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Abstract 

    The boundary element method (BEM) has been implemented in elasticity problems very 

successfully because of its high accuracy. However, there are very few investigations about BEM 

with concentrated loads. The displacement at the concentrated load point is infinite and traditional 

elements will lead inaccurate results near the concentrated load point. This paper proposes two 

types of displacement singular elements to approximate the displacement near concentrated load 

point, and high accuracy can be obtained without refinement. The second type of displacement 

singular element is a general element type, which can work well for both problems with or without 

boundary concentrated loads. Numerical examples have been studied and compared with results 

obtained by traditional BEM and finite element method (FEM) to show the necessary of the 

proposed methods. 

Keywords: boundary element method; elasticity problem; concentrated loads; displacement 

singular element. 

 

1. Introduction 

The boundary element method [1-6] has been applied in many areas [7-12] because of its 

high accuracy and boundary-only discretization. Compared with the finite element method (FEM), 

BEM can obtain very high accuracy with much fewer elements on the boundary. 

In elasticity problems, most of the boundary conditions are displacements and surface 

tractions. BEM can impose these boundary conditions directly and it is more convenient than 

FEM. In some cases, there are concentrated loads needed to be imposed on the computed domain. 

In FEM, the concentrated loads can be treated as nodal forces. However, in BEM, the concentrated 

loads cannot be imposed on nodes directly because of the singularities and the detail can be found 

in section 2. Actually, this is not a serious problem since one can let the nodes do not coincide 



with the concentrated load points. This treatment is reasonable because the displacement at the 

concentrated load point is infinite and its value can’t be considered directly in numerical 

computation. However, the accuracy is low if using the traditional elements in BEM, especially at 

points near the concentrated loads. This is because the traditional elements cannot approximate the 

rapidly changed displacement efficiently. Using more elements near the concentrated loads may 

improve the accuracy but much more time would be cost. In fact, the same problem exists in FEM. 

In FEM, the results near the concentrated loads are also very inaccurate and much more elements 

are needed to obtain reasonable results. 

Only a few literatures for BEM with concentrated loads in elasticity problems can be found.  

Qian [13] given the boundary integral equation for problems with concentrated loads based on 

Betti’s reciprocity theorem, and the contribution of concentrated loads were not considered 

accurately since traditional elements were used. Wang et al. [14] proposed a spline boundary 

integral equation with concentrated forces, and two kinds of singularities were treated. However, 

the validity and accuracy of the method for dealing with singularities is needed to be proved 

further. This paper tries to consider the contribution of concentrated loads more accurately by 

using displacement singular elements. The main idea is constructing new shape functions by 

assuming the displacement is infinite at concentrated load points. Two types of singular elements 

are proposed, the firs type has only one concentrated load point, while the second type has two 

concentrated load points at the edges of the element. Both types of elements can obtain very high 

accuracy without refinement mesh. Especially, the second type element can also work well for 

problems without concentrated load points, thus, one can use it on the entire boundary without 

considering if there have boundary concentrated loads. 

This paper is organized as follows. The boundary integral equation for elasticity problems 

with concentrated loads is introduced first. Then the displacement singular elements are proposed 

in section 3 and section 4, followed by the method for computing the singular and nearly singular 

integrals in section 5. Finally, numerical examples are tested to show the accuracy of the proposed 

methods.  

2. Boundary integral equation for elasticity problems 

    To obtain the boundary integral equation (BIE) of elasticity problems with concentrated load, 

one can treat the concentrated load as the limit of body force. The traditional BIE with body force 

can be written as [15]: 



 ( ) ( ) ( , ) ( )d ( )- ( , ) ( )d ( )+ ( , ) ( )d ( )c
  

     x u x U x y t y y T x y u y y U x y b y y  (1) 

where   is the computed domain and   is the boundary. x  and y  are points in 
2

. 

( )c x  is a coefficient relative with the position of x . u  are the displacement, t  are the 

tractions and ( )yb  are the body forces. ( , )U x y  and ( , )T x y  are the Kelvin kernels. For 2D 

plane strain problems, they can be written as 
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where ( , )r r x y  is the distance between point x  and y . ( )n y  is the unit outward normal 

at point y .   is the shear modulus and v  is the Poisson ratio of the solid. 

