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22 ABSTRACT: Rainfall data from the Global Precipitation Measurement (GPM) mission provide a new source 

23 of information with high spatiotemporal resolution that overcomes the limitations of ground-based rainfall 

24 information worldwide. This study evaluates the performance of the Integrated Multi-satellitE Retrievals for 

25 GPM (IMERG) Final Run product over Brazil by means of multi-temporal and -spatial analyses. The 

26 assessment of the IMERG Final Run product is based on six statistics obtained for the period between January-

27 December 2016 (daily, monthly, and annual basis). The analysis consisted of comparing the satellite-based 
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28 estimates against a ground-based gridded rainfall product created using daily records from 4,911 rain gauges 

29 distributed throughout Brazil. Overall, the results show that the IMERG product can effectively capture the 

30 spatial patterns of rainfall across Brazil. However, the IMERG product presents a slight tendency in 

31 overestimating the ground-based rainfall at all timescales. Furthermore, the performance of the satellite varies 

32 throughout the regions. The higher errors and biases are found in the North and Central-West regions, but the 

33 low density of rain gauges in those regions can be a source of large deviations between IMERG estimates and 

34 observed data. As well, a large underestimation of the IMERG data is evidenced along the coastal zone of the 

35 Northeast region, probably due to the inability of the passive microwave and infrared sensors to detect warm-

36 rain processes over land. This study shows that the IMERG product can be a good source of rainfall data to 

37 complement the ground precipitation measurements in most of Brazil, although some uncertainties are found 

38 and need to be further studied.

39

40 Keywords: Gridded rainfall, Global Precipitation Measurement, Final Run, Performance

41 1. Introduction

42 Rainfall plays an important role in the water balance, as it is the main input into the hydrological system 

43 (Kidd and Huffman, 2011; Mahmoud et al., 2018; Schneider et al., 2016). Given its spatial and temporal 

44 variability, dense daily or sub-daily observations are required to understand specific hydrological processes 

45 (Kann et al., 2015; Kidd et al., 2017; McMillan et al., 2011; Meng et al., 2014). However, obtaining a consistent 

46 and continuous ground-based rainfall dataset with an adequate spatiotemporal resolution for such purposes 

47 remains a challenge worldwide, mainly because of the costs of operation and maintenance of the rain gauge 

48 monitoring network (Terink et al., 2018). Currently, the ground-based rainfall monitoring network in Brazil has 

49 approximately 11,820 rain gauges, resulting in an average density of one gauge per 720 km2, which is below 

50 the threshold of one gauge per 575 km2 recommended by the World Meteorological Organization (WMO) for 

51 the interior plane and undulating areas (WMO, 1994). However, the gauges are non-uniformly distributed with 

52 some regions in Brazil, such as the Southeast, having densities much higher than the threshold, reaching one 

53 gauge per 115 km2. Moreover, rain gauges with uninterrupted data in Brazil are few and the rainfall time series 

54 often contain temporal gaps. The lack of in-situ rainfall data is more acute in the Northern (which includes the 
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55 Amazon rainforest) and Central regions of the country, leading to an insufficient characterisation of these 

56 regions (Buarque et al., 2011; Collischonn et al., 2008; Curtarelli et al., 2014; Delahaye et al., 2015).

57 Precipitation observations by alternative methods such as multiple satellite sensors have become a 

58 viable solution in the past few decades to overcome the limitations of ground-based data (Hobouchian et al., 

59 2017; Levizzani et al., 2018; O and Kirstetter, 2018). Remotely sensed data can offer global information about 

60 precipitation with a range of required spatial and temporal resolutions. Furthermore, many remote sensing 

61 products related to rainfall are freely available for the end users (Mahmoud et al., 2018; Skofronick-Jackson et 

62 al., 2018; Tang et al., 2016a). One of the first dedicated and most important satellites for this purposes was the 

63 Tropical Rainfall Measuring Mission (TRMM), launched in 1997. It was a joint project between NASA 

64 (National Aeronautics and Space Administration) and JAXA (Japanese Aerospace Agency) to observe rainfall 

65 in the latitude band 50º North to 50° South (Huffman et al., 2007). TRMM provided products with a variety of 

66 spatial (0.25º to 5º) and temporal (3-hour to 1-month) resolutions. In the past few years, many studies used the 

67 TRMM Multi-satellite Precipitation Analysis (TMPA) for various purposes in Brazil such as hydrological 

68 modelling due to the low density and intermittency of rain gauges in some river basins (e.g. Coelho et al., 2017; 

69 Collischonn et al., 2008; De Paiva et al., 2013; Falck et al., 2015; Melo et al., 2016). Many other studies 

70 worldwide were also carried out using the TMPA (including Baik and Choi, 2015; Fang et al., 2013; Naumann 

71 et al., 2012; Pombo and de Oliveira, 2015; Yang and Nesbitt, 2014). However, some studies highlighted the 

72 need to assess the accuracy of the TMPA by comparison with ground-based data on a regional basis. For 

73 example, Melo et al. (2015) evaluated the TMPA over Brazil using a 14-year time series for uncertainties in 

74 daily and monthly estimates.

75 Like TRMM, the Global Precipitation Measurement (GPM) mission is also a joint project led by 

76 NASA and JAXA; the GPM Core Observatory launched in February 2014. GPM is the successor to TRMM, 

77 providing rainfall and snow information globally as contained in the Integrated Multi-satellitE Retrievals for 

78 GPM (IMERG) products at 0.1º x 0.1º (spatial) and half-hour (temporal) resolutions (Hou et al., 2014; Liu et 

79 al., 2017; Skofronick-Jackson et al., 2017). The IMERG algorithm incorporates microwave and infrared 

80 estimates from the GPM constellation, gauge observations, and other ancillary (Huffman et al., 2017a). 

