

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:

Transactions on Visualization and Computer Graphics

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa47911

Paper:

Simonetto, P., Kobourov, S. & Archambault, D. (in press). Event-Based Dynamic Graph Visualisation. Transactions

on Visualization and Computer Graphics

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa47911
http://www.swansea.ac.uk/library/researchsupport/ris-support/

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Event-Based Dynamic Graph Visualisation
Paolo Simonetto, Daniel Archambault, and Stephen Kobourov

Abstract—Dynamic graph drawing algorithms take as input a series of timeslices that standard, force-directed algorithms can exploit
to compute a layout. However, often dynamic graphs are expressed as a series of events where the nodes and edges have real
coordinates along the time dimension that are not confined to discrete timeslices. Current techniques for dynamic graph drawing
impose a set of timeslices on this event-based data in order to draw the dynamic graph, but it is unclear how many timeslices should be
selected: too many timeslices slows the computation of the layout, while too few timeslices obscures important temporal features, such
as causality. To address these limitations, we introduce a novel model for drawing event-based dynamic graphs and the first dynamic
graph drawing algorithm, DynNoSlice, that is capable of drawing dynamic graphs in this model. DynNoSlice is an offline, force-directed
algorithm that draws event-based, dynamic graphs in the space-time cube (2D+time). We also present a method to extract
representative small multiples from the space-time cube. To demonstrate the advantages of our approach, DynNoSlice is compared
with state-of-the-art timeslicing methods using a metrics-based experiment. Finally, we present case studies of event-based dynamic
data visualised with the new model and algorithm.

Index Terms—Information Visualisation, Graph Drawing, Dynamic Graphs, Event-Based Analytics, No Timeslices.

F

1 INTRODUCTION

T IMESLICING is integral to dynamic graph visualisation
and information visualisation in general. Surveys of

dynamic data visualisation methods [3], [7], [13] use the
timeslice as a basis for categorisation. For dynamic graphs,
animation and small multiples often rely on a timesliced
definition of dynamic data. Thus, the timeslice has been part
of the definition of dynamic graphs up to this point.

Dynamic graph drawing algorithms and evaluations
thereof also use the timeslice [15], [16], [27], [31]. The
dynamic graph drawing model for these approaches re-
quires timeslices to be defined beforehand (Fig. 1a). In these
models, the dynamic graph consists of a series of discrete
snapshots of the graph in time. At any given timeslice, if
a node is present in the timeslice but not the next one it is
deleted. Similarly, if it is not present in the timeslice but is
in the next one, it is added. Inter-timeslice edges connect a
node in the current timeslice to the same node immediately
before and after (if present), in order to encourage drawing
stability [5], allowing for easy identification of the same
node across time without highlighting [4]. The algorithm
then optimises this model to balance the competing goals
of high quality layout of the individual graphs in each
timeslice and the overall drawing stability.

Drawing dynamic graphs using timeslices makes sense
for a number of reasons. First, dynamic graph drawing
algorithms that use a timeslice model can be designed by
simple extensions of existing static graph drawing algo-
rithms. Second, when the input data is naturally structured
into timeslices, it makes sense to think of the dynamic
graph as a series of snapshots that encode graph evolution.
However, often the dynamic data comes as a series of events

• P. Simonetto was with Swansea University.
E-mail: paolo.simonetto@gmail.com

• D. Archambault is with Swansea University.
E-mail: d.w.archambault@swansea.ac.uk

• S. Kobourov is with the University of Arizona.
E-mail: kobourov@cs.arizona.edu

Manuscript received December 23rd, 2017.

where the nodes and edges in the graph have real-valued
time coordinates. In this case, in order to use these algo-
rithms, regular timeslices need to be imposed on the data
and projected down onto the nearest timeslice. But, how
many timeslices should be selected? If too many timeslices
are selected computation is unnecessarily slowed due to
the extra timeslices in the data set. If too few timeslices
are selected, information is lost through aggregation across
time. This aggregation will obscure the order of insertion
of edges and nodes which obscures graph structure (Fig. 2).
The Nyquist frequency states that if we want to be sure that
no information is lost, we must select timeslices at a rate
equal to the smallest gap between events. In most data sets,
such a number of timeslices would be prohibitively large.

The problem of selecting an appropriate number of
timeslices is further compounded by other factors. When
both high and low frequency features exist in the dynamic
data, a uniform set of timeslices across the entire data set
may not be appropriate. Imposing timeslices on event-based
data can actually induce instability into the drawing. As
inter-timeslice edges are always required if a node appears
in consecutive timeslices, non-interacting nodes will un-
dergo unnecessary movement. Finally, if we want to look
at graph structure between timeslices, we must re-project
the graph onto timeslices and redraw the entire data set.
Such limitations of timeslice-based drawing methods serve
as good motivation to pursue a model for dynamic graph
drawing that is not based on timeslices.

Beck et al. [12, p. 15] write that “the effects of using
continuous time with arbitrary fine sampling rates, rather than
discretised time, are largely unexplored”. In this paper, we
introduce a new model (Fig. 1b) for drawing dynamic
graphs without timeslices. We then describe the first dy-
namic graph drawing algorithm, DynNoSlice, that uses this
model to embed the dynamic graph in the space-time cube.
In this model, nodes and edges can have real-valued time
coordinates (as opposed to the integer-based coordinates
induced by timeslicing). Nodes are polylines in the space-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

Discretised time

Space

Ti
m
e

1

2

3

4

5

6

a b c d e

a

a

a

a

b

c

d

e

1

2

3

4

5

6

(a) Timeslice-Based Dynamic Graph

Continuos time

Space

Ti
m
e

a b c d e

a
b

c

d

e

a

c

e

1.8

5.7

(b) Event-Based Dynamic Graph

Fig. 1. A dynamic graph with 5 nodes. (a) Dynamic graph represented using timeslices. Nodes are projected into each timeslice. The projection of
these nodes (purple dots) causes information to be lost through aggregation across time. (b) In our approach, we do not impose timeslices on event
data. Rather, nodes are defined as piecewise linear curves in the space-time cube.

(a) Graph (b) Possibility 1 (c) Possibility 2

Fig. 2. Selecting too few timeslices obscures temporal structure. A
simple pattern is selected, but more complicated patterns in causality
exist. (a) A dynamic graph where too few timeslices have been selected.
Without changing the encoding, we cannot distinguish (b) or (c).

time cube while edges are ruled surfaces. Animation is a
straightforward way to visualise the space time cube, but
we also provide a method to extract and visualise a small
multiples representation of its contents. To demonstrate the
advantages of event-based dynamic graph drawing, we
compare DynNoSlice with state-of-the-art timeslicing meth-
ods using a metrics-based experiment. Finally, we present
case studies of event-based dynamic data visualised with
the new model and algorithm.1

2 RELATED WORK

DynNoSlice can be categorised as a offline event-based, dy-
namic graph drawing algorithm that does not use timeslices
to lay out the dynamic graph. In order to accomplish this
goal, it embeds the graph inside the space-time cube [7].
With this in mind, we review related work in dynamic
graphs and event-based visualisation.

2.1 Dynamic Graph Drawing
Dynamic graph drawing and visualisation now has a long
history [13]. Many algorithms have been proposed, but all
of them rely on timeslices as a part of the approach.

1. An earlier version of this work was presented at the Graph Drawing
and Network Visualisation (GD ’17) conference [63]. The sections of this
paper that describe the dynamic graph drawing algorithm (mainly
Sections 3 and 4) are based on this content but expanded to provide
more details for reproducibility. All other parts of this paper are new.
Specifically, we extend our technical contribution by introducing two
new methods to extract interesting small multiples, run a new metrics
experiment, and provide additional case studies. Note that in the earlier
version [63], we used the term continuous dynamic graphs for our model.
After feedback at the conference, we felt that event-based dynamic graphs
was a more accurate term which we use here.

2.1.1 Offline
Offline dynamic graph drawing algorithms capture all of the
dynamic data beforehand and optimise across it simultane-
ously. These algorithms have the advantage that they are
supplied with all relevant information for the time period
in question and can optimise across it.

Offline dynamic graph drawing has taken a number
of different perspectives: aggregating all time periods into
a single supergraph [23], [24], linking the same node in
consecutive timeslices together with inter-timeslice edges
while optimising all timeslices simultaneously [27], [28],
[31], providing support for animation and small multi-
ples [8], and metric evaluations of them [15]. Concepts in
offline dynamic graph drawing have also been applied to
the area of dynamic dimensionality reduction [59].

DynNoSlice is an offline dynamic graph drawing al-
gorithm. However, all of the above described approaches
require timeslices to draw and/or visualise the dynamic
graph. Our approach draws event-based dynamic graphs
directly without timeslices.

2.1.2 Online
Online dynamic graph drawing algorithms do not have
access to the full data over the entire period of interest.
These approaches optimise the current view, given what has
happened in the past, and cannot look forward to future
events as the information is not available.

Approaches for online dynamic graph drawing have
maintained the horizontal and vertical position of
nodes [52], used node ageing methods [39], and adapted
multilevel approaches [20] (using FM3 [43]). Online ap-
proaches have also been implemented on the GPU [35].