Suppose there is a concentrated load f  at point z  (see Figure 1(a)), and f  can be 

equivalent to uniform body force p  on a small area   centered at z  with radius   (see 

Figure 1(b)), then one can have 
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where   is the angle of the corner (see Figure 1(b)). Then the contribution of the concentrated 

load can be computed by domain integral as 
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where r  and   are the local polar coordinates, and 2 1    , in which 
1  and 

2  are 

the degrees of the two edges of the corner. 
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Figure 1. Problem with concentrated load 

    The kernel ( , )U x y  can be expressed by Taylor's expansion at point z  as 
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where ( , )nR x y  are the higher order expansions and 
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The integral of the first term in Equation (6) can be computed as 
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The integral of the second term in Equation (6) can be computed as 
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Similarly, the integrals of the rest terms in Equation (6) will be zero as 0  . Thus, 

Equation (5) will be 
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Suppose there are m  concentrated loads on the boundary, the boundary integral equation 

(BIE) of elasticity problems without body force can be written as 
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where ( )lf z  is the concentrated load at point 
lz . It should be noted that t  are regular values 

and the traction for the concentrated load points can be defined as 

 ( ) ( ) ( ) ( )l l l l   t z t z y z f z  (13) 

where ( )l y z  is the Dirac-delta function defined as 
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Finally, one can obtain the matrix form by discretizing the boundary into elements as 

  Au Bt BF  (15) 

where A  and B  are the coefficient matrices, and u  and t  are the vectors of nodal 

displacements and tractions on the boundary, and 
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Equation (12) can also be obtained from the Betti’s reciprocity theorem [13]. 

 

3. Displacement singular element with one concentrated load point 

From the fundamental solution shown in Equation (2), one can indicate that the singular 

order of displacement at concentrated load point is (ln(1 / ))O r , i.e. the displacement field is 

singular at the concentrated load point. Thus, the traditional shape function cannot approximate 

the displacement very well. To overcome this problem, displacement singular elements with 

kernel ln(1 / )r  can be proposed to approximate the displacement field more accurately, where 

r  is the distance between the interested point and the concentrated force point. 

3.1 Displacement Singular Element of Type One with Two Nodes (DSET1N2) 

     Now assuming the displacement in the singular element can be approximated by 
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where 1,2i   and z  is the singular point, i.e. the concentrated force point. ia  and ib  are 

unknown coefficients. 

Then suppose there are two nodes , 1,2j j y  in the element, where j y z  (see Figure 

2). One can have 
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Figure 2. Singular element with two nodes 

From Equations (19) and (20), one can obtain 
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Then the displacement can be rewritten as 
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where ( )j y  are shape functions: 
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Using this singular element, the concentrated load can be imposed accurately, and no 

refinement is needed near the concentrated load point. The procedure to create the singular 

elements is described as below.  

Step 1: Create the boundary element edges. Each boundary element contains two end points 

(see Figure 2). This procedure is the same as in traditional BEM. 

Step 2: Compute the distances between concentrated load point z  and two end points for 

each element. If both the distances are less than a prescribed value, this element is considered as 

singular element (see Figure 3). In this paper, the prescribed value is 2.5l , where l  is the length 

of the element. 
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Figure 3. Find out singular elements. 

Step 3: Create the singular element. Suppose the local coordinates of the element is from -1 

to 1, and the local coordinate 
0  of the concentrated load point in this element can be obtained. 

Then the local coordinates 
i  of the nodes can be defined as:  

(i) 
1 1.0   , 

2 0.25  , if 
00.5 1.0   

(ii) 
1 1.0   , 

2 0.25   , if 
00 0.5   

(iii) 
1 0.25  , 

2 1.0  , if 
00.5 0    

(iv) 
1 0.25   , 

2 1.0  , if 
01.0 0.5     

(v) 
1 1.0   , 

2 1.0  , if the concentrated load point is not in this element. 

Step 4: Create the traditional element. This procedure is the same as in the traditional BEM. 