81 Currently, there are three IMERG products available, namely: Early Run, Late Run, and Final Run. The Early 

82 and Late Run are near-real-time products available from 4 to 12 h after the observation, both being more suitable 
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83 for time-sensitive applications. On the other hand, the Final Run product is available 3.5 months after the 

84 observation, which allows it to incorporate a surface gauge analysis from the Global Precipitation Climatology 

85 Centre (GPCC) to improve the satellite estimations. As such, the Final Run is the most suitable product for 

86 hydrological modelling purposes (Tang et al., 2016b).

87 The GPM opens up new opportunities for hydrological investigations, particularly in ungauged areas 

88 (Asong et al., 2017). However, the performance of the GPM products needs to be critically evaluated in different 

89 regions of the world as sources of information for both end users and data producers (Prakash et al., 2018). 

90 Several recent studies evaluated different IMERG products in complex areas under distinct climatic and 

91 geographic aspects worldwide by using ground-based data and/or comparisons with other satellite products 

92 such as TMPA (Anjum et al., 2018; Asong et al., 2017; Beria et al., 2017; Dezfuli et al., 2017; Gebregiorgis et 

93 al., 2018; Lelis et al., 2018; Mahmoud et al., 2018; Mayor et al., 2017; Mitra et al., 2018; Muhammad et al., 

94 2018; O and Kirstetter, 2018; Oliveira et al., 2018; Prakash et al., 2018, 2016; Satgé et al., 2017; Sungmin et 

95 al., 2017; Tan et al., 2017; Tan and Duan, 2017; Tan and Santo, 2018; Tang et al., 2016a, 2016b; Wang et al., 

96 2017; Zhang et al., 2018). Most of the aforementioned studies showed good agreement of the IMERG products 

97 with the gauge, radar, and TMPA data. However, other studies found the same or less accuracy for the IMERG 

98 products compared to those from TMPA (Satgé et al., 2017). Some studies mentioned above were carried out 

99 at country-wide scale. Table 1 provides a tabular literature review which shows these relevant country-scale 

100 studies evaluating the performance of IMERG products, including those done in Brazil. It is the case that 

101 countries such as Brazil and China encompass different climate zones and rainfall patterns due to their vast 

102 territories. Consequently, studies carried out in these countries may be able to provide more detailed and critical 

103 analyses of the IMERG products.

104 INSERT TABLE 1

105 Table 1 Summary of relevant studies that evaluated the IMERG products at country-wide scale in relation to 

106 the proposed study.

107

108 As IMERG products have only become available recently, the number of studies carried out in Brazil 

109 from local-to national-scales is still very small. To our knowledge, only four studies checked the quality of the 

110 IMERG products (e.g. Lelis et al., 2018; Oliveira et al., 2018, 2016; Rozante et al., 2018), which are 
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111 significantly fewer than those that evaluated the TRMM products. For instance, Oliveira et al. (2016) used 

112 ground-based radar observations to evaluate the rainfall variations of the IMERG Final Run Version 04 product 

113 over an area of the Brazilian Amazon rainforest. They observed a satisfactory agreement between the ground-

114 based and the satellite data during the period analysed (from March to September 2014), but IMERG Final 

115 overestimated the heavier rainfall rates during the wet season. Lelis et al. (2018) analysed the one-year 

116 performance of the IMERG product by using rain gauges data for the eastern region of São Paulo State, Brazil. 

117 They concluded that the IMERG product generally overestimated over this region. The only national-scale 

118 assessment was carried out by Rozante et al. (2018), using around 3,400 rain gauges distributed over Brazil. 

119 They analysed whether the daily IMERG data can properly replace the daily TMPA data. However, they 

120 considered as a reference for the analyses of both products the coarse spatial resolution (0.25º) of the TMPA. 

121 Moreover, they based their studies in a point-to-cell perspective, i.e. without a spatial analysis and considering 

122 only 1,779 cells of the IMERG product among the more than 70,000 available for the Brazilian territory. 

123 Clearly, the validation of satellite rainfall data based on a point-to-cell analysis has some limitations, as the 

124 gauge stations provide point measurements observed over a continuous period of time, whereas precipitation 

125 from satellite observation is an average within the grid cells (Cohen Liechti et al., 2012; Jesus et al., 2015; Toté 

126 et al., 2015; Zad et al., 2018). Consequently, the comparison suffers from scale mismatch issues and other 

127 validation methods are needed to improve the analyses and overcome this problem (Guo and Liu, 2016).

128 Considering the limitations of the previous studies assessing the IMERG products in Brazil, our aim 

129 is to expand the analyses of the IMERG Final Run product across the Brazilian territory, as follows: (1) using 

130 a grid box approach based on a gridded observed rainfall product, (2) including spatially varying analyses, and 

131 (3) encompassing other variables in the evaluation process such as climate, topography, and density of observed 

132 data used in the analyses. The IMERG product was compared with a large amount of daily ground-based 

133 measurements distributed over grids covering the country, with grid boxes matching the IMERG cells. We 

134 addressed the following questions in this study: (a) Can the IMERG product be used as a source of rainfall data 

135 over Brazil? (b) How does the quality of the IMERG product vary spatially? (c) Are the annual and monthly 

136 IMERG rainfall estimates more accurate than daily estimates? (d) What analysed variables have more influence 

137 on the performance of the IMERG product? In the end, this study intends to provide insights for further 

138 applications of the IMERG Final Run product in Brazil at daily, monthly, and annual scales.
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139 2. Material and methods

140 2.1 Study area

141 This study was carried out for the whole Brazil, which covers approximately 8.5 M km2 between the 

142 coordinates 5º16´N-33º45´S and 34º47´W-73º59´W (Fig. 1). Brazil is the largest country in Latin America and 

143 the fifth-largest country in the world in area. The Brazilian territory has five official geographical regions, 

144 namely: North (N), Northeast (NE), Central-west (CW), Southeast (SE), and South (S). These regions generally 

145 correspond to the spatial variations in the long-term mean annual rainfall in Brazil. Region N, where the 

146 Amazon rainforest is located, is characterised by prevailing convective rainfall that can be higher than 2,000 

147 mm year-1 and even reaches 4,000 mm year-1 in some places (Alvares et al., 2013; Espinoza Villar et al., 2009). 

