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Abstract

An insightful mechanics-based concept is developed for probing the frequency-dependence in in-plane
elastic moduli of microstructured lattice materials. Closed-form expressions for the complex elastic
moduli are derived as a function of frequency by employing the dynamic stiffness matrix of beam
elements, which can exactly capture the sub-wavelength scale dynamics. It is observed that the two
Poisson’s ratios are not dependent on the frequency of vibration, while the amplitude of two Young’s
moduli and shear modulus increase significantly with the increase of frequency. The variation of
frequency-dependent phase of the complex elastic moduli is studied in terms of damping factors of the
intrinsic material. The tunable frequency-dependent behaviour of elastic moduli in lattice materials
could be exploited in the pseudo-static design of advanced engineering structures which are often
operated in a vibrating environment. The generic concepts presented in this paper introduce new
exploitable dimensions in the research of engineered materials for potential applications in various
vibrating devices and structures across different length-scales.
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1. Introduction

Engineered lattice materials or mechanical metamaterials are artificial microstructures with bulk
mechanical properties defined by their structural configuration along with the intrinsic material prop-
erties of the constituent members. The global mechanical properties can be engineered by intelligently
identifying the material microstructures of metamaterials. This novel class of structural materials with
tailorable global mechanical properties (like equivalent elastic moduli, buckling, vibration and wave
propagation characteristics) have tremendous potential applications for future aerospace, civil and
mechanical structures. Development of such application-specific engineered materials have received
immense attention from the concerned scientific community in last few years after the recent advance-
ment in 3D printing technology [2, 4-6, 8, 13, 19, 22, 24, 26, 29, 30, 51, 55, 58, 60, 62]. Fascinating
properties such as extremely lightweight, negative elastic moduli, negative mass density, unbounded
thermal expansion, pentamode material characteristic (meta-fluids) can be obtained by cognitively
identifying the material microstructure. For example, if the cell angle 6 in figure 1(b) becomes neg-
ative, the cellular structure shows auxetic properties i.e. negative Poisson’s ratio [1, 10, 18, 39, 43].
Natural materials can not exhibit such unusual properties, which can have various favourable applica-
tions in wide range of systems.

Metamaterials comprise periodic structural forms in two and three dimesional spaces. For elim-
inating the requirement of an intricate microscale finite element model for metamaterials as a con-
stituent part of complex large-scale structural systems, such lattice metamaterials are normally mod-
elled as a continuous solid medium with an effective elastic moduli throughout the entire domain
[34, 41, 47, 56]. The most prominent approach of analysing metamaterials is to consider an appropri-
ate unit cell that can represent the entire material micro-structure [17, 25, 36, 64]. Two dimensional
hexagonal honeycomb-like metamaterials with tailorable elastic moduli have been widely investigated
[11, 14, 27, 33, 50, 57, 61, 63]. Such hexagonal lattices of natural and artificial nature can be identified
across different length-scales (nano to macro) in auxetic and non-auxetic forms. The basic mechanics
of deformation for the lattices being scale-independent, the formulations developed in this context
are normally applicable for a wide range of materials and structural forms. Experimental and fi-
nite element studies have been reported for impact, crushing, elastic moduli and other mechanical
responses of normal and foam-filled honeycombs considering manufacturing irregularities and defects
[16, 23, 28, 31, 40, 42, 44, 48, 49, 54]. Honeycombs and other forms of metamaterials are often intended

to be utilized in vibrating structures such as sandwich panecls used in aircraft structures. Dynamic
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Figure 1: (a) Typical representation of a hexagonal cellular structure in a dynamic environment (such as the honeycomb
as part of a host structure experiencing wave propagation, vibrating structural component etc.). The curved black arrows
are symbolically used to indicate propagation of wave (b) One hexagonal unit cell under dynamic environment (c¢) A
dynamic Euler-Bernoulli beam element for the bending vibration of a damped beam with length L (It has two nodes and
four degrees of freedom consisting of the transverse deformation and the rotation at the two nodes. The displacement
field within the element is expressed by complex frequency dependent shape functions.) (d) Typical representation of
axial and shear deformation in materials along with respective applied stresses

homogenization of metamaterials have been reported in various recent papers [38, 52]. Hexagonal
lattice-like structural form being a predominant material structure at nano-scale (such as graphene,
hBN etc [32, 45, 46]), analysis of vibrating nanostructures are quite relevant to various applications
at nanoscale. Besides that recent development in the field of metamaterials have prompted its use

as advanced materials in aircraft and other machineries that experience vibration during operation.



