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Abstract

This article presents two new non-intrusive reduced order models based upon proper

orthogonal decomposition (POD) for solving the Navier-Stokes equations. The nov-

elty of these methods resides in how the reduced order models are formed, that is,

how the coefficients of the POD expansions are calculated. Rather than taking a stan-

dard approach of projecting the underlying equations onto the reduced space through

a Galerkin projection, here two different techniques are employed. The first method

applies a second order Taylor series to calculate the POD coefficients at each time step

from the POD coefficients at earlier time steps. The second method uses a Smolyak

sparse grid collocation method to calculate the POD coefficients, where again the co-

efficients at earlier time steps are used as the inputs. The advantage of both approaches

are that they are non-intrusive and so do not require modifications to a system code;

they are therefore very easy to implement. They also provide accurate solutions for

modelling flow problems, and this has been demonstrated by the simulation of flows

past a cylinder and within a gyre. It is demonstrated that accuracy relative to the high

fidelity model is maintained whilst CPU times are reduced by several orders of magni-

tude in comparison to high fidelity models.

Keywords: non-intrusive Model Reduction, Smolyak sparse grid, Taylor series, POD,

Navier-Stokes

1. Introduction

Reduced order models (ROMs) have become prevalent in many fields of physics

as they offer the potential to simulate dynamical systems with substantially increased

computation efficiency in comparison to standard techniques. Among the model re-

duction techniques, the proper orthogonal decomposition (POD) method has proven to

be an efficient means of deriving a reduced basis for high-dimensional nonlinear flow
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systems. The POD method has been successfully applied to numerous research fields

and has a number of variants, such as the principal component analysis (PCA) method

[1] in statistics; Karhunen-Loeve method [2] in signal analysis and pattern recogni-

tion; and empirical orthogonal functions (EOF) [3, 4] in geophysical fluid dynamics

and meteorology. The POD method has also been applied to ocean models in Cao et

al. [5], Vermeulen and Heemink [6] and also to shallow water equation models. Its

application includes the work of Daescu and Navon [7], Stefanescu et al. [8, 9], Chen

et al. [10, 11], Altaf et al. [12], Du et al.[13], Fang et al.[14], as well as Xiao et al.

[15, 16].

However in most cases the source code describing the physical model has to be

modified in order to generate the reduced order model. These modifications can be

complex, especially in legacy codes, or may not be possible if the source code is not

available (e.g. in some commercial software) [17]. To circumvent these shortcomings,

more recently, non-intrusive methods have been introduced into ROMs, which do not

require the knowledge of the governing equations and the original code [17]. Noack

[18] and Noori [19] introduced the Neural Network into ROMs. Chen [17] proposed

a Black Box Stencil interpolation non-intrusive method, which is based on parametric

regression methods, and applied it to a one dimensional chemical reaction problem and

two dimensional porous media flow problems. Audouze et al. [20] proposed a non-

intrusive Radial Basis Function (RBF) reduced-order modeling method for approximat-

ing the solutions of nonlinear time-dependent parameterized partial differential equa-

tions (Burgers equation and a parameterized convection-reaction-diffusion problem).

Iuliano and Quagliarella [21] developed an non-intrusive POD ROM for aerodynamic

shape optimization. Guénot et al. [22], Casenave et al. [23] and Klie [24] proposed a

non-intrusive POD ROM based on RBF and the EIM/DEIM algorithm. However, most

of current non-intrusive ROMs may still suffer from prohibitive computational costs

due to the exponential increase of the number of multidimensional functions with the

dimensional size of problems (In ROM, the dimensional size d = P × Nv, where P is

the number of POD bases and Nv is the number of variables to be solved).

To cope with the curse of dimensionality, as we know, the Smolyak sparse grid

method [25] is an efficient method of integrating/interpolating multidimensional func-

tions based on a univariate quadrature rule. This sparse grid method has been widely

applied in various applications [26, 27, 28], including numerical integration [29], par-

tial differential equations [30], economics [31, 32], stochastic natural convection prob-

lems [33], sensitivity analysis [34], portfolio problems [35] and high dimensional in-

terpolation [36].

To our best knowledge, little attempt has been made to use the sparse grid method

in ROMs with exception of Peherstorfer [37], Cheng [38], Ullmann [39] and Lang, and

Sumant [40]. Peherstorfer [37] presented a reduced-order model of parametrised sys-

tems by employing a sparse grid machine learning method and applied this new ROM

to thermal conduction and chemical reaction simulations. Sumant [40] used a Smolyak

algorithm to compute orthogonal polynomial expansions coefficients in the reduction

of random input variables for an electromagnetic problems. Cheng [38] presented a

method for numerical simulation of the stochastic Berger equation, and investigated

the sparsity property in terms of Karhunen-Loeve expansions. Ullmann [39] and Lang

assessed the applicability of POD/Galerkin to stochastic collocation on the sparse grid.
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This paper presents the first work to apply non-intrusive ROMs to the Navier-Stokes

equations. These ROMs are implemented here within a high fidelity unstructured mesh

fluid model. The ability of non-intrusive ROMs to capture the highly nonlinear fluid

dynamics is investigated here. The first non-intrusive ROM uses a sparse grid collo-

cation approach (based on Smolyak grids) and another is derived using Taylor series

expansion. The reduced order models are constructed using a finite element Bubnov-

Galerkin discretisation of the Fluidity fluid dynamics modelling software [41] taking

snapshots of the solution variables at regular time intervals. In the Smolyak sparse grid

ROM approach, solutions of the full model are recorded (as a sequence of snapshots),

and from this data appropriate basis functions are formed that optimally represent the

problem. The Smolyak sparse grid method is used to construct interpolation func-

tions that approximate the non-linearity of the model. In the Taylor/POD approach, the

model based on snapshots is expanded through a Taylor expansion to second order so

as to capture the quadratic non-linearities in the high fidelity system.

