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Abstract

Under integrability conditions on distribution dependent coefficients, existence
and uniqueness are proved for McKean-Vlasov type SDEs with non-degenerate noise.
When the coefficients are Dini continuous in the space variable, gradient estimates
and Harnack type inequalities are derived. These generalize the corresponding re-
sults derived for classical SDEs, and are new in the distribution dependent setting.

AMS subject Classification: 60H1075, 60G44.
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1 Introduction

In order to characterize nonlinear Fokker-Planck equations using SDEs, distribution de-
pendent SDEs have been intensively investigated, see [20, 15] and references within for
McKean-Vlasov type SDEs, and [6, 7, 2] and references within for Landau type equations.
To ensure the existence and uniqueness of these type SDEs, growth /regularity conditions
are used. On the other hand, however, due to Krylov’s estimate and Zvonkin’s transform,
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the well-posedness of classical SDEs is proved under an integrability condition, which
allows the drift unbounded on compact sets. The purpose of this paper is to extend this
result to the distribution dependent situation, and to establish gradient estimates and
Harnack type inequalities for the distributions under Dini continuity of the drift, which
is much weaker than the Lipschitz condition used in [26, 11].

Let 22 be the set of all probability measures on R?. Consider the following distribution-
dependent SDE on R%:

(11) dXt = bt(Xtant)dt+Ut(Xt7$Xt)th7

where W, is the d-dimensional Brownian motion on a complete filtration probability space
(Q,{F }1>0,P), Zx, is the law of X;, and

bR, xRIx Z R 0:Ry xR x Z - RI@R?

are measurable. When a different probability measure P is concerned, we use i@ﬂf” to
denote the law of a random variable ¢ under the probability P.

By using a priori Krylov’s estimate, a weak solution can be constructed for (1.1) by
using an approximation argument as in the classical setting, see [9] and references within.
To prove the existence of strong solution, we use a fixed distribution u; to replace the
law of solution Zx,, so that the distribution SDE (1.1) reduces to the classical one.
We prove that when the reduced SDE has strong uniqueness, the weak solution of (1.1)
also provides a strong solution. We will then use Zvonkin’s transform to investigate the
uniqueness, for which we first identify the distributions of given two solutions, so that these
solutions solve the common reduced SDE, and thus, the pathwise uniqueness follows from
existing argument developed for the classical SDEs. However, there is essential difficulty
to identify the distributions of two solutions of (1.1). Once we have constructed the
desired Zvonkin’s transform for (1.1) with singular coefficients, gradient estimates and
Harnack type inequalities can be proved as in the regular situation considered in [26].

The remainder of the paper is organized as follows. In Section 2 we summarize the main
results of the paper. To prove these results, some preparations are addressed in Section
3, including a new Krylov’s estimate, two lemmas on weak convergence of stochastic
processes, and a result on the existence of strong solutions for distribution dependent
SDEs. Finally, the main results are proved in Sections 4 and 5.

2 Main results

We first recall Krylov’s estimate in the study of SDEs. We will fix a constant 7" > 0, and
only consider solutions of (1.1) up to time 7T'.. For a measurable function f defined on
0, 7] x R?, let

1
t g q
Hf||Lg<s,t>—</ (/ !fT(a:)|pdx> dr) , p,g>1,0<s<t<T.
s R
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When s = 0, we simply denote || f|lz50,4 = | fllzs@)- A key step in the study of singular
SDEs is to establish Krylov type estimate (see for instance [13]). For later use we introduce
the following notion of K-estimate. We consider the following class of number pairs (p, q):

H = {(p,q) € (1,00) x (1,00) : g—%—; <2}.

Definition 2.1 (Krylov’s Estimate). An Z;-adapted process { Xs}o<s<r is said to satisfy
K -estimate, if for any (p,q) € A, there exist constants § € (0,1) and C > 0 such that
for any nonnegative measurable function f on [0,T] x R?,

(1) (/f )<0@—@wmq D<s<t<T.

We note that (2.1) implies the following Khasminskii type estimate, see for instance
28, Lemma 3.5] and it’s proof: there exists a constant ¢ > 0 such that

22 B(( [ pxoar)[.) < ae- 9 Il 0ss<isT

and for any A > 0 there exists a constant A = A(\, §,¢) > 0 such that

(2_3) E(eAfUT fT(XT)dles) < eA<1+Hf||Lg(T)>7 s € [O,T].
Let 6 € [1,00), we will consider the SDE (1.1) with initial distributions in the class
Py ={pe?: u(-’) <oc}.
It is well known that 7 is a Polish space under the Warsserstein distance
s
We(u,v) := inf (/ |:U—y|97r(d:v,dy)) , W,V E Py,
TEE (V) Rd xRd

where €' (u, v) is the set of all couplings of p and v. Moreover, the topology induced by
Wy on &y coincides with the weak topology.

In the following three subsections, we state our main results on the existence, unique-
ness and Harnack type inequalities respectively for the distribution dependent SDE (1.1).

2.1 Existence and uniqueness

Let
Py = { e Py uis absolutely continuous with respect to the Lebesgue measure }

To construct a weak solution of (1.1) by using approximation argument as in [9, 15],
we need the following assumptions for some 6 > 1.
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(H?) There exists a sequence (b",0™),>1, where
b [0, T] x RT x Py — R 0™ :[0,T] x R? x &y — R @ R?
are measurable, such that the following conditions hold:
(1) For p € 22§ and p™* — pin Py,

nh_g.lo {’b?(ma:un) o bt(xnu)‘ + ”UZL@j?Mn) B Ut(%#)”} =0, ae. (t’x) € [O7T] x Rd'

(2) There exist K > 1, (p,q) € X and nonnegative G € L(T') such that for any n > 1,
b} (2, w)* < G(t,2) + K, K1 < (0}(0})")(w, 1) < KT
for all (¢,z,u) € [0,T] x R? x 2.
(3) For each n > 1, there exists a constant K, > 0 such that ||b"||. < K, and

17 (2, 1) = 0 (y, V)| + o (2, 1) = o (y, V)]

con| (2.4) J J
SK”{|x_y|+W9(M7V)}7 (t,a:,y) S [OaT] X R* x R NS @9-

The main result in this part is the following.