Analytical expressions for equivalent elastic moduli of cellular metamaterials proposed hitherto are
based on static deformation only. It is important to investigate the elastic properties of such cellular
metamaterials in a dynamic environment.

For relative low-frequency vibrations, the length of each unit cell will be significantly smaller than
the wave-lengths of the global vibration modes. As a result, each unit cell would effectively behave as
a sub-wavelength scale resonator. Several exciting and unusual bulk properties of metamaterials have
been reported exploiting sub-wavelength scale resonators [21]. These include negative effective elastic
modulus [12], negative density (or mass) [59], or both [7], anisotropy in the effective mass or density
20, 53], and non-reciprocal response [15, 37]. Theoretically, cellular metamaterials undergoing dynamic
forces can also show such unusual behaviour due to the sub-wavelength scale resonator. However, this
has not been widely reported mainly due to the difficulties in properly modelling hexagonal unit
cells as sub-wavelength scale resonators. In principle, this is possible using very fine finite element
discretisations of the individual beam elements in a unit cell. Such an approach will be purely numerical
(involving computationally intensive simulations) and will not give the necessary physical insights
provided by closed-form expressions. Motivated by this need, the present paper proposes a novel
approach based on the dynamic stiffness method [3]. This approach is valid for steady-state dynamics
under harmonic excitations. Using this idea, an analytical formulation is developed to investigate the
frequency dependence for the elastic moduli of metamaterials rigorously.

We aim to demonstrate the dynamic stiffness based framework for frequency dependent elastic
moduli considering two dimensional hexagonal metamaterials in this paper. The dynamic stiffness
matrix of a generic beam element is derived first, wherein all the elements of the dynamic stiffness
matrix are complex in nature and dependent on the frequency. Based on the principle of structural
mechanics, closed-form expressions for the frequency-dependent elastic moduli of the cellular structure
are derived using the dynamic stiffness elements of a beam. This article is organized hereafter as
follows: the closed-form expressions of frequency dependent elastic moduli of hexagonal lattices are
furnished in section 2 (the detail derivation of the dynamic stiffness matrix for a single beam element
and the expressions for elastic moduli of lattice metamaterials are provided in the supplementary mate-
rial); results of the frequency dependent elastic moduli are presented in section 3 considering different
structural and geometric parameters; a brief summary of the results along with their importance and
prospective applications in the field of metamaterials are discussed in section 4; and finally, section 5

provides concluding remarks and outlook of the present article.



2. Frequency-dependent elastic moduli
2.1. The dynamic stiffness matriz

Dynamic motion of the overall cellular structure corresponds to vibration of individual beams
which constitute each hexagonal unit cells. A representative pictorial depiction of the beam is shown
in figure 1(c). One typical honeycomb unit cell under dynamic environment is shown in figure 1(b),
wherein a vibrating mode of each constituent members is symbolically shown. If external forces are
applied to such a vibrating honeycomb, the members will deform following a different rule. Thus the
effective elastic moduli of the entire lattice will be different from conventional static elastic moduli.
Aim of the present article is to capture the effect of vibration in the effective elastic moduli of hexagonal
lattices based on dynamic stiffness method [9, 35]. Some of the key features of this method are discussed
in the following paragraph.

The mass distribution of the elements in dynamic stiffness method is treated in an exact manner
for deriving the element dynamic stiffness matrix. The dynamic stiffness matrix of one-dimensional
structural elements, taking into account the effects of flexure, torsion, axial and shear deformation,
and damping, is exactly determinable, which, in turn, enables the exact vibration analysis by an in-
version of the global dynamic stiffness matrix. The method does not employ eigenfunction expansions
and, consequently, a major step of the traditional finite element analysis, namely, the determination
of natural frequencies and mode shapes, is eliminated which automatically avoids the errors due to
series truncation. Since modal expansion is not employed, ad hoc assumptions concerning the damping
matrix being proportional to the mass and/or stiffness are not necessary. The method is essentially a
frequency-domain approach suitable for steady state harmonic or stationary random excitation prob-
lems. The static stiffness matrix and the consistent mass matrix appear as the first two terms in the
Taylor expansion of the dynamic stiffness matrix in the frequency parameter.