The structure of the paper is as follows. Section 2 presents the governing equations,

followed by the derivation of the standard POD model reduction. Section 3 presents the

non-intrusive method based on the second order Taylor series theory. Section 4 presents

the Smolyak sparse grid method in reduced order modelling. Section 5 demonstrates

the method’s capabilities by solving two problems. Finally in section 6, the summary

and conclusions are presented.

2. Reduced Order Modelling of the Navier-Stokes Equations

2.1. Governing Equations

This article considers the three dimensional non-hydrostatic Navier-Stokes equa-

tions describing the conservation of mass and momentum of a fluid,

∇ · u = 0, (1a)

∂u

∂t
+ u · ∇u + f k × u = −∇p + ∇ · τ. (1b)

In these equations the term u ≡ (ux, uy, uz)
T denotes the velocity vector, p the per-

turbation pressure (p := p/ρ0, ρ0 is the constant reference density) and f the Coriolis

inertial force. The stress tensor τ included in the diffusion term represents the viscous

forces, and this is defined in terms of a deformation rate tensor S which is given by,

τi j = 2µi jS i j, S i j =
1

2

(

∂ui

∂x j

+
∂u j

∂xi

)

− 1

3

3
∑

k=1

∂uk

∂xk

, i, j = {x, y, z}. (2)

In this expression µ denotes the kinematic viscosity and it is assumed that there is no

summation over repeated indices. The horizontal (µxx, µyy) and vertical (µzz) kinematic

viscosities are assumed to take constant values and define the off diagonal components

of τ in equation (2) by µi j = (µiiµ j j)
1/2. For barotropic flow, the pressure p consists of

hydrostatic ph(z) and non-hydrostatic pnh(x, y, z, t) components.
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2.2. Reduction via Proper Orthogonal Decomposition

2.2.1. Proper Orthogonal Decomposition

In the POD formulation a new set of basis functions is constructed from a collec-

tion of snapshots that are taken at a number of time instances of the full model solution.

The model described in equations (1a) and (1b) are solved and snapshots of the solu-

tion are taken as it evolves through time. In the formulation presented here snapshots

of each component of the velocity vector u = (ux, uy, uz) and pressure p are recorded

individually. Each snapshot is a vector of sizeN and holds the values of the respective

solution component at the nodes of the finite element mesh. For each velocity or pres-

sure component, the sampled values at the snapshot s are stored in the vectorsUx
s ,Uy

s ,

Uz
s andUp

s (where the superscripts denote space direction or pressure) with N entries

(N being the number of nodes). A collection of all Ux
s , Uy

s , Uz
s and Up

s constructs

four separate matrices Ux = (Ux
1
, . . . ,Ux

s , . . . ,Ux
S

), Uy = (Uy

1
, . . . ,Uy

s , . . . ,Uy

S
) ,

Uz = (Uz
1
, . . . ,Uz

s, . . . ,Uz
S

) and Up = (Up

1
, . . . ,Up

s , . . . ,Up

S
) respectively (where S

is the number of snapshots). From here on each snapshot matrix will be treated sep-

arately, but in an identical manner, and so the superscripts are omitted for the sake of

simplicity of notation and the details are provided for a general snapshot matrixU.

Taking the deviation from the mean forms a modified snapshot matrix Ũ by,

Ũs = Us − U, s ∈ {1, 2, . . . , S }, (3)

where

U = 1

S

S
∑

s=1

Us. (4)

The goal of POD is to find a set of orthogonal basis functions {φs}, s ∈ {1, 2, . . . , S },
such that it maximises

1

S

S
∑

s=1

∣

∣

∣< Ũs, φs >L2

∣

∣

∣

2
, (5)

subject to
S

∑

s=1

| < φs, φs >L2 |2 = 1, (6)

where < ·, · >L2 is the canonical inner product in L2 norm.

The approach introduced by Sirovich [42] is used to find an optimal set of basis

functionsΦ of the optimisation problem (5). This involves performing a Singular Value

Decomposition (SVD) of the snapshot matrix Ũ given in the form,

Ũ = UΣVT . (7)

The terms U ∈ RN×N and V ∈ RS×S are the matrices that consist of the orthogonal

vectors for ŨŨT and ŨT Ũ, respectively and Σ is a diagonal matrix of sizeN×S . The

non zero values of Σ are the singular values of Ũ, and these are assumed to be listed

in order of their decreasing magnitude. It can be shown [43] that the POD vectors are

defined to be the column vectors of the matrix V ,

φs = ŨV:,s/
√
λs, for s ∈ {1, 2 . . .S }, (8)
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and the optimal basis set of size P consists of the functions corresponding to the largest

P singular values (i.e. the first P columns of U). These vectors are optimal in the sense

that no other rank P set of basis vectors can be closer to the snapshot matrix Ũ in the

Frobenius norm.