Although related, online approaches are substantially
different from our approach. Online algorithms have no
access to future information, whereas in the offline setting
the entire graph evolution is known in advance. The input
is fundamentally different: in the online problem, timeslices
at time t are created by adding/removing nodes and edges
from t−1, while in the offline problem a layout for the entire
cube considers all information. One can think of online
approaches as aggregating all time onto a single timeslice
while diminishing the influence of older data.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

2.2 Time to Space Techniques
Time to space techniques use one of the spatial dimensions
to encode time. These visualisations look very different from
those discussed in section 2.1 and have one dimension less
to provide an overview of the graph structure

A number of techniques have been implemented that
embed a representation of the dynamic network in two
dimensional space where one of the dimensions is at
least partially influenced by time. Many of these tech-
niques explicitly use one dimension as the time dimension
(1D+time) [17], [51], [61], [66], while others use dimension-
ality reduction to place structurally similar timeslices close
to each other in the plane [10], [67].

These techniques provide effective, complimentary visu-
alisations of dynamic graphs that are substantially different
from DynNoSlice because they devote at least part of one
dimension to time. Also, most of them still use the timeslice
as a basis for drawing and visualisation.

Some techniques use three dimensions (2D+time). Itoh et
al. [45] describe a technique that allows interaction with
timeslices in three dimensions. Other techniques use the
space-time cube directly to visualise a dynamic graph in
a three dimensional setting [9] or through specific views
of this cube [60]. Many techniques describe the evolution
of nodes as tubes [42], layers [14], or worms [2], [26] as a
metaphor where nodes are represented as polylines through
the space time cube.

These techniques visualise networks in three dimensions
and often nodes in this space appear as polylines. However,
all of these techniques use timeslices as a basis to create the
visualisation of the dynamic graph, while in this paper we
do not use timeslices to draw the event-based data.

2.3 3D Graph Drawing
A number of visualisation approaches use the full three
dimensions of space in order to draw and visualise a graph.
These approaches are used for static graphs that do not
evolve over time.

Both force-directed [34] (Gem [33]) and simulated an-
nealing [21] (Davidson and Harel [22]) graph drawing ap-
proaches have been adapted to draw graphs directly in 3D.
Multilevel force-directed algorithms that layout the graphs
in high dimensional space, such as GRIP [37], have also been
developed in order to scale to larger data sets. Specialised
graph drawing approaches, such as orthogonal [47] and
compound graph [58] drawings, have been extended to
3D as well. Munzner [55] uses spanning trees to visualise
graphs in 3D hyperbolic space, and Cordeil et al. [19] use
immersive environments to visualise graphs.

DynNoSlice has forces that are computed in 3D that are
similar to some of the 3D force directed algorithms above.
However, our approach is not a 3D force directed algorithm.
DynNoSlice has additional constraints that embed the dy-
namic graph in a 2D+time, space-time cube. After drawing
the event-based data, we can visualise it through animation
or small multiples.

2.4 Event-Based Analytics
Event-based techniques exist for directly visualising event
sequences of dynamic data [25], [53], [54]. Event-based ap-
proaches do not consider timeslices, but consider individual

events with real time coordinates. Often these techniques
provide interactive methods for aggregating large volumes
of individual events over time.

Often these events consist of scalar data across time.
Our approach can be considered the first dynamic graph
drawing algorithm that is event-based.

2.5 Temporal Networks in Complex Networks
Similar models for dynamic graphs have been studied in
the field of complex networks and in the emerging area
of temporal networks [44] with preliminary visualisations
of such networks using time as the x-axis (similar to Sec-
tion 2.2). Models for computing metrics on this type of data
(e.g. density, clustering coefficient and others) have been
formalised without timeslices [48].

These papers focus on formalising and modelling struc-
tures in stream graphs and include visualisations of event-
based dynamic networks that capture dense areas of edges
across time. We focus on algorithms for visualisation of such
networks, and in particular we present a model, a force-
directed algorithm, and visualisations from the algorithm
that represent such networks in 2D+time. Our visualisations
and drawings are interesting as they are better able to clarify
network topology with time.

3 EVENT-BASED DYNAMIC GRAPH MODEL

Let G = (V,E) be a static graph defined with node set V
and edge set E ⊆ V × V . We define attributes (functions) on
the nodes and edges of the graph that encode characteristics
such as their positions, weights, and labels. The node posi-
tion attribute (PG : V → R2) maps a node v into its position
in the 2D plane pv , e.g., PG(v) = (1, 4). This attribute is not
integral to our model of event-based dynamic graphs, but is
used to compute and store the layout of these graphs.

We define an event-based dynamic graph D = (V,E) as
a graph whose attributes are also a function of time. Let T be
the time domain defined as an interval in R. Attributes are
functions defined in the domain V ×T for nodes, and E×T
for edges. For example, the node position attribute PD :
V × T → R2 is the function that describes the position of v
for each time t ∈ T . We assume without loss of generality
that the node and edge attributes can be defined piecewise,
e.g.:

PD(v, t) = Pv(t) =

Pv,1(t) for t ∈ T1
...
Pv,n(t) for t ∈ Tn
pv,ω otherwise

In other words, a dynamic attribute can be thought of as
a map that links each node/edge to a sequence of functions
Pv,i that describe its behaviour in disjoint intervals of time
Ti, with a default value returned for t /∈

⋃
i Ti. In the rest of

paper, we consider only piecewise linear functions for nodes
and edges.

Attributes specify a variety of node and edge charac-
teristics. For data that can be meaningfully interpolated
(e.g., colours, weights, positions), the functions above can be
described by initial and final values. For attributes without
meaningful interpolation (e.g., labels), we prefer functions

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

that are constant in the related interval. For example, the
position and label attributes for a node v of D can be:

Pv(t) =

(1, 0)→ (4, 0) for t ∈ (9, 12]

(2,−2)→ (5, 1) for t ∈ (12, 15]

(5, 1)→ (4, 5) for t ∈ [17, 19]

(0, 0) otherwise

Lv(t) =

Jane Doe for t ∈ (10, 11]

Jane Smith for t ∈ (11, 16]

unknown otherwise

We define the attribute appearance that implements the
classic dynamic graph operations node/edge insertion and
deletion.

Av(t) =

true for t ∈ [2, 7)

true for t ∈ (9, 13]

false otherwise

In order to mark an edge e = (u, v) as present in Tx, we
need to ensure that both u and v are present for the entire
Tx.

This definition supports changes in node/edge charac-
teristics at any time, whereas timesliced dynamic graphs
allow changes only to occur in timeslices. DynNoSlice im-
plements the above model as a collection of piecewise, linear
functions defined on intervals in the space-time cube. Fast
access to these functions at any given time is required. In our
implementation, we use interval trees. When the intervals
are guaranteed to be non-overlapping, simpler structures
such as binary search trees can be used.

3.1 Time to Space Conversion
In the space-time cube, the time dimension is defined in
units that are not homogeneous with the space dimensions.
It is therefore necessary to define a conversion factor, τ ,
that transforms a unit in the time coordinates to τ units
of space. We also define an ideal distance between two
nodes (polylines) δ. The choice of τ and δ can substantially
affect the performance of the drawing algorithm, as shown
in Fig. 3. Consider the points a = (0, 0) and b = (0, 5) at
time 0, and the point c = (1, 0) at time 1. Consider two
conversion factors τ1 = 1 and τ2 = 10 keeping δ constant.
In the first case, the points in the space-time cube will be
a = (0, 0, 0), b = (0, 5, 0), and c = (1, 0, 1). A hypothetical
repulsive force exerted on a by c will be stronger than that
exerted by b, since the distances ac and ab are respectively√

2 and 5. In the second case, the points will be a = (0, 0, 0),
b = (0, 5, 0), and c = (1, 0, 10). In this case the situation is
reversed, since ac ≈ 10 and ab = 5.

The choice of τ depends on the original time units
(milliseconds, seconds, years, etc.) and desired effect of time
on the spatial dimensions. Smaller τ results in a dense cube,
where time will heavily influence node position in 2D, while
larger τ leads to a sparse cube, where spacial positioning is
less dependent on the time dimension.

As a rule of thumb, τ should be selected such that it is
δ times the average rate of events in the space-time cube.
For example, if the time unit is years and events appear on
average once every two months τ = (12/2) ∗ δ. If δ = 5,
the value for τ is set to 30. Using this estimate, τ can be
automatically selected based on a given δ.

4 DYNNOSLICE IMPLEMENTATION

An event-based dynamic graph D can be transformed into a
3D static graph D′ by embedding it in the space-time cube.
Algorithms for static or timesliced dynamic graphs can be
extended to work with this new representation. In this sec-
tion, we describe our force-directed algorithm for drawing
event-based dynamic graphs. It has been implemented and
the source code is available2.

4.1 Representation in the Space-Time Cube

We can define a space-time cube transformation (STCT) that
transforms an event-based dynamic graphD into a 3D static
graph drawing D′ in the space-time cube, as follows. In D′,
the presence and position of each node is represented by a
sequence of trajectories. The shapes of these trajectories are
defined by the position attributes. In the example above, the
trajectory of v is defined by three line segments, (1, 0, 9) →
(4, 0, 12), (2,−2, 12) → (5, 1, 15) and (5, 1, 17) → (4, 5, 19),
and by portions of the line (0, 0, x), as shown in Fig. 4a.

The number of these trajectories is also affected by the
appearance attribute. In the example above, the node v
appears two times: at [2, 7) and at (9, 13]. Clearly, the be-
haviour of the node at times when it is not part of the graph
is non-influential. Therefore, the node appearance and posi-
tion in the space-time cube can be identified by the segments
sv,1 = (0, 0, 2) → (0, 0, 7), sv,2 = (1, 0, 9) → (4, 0, 12)
and sv,3 = (2,−2, 12) → (3,−1, 13), as shown in Fig. 4b.
The trajectory given by the polyline is determined by the
start and end points, as well as the bends (the junctions of
consecutive segments).