The overall elastic moduli of the lattice depends on the bending deformation of the individual
beams within a unit cell (figure 1(b)). When dynamic equivalent elastic moduli are considered, one
needs to establish a dynamic equilibrium within the unit cell. The central idea of this work is to exploit
the dynamic stiffness matrix of the beam for this purpose. Therefore, the dynamic stiffness matrix
of a single beam element is derived first. Next the expressions of frequency dependent elastic moduli
of the lattice metamaterial are developed based on the elements of the dynamic stiffness matrix of a

single beam. The equation of motion of free vibration of a damped beam can be expressed as
5 2
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It is assumed that the behaviour of the beam follows the Euler-Bernoulli hypotheses. In the above
equation F[I is the bending rigidity, m is mass per unit length, ¢; is the strain-rate-dependent vis-
cous damping coefficient, ¢y is the velocity-dependent viscous damping coefficient and V' (z,t) is the
transverse displacement. The length of the beam is L and x is the distance along the length.

When frequency dependent excitation is considered, the beams representing the elements of the
lattice undergo dynamic deformation. In figure 1(c) we show a finite element representing dynamics
of an Euler-Bernoulli beam. The four degrees of freedom correspond to the transverse deformation
and the rotation at the two nodes. The dynamic deformation within the beam is interpolated using
the shape function and the nodal deformation corresponding to each degrees of freedom. As the

deformation is frequency dependent, at any point inside the beam it can be expressed as
v(z,w) = Ni(z,w)v1(w) + No(x,w)va(w)N3(z,w)v3(w) + Ny(z,w)vy(w), 0<z<L (2)

Here v(z,w) is the Fourier transform of V(x,t), w is the excitation frequency, N;(z,w) and v;(w),
j = 1,---,4 are the shape functions and nodal deformation corresponding to the four degrees of
freedom shown in figure 1(c) (see the supplementary material for detailed derivations). A crucial
difference between the displacement expression in equation (2) and the conventional finite element
approach is the use of frequency dependent shape functions. The four shape functions appearing in
equation (2) are shown in figure 2. It can be seen that the shape functions change not only along
the length of the beam but also along the frequency. This allows the displacement field to adapt
with changes in the frequency without increasing the degrees of freedom. This in turn enables us to
establish a dynamic equilibrium within a unit cell in a simplified manner, leading to the closed-form
expressions of the equivalent elastic moduli as discussed next.

From the equation of motion, the dynamic stiffness matrix of a single beam element can be derived
in a closed form as:

12 (cS+Cs)  —sbS R(S+s) —b(C—c)
EIb —sbS —Cs+cS b(C —c) —S+s

b (S +s) b(C —c) —b?(cS+Cs) sbS

—b(C —c¢) —S+s sbS —Cs +cS |

where

mw? (1 — i /w)
BT (1+ iwCy)

C = cosh(bL),c = cos(bL), S = sinh(bL), s = sin(bL) and b* = (4)
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Figure 2: Dynamic shape functions along the length of the beam as a function of frequency. No damping is considered
for this illustration. The frequency axis is normalised with the first natural frequency of a pinned-pinned beam.

Here i = v/—1 and the quantities (; and (,, are stiffness and mass proportional damping factors and

they are given by
&1

CkZE

C

and G, =2 (5)

The elements of this matrix are frequency dependent complex quantities because b is a function of w and
the damping factors. Detail derivation of the dynamic stiffness matrix is provided in the supplementary
material. For the purpose of deriving the expressions for the lattice metamaterial, the dynamic stiffness

matrix (refer to equation (3)) is written in the following form for notational convenience

D(w) = [D;], where i,j€[1,2,..4] (6)



2.2. Fxpressions of the frequency-dependent elastic moduli

Considering only the static deformation of a unit cell, equivalent elastic moduli of the hexagonal
cellular materials were obtained (refer to equations 25 — 29 of the supplementary material) [17]. A
key interest in this section is to obtain equivalent expressions of such lattices when harmonic forcing
is considered. The central idea behind the proposed derivation is to exploit the physical interpretation
of the elements of the dynamic stiffness matrix, as discussed in the preceding paragraphs. Using
equation (3), the analytical expressions of the frequency dependent in-plane elastic moduli of the
hexagonal lattice are obtained. Based on the concept of a unit cell based approach, one hexagonal
unit is analysed to derive the expressions of in-plane elastic moduli of the lattice material as follows

(refer to the supplementary material for details):