Theorem 2.1. Assume (H) for some constant 0 > 1. Let X, be an Fy-measurable
random variable on RY with py := Lx, € Py. Then the following assertions hold.

(1) The SDE (1.1) has a weak solution with initial distribution po satisfying Lx. €
C([0,T]; Py) and the K-estimate.

(2) If o is uniformly continuous in x € R% uniformly with respect to (t, ) € [0,T] x Py,
and for any p. € C([0,T]; Py), bi(x) = by(x, ) and of (x) = oy(x, ) satisfy
04> + |[Va||* € LUT) for some (p,q) € &, where V is the weak gradient in
the space variable x € R?, then the SDE (1.1) has a strong solution satisfying
Zx € C([0,T); Pp) and the K -estimate.

(3) If, in addition to the condition in (2), there exists a constant L > 0 such that
LIP| (2.5) low(z, ) = ou(x, v)|| + [be(, ) = be(x, v)| < LWo(p,v)
holds for all p,v € Py and (t,z) € [0,T] x R?, then the strong solution is unique.

When b and o do not depend on the distribution, Theorem 2.1 reduces back to the
corresponding results derived for classical SDEs with singular coefficients, see for instance
[30] and references within.



To compare Theorem 2.1 with recent results on the existence and uniqueness of
McKean-Vlasov type SDEs derived in [3, 15], we consider a specific class of coefficients
where the dependence on distributions is of integral type. For p € &2 and a (possibly
multidimensional valued) real function f € L'(u), let u(f) = [pa fdu. Let

EX1| (2.6) be(x, ) == By, p(p(t, x, ), oz, n) = 3z, w(,(t,x,-))
for (t,z, 1) € [0,T] x R? x &, where for some k € N,
Uy, Vs [0,T] x RY x R — R*
are measurable and bounded such that for some constant § > 0,
EX2| (2.7) ot 2, y) — ot 2,y )| + (Yot 2, y) — Yot 2,y)] < Oy — /]
holds for all (t,z) € [0,T] x R? and y,y’ € R?, and
B:[0,T]xR*xR" - RY ¥:[0,7] x R? x R¥ - R @ R?

are measurable and continuous in the third variable in R*¥. We make the following as-
sumption.

(A) Let (b,0)in (2.6) for (B, X) such that (2.7) holds, B(x, ) and X;(x, -) are continuous
for any (¢,z) € [0,T] x R% Moreover, there exist constant K > 1, (p,q) € # and
nonnegative F' € LI(T) such that

EX3] (2.8) bi(z, 0)|> < F(t,n) + K, K 'I <oz, p)o(x,p) < KI
for all (t,z, ) € [0,T] x R? x 2.
Corollary 2.2. Assume (A). Then the following assertions hold.
(1) Assertion (1) in Theorem 2.1 holds.

(2) If moreover, o is uniformly continuous in x € R% uniformly with respect to (t, ) €
[0, T] x Py, and for any . € C([0,T); Py), V' (x) := by(x, ) and o} (x) = oy (x, )
satisfy [')* + || Vo*||* € LI(T) for some (p,q) € A, where V is the weak gradient
in the space variable v € RY, then assertion (2) in Theorem 2.1 hold.

(8) Besides the conditions in (2), if there exists a constant ¢ > 0 such that
| Bi(,y) = Bi(, o) |+ 1122, y) = Zi(, o )| < ely—y/|, (t,2) € [0, TIxR%, y,y’ € R,

then for any Fo-measurable random variable Xy on R with py = Lx, € Py for
some 0 > 1, the SDE (1.1) has a unique strong solution with £Lx. continuous in Py.
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The next corollary is a result on the existence of weak solution without the assumption
(2.6), which will be used in Section 5.

Corollary 2.3. Assume that (2.5), (2.8) hold. Then the SDE (1.1) has a weak solution
with initial distribution uo satisfying £Lx. € C([0,T]; Py) and the K -estimate.

We now explain that results in Corollary 2.2 and Corollary 2.3 are new comparing
with existing results on McKean-Vlasov SDEs. We first consider the model in [3] where
1y and 1, are R-valued functions such that

| Blloo + sup 0, By(,7)| < 00,
(t,z,r)€[0,T]xRIXR

1y is Holder continuous, 1, is Lipschitz continuous, and for some constants C' > 1,
6 € (0,1],

<Yy <Ol
IS, 7) = i@’ )| < Clla — 2/ + I = '],
Harzt<$,7”) — 8,,Zt(x’,7«)’| < C’Q? _ xl,b?.

Then [3, Theorem 1] says that when Xy, € &2, the SDE (1.1) has a unique strong
solution. Obviously, the above conditions imply ||b]|oc + [|[Vo |l < 00, but this is not

necessary for conditions in Corollary 2.2 and Corollary 2.3.
Next, [15] considers (1.1) with

o) = [ Beon(n), o) = [ e puld)
R R
for measurable functions
b:0,T] xR x R - R%, 6:[0,7] x R x RY - R? @ R

satisfying 3
|52 (z, | + 1be(z, )] < C(A +[al), 66" = C7'

for some constant C' > 1. Then [15, Theorem 1] says that when Ly, € P4, (1.1) has
a weak solution. If moreover o does not depend on the distribution and ||Vo|. < oo,
then [15, Theorem 2] shows that when Ee’ Xl < oo for some r > 0, the SDE (1.1) has
a unique strong solution. Obviously, to apply these results it is necessary that b and Vo
are (locally) bounded, which is however not necessary for the condition in Corollary 2.2
and Corollary 2.3.