148 In contrast, most of region NE is characterised by a semi-arid climate in the inland area, with rainfall ranging 

149 from 380 to 700 mm year-1 (Alvares et al., 2013). However, along the first 100 km of the Atlantic coastal zone 

150 of NE, the rainfall can be as high as 1,500 mm year-1 (Kousky, 1979). The annual rainfall variations are similar 

151 in both regions SE and CW, with values ranging from 1,000 to 2,000 mm and concentrated during the austral 

152 summer (Melo et al., 2015). On the other hand, the rainfall is more spatially uniform throughout the year in 

153 region S, ranging from 1,200 to 2,000 mm (Nery and Carfan, 2014). According to Alvares et al. (2013), Brazil 

154 has twelve different Koppen’s climate types divided into three zones: Tropical (Zone A), Semiarid (Zone B), 

155 and Humid Subtropical (Zone C). The mean annual air temperature ranges from less than 10º C to greater than 

156 26º C. Besides Brazil as a whole, five different subareas with the same size (1.9º x 1.2º) were also selected to 

157 be individually evaluated in this study to check the quality of the IMERG data in small areas with high density 

158 of rain gauges (Fig. 1b). Each subarea is located in one of the five official geographical regions and represents 

159 different climate zones and/or annual average rainfall depths. Only subarea 2 is meridionally oriented in order 

160 to be confined to the Dry Zone and to cover as many rain gauges as possible. Fig. S1 shows the long-term 

161 monthly average rainfall obtained from rain gauges within the five selected subareas.

162 INSERT FIG. 1

163 Fig. 1 (a) Number and density of rain gauges used as a reference in the study. (b) Köppen’s climate classification 

164 map for Brazil according to Alvares et al. (2013) and selected subareas. Spatial distributions of the annual 
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165 rainfall (mm) for 2016 obtained from (c) rain gauges and (d) the IMERG-V05 Final product. The climatic 

166 symbols A, B, and C stand for Tropical, Dry, and Humid Subtropical, respectively.

167 2.2 Rain gauge data

168 This study used daily rainfall data from 4,911 rain gauges distributed over Brazil (Fig. 1). The ground-

169 based data for 2016 were acquired from rain gauges that are operated by the Brazilian National Water Agency 

170 (ANA), Brazilian National Institute of Meteorology (INMET), and sixteen regional water agencies. The 

171 Angular Distance Weighting (ADW) interpolation method was used to produce a daily gridded observed rainfall 

172 data matching the 0.1º x 0.1º IMERG grid (Hofstra and New, 2009; New et al., 2000; Xavier et al., 2016). 

173 Following the recommendation by Xavier et al. (2016), the weighting means data from the five available 

174 surrounding stations were used when applying the ADW method to perform the point-to-grid conversion. The 

175 weights for each station were defined by two components: (1) the weight due to the distance from the grid point 

176 to the rain gauge, calculated by the correlation decay distance (CDD) and (2) the weight of each station due to 

177 its isolation. Detailed information of the interpolation method can be found in Xavier et al. (2016). The gauge 

178 data were quality checked for extreme daily values equal to or higher than 450 mm. The missing data throughout 

179 the year 2016 represents ~10% of the total dataset recorded in the rain gauges. Gauges with missing data for a 

180 specific day were excluded from the interpolation to generate the gridded rainfall product for that day. Hence, 

181 the number of rain gauges changed over the study period, ranging from 2,975 to 3,739 for each day. The daily 

182 data were then accumulated to produce the monthly and annual information.

183 2.3 IMERG data

184 The IMERG dataset evaluated in this study is the Final Run product at the native 0.1º x 0.1º (spatial) 

185 and half-hour (temporal) resolution; Version 05 (V05) of the Goddard Profiling Algorithm (GPROF V05) 

186 provides precipitation estimates from all microwave sensors onboard the GPM constellation. The main changes 

187 between the oldest and newest versions of the IMERG products are summarised by Huffman et al. (2017b). For 

188 instance, the IMERG-V05 improved the gauge error estimates to provide proper weighting of monthly gauge 

189 and satellite-only estimates. Also, the IMERG-V05 product added the Quality Index for all half-hour and 

190 monthly products. The IMERG-V05 Final Run product also uses the GPCC analysis of global ground-based 
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191 monthly data from the Global Telecommunication System (GTS) and other sources, which is composed of 

192 7,000 stations distributed around the world. This study compared gauge and satellite-based data independently 

193 by choosing ground-based stations not used by GTS. The comparisons between the IMERG-V05 and rain gauge 

194 datasets were performed in this study at daily, monthly, and annual scales. Therefore, we aggregated the 30-

195 minute IMERG-V05 data to match the daily information of the ground-based data, which is collected at 9:00 

196 a.m. local time. The IMERG-V05 data were then accumulated between 9:00 a.m. (local time) and the 

197 subsequent 24 hours. Similar to the rain gauge data, the daily IMERG-V05 information was monthly and 

198 annually accumulated.