If assuming the concentrated load point is at one of the edges of the singular elements, and 

using discontinue element, then the local coordinates 
i  of the nodes can be defined as 

1 0.25    and 
2 0.25  . This type of singular elements can be called displacement singular 

element of type one with two nodes (DSET1N2). At last, one can apply Equation (15) to solve the 

problem. In Equation (15), the corresponding coefficient matrix B  can also be computed by the 

displacement singular elements like coefficient matrix A , or it can be computed by traditional 

elements. 

3.2 Displacement Singular Element of Type One with Three Nodes (DSET1N3) 

Similarly, one can create higher order elements with three nodes by assuming 
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where 
ia , ib  and ic  are unknown coefficients,

 
  is the local coordinate of point y . The 

shape functions are defined as 
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where 
i  is local coordinates of the ith nodes, 1, 2,3i  . This type of singular element can be 

called displacement singular element of type one with three nodes (DSET1N3). 

One can check the values of the shape functions by 
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where n  is the total number of nodes in each element, and y z . 

4. Displacement singular element with two concentrated load points 

Displacement singular element of type one only suitable for at most one concentrated load 

point on each element. In this section, a general type of element with two concentrated load points 

is defined.  

4.1 Displacement Singular Element of Type Two with Three Nodes (DSET2N3) 

Suppose the concentrated load points are at the edges, then a singular element with three 

nodes can be defined as Figure 4, and the displacement can be approximated by 
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where 
1z  and 

2z  are concentrated load points, 
ia , ib  and 

ic  are unknown coefficients.  
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Figure 4. Displacement singular element of type two with three nodes (DSET2N3) 

At last, one can have 
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    This type of element can be called displacement singular element of type two with three 

nodes (DSET2N3). 

4.2 Displacement Singular Element of Type Two with Four Nodes (DSET2N4) 

To obtain higher accuracy, one can create displacement singular element of type two with 

four nodes (DSET2N4) by assuming 
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where ˆ
ia , ˆ

ib , 
îc  and ˆ

id  are unknown coefficients. At last, one can obtain the shape functions 

as 
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One should note that the displacement singular elements can also be used for case without 

concentrated load, especially for displacement singular elements of type two (DSET2). If using 

DSET2 to discretize the whole boundary, one does not need to care about where the boundary 

concentrated load located while meshing, and only the equivalent concentrated loads at the nearest 



element edges are needed to be computed. 

One can find out that element type DSET2 also satisfies Equations (30) and (31). 

5. Computation of the singular integrals 

In the displacement singular element, the shape functions have singular kernels and the 

integral should be dealt with carefully. Take the DSET2N3 as example, one may need to compute 

integrals with two singular kernels like 
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    For a given element, the integrals can be classified into three types (see Figure 5): (i) 

Regular-singular integrals; (ii) Nearly singular-singular integrals; and (iii) Singular-singular 

integrals. 
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Regular-singular integrals

Nearly singular-singular integrals
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Figure 5. Integrals on each element 

5.1. The regular-singular integrals 

    Suppose the distance between nodes x  and the center of element is 
0l , if 0 4l l , then the 

integrals can be considered as regular-singular integrals (see rx  in Figure 5). It only has weakly 

singular integrals in this case. However, there are two singular points at the edges of element; thus, 

one can subdivide the element into two segments at the center, and there is only one singular point 

on each segment. As shown in Figure 6, 1z  is still the singular point, and 2z  becomes the 

nearly singular point. To compute the nearly singular integrals caused by 
2z  accurately, this 



segment can further be subdivided into sub-segments adaptively. Finally, there are two types of 

segments left, one type contains singular point 
1z , which is also far away from point 

2z  and 

can be computed by self-adaptive coordinate transformation method [16]. The other segments 

have only regular integrals since they are far away from both 
1z  and 

2z . 

y1z 2z

rx
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Figure 6. Subdivision for regular-singular integrals 

5.2. The nearly singular-singular integrals 

If 
0 4l l  and point x  is not on the element, then the integral can be considered as nearly 

singular-singular integral (see point 
nsx  in Figure 5). Subdividing the element adaptively as 

done for the regular-singular integrals, one can finally obtain two types of integrals, i.e. weakly 

singular integrals with one singular point and regular integrals with no singular or nearly singular 

point.  