2.2 Harnack inequality

In this subsection, we investigate the dimension-free log-Harnack inequality introduced
in [19] for (1.1), see [24] and references within for general results on these type Harnack
inequalities and applications. We establish Harnack inequalities for P, f using coupling by
change of measures (see for instance [24, §1.1]). To this end, we need to assume that the
noise part is distribution-free; that is, we consider the following special version of (1.1):

E11 (29) dXt = bt(Xt, .,%Xt)dt + Ut(Xt)th7 t e [O, T]

As in [26], we define P, f(uo) and P} as follows:

(Pf) (o) = /Rd fAd(Pr o) = Ef(Xe(po)), f € Bo(RY),t €[0,T), po € P,

where X (1) solves (2.9) with Zx, = po. Let
" o(s)
9 = {(b :10,00) — [0, 00) is increasing, ¢ is concave,/ —ds < oo}.
0 S

We will need the following assumption.

(H) ||b]l« < oo and there exist a constant K > 1 and ¢ € 2 such that for any ¢ €
0,7], z,y € RY, and p,v € Ps,

(2.10) K < (o07)(2) < K1, |low(z) — ou(y)llfs < Kz =yl

(2.11) [bu(2, 1) = by(y,v)| < d(|z —y]) + KWy (p, v).

Theorem 2.4. Assume (H). There ezists a constant C > 0 such that

LH2| (2.12) (P log f)(vo) < log(P,f)(uo) + M%WQ(IUO, vy)?

for any t € (0,T], po,vo € Pa, [ € B, (RY) with f > 1. Moreover, there exists a constant
po > 1 such that for any p > po,

2’ (2.13) (Puf)" () < (Pif?) g0} exp { 15 Wa(jao, o)}

for any t € (0,T), po, vo € Pa, [ € B, (R?) and some constant ¢ = c(p, K) > 0.



2.3 Shift Harnack inequality

In this section we establish the shift Harnack inequality for P; introduced in [23]. To this
end, we assume that oy(x, ;1) does not depend on z. So SDE (1.1) becomes

(2.14) AX, = by( Xy, Lx,)dt + 0,(Lx,)AW,, t e [0,T].

T5.1] Theorem 2.5. Leto : [0, T]x Py — RIQR? and b : [0, 00) x R x Py — R? be measurable
such that o is invertible with ||o¢||e + ||0; o s bounded in t € [0,T), and b satisfies the
corresponding conditions in (H).

(1) For anyp > 1,t € [0,T], o € Po,v € R? and f € B, (RY),

(Bef)P (po) <(Bf"(v +-)) (ko)

p fy o 2 Aol /t + é(slu] /) ds
2(p—1) :

xexp{

Moreover, for any f € %, (R?) with f > 1,
(Pu108 1) (o) < 08(Pef(0+ o) + 5 [ o [eflol -+ ofslel /0 s

3 Preparations

We first present a new result on Krylov’s estimate, then recall two lemmas from [9] for
the construction of weak solution, and finally introduce two lemmas on the existence and
uniqueness of strong solutions.

3.1 Krylov’s estimate

Consider the following SDE on R¢:

(31) dXt = bt<Xt)dt + O't(Xt)th, te [O,T]
Lemma 3.1. Let T > 0, and let p,q € (1,00) with ;‘—f +§ < 1. Assume that oy(x)

is uniformly continuous in x € R uniformly with respect to t € [0,T], and that for a
constant K > 1 and some nonnegative function F' € Li(T) such that

APP1]| (3.2) K <oy(x)o(z)* < KI, (t,z)€[0,T] xR,

APP2| (3.3) b,(z)] < K + F(t,x), (t,z)e[0,T] xR



EN’

Then for any (o, B8) € ', there exist constants C = C(6, K, a, B, || F[pyr)) > 0 and
§ = 0(a, ) > 0, such that for any s € [0,T) and any solution (Xsy)eism of (3.1) from
time s,

s E[f 1 X

Proof. When b is bounded, the assertion is due to [30, Theorem 2.1]. If |b| < K + F for
some constant K > 0 and 0 < F' € LI(T'), then we have a decomposition b = b 453 with
6] < K and [b®)| < F, for instance, b1 = WBI/K)
{0:}1epo,m) on R? be constructed in [30, Lemma 4.3] for b?) replacing b, then Y, ; = 6;(X, ;)
solves

F.| < 0= Wy t€ (5717 € L)

Letting the diffeomorphisms

where b is bounded, and & is uniformly continuous in z € R? uniformly with respect to
€ [0,T]. Moreover, there exists a constant K > 1 depending on K and || F'[| 2.7y such
that

(3.6) KT <a,(x)a,(x)* < KI, (t,x) €[0,T] x R?,

and - , _
IBlloc + IVOloc + VO o < K.

Again by [30, Theorem 2.1], there exists a constant C' = C(§, K,a,3) > 0 and § =
d(a, B) > 0 such that

o 5| A Yo )dr

This together with || V0|, < K implies that

E[/: |71, Xs’r)dr‘gs}
—5[ [0

(3.8) <C(t->s) (/ (/ |f(r, |adx> : dr> %
— Ot — s)° (/OT (/Rd f(r, y)|a|detver|dy) : dr) %

< C(t =5V If | zqay, ¢ € 1571 f € TA(T),

Thus, we complete the proof. O
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3.2 Convergence of stochastic processes

To prove Theorem 2.1(1), we will use the following two lemmas due to [9, Lemma 5.1,
5.2].

Lemma 3.2. Let {¢"},>1 be a sequence of d-dimensional processes defined on some prob-
ability space. Assume that

(3.9) lim sup sup P(|¢}| > R) =0,

R—00 n>1 ¢e[0,1]
and for any € > 0,

(3.10) limsup sup {P(|¢y — 7| >¢€): |t —s| <0} =0.

0=0 n>1 50,7

Then there exist a sequence {ny}x=1, a probability space (€, Z,P) and stochastic processes
{Xy, XFYepor(k > 1), such that for every t € [0,T], Ly P = Zxx|P, and XF converges

to X, in probability P as k — oc.

Lemma 3.3. Let {n"},>1 andn be uniformly bounded REQR*-valued stochastic processes,
and let W' and W, fort € [0,T] be Wiener processes such that the stochastic Ito integrals

t t
I ::/ nedW, I ::/ nsdWs, tel0,T]
0 0

are well-defined. Assume that n} — n, and W}* — W, in probability for every t € [0,T].
Then

n—00 t€[0,7)

limIP’<sup ][t"—lt]2€>:0, e > 0.