The representation of edges in the space-time cube is
less intuitive. By connecting two trajectories with lines in
the space-time cube, we obtain a ruled surface. Therefore,
an edge e = (u, v) is a surface that connects trajectories u
and v for a duration indicated byAe. If the node trajectories
are not continuous as in the above example:

lim
t→12−

Pv(t) = (4, 0) and lim
t→12+

Pv(t) = (2,−2),

an edge might create two or more surfaces, as shown in
Fig. 4c.

If the trajectory segments, considered as vectors, form
an acute angle with respect to the positive time axis, this
transformation is easily invertible. Thus, trajectory segments
cannot fold back on themselves, as that would identify
multiple positions for that node at a given time. We can
then work on this event-based dynamic graph in 3D as if it
were a static graph as follows:

Da → STCT → D′a → Op. → D′b → STCT−1 → Db

4.2 Force-Directed Drawing Algorithm

Our force-directed algorithm is based on earlier variants by
Simonetto et al. [62], [64]. As in most force-directed algo-
rithms, after an initialisation phase, the algorithm iteratively
improves the current layout of the drawing in 3D for a given
number of iterations. Each iteration of DynNoSlice performs
the following actions:

2. http://cs.swan.ac.uk/∼dynnoslice/software.html

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

(a)

X

Ti
m
e

Y

a

b

a

(b)

X

Ti
m
e

Y

a

b

a

(c)

Fig. 3. Selecting an appropriate time dimension scaling factor τ . (a) By compressing the horizontal dimension, the direction and balance of forces
changes, particularly evident for roughly horizontally aligned elements, such as the purple and orange nodes. (b) A starting space-time cube with
two node trajectories. In this case, the time dimension is different from the two spacial dimensions; therefore a factor τ that transforms time units in
space units is needed. (c) The space-time cube obtained using a smaller value for τ : the relative distance between node trajectories, and therefore
the magnitude of the forces, is affected by the choice of τ .

X

Ti
m
e

Y

(1,0,9)

(4,0,12)(2,-2,12)

(5,1,15)

(a)

X
Ti
m
e

Y

(1,0,9)

(4,0,12)(2,-2,12)

(3,-1,13)

(0,0,2)

(0,0,7)

(b)

X

Ti
m
e

Y

a b

a

(c)

Fig. 4. A event-based dynamic graph in the space-time cube. (a) Position attribute for a node v. Piecewise linear functions encode node position
across time. (b) The appearance attribute. Node v only appears over some intervals of time. (c) Edges connect node trajectories as encoded by the
edge appearance attribute. The edge traces one or more ruled surfaces in the space-time cube.

• Compute and sum the forces.
• Move nodes based on the forces and constraints.
• Adjust trajectory complexity in the space-time cube.

The complexity of DynNoSlice is in worst case O(b2 + e)
per iteration for b trajectory bends and e edges in the
dynamic graph, with the attractive and repulsive forces
dominating the complexity. As the number of bends and
edges is often proportional to the number of events in the
event-based dynamic graph, the approach can be considered
quadratic in the number of events. This worst case occurs
when most of the bends are in the same dense region of the
space time cube.

4.2.1 Initialisation

Each node v is randomly assigned a position (a, b) in the 2D
plane. The points defining the trajectory of v are extruded
linearly along the time axis (a, b, x), where x is the time
coordinate.

4.2.2 Forces

DynNoSlice has five forces. The first three forces adapt stan-
dard, force-directed approaches to work with trajectories in
the space-time cube. The final two are new forces needed for
event-based dynamic graph drawing. In our notation, a star
transforms 3D vector to 2D by dropping the time coordinate.

For example, if p = (1, 2, 3) then p∗ is (1, 2). The parameters
δ and τ are as defined in section 3.1.

1. Node Repulsion. This force repels trajectories from each
other. The force evenly distributes node trajectories in space
and prevents crowding [32], [50].

For each segment endpoint a in the trajectory of node
u and segment sv,j = c → d of node v, with u 6= v,
we compute the forces generated on the points a, c and d
(see Fig. 5). If the points a, c and d are not collinear and
(p ∈ sv,j), they form a plane. In this case, we apply the force
EdgeNodeRepulsion(δ) described in previous work [64],
except node positions are in 3D. If the points are collinear
or the projection p of a does not fall in the segment sv,j
(p /∈ sv,j), we apply NodeNodeRepulsion(δ) [64] between a
and c and between a and d.

Since distant segments do not interact significantly, they
can be ignored to reduce the running time. A multi-level
interval tree is used to identify segments that are sufficiently
close (< 5δ). All other pairs are ignored.

Given b bends in the node trajectories, the complexity of
the repulsive force could be as high as O(b2) if all bends
are in the same area of the space-time cube. However,
trajectories generally have a more uniform distribution. The
number of bends is often proportional to the number of
events present in the event-based dynamic graph.

2. Edge Attraction. This attractive force pulls trajectories

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

(a) (b) (c) (d) (e)

Fig. 5. Forces and constraints. (a) and (b) Node repulsion force between point a and the line segment c → d that represents the trajectories of
nodes u and v. (c) and (d) Edge attraction for an edge in the interval highlighted with yellow background. (e) Time movement restriction. Endpoints
(a and c) must keep their assigned time coordinates. Bend b cannot move past half the distance with other bends or endpoints.

that are linked by an edge closer to each other. The force is
exerted only for the intervals where the edge is present.

Let us consider an edge e = (u, v) that appears at
interval (t1, t2) and let I = (t1τ, t2τ) be the transformed
time interval in the space-time cube with conversion factor
τ that transforms time into the third dimension of the space
time cube. For each pair of segments su,i = a → b and
sv,j = c → d that overlap with the interval (f, g), we
compute the points m,n of segment su,i and p, q of segment
sv,j so that:

min
{
f ∈ I : ∃m ∈ su,i, ∃p ∈ sv,j , f = m[2] = p[2]

}
max

{
g ∈ I : ∃n ∈ su,i, ∃q ∈ sv,j , g = n[2] = q[2]

}
where x[2] is the time coordinate of the point x in the space-
time cube. We compute the attractive force between the
points m and p, and n and q, using EdgeContraction(δ) [64]
(see Fig. 5c). This force is applied to the segment endpoints
once scaled by its distance from the application point and
by the coverage of the edge appearance on the segment (see
Fig. 5d). For example, if the force Fm attracts m to p, then
Fa applied to a will be:

Fa = Fm ∗
a[2]−m[2]

a[2]− b[2]
∗ n[2]−m[2]

a[2]− b[2]
.

Given e edges, the complexity is O(e). Often, edges are
the events and e is simply the event count.

3. Gravity. This force encourages a compact drawing of
node trajectories. Let c be the centre in 2D of the initial
node placement in the space-time cube. The gravity F of
each segment endpoint a is F = c∗ − a∗. Given n node
trajectories, this is O(n).

4. Trajectory Straightening. This force smooths node tra-
jectories, helping with node movements over time. For tra-
jectory bends, we use the CurveSmoothing [64] force, which
pulls a bend b to the centroid of the triangle ∆abc formed
by using the previous and next bends or endpoints a and
c. A trajectory endpoint a has no such triangle. Therefore,
it is pulled in 2D toward the midpoint of the segment
formed with the closest bend or endpoint b. As each bend is
considered at most twice, its complexity is O(b).

5. Mental Map Preservation. This force prevents trajectory
segments from making large angles with respect to time,
encouraging nodes in the drawing to remain stable during
graph evolution [5]. When segments form a 90◦ angle with
time, a node essentially “teleports” from one place to an-
other, while segments parallel to the time axis result in no
node movement. Thus, segments should form small angles

with the time axis. This force pulls endpoints a and b of each
trajectory towards each other in 2D with a magnitude based
on the angle α the segment makes with the time axis:

Fa = (b∗ − a∗) ∗ α

90◦ − α

As each bend is considered at most once, its complexity
is O(b).

4.2.3 Constraints

Node movement constraints ensure valid drawing of the
event-based dynamic graph in the space-time cube. In par-
ticular, constraints are needed to prevent undesired move-
ments. As all of these constraints consider the movement of
a bend relative to the one that comes before/after it, they
can be enforced in O(b) time.

Decreasing Max Movement. We insert a constraint on
the maximum node movement allowed at each iteration.
This allows large movements at the beginning of the com-
putation, and smaller refinements towards the end. This
constraint is similar to DecreasingMaxMovement(δ) [64].

Movement Acceleration. This constraint promotes con-
sistent movements with previous iterations and penalises
movements in the opposite direction. This constraint corre-
sponds to MovementAcceleration(δ) [64].

Time Correctness. This constraint prevents a node from
changing its time coordinate. Consider the trajectory formed
by the segment t = a → b. If a changes its time coordinate
in the space-time cube, the time of its appearance will also
change. Consider a trajectory formed by several segments,
t = a → b → c → d. The trajectory endpoints a and d,
corresponding to the appearance and disappearance of the
node, should have fixed time positions. However, bends
b and c can move in time, so long as they do not pass
each other (a[2] < b[2] < c[2] < d[2]) as this would
result in a node being in two locations at once. Therefore,
the movement Ma of node a in time is constrained to be:
Ma ←M∗a if a is the endpoint of a trajectory, and

Mb ←Mb ∗max

r ∈ [0, 1] :

Ma[2]−Mb[2]

2
< rMb[2]

<
Mc[2]−Mb[2]

2

if b is a trajectory bend between other bends or endpoints

a and c (see Fig. 5e).