199 2.4 Evaluation procedures

200 Four evaluation procedures were performed to analyse the IMERG-V05 product over the Brazilian 

201 territory, so-called: (i) grid-scale, (ii) national-scale, (iii) subarea, and (iv) categorical analysis. The grid-scale 

202 comparison was carried out using the observed rainfall dataset and the IMERG-V05 product to evaluate the 

203 spatial behaviour of the satellite data. The national-scale analysis was performed to asses the satellite product 

204 over large areas comparing the national areal average of both ground-based and IMERG-V05 data. The subarea 

205 analysis consisted of computing the metrics of average values within each subarea defined in the study area 

206 section (see Fig. 1b). This analysis intends to assess how the IMERG-V05 performs in areas with a high density 

207 of gauges in each Brazilian region. The categorical analysis was carried out to better understand the spatial 

208 daily agreement between IMERG-V05 and observed rainfall data, based on the influence of climate, 

209 topography, and gauge density. The comparisons between the IMERG-V05 and rain gauge datasets were 

210 performed in this study at daily, monthly, and annual scales. 

211 2.5 Metrics

212 Six statistical metrics divided into three main groups were used to assess the quality of the IMERG-

213 V05 product. Considering the temporal resolution of the rain gauge network, the threshold for all daily metric 

214 analyses was set to 0.1 mm. Thus, all IMERG-V05 and/or rain gauge data with daily values below 0.1 mm were 

215 treated as zero. However, for the monthly and annual analyses, this threshold was not applied because it is of 

216 no physical sense. The first group of metrics is related to comparison of detecting the observed rainfall events, 
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217 including: (i) probability of detection (POD), which exhibits the fraction of rainfall events that the IMERG-

218 V05 detects and there are ground-based rainfall events; (ii) false alarm ratio (FAR), which gives the fraction of 

219 events estimated by IMERG-V05 which are not detected in the surface data; and (iii) critical success index 

220 (CSI), which combines the characteristics of false alarms and missed events:

221 POD =  
a

a + c                                                                                                                                                                       (1)

222 FAR =  
b

a + b                                                                                                                                                                       (2)

223 CSI =  
a

a + b + c                                                                                                                                                                  (3)

224 where a is the rainfall observed by the rain gauge and IMERG-V05 simultaneously, b is the rainfall observed 

225 by the IMERG-V05 but not observed by the rain gauge, and c is the rainfall observed by the rain gauges which 

226 was not observed by the satellite. Table 2 shows the definition of rainy and non-rainy days as well as each 

227 variable presented in Eqs. (1), (2), and (3). The desirable values of POD and CSI are close to one, while for 

228 FAR is near to zero.

229 INSERT TABLE 2

230 Table 2 Definition of rainy and non-rainy days for IMERG-V05 and observed data.

231

232 The second group of metrics corresponds to the errors of the IMERG-V05 estimation in comparison 

233 with the rain gauge data. It includes: (i) the mean error (ME), which represents the average magnitude of the 

234 satellite error, and (ii) the root mean square error (RMSE), which gives the sample standard deviation of the 

235 differences between the IMERG-V05 product and the observed rainfall:

236 ME =  
1
N 

1

∑
n = 1

(Ei ‒ Oi)                                                                                                                                                       (4)

237 RMSE =
1
N

n

∑
i = 1

(Ei ‒ O1)2                                                                                                                                               (5)

238 where O is the observed rainfall (mm), E is the IMERG-V05 estimated rainfall (mm), i is the index of the 

239 number of pairs, and n is the total number of compared pairs. Both ME and RMSE measure the accuracy of the 

240 IMERG-V05 product, so values close to zero indicate smaller errors. However, the ME gives an overall 

241 indicator of the bias (positive or negative), with the disadvantage that the positive and negative errors can cancel 

242 each other. Hence, sometimes a small ME does not means minor errors. The relative errors for both ME and 
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243 RMSE metrics were also computed to improve the interpretation of data (see the supplementary material for 

244 more details).

245 The third group describes the agreement between IMERG-V05 estimates and ground-based data, 

246 which only includes the correlation coefficient (CC):

247 CC =  

1
n

N

∑
n + 1

(Oi ‒ O)(Ei ‒ E)

σOσE
                                                                                                                                        (6)

248 where Ō is the average observed rainfall values (mm), Ē is the average estimated rainfall values (mm), and σ is 

249 the standard deviation (mm). The CC ranges from +1 to -1, with the extremes representing total positive and 

250 total negative linear correlation, respectively.

251 3. Results and discussion

252 3.1 Grid-scale evaluation

253 In this analysis, the IMERG-V05 data was evaluated against the observed rainfall on the native 0.1° x 

254 0.1° IMERG grid. The spatial distributions of POD and CSI suggest a good agreement of the IMERG-V05 in 

255 detecting daily rainfall events in most parts of Brazil, with values generally higher than 0.6 for both metrics 

256 (Fig. 2). The exception is along the eastern coast of the Brazilian NE, with many cells presenting values lower 

257 than 0.45 for both analysed metrics. The poor POD over coastal areas has also been observed in other studies 

258 of IMERG (e.g. Asong et al., 2017; Caracciolo et al., 2018). The FAR measures show that the IMERG-V05 

259 product exhibited low false alarms at a daily scale, except for the central part of the NE along the Brazilian 

260 driest zone. This effect was probably caused by the low number of rainy days during the study period, as also 

261 noticed by Prakash et al. (2018) over southeast peninsular India due to the rain-shadow effects.