3.3 Existence and uniqueness on strong solutions

We first present a result on the existence of strong solutions deduced from weak solu-
tions, then introduce a result on the existence and uniqueness of strong solutions under
a Lipschitz type condition.

Lemma 3.4. Let (Q, %, W;,P) and X, be a weak solution to (1.1) with y; := Lx,|P = .
If the SDE

(31].) dXt = bt(Xh,U/t) dt‘i‘O’t(Xt,,U/t) th, 0 S t S T

has a unique strong solution X; up to life time with £Lx, = po, then (1.1) has a strong
solution.
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Proof. Since j; = Z%,|P, X, is a weak solution to (3.11). By Yamada-Watanabe principle,
the strong uniqueness of (3.11) implies the weak uniqueness, so that X; is nonexplosive
with Zx, = ut,t > 0. Therefore, X; is a strong solution to (1.1). O

Lemma 3.5. Let 6 > 1 and 0y be the Dirac measure at point 0. If b;(0, ) is bounded in
t €10, T], and there exists a constant L > 0 such that

loe(2, 1) = ou(y, V)| + [bel, 1) = be(y, V)]

3.12
(312) < L{|z — y| + Wo(u,v)}, r,y €RY v e Pyt €[0,T],

then for any Xo with E|Xo|? < 0o, (1.1) has a unique strong solution (X;)ie(o,1]-

Proof. When 6 > 2 the assertion follows from [26, Theorem 2.1]. So we only consider
0 < 2. As explained in [26] that it suffices to find a constant ¢, € (0,7") independent of
Xo such that (1.1) has a unique strong solution up to time ¢y and sup,¢(o 4, E|X;|’ < co.

Let Xt(o) = X, and ,ugo) = po for t € [0, T]. For any n > 1, consider the SDE
X" = by (X, D)+ o(XE, )W, X = Xo,

where ,ugn_l) =L 1,0 <t <T. By 26, Lemma 2.3(1)], for any n > 1 this SDE has a

unique solution and

(3.13) sup E|X™|? <00, n>1.
s€[0,T]

Moreover, letting
)= X XA i (X ) — (0,
26, (2.11)] implies

g2 < 2AM AWy, €y + Ko{|€ )2 + Wo(ud™, 1" V)2Ydt, n>1,t € [0,T]

for some constant Ky > 0. Since fon) =0, it follows that

t
E|e™ ] S/ Ko oUW, (u{m, un1)2ds
0

2
< tKoe™T sup (E|§t(n_1)|9)9, tel0,T],n>1.
s€[0,t]

Since 6 < 2, by Jensen’s inequality we may find out a constant K; > 0 such that

sup E|eM)? < Kit% sup E|¢D1? n>1,t€[0,T].
s€(0,4] s€[0,1]

11
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_2
So, taking tq € (0,7 A K, ?), we may find a constant € € (0, 1) such that

sup E|EM|? <™ sup E|IXY — Xl <00, n>1,€ 0,1
s€[0,t] s€0,to]

Therefore, for any ¢ € [0,ty] there exists an .%#;-measurable random variable X; on R¢
such that
lim sup Wo(u™, )’ < lim sup E[X" — X,|” =0,

=00 tc[0,t0] =0 ¢e(0,t0]

where p; := Zx,. Combining this with (3.12) and letting n — oo in the equation

S S

t t
XM — / by(X M, uD)ds + / oo (XM D) AW,, 0 > 1.t € [0, 1),
0 0

we derive for every ¢ € [0, to],

t t
Xt = / bs(Xsa ,Us)ds + / Us(Xsa ,us)dWs
0 0

Thus, (X)sejo,,) has a continuous version which is a strong solution of (1.1) up to time
to. The uniqueness is trivial by using condition (3.12) and It6’s formula. O

4 Proofs of Theorem 2.1 and Corollary 2.2

4.1 Proof of Theorem 2.1(1)-(2)

According to [30], the condition in Theorem 2.1(2) implies that the SDE (3.11) has a
unique strong solution. So, by Lemma 3.4, Theorem 2.1(2) follows from Theorem 2.1(1).

Below we only prove the existence of weak solution.
By Lemma 3.5, condition (3) in (H?) implies that the SDE

has a unique strong solution (X;")iep,r]- So, Lemma 3.1, (2.4) and condition (2) in (H?)
imply that for any (p,q) € 2,

(4.2) E / Fr, XP)r < Ot — 8| fllugery, 0< f € Li(T),n > 1

holds for some constants C' > 0 and ¢ € (0, 1).
We first show that Lemma 3.2 applies to v, := (X™, W), for which it suffices to verify
conditions (3.9) and (3.10) for ¢, := X™. By condition (2) in (H?) and (2.2) implied by

12
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titlde-X"n

(A1)

(3.4), there exist constants ¢y, ¢y > 0 such that
T 0
ElX;|)’ < cl{E|X0|9 +]E(/ b7 (X7, ZLxp)| dt)
0

6
4.3 T 2
(4.3) +E ( / ||o:<Xf,$X;>||2dt) }
<CQ<E’X0’9+T6+HGHLQ +T2> <OO, nZl,tE [O,T]

Thus, (3.9) holds for 1, := X"
Next, by the same reason, there exists a constant c¢3 > 0 such that for any 0 < s <

t<T,
t
ar ([ lorixs 2ol o)

< eyt — s+ (t— )Gl o) + (¢ — 5)2).