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

Fig. 6. Node (edge) transparency when aggregating a small multiple
across time. We consider a Gaussian curve centred at t and with
standard deviation equal to a sixth of the cluster interval in time. The
appearance of the graph element in time is extracted (green lines). The
transparency of the element is the area under the Gaussian during the
appearance intervals (yellow) divided by the total area under the curve.

4.2.4 Complexity Adjustment of Node Trajectories
As bends move freely in time and space, node trajectories
can be oversampled or undersampled. Therefore, bends can
be inserted or removed from the polyline representing a
node trajectory. If a segment of the trajectory between bends
a and b is greater than a threshold (2δ in this paper), a bend
is inserted at its midpoint. Similarly, if two consecutive seg-
ments ab and bc are placed such that the distance between a
and c is less than a threshold (1.5δ in this paper), the bend b
is removed and the two segments are replaced by ac.

5 SMALL MULTIPLE VIEW SUPPORT

Executing DynNoSlice produces node trajectories in the
space-time cube that encode the event-based dynamic graph
evolution over time. Similarly, the surfaces that define the
edges are also well defined in 3D. The most natural way
to visualise this data set in two dimensions is through an
animation where a plane passes through the space-time
cube from top to bottom.

Animated visualisations of long dynamic graph series
are often not effective [65]. In particular, such animations
require the viewer to rely on memory to compare events
that happen at the beginning of the animation to events that
happen at the end of the animation. A number of studies
have demonstrated that a small multiples visualisation of
dynamic graphs can be more effective [6], [30] and therefore,
we present a method for computing a set of small multiples
to visualise the contents of the space-time cube.

The problem of selecting timeslices is a difficult one.
Papers have examined how to select timeslices that preserve
underlying stream properties and it is arguable that there
is no way to choose relevant timeslices due to dynamics
occurring at many different temporal resolutions [18], [49].
In a visualisation setting, there are perceptual advantages
of considering a small multiples representation of a net-
work and therefore we should support a small multiples
representation of the drawing in the space-time cube. In our
approach, we consider screen space constraints and select a
small number of regions in the space-time cube where the
trajectories of nodes change often.

Given a graph G with a computed drawing in the space-
time cube (2D + t), we aim to select a positive number
of k regions of the space time cube and based on these
timestamps render a meaningful representation of the graph
evolution. The value of k is determined by the number of
small multiples windows that will fit on the display device.
The goal is to summarise the full contents of the space-time

cube by minimising the distance to all bends. In order to
select these regions, we consider two measures for distance.

The first measure divides the space-time cube into k
temporally consecutive slabs whereby the projection error
to the k planes defining them is minimised. Let pi with
i = 1 . . . b be the position of each bend in the space-time
cube with ti as its time coordinate. Let tµj

with j = 1 . . . k
the k planes in the space time cube perpendicular to the time
axis. We apply k-means to these planes, assigning all bends
to exactly one plane, minimising ||ti − tµj

||. The extent of
the slab is defined by the bend most distant to each side of
the plane that has been assigned to it.

In the second, we apply classic k-means to divide the
space-time cube into k regions. Let µj with j = 1 . . . k be the
k centres placed in the space time cube. We apply classic k-
means, assigning all bends to exactly one centre, minimising
||pi − µi||. This measure divides the space time cube into k
three-dimensional regions defined by the bends assigned to
each centre. The projection plane is the time axis aligned
plane that contains µj .

The small multiples are created by projecting the nodes
down onto a plane t. If a polyline representing a node
intersects the projection plane, its position is defined by the
point of intersection with t. For for polylines that are present
in the region that do not intersect t, the average position of
the last appearance before t and the first appearance after t
is taken. If either is appearance is missing (e.g., a node no
longer appears in the data set or it appears for the first time),
it is simply assigned the existing position.

For both nodes and edges, we compute a transparency
value that indicates how close it is to t. Let I = [ts, tf]
be the interval of the space time cube that represents the
union of all elements assigned to that cluster by k-means.
We consider a Gaussian centred at t with standard deviation
σ equal to a sixth of the interval tf − ts. Given a graph
node or edge, we compute the sum of the area under
this curve for which the element was present (see Fig. 6).
This area is divided by the total area of the curve and is
used as an alpha channel. This computation gives higher
importance to longer appearances close to t, but factors
in all other appearances. The transparency value can be
efficiently computed with a numerical approximation of the
cumulative distribution function (CDT), which reports the
normalised area under a Gaussian for a given value. For
each appearance [t1, t2], we add a contribution equal to
cdt(t2)− cdt(t1).

An example of five clusters found by this method are
Fig. 7 (3D distance used). This data set, discussed in detail
in Section 6.1, consists of tweets between teams in the
Guinness Pro12 rugby competition. A node is a team and
an edge connects two nodes at the precise moment a tweet
occurred.

6 METRIC EVALUATION

To evaluate the effectiveness of DynNoSlice, we use a
metrics-based experiment that measures stress, movement,
and crowding of the dynamic graph and tests both times-
liced and event-based data.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

6.1 Data Set Construction

In the evaluation of DynNoSlice, a number of data sets are
considered, some of which are event-based data sets while
others are timesliced data sets.

Infovis Co-Authorship (Timesliced). This is the co-
authorship network for papers published in the InfoVis
conference from 1995 to 2015 [1]. Authors that collaborated
on a paper appear as a clique at the time of publication of the
paper. Nodes disappear in years where the author does not
publish a paper. The data is of discrete nature with exactly
21 timeslices (one per year).

VanDeBunt (Timesliced). The van De Bunt data set con-
tains the relationships between 32 freshmen at seven dif-
ferent time points. At each point in time, each participant
was asked to rate the friendship into one of several cat-
egories spanning “best friendship” to “troubled relation”.
Additional attributes such as gender, smoker/non-smoker,
and program duration are also provided. We build a dis-
crete dynamic graph using the method of Brandes and
Mader [15]. An undirected edge is inserted into a timeslice
if the participants reciprocally reported their friendship as
either “best friendship” or “friendship” at that time.

Newcomb Fraternity Data (Timesliced). The Newcomb fra-
ternity data set contains the sociometric preference of 17
members of a fraternity in the University of Michigan in the
fall of 1956 [56]. Each participant was asked to order the
other students from their closest to their least close friend.
This data was collected weekly for about 15 weeks. As in
previous work [15], at each timeslice, we inserted undirected
edges connecting students to their three best friends.

Rugby (Event-Based). The data set consists of 3151 tweets
posted between 01.09.2014 and 23.10.2015 from the teams
participating in the Guinness Pro12 rugby competition. We
build an event-based graph by assigning each team a node
which remains constantly present in the drawing. An edge
is placed between two teams at the precise moment a tweet
happens. For each tweet at time t between teams a and
b, we define an appearance for the edge e = (a, b) at the
interval [t− 12h, t+ 12h]. Multiple edges between the same
two teams whose appearance interval overlaps or is smaller
than one day (t2 − t1 < 24h) are merged into a single
edge with appearance interval [t1 − 12h, t2 + 12h]. Note
that discretisation with a similar precision (daily) would
create 417 slices. In the timesliced version of the data set,
we flattened the cube into 20 slices (s = 20).

Pride & Prejudice (Event-Based). This data set [40] is a list
of all 4033 character dialogues in the order each appears
in the novel Pride & Prejudice. We build an event-based
dynamic graph by assigning a node to each character, and
by setting the appearance interval of an edge between two
characters when they are involved in a dialogue. Nodes
appear when they are involved in their first dialogue and
remain for the duration of the data set. We assign a time to
each dialogue defined by two components, t = r + s. The
integer component r is the chapter number. The fractional
component s position of the dialogue over the total number
of dialogues for the chapter. For example, the 4th out of 20
dialogues in chapter 5 has t5,4 = 5.2. For each dialogue
at time ti,j , the corresponding edge is marked as present
for the interval [ti,j−3, ti,j+3], merging eventual overlapping

appearances. The incident nodes are marked as present for
a slightly larger interval [ti,j−5, ti,j+5], again merging over-
lapping appearances into a single appearance. We create the
timesliced version of the data set by creating a timeslice for
each of the 61 chapters (s = 61).

6.2 Method

As there are no event-based dynamic graph drawing algo-
rithms in related work, we compare our results with times-
liced dynamic graph drawing algorithms. In our metric
evaluation, we considered four approaches:

VisoneA drawings were computed using the aggre-
gated layout with visone [16]. It is the simplest strategy
where all nodes and edges for the timespan of the dynamic
graph are collapsed down into a single graph, known as the
supergraph, which is drawn once, minimising global stress.

VisoneL drawings were computed using the times-
liced version of visone [16] and a linking strategy, which
performed well in previous studies [15], with default link
length of 200 and stability parameter α = 0.5.

DynNoSlice drawings were computed using DynNoSlice
and δ = 1 as the desired edge length.

DynNoSliceT drawings were computed using a mod-
ified version of DynNoSlice that forces timeslices on the
otherwise continuous DynNoSlice algorithm. Each trajec-
tory bend coincides with a timeslice and bends cannot be
inserted or removed. The rest of the algorithm is unaltered.
We used δ = 1 as the edge length parameter.