In POD, any variable ψ (for example, the velocity and pressure components) can

be expressed by the expansion,

ψ = ψ +

P
∑

j=1

α jφ j, (9)

where α j denote the coefficients of the POD expansion and ψ is the mean of the en-

semble of snapshots for the variable ψ.

As a final note, the loss of information due to the truncation of the POD expansion

set to P vectors can be quantified by the following ratio,

I =

∑P
j=1 λ

2
j

∑S
j=1 λ

2
j

, (10)

where λ denotes singular values. The value of I will tend to 1 as P is increased to the

value S , which would imply no loss of information.

2.2.2. Implementation of a standard (Galerkin projection) POD reduced order model

For simplicity equations (1a) and (1b) can be re-written in the general form:

∂ψ

∂t
= F(ψ). (11)

Taking the POD basis function as the test function, then integrating (11) over the com-

putational domainΩ, yields:

〈

∂ψ

∂t
, φ j

〉

Ω

= 〈F(ψ), φ j〉Ω. (12)

Substituting (9) into (12), the POD reduced order equations are then obtained:

∂αk

∂t
=

〈

F

(

ψ̄ +

P
∑

j=1

α jφ j

)

, φk

〉

Ω

, for k ∈ {1, 2 . . .P}, (13)

subject to the initial condition

αk(t) = ((ψ(t) − ψ̄), φk), at t = 0. (14)

Equation (13) at time level n can be written:

αn
k
− αn−1

k

∆t
=

〈

F

(

ψ̄ +

P
∑

j=1

αn−1
j φ j

)

, φk

〉

Ω

, for k ∈ {1, 2 . . .P}, (15)
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where, ∆t is the time step size to be used. Equation (15) can be rewritten in the general

form below:

αn+1
k = fk(αn), k ∈ {1, 2, . . .P}, (16)

In this work, alternative approaches are sought for quickly estimating the multidimen-

sional functions fk in (16). This enables us to then estimate the POD coefficients of the

reduced order model at arbitrary times. The first of of these methods is implemented

through a Taylor series expansion and the second is through a Smolyak sparse grid

method. These are detailed in the following sections.

3. The Taylor series method for the calculation of the POD coefficients

3.1. Taylor expression of the POD Coefficients

For a new time step, say n+2, a first order Taylor expansion of the POD coefficients

αn+2 = (αn+2
1
, . . . , αn+2

P
)T (where α denotes the complete set of coefficients for velocity

and pressure) can be written as,

αn+2 = αn+1 +
∂αn+1

∂αn
(αn+1 − αn), (17)

in terms of the POD coefficients on the previous two time steps. The term (αn+1 −
αn) denotes the change in coefficient values over time steps n + 1 and n, where n ∈
{1, 2, . . . ,N} (N is the total number of time levels). Due to the Navier-Stokes equations

having quadratic non-linearities, it is more appropriate to extend this Taylor expansion

to second order accuracy,

αn+2 = αn+1 +















M0 +

P
∑

k=1

(αn+1
k − αn

k)Mk















(αn+1 − αn), (18)

which is expressed in terms of matrices M0 and Mk, for k ∈ {1, 2, . . .P}, that have

dimensions P × P. These denote the derivatives of the POD coefficients at one time

step with respect to a change in the POD coefficients at the previous time step. The

matrix M0 holds the first order derivatives and is given by,

(M0)i, j =
∂αn+1

i

∂αn
j

≈
∂α1

i

∂α0
j

, i, j ∈ {1, 2, . . .P}, (19)

whereas the matrices Mk contain the second order derivatives which are given by,

(Mk)i, j =
∂2αn+1

i

∂αn
j
∂αn

k

≈
∂2α1

i

∂α0
j
∂α0

k

, i, j, k ∈ {1, 2, . . .P}. (20)

Note that the matrices M0 and Mk, for k ∈ {1, 2, . . .P} are assumed to be constant in

time and so can be pre-calculated. Once the solutions α0 and α1 at the first two time

instances t = 0, 1 are determined, the POD coefficients at time level n can be estimated

from equation (17).
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3.2. Offline calculation of the first and second derivative matrices in the Taylor series

An efficient way to calculate the derivative matrices M0 and Mk, for k ∈ {1, 2, . . .P}
is through a perturbation of the POD coefficients at one time instance. Suppose the

perturbation vector is ∆α0
j
= (0, ..., δα0

j
, ..., 0)T for a perturbation δα0

j
of the jth entry in

α0, then the ith element of the computed POD vector α̂1 at time instance 1 will provide

the variation of the ith POD coefficient with respect to the change in α0. This can be

used to compute the first derivative matrix, M0 through the relationship:

(M0)i, j =
α̂1

i
− α1

i

δα0
j

, i, j ∈ {1, 2, . . .P}. (21)

The perturbed solutions α̂1 at time step 1 can be thus calculated using the following

process:

(a) Map the vectors α0+∆α0
j

to the full space, then obtain the perturbed initial solution

ψ̂0 = ψ +
∑P

j=1(α0 + ∆α0
j
)φ j;

(b) Calculate the solution at the next time step, ψ̂1, through running the full model one

time instance;

(c) Obtain the perturbed POD vector α̂1
i

by projecting ψ̂1 onto the reduced space, α̂1 =

φT ψ̂1.