(SIS

t
BX; - X7 <E [ (X 2x)

Hence, (3.10) holds for 1, := X™. According to Lemma 3.2, there exists a subsequence of
(X", W )1, denoted again by (X", W),>1, stochastic processes (X", W"),>; and (X, W)
on a complete probability space (Q,j ,I@) such that Zx»w)|P = oiﬂ(xn ) |IP’ for any
n > 1, and for any ¢t € [0,77], lim,_,o0o( X", W) = (X;, W}) in the probability P. As
n [9], let jt” be the completion of the o-algebra generated by the {X;1 W” i s <t}
Then as shown in [9], X is .#/-adapted and continuous (since X™ is continuous and
Lxn|P = Ly P), W™ is a d-dimensional Brownian motion on (£, {Lgit”}te[gj],]@), and
(X7", W)seo.r) solves the SDE

(4'4) dth = b?()?tn7 gf(?’@) dt + U?(*}Zt?l» gf(?‘ﬁb) thn7 gf(g“]fb = "zﬂXo“P)'

Simply denote .,?th\]f” = fj(tn and .,Q”Xt]ﬁ” = Z%,. Then (Xt, Wt)te[O,T] is a weak solution
to (1.1) provided for any € > 0,

(4.5) lim P ( sup / (X7, Lsn) — (X, Zx,)| dt > g) =0,
n—o0 s€[0,T]
and
(4.6) lim P | sup / af(f(f,f)gn)dﬁ/t”—/ at(j(t,,f;(t)dl/f/t >e| =0.
n—0o0 s€[0,77] ¢ 0

In the following we prove these two limits respectively.

13



Proof of (4.5). For any n > m > 1, we have

| B 2) = bR Z) I < (o) + (o) + o),
0

where
I / b (R, L) — b (RE, L)t
/ (K7, ) — b (K Z |,
/ybm X, L5) — (X, L5 dt.

Below we estimate these I;(s) respectively.
Firstly, by Chebyshev’s inequality and (4.2), we arrive at
- €
P( sup Ii(s) > =

9 r n ~Nn m
3) < E/ 1{\X”|<R}|b (X7 ) — b (XT, )| dt
s€[0,7 0

9 T n ~Nn m
+§E/o 1{|X”|>R}|b( ta:ut) A t?“t)Ith

1
9C T o o a/p g
< 2 </ (/ |0} (, fiy') — by (x;,U/t)delE) dt)
0 |z|<R

36K 36C
+€_2 ; (an| >R)dt+—||G1{‘ |>R}HL

Since Xt" converges to X, in probability, (4.3) implies
lim WG(ﬂ?a ,ut) =0,
n—oo
and o o
lim P(|X}'| > R) < P(|X:| > R).
n—oo
Then it follows from (H?) (1) and (3) that
lim b7 (z, fil") — b(z, fir)| = 0, a.e. t€[0,T],z € R
n—oo
So, by condition (2) in (H?), we may apply the dominated convergence theorem to derive

lim sup P( sup I;(s) > Z)

n—00 s€[0,T7]

90 T ~ ~ ) Q/p %
3] (47) <2(/ (/| ‘ |bt<x7ut>—b?<x7m>|f’dx) at
0 z|<R

36K [T. - 36C
t—a i P(|X:| > R)dt + ?||G1{\~I>R}”LZ(T)

14



Since b™ is bounded and continuous, it follows that

T
limsupﬁ”( sup I(s) > g) < limsup §E/O b7 (X) Zy,) — b (X, Z%,)|dt = 0.

n—oo 56[07T] n—oo &

Finally, since X' — X, in probability, estimate (4.2) also holds for X replacing X".
Therefore, inequality (4.7) holds for I3 replacing I;. In conclusion, we arrive at

nmsupﬁb( sup / |b?()~(f,$)~(?)—bt(f(t,.,%gt)]dtze)

n—00 s€[0,T] Jo

5 €
<l I?’( I,(s) > —)
< 1msupz sup I;(s) > 3

n—00 i=1 86[07T]
1
18C T ~ 3 a/p q
S (/ (/ lbt(w,ut)—bin(:r,ut)ﬁpdx) dt)
€ 0 lz|<R
72K [T 790

t— ; P(|X,| > R)dt + 5_2HG1{I~I>R}||L§§(T)'

for any m > 0 and R > 0. Then letting first m — oo and then R — oo, due to (1) and
(2) in (H?), we obtain from the dominated convergence theorem that

1imsup@< sup / |b?()~(f,$)~(?) — bt(f(t,,ﬁfxtﬂ dt > 5> = 0.

n—00 s€[0,T] Jo

Proof of (4.6). For any n > m > 1 we have

/ o (X7, L)W — / oK, Z5) AW,
0 0

< /0 Jf(Xf,fX?)th"—/o afl(f({l,g)@)dﬁ/t"
+ / U?(X?,gXﬁ)th”_/ a:n()?t,gjqn)dwt
0 0
T / aZ”(Xt,DS,”X?)th—/ o ( Xy, ZLy,) AW,
0 0

=. Jl(S) + JQ(S) + Jg(S).

By Chebyshev’s inequality, BDG inequality and (4.2), we have

m € 9 r n/yn m(yvn
P( S}(I)I;] Ji(s) > g) < ?E/o 1{\)2’{‘|§R}”Ut (Xi a"%fq) — 0" (X{ 70%5(;”)‘@15 dt
s€|0,

15



9 n(yn m/wvn
+58 [ 1spim o (00, Zi) = o (K0, L s

1
9C n ~n m ~m % !
<% ( [ ([ oty - e s ) dt)
€ 0 |z|<R
184K [T
+—2/ B(|X?| > R)dt
€ 0
By condition (1) in (H?), and i — fi; in &% as observed above, we have
Tim (o7 (e, i) — (e, )| = 0,

and

hm ]P’(|X”| > R) <P(|X| > R).