D33l cos6
E = _
1) (h + sin6)bsin® f ™)
_ Et*lcos 6% (cos(bl) sinh(bl) + cosh(bl) sin(bl))
~ 12(h 4 1sin6) sin® O(1 — cos(bl) cosh(bl))
Dss(h + [sin®
By(w) = 222U )
[bcos? 6 (8)
_ Et*(h+ 1sin 0)b° (cos(bl) sinh(bl) + cosh(bl) sin(bl))
B 12 cos? 0(1 — cos(bl) cosh(bl))
(h+1sin0) 1
G = -
12() 2lbcos 6 ( N ) )
—
T N T
(s 37) (9)

B Et3(h + Lsin 0)b% sin(bl) sinh(bl) (1 + cos(bh/2) cosh(bh/2))
~ 6lcosf [h?b (1 — cos(bl) cosh(bl)) (1 4 cos(bh/2) cosh(bh/2))
+81 sin(bl) sinh(bl) (cosh(bh/2) sin(bh/2) — sinh(bh/2) cos(bh/2))]

[ cos® 0
= 10
Y12 (h + lsinf)sin 0 (10)
(h+1sin®)sind
= [ cos? 0 (11)

The expression of b is provided in equation (4); £ is the intrinsic elastic modulus of the honeycomb
material and ¢ is the thickness of honeycomb wall; h, [ and 6 are the length of cell walls and cell angle
as shown in figure 1(b). Detailed derivation of the above expressions is provided in the supplementary
material.

The developed closed-form expressions of the frequency-dependent elastic moduli can provide a

clear understanding of the stiffness and mass contribution in the dynamic regime. It can be noted that



the geometric parameters (such as h, [, t and ) and the intrinsic Young’s modulus (b is a function
of F) are the components of stiffness contribution, while the mass contribution is embedded in the
parameter b (refer to equation 4). The developed expressions are capable of providing a compound

effect as well as individual effect of these parameters efficiently in a dynamic environment.

2.2.1. Remark 1: Poisson’s ratios

The expressions of the two Poisson’s ratios obtained in the preceding sections are not dependent
on frequency and damping parameters; these expressions become same as the closed-form solution
provided in literature [17]. The proposed expressions of the frequency dependent elastic moduli also

conform the reciprocal theorem

Et3(cS + Cs)b?
12sin6 cos (=1 + cC)
where C' = cosh(bl), c¢=cos(bl), S =sinh(bl) and s=sin(bl).

El(C«J)Vgl = EQ(W)V12 = (12)

2.2.2. Remark 2: The static limit

From the expressions obtained in the preceding subsections, it is evident that £, Es and G1» are
functions of the frequency, damping parameters, geometric dimensions of the hexagonal lattice and the
intrinsic material property of the material. However, 115 and 15, are not frequency-dependent; these
two Poisson’s ratios only depend on the geometric dimensions of a honeycomb cell. It is noteworthy
that the proposed expressions of Fy, Fy and G5 for the undamped case converge to the closed-form
solution provided by Gibson and Ashby when the frequency parameter (w) tends to zero as shown in
the following paragraphs.

To understand the frequency-dependent behaviour of Ey, Fy and Gio, we expand the expressions
by a Taylor series in the frequency parameter w. The only frequency-dependent term in F; and Ej is

Ds3. Therefore, expanding Dss we have
ETb%(cos(bl) sinh(bl) + cosh(bl) sin(bl))
1 — cos(bl) cosh(bl))

EI 13 15¢,,2m? 13,
N 12 _ l m m _l . 2
E ( U (161700 I GmT G — 5 >“

5 _ 551
+ ( 80850 i m?G, 13 Co 80850 102 Gm? _ 794593800 il°Gnm EilCmm Ck2> W

D33 =

Bl + 35 iim El B2
(13)

Considering the static case, that is, when the the frequency w — 0, from the above expansion we have

, EI N1
lim Dy = 12 - = 12 ( Ebt ) 7 = B (Z) (14)



Substituting this in the expressions of E;(w) and Es(w) in equations (7) and (8) we have

lcos £\? [cosf
lim F) (w) = _ lim Dss = E | - 15
1 B @) = G Tamaypent g o Do (z> (h + [sin 0) sin 0 (15)
, _ (h+1sing) C(t\ (h+1sing)
and }JILI%) Ez(w) o 1bcos3 0 ilg%) Dss = E Z lcos3 0 (16)

The above expression match exactly with the original expressions of E; and Es presented in well-
accepted literature [17] (refer to equations 25 — 26 of the supplementary material). The shear modulus