5.3. The singular-singular integrals 

If point x  is on the element, the integral can be considered as singular-singular integral (see 

point 
sx  in Figure 5). To compute this integral accurately, the element can be subdivided into 

three segments 
1 1z s , 

1 2s s  and 
2 2s z  (see Figure 7(a)), where 

1s  is the middle point between 

1z  and 
sx , and 

2s  is the middle point between 
2z  and 

sx .  

For segment 
1 1z s , the integral is a weakly singular integral, in which 

1z  is the singular 

point, and sx  and 2z  are the nearly singular points. Thus, this integral can be computed 

accurately by the adaptive subdivision scheme as used in the regular-singular integrals and the 

nearly singular-singular integrals. Segment 
2Ss z  can be handled using the same way. 

For segment 1 2s s , the integral is a weakly singular integral or strongly singular integral, in 

which 
sx  is the singular points, and 

1z  and 
2z  are the nearly singular points. Then segment 

1 2s s  can be subdivided into three sub-segments 1 3s s , 
3 4s s  and 

4 2s s  (see Figure 7(b)). 



Segments 
1 3s s  and 

4 2s s  have only nearly singular integrals with nearly singular points 
1z , 

2z  and 
sx , which can use the adaptive subdivision scheme to obtain the regular integrals. Keep 

subdivision segment 
3 4s s  into three sub-segments like this way, until the middle segment which 

contains the singular point 
sx  is far away from points 

1z  and 
2z , and the integral on this 

segment can be computed by self-adaptive coordinate transformation method [16] for weakly 

singular kernel, or by singularity subtraction method [17, 18] for strongly singular kernel. 

However, one should note that the rigid body motion method is still valid and it is applied in this 

paper to compute the strongly singular integrals in Equation (58). 

1z 2zsx1s 2s

1z 2zsx1s 2s3s 4s

(a)

(b)  

Figure 7. Subdivision for singular-singular integrals 

6. Numerical examples 

Numerical examples have been studied in this section to verify the accuracy of the proposed 

methods. For the purpose of error estimation, a formula is defined as 
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where 
( )e

iu  and 
( )n

iu  refer to the exact and numerical solutions, respectively. In all the examples, 

the Young’s modulus 1.0E   and Poisson’s ratio 0.25v  . 

6.1. Lame problem 

In this example, a hollow cylinder under uniform pressure on the inner surface shown in 

Figure 8 is studied to verify the displacement singular elements. The problem is a plane strain 

problem and only a quarter of the geometry can be analyzed due to the symmetry of the problem 

(see Figure 8(b)). 
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Figure 8. Lame problem 

The analytical solutions for the displacements and stresses are given as [15] 
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In this example, 1a  , 2b   and 1P  . DSET2N3 and DSET2N4 are applied to 

discretize the boundary. The relative errors computed from 153 points for the displacements and 

stresses are shown in Figures 9 and 10. It can be observed that both element types can obtain good 

results for traditional problem without concentrated load, and the accuracy obtained by DSET2N4 

is much higher than it obtained by DSET2N3. 
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Figure 9. Relative of the displacements for Lame problem 
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Figure 10. Relative of the stresses for Lame problem 

6.2. Disk under compression by concentrated radial forces 

A disk under compression is shown in Figure 11. The radius 5.0R  , and the concentrated 

force 1F  . The problem is considered as plane stress problem, and the analytic solutions of 

stresses are [19] 
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Figure 11. A disk under compression 

The problem is solved by BEM with six types of elements: traditional discontinue linear 

elements with 2 nodes (Linear2), traditional discontinue quad elements with 3 nodes (Quad3), 

DSET1N2, DSET1N3, DSET2N3, DSET2N4. In the methods used DSET1N2 or DSET1N3, only 

DSET1N2 or DSET1N3 are applied for the elements near the concentrated force points, while 

Linear2 or Quad3 are applied for the rest elements. Since this example only has concentrated load 

boundary conditions, the final coefficient matrix is singular and the singular value decomposition 

is applied to solve the final system of equations. In all the methods, 480 nodes are used on the 

boundary, and the results of stresses on line 2 0x   can be observed in Figures 12, 13, 14 and 15. 