A number of metrics could have been selected in order
to evaluate the effectiveness of event-based dynamic graph
drawing. However, to allow for a comparison between
algorithms and previous experiments that use timeslices, we
use methods that have been previously used in experiments
to evaluate such approaches.

Stress is a measurement of drawing quality used in
many experiments [15], [38], [46], [57]. It measures how
node position reflects the shortest path distance which is
a important factor for graph readability as the Euclidean
distance is often used to judge how close two nodes are in
a graph [29]. As stress is defined for a static graph, we slice
the space-time cube and average the stress computed on
each timeslice.

Node Movement is the average 2D movements of the
nodes. Intuitively, this is the average distance travelled by
nodes when animating the dynamic graph. This metric has
been used in important previous experiments [15] and is
a measurement drawing stability – an important factor in
identifying particular nodes and paths over time [4], [5].

Crowding counts the number of times nodes pass very
close to each other in an animation of the dynamic graph.
Crowding has adverse effects on identifying nodes [4], [5]
and is know to negatively influence object tracking [32],
[50]. When measuring crowding for VisoneA, if two nodes
overlap for the duration of the dynamic graph, it is counted
as a single crowding event.

To compare event-based and timesliced dynamic graphs,
we define four types of stress. StressOn(d) is computed on
the timeslices using the node and edge set of that timeslice.
StressOff(d) is computed on and between the default times-
lices using the node and edge set of the closest timeslice

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

in time, when between two timeslices. StressOn(c) is com-
puted on the timeslices using the precise node and edge
appearances in continuous time. StressOff(c) is computed on
and between the timeslices using the precise node and edge
appearances in continuous time.

6.2.1 Graph Scaling

Uniformly scaling node positions changes the measure of
stress even though the layout is the same [38], [46], [57].
In order to compare methods as fairly as possible, we
used a strategy where scale-independent values of stress
are compared as follows. Our algorithms have a parameter
that indicates the desired edge length. First, we verified
that VisoneA and VisoneL produce the same result (up to
scale) when changing the edge length parameter. Thus, we
use the default value of edge length but consider different
scaling factors to compare to the output of our algorithm.
For the experiment, we defined nodes to be circles of diam-
eter 0.2 and with an ideal edge length of 1. To obtain such
drawing with our approach, we run the algorithm with an
ideal edge length parameter δ = 1. To obtain such drawing
with VisoneA and VisoneL, we run it with the default
edge length of 200 and scale it down by a factor 200.

Related work in static graph drawing [38], [46], [57]
searches for the best scaling factor via binary search, as
a minimum is guaranteed. For our metric (average stress
across all timeslices) we have no such guarantee. Thus, we
evaluate scaling factors (1.1)i, with i ∈ Z : −20 < i < 20
for the best StressOn(d) value. This scaling factor is used
to compute all metrics. After plotting the average stress for
each data set, a minimum was consistently observed.

6.3 Results

Videos of Newcomb, Rugby, and Pride & Prejudice are avail-
able3. For our experiments, we run each algorithm ten times
and report the average result.

Table 1 shows the results on the timesliced data sets.
In the VanDeBunt and Newcomb data sets, VisoneL out-
performs DynNoSlice in terms of stress. Crowding is com-
parable for all the algorithms. VisoneA has zero move-
ment, and all other approaches are competitive in terms of
node movement. Our event-based approach is sometimes
able to improve on VisoneL when stress is computed off
timeslices. When comparing DynNoSliceT to DynNoSlice,
DynNoSliceT is often able to optimise on-timeslice stress.
InfoVis is an outlier for the timesliced data sets as Dyn-
NoSlice outperforms both visone approaches in terms of
stress. VisoneA is competitive or the worst in terms of stress
in all cases.

Table 2 shows the results of our metric experiment on the
event-based data sets. DynNoSlice has competitive or lower
off-timeslice stress, average movement, crowding events,
and occasionally lower on-timeslice stress. VisoneA, by
definition, has zero movement. On Pride & Prejudice, all three
approaches result in similar stress. VisoneA performs better
than VisoneL in terms of stress, and is competitive with
DynNoSlice on Rugby.

3. http://cs.swan.ac.uk/∼dynnoslice/files/video.mp4

6.4 Discussion
Our results on the timesliced data sets were expected:
VisoneL optimises for stress directly on every timeslice
and performs the best, while it is comparable in terms of
movement and crowding. As a state-of-the-art algorithm
for timesliced graph drawing, it is difficult to compete
with the approach when it is running on the type of
data for which it was designed. However, in terms of off
timeslice stress, DynNoSlice can outperform VisoneL. The
timesliced model does not allow for stress to be optimised
between timeslices and must resort to linear interpolation,
leading to suboptimal stress. In our event-based dynamic
graph model, we optimise for stress in continuous time,
leading to this performance improvement. One exception is
InfoVis where DynNoSlice is able to improve on VisoneL
in terms of stress. This result may be due to the bursty
nature of this graph (edges are only present if two authors
published a joint paper that year). Therefore, large parts of
the graph change drastically from year to year. Allowing
node trajectories to evolve independently of timeslices may
allow DynNoSlice to perform better. Although VisoneA
has no node movement and low crowding, it performs 10%
worse in the best case in terms of stress.

For the event-based data sets, DynNoSlice outperforms
VisoneL in terms of stress and crowding and is competi-
tive with VisoneA. DynNoSlice does not use timeslices to
compute the layout of the dynamic graph. As a result, the
approach optimises stress between timeslices. On-timeslice
stress is an exception, as it is directly optimised by VisoneL.

DynNoSlice simultaneously improves node movement
and crowding while remaining competitive or improving
on stress when compared to VisoneL. This finding may
seem counter-intuitive as low stress usually corresponds
to high node movement. The result can be explained by
the fact that nodes in DynNoSlice are polylines of adaptive
complexity in the space-time cube. Nodes with few interac-
tions will be long straight lines, potentially passing through
many timeslices. These areas of low complexity will reduce
average node movement. In a model that uses timeslices,
each timeslice is forced to have the node with inter-timeslice
edges. Therefore, timeslices impose additional node move-
ment that may not be necessary.

DynNoSlice allows the polyline representing a node to
adapt its complexity between timeslices if there are many
interactions. When there are many changes to the graph in
a short period of time, these polylines have increased com-
plexity, allowing nodes to avoid crowding. In a timesliced
model, only linear interpolation is possible, and all nodes
must follow straight lines. Thus, crowding is incurred.
Crowding is also avoided in DynNoSlice as our polylines
have repulsive forces between them.

7 CASE STUDIES

We present case studies showing the results of Rugby and
Pride & Prejudice. The images have been created using the
second small multiples technique described in Section 5.

7.1 Rugby
Section 6.1 describes how we construct this data set from
the tweets between teams of the Guinness Pro12 rugby

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

TABLE 1
Results for the timesliced data sets on our metrics. Results are reported for an average of ten runs with different random seeds. All metrics are as

defined in Section 6.2. As the data is timesliced, only timesliced edge sets can be measured as event-based resolution is not available.

Graph Type Time (s) Scale StressOn (d) StressOff (d) Movement Crowding

VanDeBunt VisoneA 0.04 0.75 1.75 1.76 0.00 0.00
VisoneL 0.13 1.00 1.14 1.46 3.80 0.00
DynNoSliceT 7.86 0.60 1.52 1.55 3.73 0.00
DynNoSlice 7.11 0.61 1.56 1.71 3.20 0.20

Newcomb VisoneA 0.03 0.83 20.07 19.87 0.00 0.00
VisoneL 0.11 1.00 14.04 14.77 16.36 8.00
DynNoSliceT 10.91 0.68 17.43 17.36 13.72 1.30
DynNoSlice 7.87 0.75 17.93 17.89 12.41 1.10

InfoVis VisoneA 5.90 0.32 57.00 56.05 0.00 34.00
VisoneL 77.43 0.47 51.66 52.98 2.15 36.00
DynNoSliceT 356.40 0.56 28.10 27.91 2.00 3.30
DynNoSlice 379.46 0.56 29.44 30.77 1.88 4.30

TABLE 2
Results for the event-based data sets on our metrics. Results are reported for an average of ten runs with different random seeds. All metrics are
as defined in Section 6.2. As the data is event-based, we measure stress on the event-based set of edges to make the algorithms comparable.

Events is the number of events in the data set. NSG is the number of nodes in the supergraph. ESG is the number of edges in the supergraph.

Graph Type # Events NSG ESG Time (s) Scale StressOn (c) StressOff (c) Movement Crowding

Rugby VisoneA 3151 12 66 0.01 0.56 2.21 1.96 0.00 0.00
VisoneL 0.08 0.68 3.08 2.71 25.47 6.00
DynNoSliceT 8.28 0.68 1.84 1.75 16.35 0.10
DynNoSlice 4.35 0.50 1.94 1.80 6.68 0.00

Pride & Prejudice VisoneA 4033 118 501 0.83 0.42 0.70 0.86 0.00 11.00
VisoneL 3.39 0.18 0.62 0.88 5.44 682.00
DynNoSliceT 1754.63 0.31 0.70 0.84 6.70 11.90
DynNoSlice 82.28 0.28 0.71 0.86 1.28 0.00

competition. The event-based dynamic graph was drawn
in the space-time cube using DynNoSlice and the small
multiples technique with k = 5 centres. Fig. 7 shows the
results of this partition of the space-time cube.