G12(w) given in (9) is a function of four dynamic stiffness coefficients. In the limiting case they become

) s EI . v an BLL v ET . P

Substituting these in (9) we have

, (h+1sinf) . 1

lim G = — 1

w50 12(w) 2lbcos 0 w50 " )
- s + v

4D, <D§3JD5444)2>
~ (h+1sin0) 1
2lbcos 6 (18)

h2 2

4
4l(_6%) (96 Br_ (24%)2>

=E (;)3 (%)2((%118;2?)0059

This shows that the shear modulus G12(w) given in equation (9), in the static limit, also reduces to the

classical equation 29 [17] of the supplementary material. The expressions derived here can be viewed
as a dynamic generalisation of the conventional equivalent elastic moduli of the hexagonal cellular

forms.

3. Numerical illustrations
3.1. Dynamic stiffness elements

We first study the elements of the dynamic stiffness matrix as they appear directly in the expressions
for the equivalent elastic moduli of hexagonal lattice metamaterials. The expressions of frequency
dependent complex elastic moduli of the entire lattice are either directly dependent on a single dynamic
stiffness element or the compound effect of multiple dynamic stiffness elements. Figure 3 shows the
variation of amplitude and phase of the complex dynamic stiffness elements with frequency (refer to
Equation 6). There are six unique dynamic stiffness elements, which are shown in this figure. The

results are obtained directly from Equation 3 for a frequency value up to 200 rad/s. Unless otherwise

10
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Figure 3: (a — b) The amplitude and phase of the frequency-dependent dynamic stiffness elements of a single beam
(refer to Equation 3). The elements of the dynamic stiffness matrix are presented in a normalized form with respect to
the corresponding static stiffness matrix.

mentioned, numerical results are presented for a structural configuration of § = 30° and h/l = 1,
with ¢, = 0.002 and (,, = 0.05 (resulting in b* = %). The geometric parameters of the
honeycomb and intrinsic material properties are assumed as: | = 3.67 mm, h = |, E = 69.5 x 10°
N/mm?, d = 0.8 mm, ¢ = 0.0635 mm and m = 0.137 kg/mm. The upper peaks in figure 3(a) are
related to anti-resonance frequencies of the beam and figure 3(b) shows the corresponding phase-shift.

To verify the validity of the derived expression of the dynamic stiffness matrix we compare the re-
sults with the conventional finite element method considering a single beam element first. In figure 4(a)
the responses of a pinned-pinned beam under the application of unit moment at the right edge are
shown, wherein the rotational responses (radian) at the left and right edge are compared. The finite
element results are obtained by discretising the beam into 100 elements and taking first 20 modes in
the response calculations. The dynamic stiffness results are obtained using the closed-form expression

obtained from only one element. The results match very well, confirming the validity and efficiency of

applying the dynamic stiffness method.

3.2. Dynamic elastic moduli of the lattice

In this subsection numerical results are presented for the frequency dependent in-plane elastic
moduli (E), F2 and Gi2) of hexagonal cellular metamaterials based on the proposed formulae; the two
Poisson’s ratios (v15 and vs;) are not dependent on vibration characteristics of the structure. After

establishing that a single beam element using the dynamic stiffness matrix is capable to capture the

11



Table 1: Validation of the finite element code for results obtained corresponding to static state with respect to
the numerical values obtained from literature [17]. The results are presented as a ratio of the numerical values ob-
tained using the finite element code (Ei1pgp, FEarprp and Giapg) and the formulae provided by Gibson and Ashby
(Evga, FEoga and Ghaga)