The whole matrix M0 can be computed by repeating the process P times and perturbing

each POD coefficient α0
j

( j ∈ {1, 2, . . .P}) in turn.

The calculation of the second derivative matrix Mk in (20) follows an extended

route similar to that used in the generation of the matrix M0. For each k, two per-

turbed vectors are created, α̂
0,+

k
and α̂

0,−
k

, which have small positive and negative per-

turbations in the kth entry of the original vector α0, i.e. α̂0,±
k
= α0 ± ∆α0

k
, where,

∆α0
k
= (0, ..., δα0

k
, ..., 0)T . Using these two vectors, two first order derivative matrices

are generated using the process described above, these are denoted M+
k

and M−
k

and

have elements defined as,

(M0)±i, j =
∂α
±,1
i

∂α±,0
j

i, j ∈ {1, 2, . . .P}. (22)

The second order derivatives are formed from the two Taylor expansions,

(Mk)±i, j = (M0)i, j ±
∂

∂α0
k

(M0)i, j‖δα0
k‖, (23)

which, by subtracting one from the other, can be re-arranged to form,

(Mk) =
1

2‖δαk‖
(M+k − M−k ). (24)
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4. The Smolyak sparse grid method for calculating the POD coefficients

The Smolyak sparse grid algorithm is an efficient method that is used to solve high

dimensional linear tensor product problems. Using the Smolyak method, the interpo-

lation function values need to be determined only at the sparse grid mesh points rather

than on the full tensor product grid, thus resulting in an impressive computational econ-

omy in comparison to tensor product evaluations, as the number of points no longer

increases exponentially with the dimensional size d. In this work, the Smolyak sparse

grid interpolation method [25] is used to construct a set of interpolating multidimen-

sional functions f̂k, (k ∈ {1, 2, . . .P}) for representing the functions fk in equation (16).

4.1. The Smolyak sparse grid algorithm

Let f̂ d,l

k
denote a Smolyak interpolant of dimension d with an approximational level

l, which is a linear combination of tensor product operators:

f̂ d,l

k
(αn) =

∑

max(d,l+1)≤|l|≤d+l

(−1)d+l−|j| ·
(

d − 1

d + l − |i|

)

(U i1 ⊗ · · · ⊗ U id ) f (αn), (25)

where |i| = i1 + · · · + id (here i1, . . . , id are indices in each dimension respectively),

(−1)d+l−|i| ·
(

d − 1

d + l − |i|

)

is a counting coefficient. The tensor product operator of a

d-dimensional function fk is defined as:

(U
i1
k
⊗ · · · ⊗ U id )( fk) =

Ol1
∑

j1=1

· · ·
Oid
∑

jd=1

fk(x
i1
j1
, ..., x

id
jd

).(P
i1
j1
⊗ · · · ⊗ P

id
jd

), (26)

where P
i1
j1
, P

i2
j2
, ..., P

id
jd

are the basis functions and Ol1 ,Ol2 ...Old are the number of ba-

sis functions used in each dimension with Oid = 2id−1 + 1 respectively, f (x
i1
j1
, ..., x

id
jd

)

represents the function value at (x
i1
j1
, ..., x

id
jd

), and id = 1, 2, ...,Old .

4.2. The calculation of the POD coefficients

A set of Smolyak interpolation functions f̂ d,l

k
(αn) in the form of (25) is now used to

estimate the POD coefficient αn
k

at time level n + 1,

αn+1
k = f̂k(αn), k ∈ {1, 2, . . .P}, (27)

where the spatial dimensional size d equals to the the size of the reduced order space

(i.e. the number of POD bases P). The input for each interpolation function f̂k(αn) is

the complete set of POD coefficients αn = (αn
1
, αn

2
, . . . , αn

P
) at the previous times step n.

The output of f̂ d,l

k
(αn) is the kth POD coefficient αn+1 at time step n + 1, i.e.,

f̂ d,l

k
(αn) : αn → αn+1

j , k ∈ {1, 2, . . .P}, . (28)

The Smolyak interpolation functions f̂
d,l

k
(αn) are calculated offline using the func-

tional values at the Smolyak grids. Each interpolation function denotes a supercube
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surface or a P-dimensional super surface. Once the interpolation functions are con-

structed, the POD coefficients at the current timestep n+ 1 are obtained by entering the

POD coefficients at the previous timestep n into the interpolation functions.