Selecting a set of timeslices for this data set is hard as
events occur at multiple temporal resolutions in the data
set. During the season, there are many tweets at a high
temporal resolution while during the off season there is
a small number of tweets and a low temporal resolution.
This competition consists of teams from four nations: Wales,
Scotland, Ireland, and Italy. It is immediately clear from the
DynNoSlice small multiples representation that geography
greatly influences the layout. In particular, teams originating
from Wales (Dragons, Ospreys, Blues, and Scarlets) appear
on the lower left, Scotland (Glasgow and Edinburgh) in the
lower right, Ireland (Leinster, Munster, Connacht, Ulster)
at the top, and Italy (Benetton and Zebre) in the centre-
right. In the version computed by VisoneL, this struc-
ture is not visible with node positions mixed throughout
the drawing. As teams in the same region tend to tweet
slightly more often about each other, this likely causes the
trajectories of nodes from the same nation to evolve in the
same area of the plane, making the feature appear at a
high temporal resolution. A timesliced approach or one that
minimises stress globally loses this temporal information
through aggregation, causing high connectivity and a loss
of this important temporal structure. VisoneA places the
vertices better according to the nations, possibly due to the
smaller size of this data set.

DynNoSlice further divides the last two timeslices into
teams based in Ireland and teams based in the United King-

dom with Italian teams split over the two clusters. During
this time, regional discussion likely dominates the data set
as there are no fixtures between teams in the summer,
causing this split along national lines. This feature in the
data set is at a lower temporal frequency than the rest of the
data and is not easily recovered using uniform timeslicing.
As there are both high and low frequency features in this
data set, it is very difficult to select uniform timeslices. The
temporal structure is not visible in VisoneA and VisoneL.

7.2 Pride & Prejudice

Section 6.1 describes how we construct the dynamic graph
from the character interactions in the novel Pride & Prej-
udice. The event-based dynamic graph was drawn in the
space-time cube using DynNoSlice and the small multiples
technique with k = 5 centres.

We asked an expert in literary social network analysis
(and one of the co-creators of this data set [40]) with signifi-
cant experience in studying novels in general and this novel
in particular [41] to help interpret our results.

This data set has very high frequency features as it
consists of all character dialogues in the book from its
start to its end. The literary analyst noted that the position
of the nodes in the DynNoSlice layout (Fig. 8) conveys
important information about central characters in the novel.
She noted that characters closer to the centre of the draw-
ing are main characters. As these characters interact with
greater frequency with a large number of characters in the
novel, they are pulled to the centre of the drawing leaving
more minor characters at the periphery. This high frequency

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

DynNoSlice VisoneA VisoneL

ulsterrugby

leinsterrugby

glasgowwarriors

dragonsrugby
ospreys

scarlets_rugby edinburghrugby

zebrerugby

connachtrugby

cardi�_blues

benettonrugby

munsterrugby

ulsterrugby
leinsterrugby

glasgowwarriors

dragonsrugby
ospreys

scarlets_rugby

edinburghrugby

zebrerugby
connachtrugbycardi�_blues

benettonrugby

munsterrugby

ulsterrugby

leinsterrugby

glasgowwarriors

dragonsrugby
ospreys

scarlets_rugby

edinburghrugby

zebrerugby

connachtrugby

cardiff_blues

benettonrugby

munsterrugby

ulsterrugby

leinsterrugby

glasgowwarriors
dragonsrugby ospreys

scarlets_rugbyedinburghrugby

zebrerugby

connachtrugby

cardi�_blues

benettonrugby

munsterrugby

ulsterrugby
leinsterrugby

glasgowwarriors

dragonsrugby

ospreys

scarlets_rugby

edinburghrugby

zebrerugby

connachtrugbycardiff_blues

benettonrugby

munsterrugby

ulsterrugby leinsterrugby

glasgowwarriors

dragonsrugby

ospreys

scarlets_rugby

edinburghrugby

zebrerugby

connachtrugby

cardiff_blues

benettonrugby

munsterrugby

ulsterrugby

glasgowwarriors
dragonsrugby

ospreys

scarlets_rugby edinburghrugby

zebrerugby

connachtrugby

cardi�_blues

ulsterrugby
leinsterrugby

glasgowwarriors

dragonsrugby

ospreys

scarlets_rugby

edinburghrugby

zebrerugby

connachtrugbycardiff_blues

benettonrugby

munsterrugby

ulsterrugby

leinsterrugby

glasgowwarriors

dragonsrugby

ospreys

scarlets_rugby

edinburghrugby
zebrerugby

connachtrugby

cardiff_blues

benettonrugbymunsterrugby

dragonsrugby

ospreys

scarlets_rugby

edinburghrugby

zebrerugby

cardiff_blues

benettonrugby
ulsterrugby

leinsterrugby

glasgowwarriors
dragonsrugby

ospreys

scarlets_rugby

edinburghrugby

zebrerugby

connachtrugby

cardiff_blues

benettonrugby

munsterrugby

ulsterrugby
leinsterrugby

glasgowwarriors

connachtrugby

munsterrugby

ulsterrugby leinsterrugby

glasgowwarriors
dragonsrugby

ospreys

scarlets_rugby

edinburghrugby

zebrerugby

connachtrugby

cardiff_blues

benettonrugby

munsterrugby

Fig. 7. Rugby drawn with DynNoSlice, VisoneA, and VisoneL. Five space time clusters have been subsequently extracted using the same
k-means process described in Section 5. Manual scaling and alignment was used for the outputs of VisoneA in a post-processing step for a
fair comparison with the remaining approaches. The four participating nations are visible in the layout as within-nation tweets occur with greater
frequency (annotation in first timeslice: Wales - red, Ireland - green, Scotland - blue, and Italy - orange).

temporal information is lost due to temporal aggregation
in the VisoneL drawings (Fig. 9). VisoneA (Fig. 10) is
similar to VisoneL, but crowding makes it difficult to make
sense of the network. It preserves slightly more information
than VisoneL at the expense of crowding. This crowding is
incurred as all temporal information is collapsed down into
a single graph, making finding a global optimum for stress
difficult to compute for this larger supergraph.

The first and last clusters of the data set in DynNoSlice
roughly correspond to the beginning and end of the novel
but are primarily composed of the central characters with
strong links between protagonists. Our literary analyst
found the first cluster interesting as she personally believes
the beginning of Pride & Prejudice to be quite stylistically
different when compared to the rest of the novel as the
novelist wrote an early draft fifteen years earlier before
completing the story.

8 CONCLUSIONS AND FUTURE WORK

We present a model for event-based, dynamic graphs and
the first algorithm, DynNoSlice, that is able to draw dy-
namic graphs in this model. Our algorithm embeds the
event-based dynamic graph within the space-time cube
(2D+time) to overcome the limitations of timeslicing. The
most natural way to visualise these graphs is through an-
imation. However, animations can be perceptually ineffec-
tive. Thus, we present a method for extracting timeslices
from the space-time cube using two variants of k-means.
Our algorithm is evaluated through metrics-based compar-
isons and case studies.

Currently, DynNoSlice scales to thousands of events, but
many of the data sets we would like to visualise are larger.
As future work, we would like to explore possible ways
to make this approach more scalable with respect to the
number of events in the dynamic graph. Multilevel tech-
niques [11], [36], [43], [68] are a promising way to increase

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

elder mr. darcy

lydia bennet

mr. darcy

mrs. philips

mrs. hurst

maria lucas

mrs

mrs. gardiner

elizabeth bennet

miss darcy

charlotte lucas

mr. collins

miss bingley

kitty bennet

the officers

mrs. bennet

the shire militia

jane bennet

mr. bennet

mr. denny

mary bennet

mr. hurst

mr. bingley

mr. wickham

mr. gardiner

(a)

elder mr. darcy

mr. darcy

lady catherine de bourgh

mrs. philips

mr. philips

maria lucas

colonel forster

elizabeth bennet

miss darcy

mr. collins

kitty bennet

the officers the shire militia
the little gardiners

miss de bourgh

sir william lucas

the narrator

mr. hu

lydia bennet

mrs. gardiner

charlotte lucas

mrs. long

mary king

miss bingley

mrs. bennet

jane bennet

mrs. reynolds

lucas sister

mr. bennet

mary bennet

colonel fitzwilliam

mr. bingley

mr. wickham

mr. gardiner

(b)

Fig. 8. Pride & Prejudice drawn with DynNoSlice centred around the
main character Elizabeth Bennet. Five space time clusters have been
subsequently extracted using the same k-means process described in
Section 5. First and fifth cluster shown. Saturation of edges enhanced
in all visualisations. Main characters of the novel appear at the centre of
the drawing with minor characters at the edges. Character dialogues are
at a high frequency (one edge effectively per timeslice) and DynNoSlice
is able to exploit this information.

the scalability of event-based graph drawing. However,
the design of effective coarsening operators needs to be
explored and remains future work.

Small multiples often have significant advantages over
animation in terms of response time [6], [30]. The main
advantage of static representations is that many periods of
time can be visible onscreen simultaneously and do not rely
on user memory for task completion. Small multiples are
only one static representation of dynamic data. Other tech-
niques can be adapted to visualising event-based dynamic
graphs. Further study of effective representations of event-
based dynamic graphs in the space time cube are necessary.