So, the dominated convergence theorem gives

limsup@( sup Ji(s) > 5)

n—00 s€[0,T — 3

9C g ~ m ~m\ || 2P % !
(4.8) < — low(, fu) — o) (z, ") |[Fedz | di
€ 0 |z|<R
18dK [T~ -
+ 7/ P(’Xt| > R)dt
0

Similarly,

IN
m | ©
5 &
/N
o\
S
N
T
IN
=y]
E)
=
=
|
S
=
=
o
TS
o,

8
N———
(oW
~
~_

Q=

18dK [T -
82 5
0

So, applying Lemma 3.3 to

a(t) = o7 (X7 "), n(t) = o (Xe, "),

we conclude that when n — oo,
/ o' (X}, Lim)AW]" — / ot ( Xy, L) AW,
0 0

16



max

Hardy

HH1

HH2

E1°

in probability P, uniformly in s € [0,7]. Hence,

lim P ( sup

n—00 s€[0,T]

18C [ [T i . v
<= ( [ ([ oo = vt i) dt)
€ 0 lz|<R
36dK [T -
ez Jy

Letting first m — oo and then R — oo, we prove that when n — oo,

| o gy - [ o2 a
0 0

> <)

1
q

/ ol (X', Lip ) AW — / or( Xy, Ly,) AW,
0 0
in probability P, uniformly in s € [0, T7]. O

4.2 Proof of Theorem 2.1(3)

We will use the following result for the maximal operator:

1
4, h(z) = S — hiy)dy, he L: (R? R¢
( 9) 'ﬂ (IL’) Sup ‘B(ZL’, T>| /B(gg,r) (y) ya S loc( )7 HAS )

r>0
where B(z,r) :={y : |z —y| < r}, see [4, Appendix A].

Lemma 4.1. There exists a constant C > 0 such that for any continuous and weak
differentiable function f,

(4.10) f(x) = f(Y)| < Cle —yl(A|V fl(z) + AV f|(y)), ae a,yeR
Moreover, for any p > 1, there exists a constant C, > 0 such that
(4.11) 14 fller < Coll fllew, f € LP(RY).

Let X and Y be two solutions to (1.1) with Xy = Yy, and let p, = %x,, vy = %, t €
[0, 7). Then po = vy. Let

bf((lf) = bt<x)/14t>7 Uf(.ﬁ(]) - Ut(x7ﬂt>a (tu l‘) S [07T] X Rd)
and define 07, oy in the same way using v; replacing p,;. Then

dXt = b?(Xt) dt + O'#(Xt) th,

4.12
(4.12) 4Y; = b (V,)dt + 0¥ (V,)dW,.

17



For any A > 0, consider the following PDE for u : [0, 7] x R? — R%:

ou, 1
PDE| (4.13) % STH(o! (o) VPur) + Vg + b = ur, up = 0.

By Lemma 3.1 and [31, Theorem 3.1}, when A is large enough (4.13) has a unique solution
uM satisfying

1
(4.14) [V < 5
and
wo1] (4.15) VA 20 ) < 00
Let 0" (x) = = +u}*(x). By (4.12), (4.13) and Itd’s formula (see [30] for more details),
we have
(4.16) 6" (Xy) = A (Xp)dt + (VO "ol ) (X,) AW,
and
Ao (V) = A (Yy)dt + (VO oy ) (Yy) AW, + [V (b) — bf)](Yy)dt
E-Y| (4.17)

+ ST} (o) — ot (ot )T u ] (Vo).
Let & = 0;%(X,) — 0;*(Y;). By (4.16), (4.17) and Itd’s formula, we obtain
dléf? =22 (6w (X)) — wM(vy) )
+2(&, [(VO"o!)(X,) - (VO)*o ><m>]dwt>
+ (oot (X0 — (T ar) ()
= 2(&, [VOM (b — b)) (V0) ) di

— (& Trl(o7 (o})" = ot (o) )VAM) (YD) ) dt.

dt
HS

So, for any m > 1,
e = 2mAIG 2 (6w () — w (V) ) dt

+2ml& 2" (&, (VO al) (X0) - (VO o ><m>Jdm>

+ m‘ft‘z(mil)

(VO)o1)(X) — (V6 a})(V:)

dt
NN1| (4.18) . A as )
o+ 2m(m = DI (0 ol) (X) — (V007 (Vi)' dt
= 2l (6, [VO (b — H)(YE) ) i

=l P (&, (0 (o) — ot (of)) VPu) () ) b

18



NNP

NN2

By (4.14), (2.5), Lemma 4.1, and noting that the distributions of X; and Y; are absolutely
continuous with respect to the Lebesgue measure, we may find out a constant ¢; > 0 such
that

(4.19) &P V6] () — uM ()] < g™,
672 [[(v0 o) (X,) — (Vo) ()6 |

<l || (Tor o) (X5) - (V6 *or) ()

2

HS
(a20) Sl {Clala (1920 + |9t (X))

2
+ Clel-a (IV262 | + V1) (Y2) + Wo(jue, )}
< arlé* {a (|90} + 1Yot ) (X0) + o (|26 + IVt ]) (¥)}
+ 1 |&P™ + W (e, 10)*™,
&PV - [{VO (b~ b)}(Y2)
< LIVO ool DN Walpe, i) < ea (16" + Wa(pe, )",

and for some constants ¢y, c; > 0

(4.21)

&P - | Te((af (07)" = ot (o)) V2] (V)|
(4.22) < col&P™ W (g, )| V20| (V)
< e &P VP 7T (V) + e Wi (e, 1)>™

Combining (4.19)-(4.22) with (4.18), and noting that ;2" < 2, we arrive at
(423) d|£t’2m S ngft’2mdAt + 62W0<,ut7 Vt)det + th

for some constant ¢y > 0, a local martingale M;, and
A= [ {14 IV = (1702 + 9 )
£ (|20 + Vo) (v:))* }ds.
By the stochastic Gronwall lemma due to [28, Lemma 3.8], when 2m > 6 this implies

(4.24)  Wo(uy, )™ < (E|&|° ) "< 02(E62m o ve)*"ds, te0,T].

Since by Lemma 3.1, (4.11), (4.15) and the Khasminskii type estimate, see for instance
28, Lemma 3.5], we have

cof A
Eezm-67T < o0,
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so that by Gronwall’s lemma we prove Wy(pu, 14) = 0 for all ¢ € [0, T]. Then by (4.12) both
X; and Y; solve the same SDE with coefficients b} and o', and due to [30], the condition
1p(Jbf[* + |V [?) € LYT) for compact D C R? implies the pathwise uniqueness of this
SDE, so we conclude that X; =Y; for all t € [0, 7.