262 The spatial distribution of daily CC shows a good agreement of the IMERG-V05 product with the 

263 observed gridded data, wherein most cells presented values equal to or higher than 0.7 (Fig. 2d). The good 

264 agreement is more noticeable in the regions S, SE, and part of the NE. The exception in the region NE was 

265 observed along the Atlantic coastal zone, with CC ≤ 0.40 in some cells. This occurred because the IMERG-V05 

266 failed to detect some rainfall events in the NE coast, as mentioned in the POD analysis. Melo et al. (2015) also 

267 observed poor agreement along the NE coastal region evaluating the daily rainfall data of TMPA products using 
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268 14-years time series. Similarly, Rozante et al. (2018) also detected large daily underestimation in most cells 

269 considered for the Brazilian coastal region by analysing IMERG and TMPA products. On the other hand, the 

270 worst agreement between the daily IMERG-V05 product and the gridded observed rainfall data was detected 

271 across the regions N and CW, with a large number of cells presenting CC values ranging from less than 0.1 to 

272 0.6. 

273 The spatial distribution of the IMERG-V05 product errors over Brazil shows that the ME values range 

274 between -5.5 (-75%) and 4.5 (110%) mm at daily temporal resolution analysis (Fig. 2e). The largest absolute 

275 underestimation and overestimation of the satellite data were observed in the region N for both ME and RMSE 

276 error metrics. This fact was expected because the North region, where the Amazon forest is located, is 

277 characterised by the largest amount of rainfall throughout the year. However, the range of relative ME and 

278 RMSE for region NE (from -75 to 110% and from 130 to 750%, respectively) is larger than the North region 

279 (from -60 to 90% and from 100 to 400%, respectively) (see Fig. S2). This effect can be observed along the 

280 coastal zone of the Brazilian NE, where considerable underestimation of the ME (higher than ~1 mm) was also 

281 detected, following the similar characteristics of the POD and CSI which presented low detection in the cells 

282 of the area.

283 INSERT FIG. 2

284 Fig. 2 Spatial distributions of daily (a) FAR, (b) POD, (c) CSI, (d) CC, (e) ME, and (f) RMSE.

285

286 Fig. 3 shows the box plots of metrics for the daily comparison for all of Brazil, where each point 

287 represents one analysed cell. The box delimits the first (25%) and third (75%) quantiles, while the strip and 

288 cross inside symbolise the median and mean, respectively. The whiskers indicate the 10 and 90% percentiles, 

289 with the circles after that representing the outliers. Overall, the three metrics related to detection of observed 

290 rainfall events show symmetric results close to each mean (Fig. 3a, b, and c). More than 90% of the cells 

291 presented values higher than 0.60 for POD and less than 0.22 for FAR, which indicates the good skill of the 

292 IMERG-V05 product in detecting daily rainfall over most of Brazil. The CC shows that most values are 

293 concentrated from 0.5 to 0.8, demonstrating a moderate agreement between observed and estimated rainfall 

294 grid values (Fig. 3d). Only 10% of the cells exhibited a CC lower than 0.4 for the daily analysis. The ME also 

295 showed strong symmetry at daily temporal resolution, with the mean close to 0 mm (Fig. 3e). This low ME 
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296 value may have been influenced by compensating positive and negative differences, as also observed by Tang 

297 et al. (2016a) in China. The RMSE was relatively high when compared to ME because there is no plus/minus 

298 compensation, with a mean value up to 7 mm for the evaluation of the IMERG-V05 product at grid scale. The 

299 relative mean of the daily ME and RMSE represent 5 and 200%, respectively (see Fig. S2). This indicates a 

300 small net bias, but potentially large uncertainty.

301 INSERT FIG. 3

302 Fig. 3 Box plots of metrics over observed and estimated rainfall grids at daily temporal resolution: (a) FAR, (b) 

303 POD, (c) CSI, (d) CC, (e) ME, and (f) RMSE. The histograms show the distribution of cells for each metric.

304

305 The monthly distribution of the metrics shows a noticeable improvement of the IMERG-V05 product 

306 when compared with the daily analysis (Fig. 4). This behaviour confirms longer time averages are more 

307 representative, as also seen by Caracciolo et al. (2018), Mayor et al. (2017), Tan et al. (2017), Tang et al. 

308 (2016a), among others. Overall, the CC presented values higher than 0.80 for 90% of the cells available for the 

309 Brazilian territory in the monthly analysis, most of them concentrated close to the mean (CC = 0.92) (Fig. 4a). 

310 As at the daily scale, the monthly results indicate a poor agreement between rain gauges and satellite rainfall 

311 grids observed over the N region and along the Atlantic coastal zone in NE, with CC reaching 0.3 in many cells. 

312 For the NE coastal zone, an underestimation of the satellite data was observed. Such underestimation was most 

313 likely caused by the prevalence of warm-rain process-dominated systems forced by the topography, which are 

314 not well-detected by the passive microwave sensors over land, as noted by Rozante et al. (2018) and analysed 

315 by Palharini and Vila (2017). Also, the calibration that works for infrared estimates in other places fails in NE 

316 Brazil and is more prone to missing heavy events due to the weakness of cloud top-rain relationship, even if it 

317 were calibrated correctly in an average sense. These factors presumably also drive the daily results reported 

318 above.

319 As for the daily analysis, the monthly distribution of ME exhibited symmetric values concentrated 

320 close to the mean (~2 mm), with 50% of the sample ranging from -8 to +16 mm (Fig. 4b). Once again, the low 

321 average found for ME indicates cancellation between negative and positive values. The spatial distribution of 

322 monthly ME shows that the extreme values larger than +60 mm and lower than -60 mm are more concentrated 
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323 in region N, which is echoed in the spatial distribution of RMSE. The mean relative ME and RMSE for monthly 

324 values are 5 and 36%, respectively (see Fig. S3).