Cell angle (0) h FEirg Eorg Gorg
l Eiga Esca Giaga

30° 1 1.0012 1.0023 1.0051

30° 1.5 1.0021 1.0030 1.0046

45° 1 1.0028 1.0041 1.0037

45° 1.5 1.0017 1.0035 1.0052

high-frequency dynamics (figure 4(a)), we have written a bespoke finite element code for the honey-
comb lattice structure, where the element stiffness matrices of the constituting beams are replaced by
the dynamic stiffness matrix. The finite element approach involves transforming the element dynamic
stiffness matrices for all beam elements into the global coordinate system, assembling them and apply-
ing the boundary conditions. The finite element code of hexagonal honeycombs is validated for zero
frequencies with the results obtained from the closed-form solutions provided by Gibson and Ashby
[17] as shown in Table 1. The proposed analytical formulae for hexagonal lattices (under vibration) are
validated using results obtained from the finite element code of hexagonal honeycombs. Figure 4(b—c)
shows the representative results obtained from the proposed closed-form expression for the frequency
dependent Young’s modulus along with the results generated using finite element simulations. For this
study the results from the direct finite element approach involves the inversion of the global dynamic
stiffness matrix of dimension 15042x15042. Numerical results obtained using this approach for every
frequency value is compared with the closed-form analytical expressions derived in the paper. Two
different configurations of regular honeycombs are considered with cell angle §# = 30° and the h/l ratio
of 1 and 1.5. Minor difference in the numerical values of the two results corresponding to a wide range
of frequency corroborates the validity of the proposed expressions. It can be noted that a conventional
finite element method would require a very fine discretization of each of the constituent beams to cap-
ture the high-frequency dynamics. This will essentially make the structural matrices computationally
unmanageable for a lattice structure having a high number of such beams. For this reason we have used
an efficient dynamic stiffness based finite element method in this paper. The geometry, node numbers
and nodal connectivity of the static case remains the same for the dynamic case. Therefore, the current

validation along with the dynamic validation for a single beam ensures the validation for the dynamic

12
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Figure 4: (a) Frequency-dependent responses of a pinned-pinned beam under the application of a unit moment at the
right edge (b—c) Frequency dependent Young’s modulus (with 2/l =1 and h/l = 1.5) of hexagonal lattices with 6 = 30°
and (,, = 0.05 and (, = 0.002

responses of the entire lattice. The values of the elastic moduli amplifies considerably with increasing
values of frequencies. Similar trend has been reported in literature for randomly parametrized beams
[35]. The frequency values corresponding to the lower peaks of the curves for three frequency depen-

dent elastic moduli can be regarded as the natural frequencies (analogous to the physical behaviour of

13
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Figure 5: (a — ¢) Frequency dependent normalised Young’s moduli (Ey, F2) and the shear modulus (G12) of hexagonal
lattices for different h/l ratios (d — f) Variation of frequency dependent normalised Young’s moduli (Ey, F2) and the
shear modulus (G12) of hexagonal lattices with cell angle ¢

resonance).

The effect of variation in the structural configuration of the hexagonal lattices is studied considering
the h/l ratio and cell angle. Figure 5(a— c¢) shows the effect of variation in the i/l ratio, while figure 5(d
— f) presents the effect of variation in the cell angle 0 for the three frequency dependent elastic moduli.
It can be observed that the numerical values of F; and G2 decrease with increment in the value of
h/l, while a reverse trend is noticed for Es. Unlike ) and Es, the trend of the curves for Gy, changes
considerably with the variation of i/l ratio resulting a significant shift of the natural frequencies. The
numerical value of E; decreases with increment in the value of cell angle 6, while a reverse trend is
noticed for Ey and G15. Trends of the frequency-dependent elastic moduli with respect to h/l ratio and
0 could be explained form the closed-form expressions presented in equation 7-9. The relationships are
not readily evident through visual inspection of these equations containing coupled terms. However,
the relationship of the elastic moduli with //l ratio and € can be easily explained in the static limit,

that shows a similar nature (refer to equation 25-29 of the supplementary material). The trend of
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Figure 6: (a— c) Effect of variation in mass proportional damping factor on normalised Young’s moduli (F4, E2) and the

shear modulus (G12) (d — f) Effect of variation in stiffness proportional damping factor on normalised Young’s moduli
(E1, Ey) and the shear modulus (Gy2)

the curves representing the frequency dependent elastic moduli remain same implying no shift in the
corresponding natural frequencies.

Figure 6 presents the effect of variation of mass and stiffness proportional damping factors on the
frequency dependent elastic moduli. The effect of variation in mass proportional damping factor is not
found to be quite significant. It is observed that the difference between the upper and lower peak values
of the elastic moduli increases marginally with the increase of mass proportional damping factor in
the lower frequency range. The effect of variation of mass proportional damping becomes negligible in
the higher frequency range. However, an opposite trend is noticed in case of the stiffness proportional
damping factor, wherein the difference between the upper and lower peak values of the elastic moduli
reduces significantly with the increase in stiffness proportional damping factor for the lower frequency
range. In the higher frequency range, it is observed that the numerical values of the elastic moduli

reduce with the increase in stiffness proportional damping factor.
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Figure 7: (a — b) Effect of variation in mass proportional damping factor on the phase of two Young’s moduli (£; and
E») and the shear modulus (G12) (¢ — d) Effect of variation in stiffness proportional damping factor on the phase of two
Young’s moduli (F; and Es) and the shear modulus (G12)