Accurate results can be obtained by BEM with DSET1N2, DSET1N3, DSET2N3 and DSET2N4, 

for both points near and far from the concentrated force points. However, the results obtained by 

BEM with Linear2 and Quad3 have huge errors for points near the concentrated force points. 
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Figure 12. Stress 1  at points near the boundary 
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Figure 13. Stress 1  at points far from the boundary 
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Figure 14. Stress 2  at points near the boundary 
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Figure 15. Stress 2  at points far from the boundary 

6.3. A clamped beam under concentrated load 

A clamped beam under concentrated load at the middle point is shown in Figure 16, and 

4L  , 2H  , 1F  . Six types of elements applied in example 6.2 are used to solve this 



problem by BEM, and 288 nodes are used to discretize the boundary. For the purpose of 

comparison, finite element method (FEM) is also applied to solve the problem. The results of 

stresses on line 1 0x   are shown in Figures 17, 18, 19 and 20, and the results of displacement 

2u  are shown in Figures 21 and 22. It can be observed that the results at points far from the 

concentrated load point are close to each other; however, the results at points near the 

concentrated load point have much difference. Actually, from Figures 18, 20 and 22, one can find 

out that the results obtained by BEM with DSET1N2, DSET1N3, DSET2N3 and DSET2N4 are in 

good agreement with each other. For stress 1 , the results obtained by FEM with 320,000 

elements also agrees well with BEM with displacement singular elements, however, the results 

obtained by other methods have much difference. For stress 2 , the results obtained by BEM 

with displacement singular elements is highest, while the those obtained by BEM with traditional 

elements is lowest. For displacement 2u , the results obtained by FEM with 80,000 element has 

oscillation, and the values of 2u  obtained by BEM with displacement singular element are 

between those obtained by FEM with 320,000 elements and BEM with traditional elements. 
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Figure 16. Clamped beam under concentrated load 
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Figure 17. Stress 1  far from the concentrated load point 
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Figure 18. Stress 1  near the concentrated load point 
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Figure 19. Stress 2  far from the concentrated load point 
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Figure 20. Stress 2  near the concentrated load point 
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Figure 21. Displacement 2u  far from the concentrated load point 
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Figure 22. Displacement 2u  near the concentrated load point 

6.4. A plate with void 

    A plate with a void at the center under pull and five concentrated loads is shown in Figure 23, 

where 20L  , 1.0R  , 1.0P   and 1.0F  . Six types of elements applied in example 6.2 

are also used to solve this problem by BEM, and 2,400 nodes are used to discretize the boundary. 



FEM is also applied for purpose of comparison. The stress 1  on line 1 0x   is shown in 

Figures 24 and 25. The results obtained by BEM with Linear2, Quad3, DSET1N2, DSET1N3 and 

DSET2N4 are in good agreement with each other for all points on line 1 0x  , however, the 

results obtained by FEM is much lower at points near the void. Figures 26 and 27 plot the stress 

1  on line 2 0x  , and a little difference can be observed at points near the void. However, the 

difference at points near the concentrated load point is very large, which can be observed from 

Figure 27. The stress obtained by BEM with displacement singular elements is much higher than it 

obtained by other methods, and the result of FEM is the lowest. 
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Figure 23. A plate with void 
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Figure 24. Stress 1  near the void 
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Figure 25. Stress 1  far from the void 
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Figure 26. Stress 1  near the void 
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Figure 27. Stress 1  near the concentrated load point 

7. Conclusion 

The boundary element method for elasticity problems with concentrated loads is proposed. 

Two types of displacement singular elements are introduced to capture the singularities at 



concentrated load points. No refinement mesh is needed near the concentrated load points and 

high accuracy can be observed compared with the traditional BEM and FEM. The element type 

DSET2 with two concentrated load points at the element edges is a general element type, which 

can also work well for problems without concentrated loads. 

In the proposed displacement singular elements, an adaptive scheme is applied to compute 

the singular and nearly singular integrals. This procedure is time consuming and some more 

efficient methods [20-22] can be used to accelerate the integration.  

The proposed methods can also be applied in other problems with singular loads, such as 3D 

elasticity problems with concentrated loads. 
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