325 INSERT FIG. 4

326 Fig. 4 Spatial distributions of monthly (a) CC, (c) ME, and (e) RMSE. Box plots and histograms of monthly 

327 (b) CC, (d) ME, and (e) RMSE.

328

329 Overall, the comparison between the annual rainfall grids shows that the IMERG-V05 product is fairly 

330 effective at representing the pattern of rainfall over Brazil (see Fig. 1c and d). However, some discrepancies 

331 between the spatial distribution of rainfall are observed, mainly in region N. The disagreements detected in 

332 region N both underestimate and overestimate the distributed rain gauge data. This behaviour suggests a 

333 problem due to the sparsity of observed data available to interpolate across region N. The cumulative frequency 

334 distribution of the observed gridded data demonstrates that 5% of the cells which represent annual rainfall 

335 higher than 3,000 mm show non-normal distributions, strengthening the case that the discrepancies are 

336 concentrated in region N (Fig. 5). Similar behaviour was also observed by Tang et al. (2016a) over the Tibetan 

337 Plateau, where the sparse gauge network used for the interpolation probably reduced the reliability of metrics 

338 calculated against such ground reference. Additionally, we observe that the IMERG-V05 product 

339 underestimated the annual rainfall along the NE coastal region. This performance follows the general pattern 

340 observed in the daily and monthly analyses when the IMERG-V05 product was not successful in detecting the 

341 rainfall events across this area. Additional analyses are necessary in order to assess the possible causes of 

342 different performances over Brazil.

343 INSERT FIG. 5

344 Fig. 5 Quantile-quantile (Q-Q) plot comparing the cumulative distribution of the IMERG-V05 Final product 

345 and ground-based gridded rainfall data. The solid lines represent theoretical normal distributions.

346 3.2 National-scale evaluation

347 This evaluation analysed the national comparison between the series from IMERG-V05 and rain gauge 

348 grids using the areal means for the entire country. The analysis reveals a strong agreement for the Brazilian 

349 territory as a whole, with the satellite data matching the average rainfall records at daily and monthly time scales 
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350 (Fig. 6). Generally, the regression line in the scatter plots demonstrates a slight overestimation by the IMERG-

351 V05 product at daily and monthly time scales. Analogous performance analysing the mean areal precipitation 

352 was also noticed in others national-scale studies (e.g. Caracciolo et al., 2018; Mayor et al., 2017; Tan and Duan, 

353 2017; Tang et al., 2016a). The national CC at daily and monthly temporal resolutions were 0.96 and 0.99, 

354 respectively. These values of the agreement are higher than those from the analysis of the daily and monthly 

355 average of individual cells (0.68 and 0.96, respectively). This shows that the areal aggregation leads to an 

356 improvement of the satellite product, indicating a good efficacy of the IMERG-V05 product to estimate 

357 precipitation over large areas.

358 INSERT FIG. 6

359 Fig. 6 Scatter plots and metrics of rainfall comparisons for national-scale evaluation over Brazil at (a) daily and 

360 (b) monthly timescales.

361

362 Comparisons between ground-based and IMERG-V05 data at national scale show the low variability 

363 of ME and RMSE at daily (0.09 and 0.78 mm, respectively) and monthly (2.7 and 6.4 mm, respectively) time 

364 scales. The annual average rainfall at national-scale estimated by the IMERG-V05 product for 2016 was 1,647 

365 mm, while the average rainfall of the interpolated data for the same year was 1,615 mm.

366 3.3 Subarea evaluation

367 Fig. 7 shows the scatter plots and evaluation metrics based on the mean areal rainfall for the five 

368 selected subareas. Each subarea was individually analysed in order to expose the problem related to the low 

369 density of gauges used for the interpolation in some regions. Also, this analysis provides more detail on the 

370 error characteristics of the IMERG-V05 product. Thus, subareas with a relatively high density of ground-based 

371 points were carefully chosen. At the daily time scale, the analysis indicates that the IMERG-V05 product 

372 presented a very good agreement for all subareas, with CC ranging between 0.80 (N) and 0.92 (NE). Similarly, 

373 the high values of POD (from 0.71 to 0.89) and CSI (from 0.65 to 0.88) showed satisfactory performance of the 

374 IMERG-V05 product in detecting the ground-based rainfall events in the subareas. The FAR presented values 

375 close to zero for almost all subareas, indicating low false alarms when regions with high density of in-situ data 

376 are considered for the analyses. The exception was noticed in region NE (FAR = 0.23) because that subarea is 
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377 placed in a dry zone, where there are fewer events to be correctly detected. Muhammad et al. (2018) also found 

378 noted low performance of satellite rainfall detection in the driest regions of Pakistan. In addition, more localised 

379 rainfall events in semiarid regions can be missed either by rain gauges or reduced to a very low quantity from 

380 averaging up to the satellite grid. Conversely, the subarea located in the region NE presented absolute values 

381 of ME and RMSE closer to zero due to the low rainfall depth throughout the year, but representing the highest 

382 relative values at daily (32.3 and 196%, respectively) and monthly (32.2 and 47.4%, respectively) temporal 

383 scales (see Table S1). Once again, the subarea located in region N exhibited the highest absolute values of ME 

384 and RMSE because of the largest number of days with rain and the high annual rainfall depth. Nevertheless, 

385 the relative ME and RMSE present similar values when compared to regions S, SE, and CW (see Table S1). 

386 Overall, all subareas presented a significant improvement of the metrics at the monthly time scale, with most 

387 metrics showing near perfect indices by comparing the areal mean of the interpolated gauge data and the 

388 IMERG-V05 product.

389 INSERT FIG. 7

390 Fig. 7 Metrics for the subarea analysis at daily (a, c, e, g, and i) and monthly (b, d, f, h, and j) scales based on 

391 the mean areal precipitation in the five official geographical regions in Brazil.