The offline calculation of the Smolyak interpolation functions f̂
d,l

k
(αn) can be de-

scribed as follows:

(a) Choose a set of sparse interpolation grids αr,0 = (αr,0
1
, αr,0

2
, . . . , αr,0

P
) (where r ∈

{1, 2, . . . ,R}, R is the number of sparse grids to be chosen), which lie in some

product interval

[Amin, Amax] = [α1,min, α1,max] · · · ⊗ [α j,min, α j,max] · · · ⊗ [αP,min, αP,max]

(where αk,min and αk,max are the minimum and maximum values of the kth POD

coefficient, k ∈ {1, 2, . . . , P});
(b) Calculate a corresponding set of the function value αr,1

k
= fk(αr,0) located at the

sparse grids through running the full model one time step from time level 0 to 1:

(i) Determine the initial condition ψr,0 for the full model by projecting αr,0 onto

the full space, where ψ denotes any variable in the full model, for example,

the velocity components ux, uy and uz, and the pressure p;

(ii) Determine the full solution ψr,1 by running the full model one time level;

(iii) Calculate the the function value αr,1
j

at sparse grid r by projecting ψr,1 onto

the reduced order space;

(iv) Repeat the above procedures (i)-(iii) and obtain all the function values at the

sparse grids r ∈ {1, 2, . . . ,R};
(c) Given a set of α

r,1
j

, construct the interpolation function f̂
d,l

k
(αn), k ∈ {1, 2, . . . , P}.

5. Numerical Examples

A demonstration of the use of the non-intrusive POD reduced order modelling

schemes is presented in this section. This numerical illustration consists in solving

two problems. In one we model flow past a cylinder and in the other we model flow

within a gyre. We used the Arpack package to perform the singular Value Decompo-

sition and, in particular, to obtain the leading singular value. The Smolyak grid was

determined using the ”SPARSE INTERP ND Multidimensional Sparse Interpolant”

authored by Burkardt [28, 44] whilst the original fine grid simulations were calculated

using Fluidity [41]. These provided the exact solutions for model comparison, as well

as the snapshots for the POD function generation.

In this demonstration a comparison between the full model and the non-intrusive

model reduction approach has been made. In addition to comparing solution profiles

the analysis compares the solution root mean square errors, as well as correlation coef-

ficients. The measured error is given by the root mean square error (RMSE) which is

calculated for each time step n by,

RMS En =

√

∑F
i=1(ψn

i
− ψn

o,i
)2

F
. (29)

In this expression ψn
i

and ψn
o,i denote the POD (mapped onto the full mesh) and the full

model solution at the node i, respectively, and F represents the number of nodes on the
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full mesh. The correlation coefficient is computed for each time step, and is defined for

given expected values µψn and µψn
o

and standard deviations σψn and σψn
o
,

corr(ψn, ψn
o)n =

cov(ψn, ψn
o)

σψnσψn
o

=
E(ψn − σψn )(ψn

o − σψn
o
)

σψnσψn
o

, (30)

where E denotes mathematical expectation, cov denotes covariance,σ denotes standard

deviation.

5.1. Case 1: Flow past a cylinder

We illustrate the novel non-intrusive methods via two numerical examples. Both

cases typify non-laminar flows. In the first numerical example a two dimensional flow

past a cylinder is simulated. In fluid dynamics, vortex shedding is an oscillating flow

that takes place when a fluid such as air or water flows past a cylindrical body at certain

velocities, depending on the size and shape of the body. These are called Von Karman

vortices.

The problem domain is 2 units in length and 0.4 units in width, and it contains a

cylinder of radius 0.12 units at location(0.2, 0.2). The dynamics of the fluid flow are

caused by a slightly compressible fluid flowing through the domain with a velocity 1.

This enters the domain through the left boundary. The fluid is allowed to flow past the

cylinder and out of the domain through the right boundary. No slip and zero outward

flow conditions are applied to the upper and lower edges of the problem, whilst Dirich-

let boundary conditions are applied to the cylinder’s wall. From the full model simula-

tion, with a mesh of 3213 nodes, 400 snapshots were obtained at regularly spaced time

intervals ∆t = 0.02 for each of the u, v and p solution variables.

In order to evaluate the capabilities and the difference between the Smolyak sparse

grid ROM and the Taylor expansion POD model, two cases one with a Reynolds num-

ber of 400 and the other with a Reynolds number of 3600 were investigated. The

simulation period is [2 − 10], and a time step of ∆t = 0.01 was used for all models.

Figure 1 shows the solutions for the flow past the cylinder at time instances 3.0 and

10.0, as calculated using the two non-intrusive models (Smolyak sparse grid ROM and

Taylor/POD model respectively), the full high fidelity model and the standard (Galerkin

projection) POD model using 12 POD basis functions. The Reynolds number was 400

in this case. These solutions show that all methods have performed particularly well

at resolving the flow at both time instances. This is highlighted further in figure 2

which presents the solution velocities predicted by all methods at the position (0.19397,

0.28101) on the domain. It can be seen from this figure that the Smolyak sparse grid

ROM is in closer agreement with the full model, whilst both the standard and Tay-

lor POD models are able to capture the wave pattern, but have a large error near the

peak of waves during the spin-up period of modelling i.e. [200, 550]. It is shown the

Smolyak sparse grid ROM can perform better than other POD models since it is highly

customizable through the choice of admissible multi-index sets and well converges to

the tensor product of exact operators [45].