4.3 Proof of Corollary 2.2 and Corollary 2.3

Proof of Corollary 2.2. We set a;(x, ) := (00*)(z,p) for t € [0,7T], and by(z,p) = 0,
ai(x, p) = I for t € R\[0,T]. Let 0 < p € C(R x R?) with support contained in {(r,z) :
|(r,z)| < 1} such that [, p.p(r,2)drde = 1. For any n > 1, let p,(r,2) = n®*'p(nr, nx)
and define

ap(z,p) = / osoi (2, ) pn(t — s, 2 — 2')dsda’,

(4.25) R

b (z, 1) = / be (2, 1) pu(t — 8,2 — 2')dsda’, (t, 2, 1) € R x R x 2.
RxR4

Let 67 = \/a} and 6, = \/a,. Consider the following SDE:

(426) dXt - bt(Xt7 gxt)dt ‘I— &t(Xt, fxt)th

We first show that (b, 5) satisfies assumption (H?). Firstly, (2.6)-(2.7) and the continuity
in the third variable of B and ¥ imply that b and ¢ are continuous in the third variable
p € Py. Thus, (1) in (H?) holds. As to (HY) (2), since by [30], it holds that

nh_{go [ F— F x Pn”Lg(T) =0,
there exists a subsequence ny such that

| E' = F % po, | gy < 27",
Letting .

G=> |F=Fxpy|+F

k=1
then ||G|rgry < 14 ||Fllzer) and noting [b" > < K + F * py,, we have [0 > < K + G.
So, using the subsequence b™ replacing b", we verify condition (2) in (H?). Finally, by
(2.6), for any n > 1 there exists a constant ¢, > 0 such that

b (2, 1) = (2", )| + (167 (2, 1) — 632", V)| < en(t = 8|+ |2 — &' + Wi(p, v))

holds for all s,t € R,z,2’ € R? and p,v € ;. So, for any § > 1, condition (3) in
(H?) holds. By Theorem 2.1 (1), SDE (4.26) has a weak solution. Since the existence of
martingale solution is equivalent to that of weak solution, see [11, Proof of Theorem 2.1],
and noting that oo* = 66*, this implies that SDE (1.1) also has a weak solution. Finally,
the strong existence and uniqueness follow from Theorem 2.1 (2) and (3). O
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Proof of Corollary 2.3. Let b} and a} be in (4.25), and let 67" = \/a} and 6, = y/a;. Then
(2.5) and (4.25) imply (b, 5) satisfy H?. The remaining is same with the proof of Corollary
2.3 (1). m

5 Proofs of Theorems 2.4 and 2.5

5.1 Proof of Theorem 2.4

Firstly, applying Corollary 2.3, Lemma 3.4, and [27], (H) implies the existence and unique-
ness of solution to (1.1). For any u € &5 we let uy = P be the distribution of X; which
solves (2.9) with Ly, = p.

We first figure out the outline of proof using coupling by change of measure as in
(22, 24]. From now on, we fix to € (0,7] and pug, vy € P, and take Fy-measurable
variables X and Yy in R such that Zx, = po, L, = vo and

(51) ]E’X(] —Y6|2 :WZ(,U/O;VO)2'
Let X; with Zx, = o solve (2.9), we have
(52) dXt == bt(Xt7 ,Ltt)dt + O't(Xt>th.

To establish the log-Harnack inequality, We construct a process Y; such that for a weighted
probability measure Q := RP

(5.3) Xiy =Y Q-as., and 2, |Q = Prvy =: vy,
Then

(Pio.f)(0) = Eqlf (Yi)] = E[Reo f( X))l f € Zu(RY).
So, by Young’s inequality we obtain the log-Harnack inequality:

(Pi log f)(vo) < E[Ry, log Ry,] + log E[f(X4,)]

5.4
(5:4) =log(Py f)(110) + E[Ry, log Ryy], f € B (RY), f > 1.

To construct the desired Y;, we follow the line of [27] using Zvonkin’s transform. As
shown in [27, Theorem 3.10] for d; = 0 that Assumption (H) implies that for large enough
A > 0, the PDE (4.13) has a unique solution u™* satisfying

1
(5.5) [ o + VUM [l + VUMl < -

(S8

|[V2uM ||, < oo together with the Lipschitzian continuity of o implies that the increasing
process A; in (4.23) satisfies
dAt S cdt
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for some constant ¢ > 0. Moreover, E|&[* > ¢/W,(uy, v4)? holds for some constant ¢’ > 0.
So, with m = 1,0 = 2, %Xx, = uo and %y, = 1, the inequality (4.23) gives

(5.6) Wo (e, ve) < kWo(po, vp), t€[0,T]

for some constant x > 0.
Asin [22, §2], let v = ZK + 24 4 122 and take
12
25y

and let Y; solve the modified SDE

(5.7) G (1 _ e%”“*m)), t € [0, o),

(5.8) AV = {bt(Y;, V) + Clat(Yt)at(Xt)‘l(Xt - Yt)}dt F o (VAW te[0,t).

Since sup;cjoqy V(| - |*) < 00, this SDE has a unique solution (Y;)efo.,). Let
Tn = to ANnf{t € [0,4) : | X¢| + |Yi| = n}, n>1,

where inf () := oo by convention. We have 7, 1 tg as n T co. To see that the process Y
meets the above requirement, we first prove that

(5.9) R, :=exp {/OS %<Ut(Xt>_1()/t . Xt)7th> B %/Os los (X))~ é;ft — Xy

for s € [0,1y) is a uniformly integrable martingale, and hence extends also to time .

dt

Lemma 5.1. Assume (A1)-(A2) and let Xy, Yy be two Fy-measurable random variables
such that Lx, = o, Ly, = vy, and

(510) E’X@ - YE)'Q = WZ(NO; I/0>2.
Then there ezists a constant ¢ > 0 uniformly in ty € (0,T) such that

c
(5.11) sup E[R;log Ry] < %Wg(ﬂo,VO)Q.

te(0,t0)

Consequently, R, extends to t = ty, Q := Ry, P is a probability measure under which (5.8)
has a unique solution (Y;)ico,] satisfying

(5.12) Q(Xy, =Yy) = 1.