392 3.4 Categorical analysis

393 A categorical analysis was conducted to determine the direct influence of several factors on the daily 

394 agreement between the ground-based gridded rainfall data and the IMERG-V05 product. Fig. 8 shows the CC 

395 against the density of gauges (left column) and altitude (right column) categorised by the five regions in Brazil. 

396 Because of a large number of cells, the concentration of points was coloured in a normalised scale from zero 

397 (red) to one (blue), representing the highest and lowest concentrations, respectively. Overall, we observe that 

398 the CC inversely correlates to the density of gauges in regions N and CW of the country, with values ranging 

399 from 0.1 to 0.8 in areas with less than 10 gauges per 10,000 km2. In contrast, the correlations between CC and 

400 density of gauges have a tendency to increase from this threshold, with values ranging from 0.6 to 0.8. 

401 Meanwhile, regions S and SE presented similar behaviour, with CC mostly higher than 0.6 and reaching 0.9 in 

402 some places. However, it is worth highlighting that both regions S and SE present the highest density of gauges 

403 used for the interpolation, mostly higher than 10 per 10,000 km2.  These results reinforce the result in Tang et 
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404 al. (2018) that the spatiotemporal errors computed by comparing satellite and observed rainfall data increase 

405 with the reduction of the gauge density in a grid box approach.

406 INSERT FIG. 8

407 Fig. 8 Scatter plots of CC vs gauge density (left column) and altitude (right column) categorised by the five 

408 regions in Brazil, where the number of grid boxes at each point on the plot is normalised by the highest number 

409 on the plot, and then coloured according to the color bar at the bottom of the figure.

410

411 The relation between CC and altitude shows a higher scattering and lower concentration of points with 

412 the increasing of elevation. In general, the cells located at altitudes higher than 1,000 m above sea level present 

413 considerable improvement of CC, which is more noticeable in regions NE, CW, and SE. This find differs from 

414 the study carried out by Anjum et al. (2018) in Pakistan. However, it is similar to the results found by Mayor et 

415 al. (2017) in a Mexican region, where IMERG performed better at higher altitudes. It is also noticeable that the 

416 correlations between CC and altitude in both regions S and SE showed analogous behaviour to those observed 

417 for the station density analysis, with small ranges of CC variation according to the elevation. Unlike these two 

418 regions, larger dispersions are observed in regions N, NE, and CW for a wide range of elevations. Therefore, 

419 the similar behaviour of the scatter plots for both categorical analyses may suggest that the density of gauges 

420 affects the altitude evaluation.

421 In general, the correlation showed that the IMERG-V05 performed better in regions under Subtropical 

422 (Zone C) and Semiarid (Zone B) climates (Fig. 9). The Subtropical climate is found mostly in the regions S and 

423 SE; whereas the Semiarid climate prevails in NE Brazil. Three climates (Cwc, Csa, and Csb) were excluded 

424 from the analysis because they cover less than 0.01% of the Brazilian territory (Alvares et al., 2013). Overall, 

425 the climates identified as being part of climatic Zone A (Tropical climate) exhibited the largest dispersions, as 

426 well as the lowest means and medians of CC values. Zone A represents the largest climate area in Brazil and 

427 covers predominantly regions N and CW. Consequently, the categorical analysis by climate may have been 

428 once again influenced by the low density of rain gauges, which probably results in a poor performance of the 

429 IMERG-V05 estimates.

430 INSERT FIG. 9

431 Fig. 9 Box plots of CC categorised by climate.
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432 4. Conclusions

433 This study evaluated the IMERG-V05 Final Run product over Brazil using ground-based gridded 

434 rainfall data composed of 4,911 gauges as a reference. All analyses were performed in a distributed fashion at 

435 daily, monthly, and annual timescales for 2016. Overall, the results showed that the IMERG-V05 product can 

436 effectively capture the spatial patterns of rainfall across Brazil. The main specific findings of this study using a 

437 grid box-scale approach are summarised as follows:

438 (1) IMERG-V05 exhibited better agreement with the observed data at monthly timescale when 

439 compared to daily timescale in all analyses. Nevertheless, the IMERG-V05 presented a slight tendency in 

440 overestimating the gridded observed data at all analysed timescales.

441 (2) The performance of IMERG-V05 in the grid-scale and national-scale evaluations presented some 

442 variations as a function of the analysed region. Based on these two evaluations, the rainfall estimated by the 

443 satellite product exhibited higher errors and biases in regions N and CW, as well as along the Atlantic coast of 

444 region NE. The underestimation evident in the satellite product for the region NE is likely associated with  

445 topographic forcing that favours warm-rain process systems which cannot be detected very well by passive 

446 microwave sensors over land.

447 (3) The subarea evaluation revealed that the IMERG-V05 product compares well with the interpolated 

448 data in specific areas with high density of rain gauges, including region N. The categorical analysis confirmed 

449 that the low density of rain gauges in regions N and CW can be a source of large deviations, errors, and biases 

450 in the evaluation of the satellite rainfall product.

451 Based on the findings of this study, the IMERG-V05 Final Run product can be used as a source of 

452 rainfall data to complement the ground precipitation measurements in most parts of the Brazilian territory. The 

453 exception is in the coastal region of the Brazilian NE, where the IMERG-V05 product needs a bias correction 

454 procedure due to the large underestimation probably caused by the inability of the microwave and infrared 

455 sensors in to properly detect rain-warm events. Moreover, the IMERG-V05 estimates for regions N and CW 

456 need to be carefully used because of some uncertainties in the data which are probably associated with the low 

457 density of rain gauges used to create the ground-based gridded product. 