To further demonstrate the capability of the non-intrusive models, the Reynolds

number was then increased to Re = 3600. Visual inspection of figure 3 shows that

decrease of eigenvalues satisfies exponential Kolmogorov n-width. This helps us to

10



(a) full model, t = 3.0 (b) full model, t = 10.0

(c) standard POD, t = 3.0 (d) standard POD, t = 10.0

(e) Taylor/POD, t = 3.0 (f) Taylor/POD, t = 10.0

(g) Smolyak sparse grid ROM, t = 3.0 (h) Smolyak sparse grid ROM, t = 10.0

Figure 1: Case one - flow past a cylinder at Re = 400: The figures displayed above show the solutions of

the flow past a cylinder problem at time instances 3.0 and 10.0. The solutions compare the predictions from

non-intrusive models(Smolyak sparse grid ROM and Taylor/POD) with full model and standard (Galerkin

projection) POD model using 12 POD bases functions.
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Figure 2: Case one - flow past a cylinder: The graphs shows the solution velocities predicted by

the full model, POD model, Taylor expansion method and the Smolyak sparse grid ROM at positions:

0.19397,0.28101, Re=400.

choose the number of POD bases. The more number of POD bases are chosen, the

more energy is captured. In this case, 12, 24 and 35 POD bases are used to demonstrate

the performance of ROM.

The comparison of results between the full and POD models (the standard, Taylor

and Smolyak sparse grid non-intrusive POD models) was carried out. Figure 4 shows

the simulated flow patterns at time instances 3.0 and 10.0 (where 12 POD bases are

used). As shown in the figures the Smolyak sparse grid non-intrusive model performs

well for this Reynolds number. However, it can be seen that the Taylor/POD non-

intrusive model does not capture well the complex flow patterns and eddies for this high

Reynolds number while the standard POD model has a large error near the cylinder.

Figures 5 shows the difference between the full model and Smolyak sparse grid and

standard POD of the flow past a cylinder problem at time instances 3.0 and 10.0 using

12 and 24 POD basis functions, respectively. The figures illustrate the fact that the

error between the full model and the Smolyak sparse grid ROM is smaller than that

between full model and the standard POD model.

In this study case, it is demonstrated that the Smolyak sparse grid ROM can repro-

duce better solutions in comparison with the other POD models for Re = 400, 3500.

The standard POD model is formed by projecting the full model onto the reduced or-

der space through a Galerkin projection, thus introducing errors into the POD model

which may even grow exponentially and have contributed to the poorer performance

of the standard POD approach compared with the sparse grid ROM. A new Petrov-

Galerkin method was introduced to stabilize the resulting equations and produce more

accurate results [15]. Here, we use the standard POD approach. In the Smolyak ROM,

the POD coefficients are computed using sparse grid interpolation (see equation (28))

where the functional values are calculated accurately from the full model (see section

4.2). It has been argued by others [45] that ’Smolyak algorithms constitute the ideal

blending of different full tensor approximations from the perspective of exact sets; that

12



is, the exact set of the Smolyak algorithm contains the union of the exact sets of the

component full tensor approximations’. See also [46]. Also the Smolyak sparse grid

ROM with an increase of approximation levels is able to represent not only quadratic

(e.g. the Taylor POD ROM proposed here), but also high order non-linearities. These

arguments explain why the Smolyak ROM can perform better than other POD ROMs

(both intrusive and non-intrusive).

The accuracy of the POD ROM results can be further improved by increasing the

number of POD bases. Figures 6 and 7 compare the full solution and the Smolyak

sparse grid non-intrusive reduced order model when using 24 and 35 POD basis func-

tions respectively. In both cases there is a visual improvement in the Smolyak ROM’s

predictions in comparison to the solutions provided by the standard POD ROM when

the same number of basis functions is used. Figure 8 shows the velocity speed at two

points in the domain using 12 POD bases and 35 POD bases. It is again shown that the

accuracy of velocity solution is improved by increasing the number of POD bases to

35. In this case, the Smolyak sparse grid ROM can perform well only using 12 POD

bases when there are no abrupt change in solutions, however, this abrupt change in time

can be captured by increasing the number of POD bases, as shown in figure 8. It is also

seen in figure 9 that the RMSE of velocity results obtained from the Smolyak sparse

grid ROM decreases as the number of POD bases increases.

Figure 10 compares the full model and Smolyak sparse grid ROM using different

sparse grid levels l with l ∈ {0, 1, 2} using 12 POD bases. Each dimension has the

number of nodes nl = 2l + 1 in which l denotes the number of levels. As we can see

from figure 10, even level one (3 points at each dimension) performs well, while level

zero (one point at each dimension, mean value of each dimension) failed to capture the

energy of the flows.
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Figure 3: Case one - flow past a cylinder at Re = 400: The graphs shows the singular eigenvalues in order of

decreasing magnitude.