The mass and stiffness proportional damping factors are often important parameters to modulate
the phase of the complex frequency dependent elastic moduli. Figure 7 presents the effect of variation
of mass and stiffness proportional damping factors on the frequency dependent phases of the elastic
moduli. From the closed-form expressions of the two complex Young’s moduli (refer to Equation 7
and 8 for £ and Es, respectively), it can be discerned that the expression of frequency dependent
phase would be same for F; and E,. For this reason, the effect of variation in mass and stiffness
proportional damping are shown in a single figure for F; and F5, while separate figures are furnished
for G13. In case of stiffness proportional damping, the difference between the upper and lower peak
values of the phase values reduces significantly with the increase in stiffness proportional damping
factor for the lower frequency range, while the effect is found to be much lesser for mass proportional
damping. In the higher frequency range, it is observed that the numerical values of the phases reduce
with the increase of the stiffness proportional damping factor. A phase-shift is noticed from positive

to negative numerical values in case of (G13. The presented results reveal that the interesting attribute
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of phase-shift, that occurs in particular frequencies, can be further modulated by changing the mass
and stiffness proportional damping factors according to application-specific requirements.

From the derivation of the elastic moduli (refer to subsection 2.1), it can be discerned that the
Young’s moduli 7 and Es depend on the complex dynamic stiffness element D33 of a single beam
element only, while the shear modulus GG15 depends on multiple dynamic stiffness elements of various
beam elements. Thus, the results for the frequency-dependent amplitude of E; and Ey show a similar
trend as Ds3 with some constant multiplication factor depending on the structural geometry of the
lattice, while the phase of F; and E, are exactly same as that of Ds3 (refer to figure 3). However, the
amplitude and phase of G135 show a mixed effect resulting from multiple dynamic stiffness elements of
multiple beam elements.

To derive the analytical formulae, we have used the Euler—Bernoulli beam formulation for simplicity.
The Timoshenko beam theory can be used in future investigations that would obtain better results
for the higher frequencies in comparison to the “exact” finite element simulations, but at the cost
of more complex expressions. It can be noted in this context that the validation with the “exact”
finite element method is given in this article at the element level considering single beams (refer to
figure 3(c)), which shows a perfect agreement between the dynamic stiffness method and exact finite
element method. The dynamic stiffness based approach, which is a high fidelity approach compared to
the conventional “static” finite element method, is employed to obtain results for the lattice structure
leading to significant amount of computational efficiency. The conventional “static” finite element
method could require very fine discretization for higher frequencies that may be practically impossible

to achieve in a complex lattice metamaterial.

4. Summary and perspective

The present article sheds light on two novel aspects related to hexagonal lattices: the dependence
of elastic moduli on frequencies and the nature of the complex valued elastic moduli. It is observed
that the amplitude of elastic moduli increase significantly with the increase in frequencies of a vi-
brating structure. This, in turn, indicates the necessity of considering the frequency dependence of
elastic moduli in subsequent analysis and design of such structural elements where a dynamic effect
is anticipated. The fundamental fact that natural frequency of a system is dependent on the elastic
moduli led to this investigation, which addresses a logical reverse derivation that the elastic moduli
should also be dependent on frequencies.

For the convenience of readers, the derived expressions for the frequency-dependent elastic moduli of
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Table 2: Summary of the formulae for effective frequency-dependent elastic moduli (Ey, F2 and G12) of hexagonal lattices

(the in-plane Poisson’s ratios are not dependent on frequency). Here b* = ”g‘}:g‘;‘lz ,1=+/—1, EI is the bending rigidity,
m is mass per unit length, ¢; is the strain-rate-dependent viscous damping coefficient, ¢o is the velocity-dependent viscous
damping coefficient, t is the thickness of honeycomb wall, &, [ and 6 are the length of cell walls and cell angle as shown

in figure 1(b).