Selecting timeslices for dynamic data shares many things
in common with sampling. To guarantee that no temporal
features are missed through aggregation, we would need to
sample at the Nyquist frequency, meaning that timeslices
should be spaced at a distance of the smallest possible
interval between two events. Sampling real, event-based
data sets at this distance is usually prohibitively expensive.
Future work should explore sampling methods for dynamic
data that enable lower sampling rates in order to produce
scalable visualisations of event-based data.

the lucas boys

some of his servants

mr. darcy

one of the officer

lady catherine de bourgh
mrs. philips

mr. philips

maria lucas

elizabeth bennet

miss darcy

charlotte lucas

the two elegant ladies who waited on his sisters

mrs. long

all the servants

the shire militia

the little gardiners

lady lucas

four nieces of mrs. jenkinson

hunsford housemaid

captain carter

gs housekeeper

mrs. hill

jane bennet

mr. morris

mr. bennet

miss grantley

mr. denny

mrs. jenkinson

the miss webbs

mr. webb
clarke

your great uncle the judge
mr. bingley

mr. wickham

(a)

elder mr. darcy

sir lewis de bourgh

one of the officers' wivese de bourgh

mrs. philips

william goulding

mary king's uncle

mrs. annesley

colonel forster

elizabeth bennet

wickham's father
miss darcy

current pemberley steward

a private had been flogged

all the servants

colonel millar

the officers

four nieces of mrs. jenkinson

ill

the archbishop

meryton regiment officer

netherfield servant

two men servants

sir william lucas

mr. robinson

the other officers

the miss webbs

the waiter

chamberlayne

a gentleman at my brother gardiner's in town

lydia bennet

some of his servants

miss watson

the incumbent of the living

mrs. h

mrs. gardiner

the coachman
the younger lucas girls

john the gardiner servant

haggerston

pemberley gardener

charlotte lucas

mrs. long

the spiteful old ladies in meryton

miss bingley

mrs. bennet

longbourne housemaids

general 1

the chambermaid

netherfield housemaid

harriet harrington

all their other neighbours

miss grantley
mr. denny

mrs. jenkinson

mary bennet

miss pope

mr. webb

miss king's grandfather

your great uncle the judge
mr. bingley

(b)

Fig. 9. Pride & Prejudice drawn with VisoneL near Elizabeth Bennet.
Five space time clusters have been subsequently extracted using the
same k-means process described in Section 5. First and fifth cluster
shown. Saturation of edges enhanced in all visualisations. As the data is
divided into timeslices and aggregated across time, temporal information
is lost. Main characters do not appear central in the layout.

ACKNOWLEDGMENTS

We would like to thank Peter Eades for suggesting Event-
Based Graph Drawing as a more accurate name for this
research at GD 2017. We would also like to thank Derek
Greene and Karen Wade for providing the Rugby and Pride
& Prejudice data sets. We would like to thank Karen Wade
for her insights into the Pride & Prejudice network. This work
was supported by EPSRC First Grant EP/N005724/1 and
NSF grants CCF-1712119, CCF-1740858, DMS-1839274.

REFERENCES

[1] Citevis citation datafile. http://www.cc.gatech.edu/gvu/ii/
citevis/infovis-citation-data.txt. Accessed: 2016-11-19.

[2] A. Ahmed, T. Dwyer, C. Murray Le, S. Ying, and X. Wu.
Infovis 2004 contest: Wilmascope graph visualisation. 2004.
https://www.cs.umd.edu/hcil/InfovisRepository/contest-2004/
1/unzip/standardform2004.html.

[3] D. Archambault, J. Abello, J. Kennedy, S. Kobourov, K.-L. Ma,
S. Miksch, C. Muelder, and A. C. Telea. Temporal multivariate
networks. In A. Kerren, H. C. Purchase, and M. O. Ward, editors,
Multivariate Network Visualization, volume 8380, pages 151–174.
Springer, 2014.

[4] D. Archambault and H. C. Purchase. Mental map preservation
helps user orientation in dynamic graphs. In Proc. of Graph
Drawing (GD ’12), pages 475–486, 2012.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

(a)

(b)

Fig. 10. Pride & Prejudice drawn with VisoneA, near Elizabeth Bennet.
Five space time clusters have been subsequently extracted using the
same k-means process described in Section 5. First and fifth cluster
shown. As all information is aggregated into a single network, temporal
information is lost and it is hard to find a global optimum for stress.

[5] D. Archambault and H. C. Purchase. Can animation support the
visualization of dynamic graphs? Information Sciences, 330:495–509,
2016.

[6] D. Archambault, H. C. Purchase, and B. Pinaud. Animation,
small multiples, and the effect of mental map preservation in dy-
namic graphs. IEEE Trans. on Visualization and Computer Graphics,
17(4):539–552, 2011.

[7] B. Bach, P. Dragicevic, D. Archambault, C. Hurter, and S. Carpen-
dale. A descriptive framework for temporal data visualizations
based on generalized space-time cubes. Computer Graphics Forum,
36(6):36–61, 2017.

[8] B. Bach, E. Pietriga, and J. D. Fekete. GraphDiaries: Animated
transitions and temporal navigation for dynamic networks. IEEE
Trans. on Visualization and Computer Graphics, 20(5):740–754, 2014.

[9] B. Bach, E. Pietriga, and J.-D. Fekete. Visualizing dynamic net-
works with matrix cubes. In Proc. of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’14), pages 877–886,
2014.

[10] B. Bach, C. Shi, N. Heulot, T. Madhyastha, T. Grabowski, and
P. Dragicevic. Time curves: Folding time to visualize patterns
of temporal evolution in data. IEEE Trans. on Visualization and
Computer Graphics, 22(1):559–568, 2016.

[11] G. Bartel, C. Gutwenger, K. Klein, and P. Mutzel. An experimental
evaluation of multilevel layout methods. In Proc. of Graph Drawing
(GD ’10), volume 6502, pages 80–91. Springer, 2011.

[12] F. Beck, M. Burch, S. Diehl, and D. Weiskopf. The state of the art
in visualizing dynamic graphs. In R. Borgo, R. Maciejewski, and
I. Viola, editors, EuroVis - STARSs. The Eurographics Association,
2014.

[13] F. Beck, M. Burch, S. Diehl, and D. Weiskopf. A taxonomy and
survey of dynamic graph visualization. Computer Graphics Forum,
36(1):133–159, 2017.

[14] U. Brandes and S. R. Corman. Visual unrolling of network
evolution and the analysis of dynamic discourse. Information
Visualization, 2(1):40–50, Mar. 2003.

[15] U. Brandes and M. Mader. A quantitative comparison of stress-
minimization approaches for offline dynamic graph drawing. In
Proc. of Graph Drawing (GD ’11), volume 7034, pages 99–110.
Springer, 2012.

[16] U. Brandes and D. Wagner. Analysis and Visualization of Social
Networks, pages 321–340. Springer, 2004.

[17] M. Burch, C. Vehlow, F. Beck, S. Diehl, and D. Weiskopf. Par-
allel edge splatting for scalable dynamic graph visualization.
IEEE Trans. on Visualization and Computer Graphics (InfoVis ’11),
17(12):2344–2353, 2011.

[18] R. S. Caceres and T. Berger-Wolf. Temporal Scale of Dynamic
Networks, pages 65–94. 2013.

[19] M. Cordeil, T. Dwyer, K. Klein, B. Laha, K. Marriott, and B. H.
Thomas. Immersive collaborative analysis of network connectiv-
ity: CAVE-style or head-mounted display? IEEE Trans. on Visual-
ization and Computer Graphics (InfoVis ’16), 23(1):441–450, 2017.

[20] T. Crnovrsanin, J. Chu, and K.-L. Ma. An incremental layout
method for visualizing online dynamic graphs. In Proc. of Graph
Drawing and Network Visualization (GD ’15), volume 9411, pages
16–29. Springer, 2015.

[21] I. F. Cruz and J. P. Twarog. 3D graph drawing with simulated
annealing. In Proc. of Graph Drawing (GD95), volume 1027, pages
162–165. Springer, 1996.

[22] R. Davidson and D. Harel. Drawing graphs nicely using simulated
annealing. ACM Trans. on Graphics, 15(4):301–331, Oct. 1996.

[23] S. Diehl and C. Görg. Graphs, they are changing — dynamic graph
drawing for a sequence of graphs. In Proc. of Graph Drawing (GD’
02), volume 2528, pages 23–31. Springer, 2002.

[24] S. Diehl, C. Görg, and A. Kerren. Preserving the mental map
using foresighted layout. In Eurographics/IEEE VGTC Symposium
on Visualization (VisSym01), pages 175–184, 2001.

[25] F. Du, B. Shneiderman, C. Plaisant, S. Malik, and A. Perer. Coping
with volume and variety in temporal event sequences: Strategies
for sharpening analytic focus. IEEE Trans. on Visualization and
Computer Graphics, 23(6):1636–1649, 2017.

[26] T. Dwyer and P. Eades. Visualising a fund manager flow graph
with columns and worms. In Proc. of the International Conference on
Information Visualisation (IV ’02), pages 147–152, 2002.

[27] C. Erten, P. J. Harding, S. G. Kobourov, K. Wampler, and G. Yee.
GraphAEL: Graph animations with evolving layouts. In Proc. of
Graph Drawing (GD ’03), volume 2912, pages 98–110. Springer,
2004.

[28] C. Erten, S. G. Kobourov, V. Le, and A. Navabi. Simultaneous
graph drawing: Layout algorithms and visualization schemes. In
Proc. of Graph Drawing (GD ’03), volume 2912, pages 437–449.
Springer, 2004.

[29] S. I. Fabrikant and D. R. Montello. The effect of instructions on
distance and similarity judgements in information spatializations.
International Journal of Geographical Information Science, 22(4):463–
478, 2008.