Figure 11 shows the online CPU time required to compute a single time step with

varying mesh size. The offline CPU time for calculating the Smolyak interpolation

functions and the first/second order derivative matrices for the Taylor/POD method
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(a) full model, t = 3.0 (b) full model, t = 10.0

(c) standard POD, t = 3.0 (d) standard POD, t = 10.0

(e) Taylor/POD, t = 3.0 (f) Taylor/POD, t = 10.0

(g) Smolyak sparse grid ROM, t = 3.0 (h) Smolyak sparse grid ROM, t = 10.0

Figure 4: Case one - flow past a cylinder at Re = 3600: The figures displayed above show the solutions of

the flow past a cylinder problem at time instances 3.0 and 10.0. The solutions compare the predictions from

Smolyak sparse grid ROM and Taylor/POD non-intrusive models with the full model and the standard POD

model using 12 POD basis functions.
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(a) standard POD error, t = 3.0, 12 POD bases (b) standard POD error, t = 10.0, 12 POD bases

(c) standard POD error, t = 3.0, 24 POD bases (d) standard POD error, t = 10.0, 24 POD bases

(e) Smolyak/POD error, t = 3.0, 12 POD bases (f) Smolyak/POD error, t = 10.0, 12 POD bases

(g) Smolyak/POD error, t = 3.0, 24 POD bases (h) Smolyak/POD error, t = 10.0, 24 POD bases

Figure 5: Case one - flow past a cylinder at Re = 3600: The figures displayed above show the solution

difference between the full model and the standard POD and the Smolyak sparse grid ROM of the flow past

a cylinder problem at time instances 3.0 and 10.0 using 12 POD basis and 24 POD bases.

(a) full model, t = 3.0 (b) full model, t = 10.0

(c) standard POD, t = 3.0 (d) standard POD, t = 10.0

(e) Smolyak sparse grid ROM, t = 3.0 (f) Smolyak sparse grid ROM, t = 10.0

Figure 6: Case one - flow past a cylinder at Re = 3600: The figures displayed above show the solutions of

the flow past a cylinder problem at time instances 3.0 and 10.0. The solutions compare the predictions from

Smolyak sparse grid non-intrusive ROM using 24 POD basis functions.
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(a) full model, t = 3.0 (b) full model, t = 10.0

(c) Standard POD, t = 3.0 (d) Standard POD, t = 10.0

(e) Smolyak sparse grid ROM, t = 3.0 (f) Smolyak sparse grid ROM, t = 10.0

Figure 7: Case one - flow past a cylinder at Re = 3600: The figures displayed above show the solutions of

the flow past a cylinder problem at time instances 3.0 and 10.0. The solutions compare the predictions from

Smolyak sparse grid non-intrusive ROM using 35 POD basis functions.

are not taken into account. It shows the cost of the ROM models remain static with

increased resolution of mesh, and that significant CPU speed-ups are obtained using

mesh with the largest number of nodes. For the largest mesh the CPU costs were

reduced by a factor of 100 compared to the cost of the high fidelity model. Table 1

shows comparison of the online CPU time required for running the full model and

non-intrusive ROMs for each time step. The online CPU time listed here includes

the time for assembling and solving the matrix for the full model while interpolating

(Smolyak), Matrix multiplication (Taylor) and projecting the POD solution onto the

full space for the non-intrusive ROM. In this study case, the CPU time required for

matrix multiplication can be ignored since the dimensional size (36 × 36) of matrices

is very small. It can be seen that the non-intrusive ROM is CPU time efficient, since

it does not involve assembling and solving the matrices process, thus resulting in a

speed-up of CPU time of two orders of magnitude.

Table 1: Case one - flow past a cylinder at Re = 3600: Comparison of the online CPU time (dimensionless)

required for running the full model and ROM for each time step

Model assembling solving projection interpolation (Smolyak) total

matrix multiplication (Taylor)

Full model 3.004 0.113 0.000 0.000 3.117

POD ROM 0.303 0.000 0.008 0.000 0.311

Smolyak ROM 0.000 0.000 0.008 0.004 0.012

Taylor/POD 0.000 0.000 0.008 0.000 0.008

5.2. Case 2: The Gyre Problem

The second numerical example involves the simulation of a gyre for which a circu-

lating fluid moves across a domain that is 1000 × 1000 km across and 500m in depth.
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The solution’s free surface is driven by a wind with a force strength given by the ex-

pression,

τy = τ0cos(πy/L) and τx = 0.0, (31)

where L is the system length (L = 1000 km). The terms τx and τy are the wind stresses

on the free surface that act along the x and y directions, respectively. In this example

the maximum zonal wind stress was set to τ0 = 0.1 Nm−1 in the latitude(y) direction.

The Coriolis terms are taken into account with the beta-plane approximation( f = βy)

where β = 1.8 × 10−11 and the reference density of the fluid is set to ρ0 = 1000 kgm−3.

The velocity is 3.5102m/s−1. With this setup the Reynolds number of the problem was

calculated to be Re = 300.

The gyre was simulated using a finite element model for a period of 161 days using

a time step of ∆t = 0.322 days. From this simulation 500 snapshots of the solution

were recorded and from this data 12 POD basis functions were generated. It was found

that this POD basis set captured over 99% of the energy of the u, v and p snapshot

data. The problem was then re-simulated using the newly developed non-intrusive

reduced order model. Figure 12 shows the velocity profiles obtained from the full

model at 41 and 93 days using 6 POD bases. The errors between the full model and

the non-intrusive order model are shown at the bottom of figure 12. Figure 13 shows

the velocity profiles obtained from the full model at 41 and 93 days using 12 POD

bases. The numerical results obtained show that the main gyre is accurately resolved

using non-intrusive reduced order model. Figure 14 shows the RMSE between the full

model and the non-intrusive model, which means the solutions of the non-intrusive

model are in close agreement with the high-fidelity full model solutions. Figure 15

displays the correlation coefficient between the full model and the non-intrusive model,

this indicates that the RMSE of velocity results obtained from the Smolyak sparse grid

model is smaller than that from the standard POD model. The non-intrusive Smolyak

sparse grid model exhibits an overall good agreement with the full model. It can be

also seen that an increase in the number of POD bases leads an improvement in the

accuracy of the POD model - the RMSE of velocity results is decreased.

