rur = − 1

2r2
J,rφ

Ruφ =
1

2

(
J,rr −

1

r
J,r

)
, (C.2)

and Ruu = 0. In the vacuum region outside a source localised at r = 0, the metric coefficient

J(u, r, φ) is therefore constrained by J,rφ = 0 and J,rr − 1
r J,r = 0, which implies

J(u, r, φ) = ω(u)r2 + J̃(u, φ) . (C.3)

Now consider the effect of coordinate redefinitions on the metric (C.1). First,

φ → φ+ α(u) , (C.4)

changes the metric coefficients by

F (u, r, φ) → F (u, r, φ) + r2α′(u)2 − 2J(u, r, φ)α′(u) ,

J(u, r, φ) → J(u, r, φ)− r2α′(u) . (C.5)

It follows that we can eliminate the ω(u) term in (C.3) and with no loss of generality take

J(u, r, φ)→ J̃(u, φ), i.e. with no r-dependence in the coeffcient of dudφ in the metric. This

considerably simplifies the curvatures in (C.2), leaving only

Ruu = −1

2
∆F (u, r, φ)− 1

r2
J̃,uφ(u, φ) (C.6)

non-vanishing.

16A very clear presentation of these results for gyratons may be found in the paper [51].
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Next, consider the redefinition

v → v + β(u, φ) , (C.7)

under which

F (u, r, φ) → F (u, r, φ) + 2β,u(u, φ) ,

J̃(u, φ) → J̃(u, φ)− β,φ(u, φ) . (C.8)

This means that the whole dudφ term in the metric can be removed by a coordinate

redefinition if and only if J̃(u, φ) is expressible as a partial derivative ∂β(u, φ)/∂φ. Locally,

this is always true but not not necessarily globally. This is the case here since the vacuum

region where (C.1) applies (which excludes the source at r = 0) is topologically non-trivial

and admits non-contractible loops C encircling the axis r = 0.17

Now consider the special cases where we can factorise the u-dependence of the metric

coefficients in terms of the profile functions introduced in section 4. Without imposing

cylindrical symmetry, the metric is then of the form (C.1) with

F (u, r, φ) = f(r, φ)χF (u) , J(u, r, φ) = J(φ)χJ(u) . (C.9)

However, these profile functions are not independent, since the vacuum curvature equa-

tions (C.6) now imply

∆f(r, φ)χF (u) = − 2

r2

∂J(φ)

∂φ
χ′J(u) . (C.10)

The profiles are then related by χF (u) ∼ χ′J(u).

In fact, this is problematic for a physical interpretation. If we take χJ(u) ∼ δ(u) to

be impulsive, this requires χF (u) and the Ricci tensor Ruu to be proportional to δ′(u),

which is too singular for a physical source. On the other hand, if χJ(u) ∼ Θ(u, L), then

χF (u) ∼ δ
(
u+ L

2

)
− δ

(
u− L

2

)
, which necessarily gives a negative contribution to Ruu at

some values of u where it would violate the null energy condition Ruu = 8πGTuu > 0.

This difficulty, which would require the metric (C.1) to be embedded in a modified

spacetime allowing a positive definite Ruu, is entirely avoided in the case of cylindrical

17This is clearest [51] if we consider the more general pp wave metric

ds2 = 2dudv + F (u, xi)du2 − 2Hi(u, x
i)dudxi + δijdx

idxj .

A coordinate redefinition v → v+β(u, xi) then sends Hi(u, x
i)→ Hi(u, x

i)−β,i(u, xi), so Hi(u, x
i) can be

eliminated if and only if it satisfies the integrability condition

Hi,j −Hj,i = β,ij − β,ji = 0 .

In the language of differential forms, we may define H = Hidx
i so the integrability condition corresponds

to dH = 0. Now, with the simpler metric (C.1) considered here, H = Jdφ and so dH = J,rdr ∧ dφ. Since

we have established above that with no loss of generality we can take J,r = 0, it follows that dH = 0,

i.e. that H is a closed form. The Poincaré lemma now implies it is locally exact, i.e. Hi = ∂iβ for some

β(u, φ) and can be removed locally by the coordinate redefinition (C.7). However, the Poincaré lemma does

not imply global exactness in the presence of non-contractible loops as we have here in the topologically

non-trivial vacuum region around the gyraton.
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symmetry. This seems in any case to be the most natural physical situation. Then, in the

metric (C.1), we set

F (u, r, φ) = f(r)χF (u) , J(u, r, φ) = J χJ(u) , (C.11)

with J constant and the profiles χF (u) and χJ(u) uncorrelated. This is the metric (4.1)

studied in detail in the main text.
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[66] I. Ozsváth and E. Schücking, An anti-Mach metric, in Recent Developments in General

Relativity, A. Masiello et al. eds., Pergamon Press, Oxford U.K. (1962).

[67] A. Ilderton, Screw-symmetric gravitational waves: a double copy of the vortex, Phys. Lett. B

782 (2018) 22 [arXiv:1804.07290] [INSPIRE].

– 47 –