458 Finally, this study highlights that the relatively high spatiotemporal resolution of the IMERG-V05 

459 product can favour its application for many purposes in Brazil such as hydrological modelling. However, further 
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460 improvements of the IMERG-V05 product are needed for providing more accurate rainfall estimates mainly 

461 along the coastal zone of NE Brazil. Furthermore, studies exploring the characteristics of hourly and half-hourly 

462 estimates of the IMERG-V05 product over Brazil are strongly recommended.

463
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Table 1 Summary of relevant studies that evaluated the IMERG products at country-wide scale in relation to the proposed 

study.

Study IMERG Products Location / 
study area Study period Number of 

gauges
Analysis 
approach

1. Tan and Duan (2017) Final Run Singapore / 
719.9 k km2

1/Apr/2014 to 
31/Jan/2016 48 Point-cell

2. Muhammad et al. (2018) Late Run and Final 
Run

Pakistan / 
796.1 k km2

1/Jan/2015 to 
31/12/2016 36 Point-cell

3. Mahmoud et al. (2018) Early Run, Late 
Run, and Final Run 

Saudi Arabia / 
2.1 M km2

1/Oct/2015 to 
30/Apr/2016 189 Point-cell

4. Tang et al. (2016) Early Run, Late 
Run, and Final Run

China / 9.3 M 
km2

1/Apr/2014 to 
31/Dec/2014 2200 Grid box

5. Prakash et al. (2018) Final Run India / 3.3 M 
km2

1/Jun/2014 to 
31/Sep/2014 7000 Grid box

6. Tan and Santo (2018) Early Run, Late 
Run, and Final Run

Malaysia / 
338 k km2

12/Mar/2014 to 
29/Feb/2016 501 Point-cell

7. Rozante et al. (2018) Final Run Brazil / 8.5 M 
km2

1/Apr/2014 to 
28/Feb/2017 3400 Point-cell

8. Asong et al. (2017) Final Run
Southern 
Canada / 6.1 
M km2

12/Mar/2014 to 
31/Jan/2016

732 and CaPA 
gridded product 

Point-cell 
and grid 
box

9. This study Final Run Brazil / 8.5 M 
km2

1/Jan/2016 to 
31/Dec/2016 4911 Grid box



Table 2 Definition of rainy and non-rainy days for IMERG-V05 and observed data.

Gauge

Rain No rain

Rain A B
IMERG-V05

No rain C -



Supplementary material for

Grid box-level evaluation of IMERG over Brazil at various space and 

time scales

André N. Gadelhaa,*, Victor Hugo R. Coelhoa,*, Alexandre C. Xavierb, Luís Romero Barbosaa,c, Davi C. D. 

Melod,e, Yunqing Xuanf, George Huffmang, Walt Petersenh, Cristiano das N. Almeidaa

a Department of Civil and Environmental Engineering, Federal University of Paraíba, João Pessoa, PB 

58051-900, Brazil

b Department of Rural Engineering, Federal University of Espírito Santo, Alegre, ES 29075-910, Brazil

c Institute of Earth and Environmental Science, University of Potsdam, Potsdam, BB 14476, Germany 

d Department of Soils and Rural Engineering, Federal University of Paraíba, Areia, PB 58397-000, Brazil

e Department Hydraulics and Sanitary Engineering, University of São Paulo, São Carlos, SP 13566-590, 

Brazil

f College of Engineering, Swansea University, Bay Campus, Swansea SA1 8EN, UK

g NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

h NASA Marshall Space Flight Center, Huntsville, AL 35805, USA

Equations S1 (Relative ME) and S2 (Relative RMSE)

The relative (R) errors for both ME and RMSE metrics are: 

RME =  

1
N

1

∑
n = 1

(Ei ‒ Oi)

1
N

1

∑
n = 1

Oi

 × 100                                                                                                                    Eq. (S1)

RRMSE =

1
N

n

∑
i = 1

(Ei ‒ O1)2

1
N

1

∑
n = 1

Oi

 × 100                                                                                                           Eq. (S2)

where O is the observed rainfall (mm), E is the IMERG-V05 estimated rainfall (mm), i is the index of the 

number of pairs, and n is the total number of compared pairs. Both relative ME and relative RMSE measure 

the precision of the IMERG-V05 product in relation to observed rainfall, so values close to zero percent 



indicate smaller deviations. However, the relative ME gives an overall indicator of the bias (positive or 

negative), with the disadvantage that the positive and negative errors can cancel each other. Hence, 

sometimes a small ME does not means minor errors. On the other hand, the relative RMSE gives an idea 

of estimate errors that is influenced by the sample size, tending to small results when increasing the n.

Figures S1 to S3

Fig. S1 Long-term monthly average rainfall obtained from rain gauges within the five selected subareas: 

(a) North, (b) Northeast, (c) Central-west, (d) Southeast, and (e) South.



Fig. S2 Spatial distributions of daily relative (a) ME and (c) RMSE. Box plots and histograms of daily 

relative (b) ME and (d) RMSE.



Fig. S3 Spatial distributions of monthly relative (a) ME and (c) RMSE. Box plots and histograms of 

monthly relative (b) ME and (d) RMSE.

Table S1

Table S1 Relative values of ME and RMSE for the subarea analysis at daily and monthly time scales. 

Daily Monthly
Region

Relative ME Relative RMSE Relative ME Relative RMSE

North (1) 7.4% 93.9% 7.4% 11.6%

Northeast (2) 32.3% 196% 32.2% 47.4%

Central-west (3) 6.0% 88.1% 6.0% 13.6%

Southeast (4) 1.3% 96.5% 1.3% 8.7%

South (5) 0.7% 97.1% 0.6% 14.7%