Proof. By (A1), for any n > 1 and ¢t € (0,t), the process (Rsr,)sclo,q is @ uniformly
integrable continuous martingale. So, for the first assertion it suffices to find out a constant
¢ > 0 uniformly in ¢y € (0,7) such that

c
(5.13) sup E[Rir, log Rips, ] < t—Wg(/Lo,V[))Q, t €[0,t).
0

n>1
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To this end, for fixed ¢ € (0,7) and n > 1, we consider the weighted probability Q;,, :=
Rinr, P. By Girsnaov’s theorem (W)sconr,) is a d-dimensional Brownian motion under
Q¢ Reformulating (5.2) and (5.8) as

Xs_Y;

AY, = by(Ys, vs) + 0,(Yy)dW,, s € [0,t A7),

dX, = by(X,, j1s) — ds + o,(X,)dW,,

where

t
~ 1
W, =W, +/ C—aS(XS)_l(XS —Y,)dW,.
0 s

Next, we fix A = Ag. Letting ;"*(z) = 2 + u}"*(z), combining (4.13) and Itd’s formula,
we arrive at

EC] (5.14) A0 (X) = A (Xt + (VO o) (Xe) AW, — ve?’“(Xt)th_ o,
t
and
E-Y’| (5.15) AN (Y;) = Mt (V) dt 4 (VO 0,) (Vy) AW, + [V (b7 — b)) (Y;)dt

By Ito’s formula under probability Q;,, we obtain

dl6r" (Ye) — 67" (X0

= 200, (X) — 67" (Yy), Ay (X)) — A (V) dlt

+ 2001 (X0) — 6;7(V), (V0" 00) (X ) AW, — (V6 0,) (Y,)dWr)
(B16) 4 V60 (X,) — V6 o) (Vi) st

— 206" (X4) — 6,7 (Y), [V (b — b)) (Ye)dt)

X, —Y,
—2<8?"‘(Xt)—0?’“(1@),V9?’“(Xt) t ; tdt>.
t

By (5.5) we have

Xy =Y,
= (0M(X) = (1), VO (X) = =)
t
X =Y, Xy =Y,
b o, B g Ry
t t

Xy =Y, Xy —Y,
= (X =¥ T ) = () - (), )
t

Xy =Y,
= (XY T O0) T ) = (i () — i (), V(X))
t




14X, — V3|2
<=t i
T2 G
So,

2 41X, —Y,]?
ABRH(Y) = PR OX)P < (31X = VP + D)X = Vi) — 3 s

+dM, se[0,t AT,
for some Qy,,-martingale M,. By (5.7) we have
4 16 , 8
5—7@‘1‘%@— 25"
By Ito’s formula, there exists a constant ¢, > 0 such that Then

BV — oM,

Gs
dM. X, — Y,[? (4 6, 1
5.7 < S W, v ds — {2 G+ 2 - 5o
(5.17) = + Wy (s, vs)“ds o 5 7C+25CS 5 fds
dM X, - Y,?
< CSS + oWy (g, vs)?ds — %7 s € [0,t A7l
Combining this with (5.6), (5.1) and (5.17), we arrive at
tATn Xs - Y:9|2 &1
(518) Eth\/O' |Td8 S %Wg(ﬂo, 7/0)2, t e [O,to)

for some constant ¢; > 0. Therefore, there exists a constant C' > 0 such that
AT oo (X) ' (Vs — Xo)
C2
¢ 2
< t—Wz(,uo,VO) , t€(0,t).
0

1 2
E[Rt/\Tn log Rt/\m] = iEQt,n/ | ds
0

Thus, (5.11) holds.

By (5.11) and the martingale convergence theorem, (R;)cjo,) is a uniformly inte-
grable martingale, so Q := R, P is a probability measure. By Girsanov theorem, we can
reformulate (5.8) as

(5.19) AY; = b(Y;, 1) dt + o, (Y;)d W,

which has a unique solution (Y;)cjo,)- By (5.11),

o | X, — Y2
%/lt Pt < oo
0

Gt

Since X; — Y; is continuous and f(fo édt = 00, this implies Q(X;, = Y;,) = 1. O
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Proof of Theorem 2.4. Consider the distribution dependent SDE
dXt = bt(Xt,gX—JP)dt + O't(Xt)th, XO = }/E)

By the weak uniqueness we have .,?Xtﬂf” = P}yy = v, for t € [0,tp]. Combining this with
(5.19) and the strong uniqueness, we conclude that X, = Y; for t € [0, T]. Therefore, (5.4)
and Lemma 5.1 lead to

(P log () < log(Pof)(ji0) + t%Wz(uo, W), to € (0,7

Finally, the Harnack inequality with power (2.13) follows from [24, Section 3.4]. O

5.2 Proof of Theorem 2.5
Proof. Fix ty > 0. Denote p; = Py = Zx,,t € [0,to]. Then (2.14) becomes
(520) dXt = bt(Xt, Mt)dt + Jt(ﬂt)tha gxo = Ho-
Let Y, = X; + %}’ t € [0,to). Then
dY, = b,(Yy, pu)dt + o0 () AWy, Ly, = o, t € [0, ko),

where
B t
W, .= W, —|—/ nsds,
0
v tv
N 1= Ufl{_ + by (X, p1e) — by <Xt + _7/1Jt) }
to tO

Let Ry, = exp[— [°(n, dW,) — L [ |n,|?ds]. By the Girsanov theorem we obtain

p—1
P

(P f)(tt0) = E{Ryy f (Yie)] = E[Rig f(Xy + )] < (P f7(v + ))F (o) (ERE )7,

and by Young’s inequality, we obtain

(Pto log f) (”0) = E[Rto 10g f<Y;o)]
= E[Ry, log f( Xy, +v)] < log Py, f(v + ) (o) + ERy, log Ry,

Then we have

= _p _ rto 9
]Elep(;l < sup e2(r-1? Jo0 Ins)?ds
Q

P Jo llo 12 { vl /o + o(t|v] /to) } it
P 2p— 172 -
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and

1 o
ERy, log Ry, = Eglog Ry, < §EQ/ ns|*ds
0

1 [t 2
<5 [ N Aol + otelol/r0)) .
0
O
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