Generalised (complex valued) frequency-dependent expression (Classical expres-

Elastic sion (w — 0)
modulus
By (w) Et31 cos b (cos(bl) sinh(bl) + cosh(bl) sin(bl)) Et?cos 0

! 12(h + Isin §) sin? (1 — cos(bl) cosh(bl)) 12(h + I sin 6) sin® 0
B (w) Et3(h + 1sin 0)b* (cos(bl) sinh(bl) + cosh(bl) sin(bl)) Et3(h + lsin0)

? 121 cos® §(1 — cos(bl) cosh(bl)) [*cos3 6
o) Et3(h + sin 0)b? sin(bl) sinh(bl) (1 + cos(bh/2) cosh(bh/2)) Et*(h + lsin0)

12 61 cos 0 [h?b (1 — cos(bl) cosh(bl)) (1 + cos(bh/2) cosh(bh/2)) [h2(2h +1) cos 6

+81 sin(bl) sinh(bl) (cosh(bh/2) sin(bh/2) — sinh(bh/2) cos(bh/2))]

hexagonal lattices are listed in Table 2. It can be noted that the in-plane Poisson’s ratios (Equation 10
and 11) are not dependent on frequency and the expressions are same as the case of static deformation
provided in literature [17]. The analytical formulae for frequency dependent elastic moduli reduce
to the traditional static expressions provided by Gibson and Ashby [17] in case of the frequency
tending towards zero. An interesting physical inference can be drawn from this observation relating
the behaviour to the wavelength of vibrating frequency. The influence of vibrating frequency becomes
significant in case of sub-wavelengths, while the effect of vibrating frequency on the elastic moduli
reduces with the increase in wave lengths. The influence becomes equal to zero in the limiting case of
very high wave length, which corresponds to purely static analysis of the lattice.

From a different viewpoint, the frequency dependence of elastic moduli in vibrating structures can
be perceived advantageous in some instances and attempts could be made to exploit this effect in
future investigations. For example, wind turbine blades or aerospace structures normally experience
different ranges of vibration during the operating conditions. This essentially means that the frequency-
dependent elastic moduli of the structural materials would have higher values than the conventional
static counterparts, for which the structures are designed as per the current design practice. During
the operating conditions, it perfectly makes sense to have higher values of the elastic moduli for wind

turbine blades or aircraft wings that need to sustain a high value of wind load. Thus an increased value
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of the Young’s moduli during the operating condition would reduce the deformations of such structures.
Similar advantages can be achieved in various nano-mechanical devices, which often experience ambient
vibration. Future attempts could be made to exploit these increased values of elastic moduli under a
vibrating environment in the operating conditions for various engineering systems across the length-
scales (nano to macro). Besides that, the analysis presented in this article shows that the natural
frequencies of the lattice structure can be identified based on the plots of frequency dependent elastic

moduli.

5. Conclusion

An analytical approach leading to closed-form expressions involving transcendental functions is
presented for the frequency dependence of complex elastic moduli of cellular materials. The frequency-
dependent dynamic stiffness matrix for a single damped beam element is developed first, followed by
the derivation of expressions for the elastic moduli of the entire lattice structure based on analysing
a unit cell. The expressions of elastic moduli involving transcendental functions derived here can
be viewed as a dynamic generalisation of the well-known classical static elastic moduli. From the
derived expressions it is observed that F, Es and G5 are functions of frequency, damping parameters,
geometric dimensions of the hexagonal lattice and the intrinsic material property of the material.
However, v and 15, are not frequency-dependent; these two moduli only depend on the geometric
dimensions of a honeycomb cell. Numerical results for the two Young’s moduli and shear modulus are
presented to investigate the effect of variation in the excitation frequency on cellular materials. The
frequency dependence of elastic moduli in vibrating structures can be perceived to be advantageous in
various instances and attempts could be made to exploit this effect in future engineering applications
leading to dramatic consequences in the conventional design practices. The developed expressions of
elastic moduli exactly reduce to the standard formulae for hexagonal honeycombs when the driving
frequency is set to zero (static deformation).

Although the focus has been on hexagonal lattices in this paper, the disseminated concepts can
be extended to other forms of lattices and metamaterials. This investigation introduces the scope of
including two crucial parameters (frequency dependence and damping constants) in the development
of lattice metamaterials for vibrating structures, adding new dimensions in the field of metamaterials
research. Along with different geometric attributes and intrinsic elastic modulus, the damping factors
can be exploited to modulate the amplitude and phase of vibrating metamaterials further. The in-

sightful closed-form analytical expressions provide a computationally efficient way to investigate the
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problem in more detail. Such an efficient analytical approach can be particularly appealing in the

development of application-specific material micro-structures where multiple realizations are needed

to be performed due to involvement of inverse identification process based on optimization.
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