6. Conclusions

In this article two new non-intrusive reduced order methods are presented. Both

methods are based on POD methodologies where optimal basis functions are gener-

ated through the method of snapshots. However rather than using a standard Galerkin

projection ROM approach (code intrusive), the two approaches based on the Smolyak

sparse grid interpolation method and on a second order Taylor series expansion, are

employed to calculate the POD coefficients. The method based on Smolyak sparse

grid interpolation method constructs a supercube that replaces the governing equations

within the reduced space. The other method uses a second order Taylor expansion to

capture the quadratic non-linearities in the Navier-Stokes equations. The benefits of

the non-intrusive model reduction approaches presented here is that they do not re-

quire any modifications to the source code, due to the fact that they are independent

of the equation of the system, and simply work from a number of snapshots of the full

solution.

17



The methods have been numerically compared against a finite element unstructured

adaptive mesh fluid model (Fluidity) on two flow problems. The two problems were

based on the simulation of flow past a cylinder and wind driven gyre respectively. The

two non-intrusive methods gave accurate solutions for modelling both flow problems.

It is demonstrated that accuracy of solutions from both non-intrusive models is main-

tained whilst online CPU times are reduced by several orders of magnitude in com-

parison to high fidelity models. However, for higher Reynolds numbers the Smolyak

method was shown to be more robust in maintaining accuracy for resolving the more

complex flows. An error analysis has also been carried out for the validation and accu-

racy assessment of the newly non-intrusive model. The non-intrusive Smolyak sparse

grid model exhibits an overall good agreement with the full model. It can be also seen

that an increase in the number of POD bases leads an improvement in the accuracy of

the POD model. Future work will investigate the effects of applying this new approach

to more complex fluid flows and combining non-intrusive methods with the DEIM

methodology (see [24]).
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(a) Locations a(0.195, 0.267) and b(0.619, 0.298)
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(b) Fluid speed at a(0.195, 0.267)
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(c) Fluid speed at b(0.619, 0.298)

Figure 8: Case one - flow past a cylinder at Re = 3600: The graphs show the velocity speed predicted by

the full model, and the Smolyak sparse grid ROM at positions a (0.195, 0.267) and b (0.619, 0.298). These

results were obtained using a reduced order model with 24 and 35 POD functions.
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Figure 9: Case one - flow past a cylinder at Re = 3600: The graphs show the RMSE of results obtained from

Smolyak ROM.

(a) full model, t = 6.0, 12 POD bases (b) one level Smolyak grid, t = 6.0, 12 POD bases

(c) zero level Smolyak grid , t = 6.0, 12 POD bases (d) two level Smolyak grid, t = 6.0, 12 POD bases

Figure 10: Case one - flow past a cylinder at Re = 3600: The graphs show the comparison between full

model with different levels of Smolyak grid using 12 POD bases at t = 6.
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Figure 11: Case one - flow past a cylinder at Re = 3600: Computational times to compute each time step as

a function of mesh size (number of nodes) in the full model. Comparisons are made between the full model

and the non-intrusive ROM.
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(a) Full model, t = 41 days (b) Full model, t = 93 days

(c) Smolyak grid ROM, t = 41 days (d) Smolyak grid ROM, t = 93 days

(e) Error in ROM, t = 41 days (f) Error in ROM, t = 93 days

Figure 12: Case two - gyre: The graphs show the comparison between full model with different levels of

Smolyak grid using 12 POD bases at t = 6, Re = 3600The figures displayed above show the solutions of the

gyre problem at time instance 41 (left) and 93 days (right). The solutions compare the predictions from the

full model (top), the Smolyak sparse grid ROM (middle) using 6 POD functions (middle). The Figures at

the bottom are the difference between full and Smolyak sparse grid ROM.
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(a) full model, t = 41 days (b) full model, t = 93 days

(c) Smolyak grid ROM, t = 41days (d) Smolyak grid ROM, t = 93days

(e) Error in ROM, t = 41 days (f) Error in ROM, t = 93 days

Figure 13: Case two - gyre: The figures displayed above show the solutions of the gyre problem at time

instance 41 (left) and 93 days (right). The solutions compare the predictions from the full model (top), the

Smolyak sparse grid ROM (middle) using 12 POD functions (middle). The figures at the bottom are the

errors between full and Smolyak sparse grid ROM
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Figure 14: Case two - gyre: The graph shows the RMSE errors calculated for the Smolyak sparse grid ROM.
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Figure 15: Case two - gyre: The graph shows the correlation coefficient calculated for the Smolyak sparse

grid ROM.
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