[30] M. Farrugia and A. Quigley. Effective temporal graph layout: A
comparative study of animation versus static display methods.
Journal of Information Visualization, 10(1):47–64, 2011.

[31] D. Forrester, S. G. Kobourov, A. Navabi, K. Wampler, and G. Yee.
Graphael: A system for generalized force-directed layouts. In Proc.
of Graph Drawing (GD ’04), volume 3383, pages 454–464. Springer,
2004.

[32] S. L. Franconeri, J. Y. Lin, Z. W. Pylyshyn, B. Fisher, and J. T.
Enns. Evidence against a speed limit in multiple-object tracking.
Psychonomic Bulletin & Review, 15(4), 2008.

[33] A. Frick, A. Ludwig, and H. Mehldau. A fast adaptive layout
algorithm for undirected graphs (extended abstract and system
demonstration). In Proc. of Graph Drawing (GD ’94), pages 388–
403. Springer, 1994.

[34] A. Frick, A. Ludwig, and H. Mehldau. Fast interactive 3-D graph
visualization. In Proc. of Graph Drawing (GD ’95), volume 1027,
pages 99–110. Springer, 1995.

[35] Y. Frishman and A. Tal. Online dynamic graph drawing. IEEE
Trans. on Visualization and Computer Graphics, 14(4):727–740, July
2008.

[36] P. Gajer, M. T. Goodrich, and S. G. Kobourov. A multi-dimensional
approach to force-directed layouts of large graphs. In Proc. of Graph
Drawing (GD ’00), volume 1984, pages 211–221. Springer, 2000.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 14

[37] P. Gajer and S. G. Kobourov. GRIP: Graph drawing with intelligent
placement. In Proc. of Graph Drawing (GD ’00), volume 1984, pages
222–228. Springer, 2001.

[38] E. R. Gansner, Y. Hu, and S. North. A maxent-stress model for
graph layout. IEEE Trans. on Visualization and Computer Graphics,
19(6):927–940, 2013.

[39] T. E. Gorochowski, M. Di Bernardo, and C. S. Grierson. Using
aging to visually uncover evolutionary processes on networks.
IEEE Trans. on Visualization and Computer Graphics, 18(8):1343–1352,
Aug. 2012.

[40] S. Grayson, K. Wade, G. Meaney, and D. Greene. The sense
and sensibility of different sliding windows in constructing co-
occurrence networks from literature. In Computational History and
Data-Driven Humanities (CHDDH16), pages 65–77, 2016.

[41] S. Grayson, K. Wade, G. Meaney, J. Rothwell, M. Mulvany, and
D. Greene. Discovering structure in social networks of 19th
century fiction. In Proc. of the 8th ACM Conference on Web Science
(WebSci ’16), pages 325–326, 2016.

[42] G. Groh, H. Hanstein, and W. Wörndl. Interactively visualizing
dynamic social networks with DySoN. In Workshop on Visual
Interfaces to the Social and the Semantic Web (VISSW2009), Feb. 2009.

[43] S. Hachul and M. Jünger. Drawing large graphs with a potential-
field-based multilevel algorithm. In Proc. of Graph Drawing (GD
’04), volume 3383, pages 285–295. Springer, 2004.

[44] P. Holme and J. Saramki. Temporal networks. Physics Reports,
519(3):97 – 125, 2012.

[45] M. Itoh, N. Yoshinaga, M. Toyoda, and M. Kitsuregawa. Analysis
and visualization of temporal changes in bloggers’ activities and
interests. In IEEE Pacific Visualization Symposium (PacificVis ’12),
pages 57–64, 2012.

[46] S. G. Kobourov, S. Pupyrev, and B. Saket. Are crossings important
for drawing large graphs? In Proc. of Graph Drawing (GD ’14),
pages 234–245. Springer, 2014.

[47] B. Landgraf. 3D graph drawing. In M. Kaufmann and D. Wagner,
editors, Drawing Graphs, volume 2025 of Lecture Notes in Computer
Science, pages 172–192. Springer, Apr. 2001.

[48] M. Latapy, T. Viard, and C. Magnien. Stream graphs and
link streams for the modeling of interactions over time, 2017.
arXiv:1710.04073.

[49] Y. Léo, C. Crespelle, and E. Fleury. Non-altering time scales for
aggregation of dynamic networks into series of graphs. In Proc. of
the 11th ACM Conference on Emerging Networking Experiments and
Technologies, CoNEXT ’15, pages 29:1–29:7, 2015.

[50] G. Liu, E. L. Austen, K. S. Booth, B. D. Fisher, R. Argue, M. I.
Rempel, and J. T. Enns. Multiple-object tracking is based on scene,
not retinal, coordinates. Journal of Experimental Psychology: Human
Perception and Performance, 31(2):235–247, 2005.

[51] Q. Liu, Y. Hu, L. Shi, X. Mu, Y. Zhang, and J. Tang. EgoNetCloud:
Event-based egocentric dynamic network visualization. In Proc.
of the IEEE Conference on Visual Analytics Science and Technology
(VAST15), pages 65–72. IEEE Computer Society, 2015.

[52] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment
and the mental map. Journal of Visual Languages & Computing,
6(2):183–210, 1995.

[53] M. Monroe, R. Lan, H. Lee, C. Plaisant, and B. Shneiderman. Tem-
poral event sequence simplification. IEEE Trans. on Visualization
and Computer Graphics, 19(12):2227–2236, 2013.

[54] M. Monroe, R. Lan, J. Morales del Olmo, B. Shneiderman,
C. Plaisant, and J. Millstein. The challenges of specifying intervals
and absences in temporal queries: A graphical language approach.
In Proc. of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’13), pages 2349–2358, 2013.

[55] T. Munzner. H3: Laying out large directed graphs in 3D hyperbolic
space. In Proc of the IEEE Symposium on Information Visualization
(InfoVis ’97), pages 2–10, 1997.

[56] T. M. Newcomb. The Acquaintance Process. Holt, Reinhard &
Winston, 1961.

[57] M. Ortmann, M. Klimenta, and U. Brandes. A sparse stress model.
In Proc. of Graph Drawing and Network Visualization (GD ’16), pages
18–32, 2016.

[58] G. Parker, G. Franck, and C. Ware. Visualization of large nested
graphs in 3D: Navigation and interaction. Journal of Visual Lan-
guages & Computing, 9(3):299–317, June 1998.

[59] P. E. Rauber, A. X. Falcão, and A. C. Telea. Visualizing time-
dependent data using dynamic t-SNE. In E. Bertini, N. Elmqvist,
and T. Wischgoll, editors, EuroVis 2016, Short Papers. Eurographics
Association, 2016.

[60] A. Sallaberry, C. Muelder, and K.-L. Ma. Clustering, visualizing,
and navigating for large dynamic graphs. In Proc. of Graph Drawing
(GD ’12), volume 7704, pages 487–498. Springer, 2013.

[61] B. Shneiderman and A. Aris. Network visualization by semantic
substrates. IEEE Trans. on Visualization and Computer Graphics
(InfoVis ’06), 12(5):733–740, 2006.

[62] P. Simonetto, D. Archambault, D. Auber, and R. Bourqui. ImPrEd:
An improved force-directed algorithm that prevents nodes from
crossing edges. Computer Graphics Forum (EuroVis ’11), 30(3):1071–
1080, 2011.

[63] P. Simonetto, D. Archambault, and S. Kobourov. Drawing dynamic
graphs without timeslices. In Proc. of Graph Drawing and Network
Visualization (GD ’17), pages 394–409, 2018. https://arxiv.org/abs/
1709.00372.

[64] P. Simonetto, D. Archambault, and C. Scheidegger. A simple ap-
proach for boundary improvement of Euler diagrams. IEEE Trans.
on Visualization and Computer Graphics (InfoVis ’15), 22(1):678–687,
2016.

[65] B. Tversky, J. Morrison, and M. Betrancourt. Animation: Can it
facilitate? Int. Journal of Human-Computer Studies, 57(4):247–262,
2002.

[66] S. van den Elzen, D. Holten, J. Blaas, and J. J. van Wijk. Dynamic
network visualization with extended massive sequence views.
IEEE Trans. on Visualization and Computer Graphics, 20(8):1087–1099,
2014.

[67] S. van den Elzen, D. Holten, J. Blaas, and J. J. van Wijk. Reducing
snapshots to points: A visual analytics approach to dynamic
network exploration. IEEE Trans. on Visualization and Computer
Graphics, 22(1):1–10, 2016.

[68] C. Walshaw. A multilevel algorithm for force-directed graph-
drawing. Journal of Graph Algorithms and Applications, 7(3):253–285,
2003.

Paolo Simonetto received his masters degree
in Computer Engineering from the University of
Padua and a PhD degree from the University
of Bordeaux. His principal research interests in-
clude the visualisation of overlapping sets and
dynamic networks.

Daniel Archambault received his PhD from the
University of British Columbia in 2008 and is
a Senior Lecturer at Swansea University. His
principal area of research is network visuali-
sation and evaluating the perceptual effective-
ness of such approaches. In particular, he has
focused on the development and evaluation of
techniques for visualising dynamic graphs and
scalable graph visualisations.

Stephen Kobourov is a Professor at the De-
partment of Computer Science at the Univer-
sity of Arizona. He received a BS degree in
Mathematics and Computer Science from Dart-
mouth College and MS and PhD degrees from
Johns Hopkins University. His research interests
include information visualisation, graph theory,
and geometric algorithms.

