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Highlights (for rev

iew)

The novel boundary tracing procedure proposed in this paper is robust an . fficient. Compared to
our previous linear searching algorithm, the computing cost is reduced k:* half.

Although only circular particles are used to examine the novel sear ninc method, the algorithm
itself is universal and can be easily implemented for polygons.

The Gaussian quadrature for computing solid nodal ratio is ¢. 1.ah accuracy and efficiency.
Compare to another fast method, Monte Carlo, to achieve the s. mf and high accuracy only a few
points are needed, while the latter needs at least a thousanc’

The IMB scheme is more stable than the IBM scheme in .>rms o' the calculated hydrodynamic
force, and therefore is more robust to simulate probler s with a large number of particles and/or

more complex fluid flow patterns.
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17 Abstract
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é? This paper presents an efficient and accurate Immersed Moviny Roundary (IMB) algorithm for solving
25 fluid-particle interactions in the framework of the Lattice b.'*zman'. Method (LBM). Although the IMB
;i scheme has been widely employed in many fluid-partici. coupling problems in a wide range of
2:1 applications, the algorithm of its implementation, espe. ~lly in identifying both fluid and solid boundary
;E nodes for particles, is seldom reported. Besides *-~ coniputational cost of handling fluid-particle
Lo}
21 coupling is very expensive. To provide a bridne be® veen theory and application and improve the
;g computing efficiency of IMB, a novel bounda. 't .acing procedure and an efficient method for
30 computing the solid nodal ratio using Gauss. -+, -~ -ature are proposed in this paper. Both accuracy
g; and efficiency of the proposed algorithm are exarn.ined by two benchmark tests. It is also found that
33 the IMB scheme are more efficient 7.1d s. ble compared to another widely used the Immersed
. Boundary Method (IBM) in LBM.

36
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2 1 Introduction

47

42 The fluid-particle .~teracton is a very common issue in chemical engineering, fluid mechanics,
50 geomechanics, comnutational biomechanics and many other fields. Problems involving the fluid-
;; particle intera.tion ir :lude, e.g., gas/liquid solid fluidised bed, particle transportation in fluid, soil
5 erosion a < °~ flow of blood in the heart, just to name a few. Because of its complexity and
gé significance, luid-particle systems involving the complex fluid-particle interaction have been

extensively investigated since the 1980s.

Most of the proposed methods for fluid-particle systems can be divided into two categories according
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to the framework of fluid dynamics. One is the conventional Computational Fluid Dynamics (CFD)
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based techniques in which the fluid is described by the Navier-Stokes equations. Among these
methods, the Finite Volume Method (FVM) [1-3] and Finite Element Method (FEM) [4-7] can
effectively simulate the behaviour of a small number of particles immersed in fluii. However, for a
fluid-particle system involving a large number of particles, these two techniques ' a. ~ to continuously
generate geometrically adapted meshes due to the motion of particles. T' '~ is obviously very
computationally expensive, particularly for the three-dimensional modelling. ! orr ar to overcome this
difficulty, a local-average method which considers the effect of the presence . ar.. les on the fluid in
terms of local porosity was adopted and successfully employed in th: coinlea CFD and particle
methods such as the Discrete Element Method (DEM) [8-13]. At eacr: *ir e step, the hydrodynamic
forces acting on individual particles in a fluid cell are calculated f' st by an empirical local-average

method, and the values are then summed to the computational cell  f the fli .d.

Another Navier-Stokes-based technique for the fluid phase is t! e F' .i.e Difference Method (FDM) [14-
16]. In this method the fluid-particle interaction is resolved b, the Imr.ersed Boundary (IB) technique
proposed by Peskin [17, 18]. The fluid phase is represented by 1 ted non-adaptive meshes and the
boundaries of moving particles are represented by a se. »f L. --.ngian nodes. The basic idea of the
IB scheme is to treat the particle boundary as deform~h!~ =~ with high stiffness. A small distortion
of the particle boundary caused by the fluid-particle inte. ~ctions will generate a force that tends to
restore the particle to its original shape. Bounacry deiormation is calculated by comparing the
boundary point and the reference point that .~dei_nes rigid body motions with particles. The
challenge of this method is the proper determinaion of the stiffness of springs used for calculating
hydrodynamic forces. Later, a direct-forcing IB < nroach was introduced in [63]. In this approach, the
body force term is directly deduced from -~ momentum equation by setting the velocity at IB points to
the desired velocity using interpolatio’ /distribL ion functions. An improved direct-forcing IB approach

is reported in [64].

The second category is the Latti~e _ tzmr ann Method (LBM) based techniques where the fluid phase
is treated as an assembly of .. particle packages whose movement is governed by the Lattice
Boltzmann Equation. Each p~ticle package carries mass and momentum. In the 1990s, the LBM was
successfully applied to sc ve fuid-particle interaction problems [19-21]. In this method, the modified
bounce-back rule [19, 72-24] w. 5 used to achieve the no-slip condition at the fluid-particle interface.
Each particle is divide ¥ ir.0 a arge number of solid nodes by fluid grids. The fluid boundary nodes,
exterior to the par’ue suncce, and the solid boundary nodes, interior to the particle surface, are
assumed to be co 'nected by links. The particle boundary is represented by the middle points of the
links. Clearly, ' = steowise lattice representation of the surface of a circular particle is neither accurate
nor smooth u 'less a sufficiently small grid side is employed. More seriously, when a particle is in
motion, ite “~uindary nodes will continually change, but in an ‘on-off' fashion, which has a serious
impact on t = smoothness of the computed hydrodynamic forces [25-27]. In order to resolve the
aforementionea problem, three approaches have been proposed. The first one is the so-called
interpolation-based approach [28-32]. It is reported, however, that the interpolation routines used to
salve the distribution functions near the curved boundary result in a loss of mass conservation, which

reduces the accuracy of the computed momentum transfer at the boundary [31, 33]. Later, the
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interpolation-based approach was improved by treating curved boundaries using an appropriate local

refinement grid technique [33].

The second approach is the Immersed Moving Boundary (IMB) scheme propo ed by Noble and
Torczynski [34]. The hydrodynamic forces at the moving boundary are accomp shec v introducing
an additional collision term to nodes covered partially or fully by the solid p .rtic 2 and a weighting
function involving the solid fraction within a computational cell. Because ~ its more accurate
representation of particle boundary, enhanced computational stability and rea. ~nable efficiency, the
IMB has been widely used in the coupled DEM-LBM technique v nere . ~usands of particles
immersed in fluid can be considered without difficulties [26, 35-40]. Rec.tly, an IMB method with

modified weighting function was proposed to improve the drag and ' ermea. ility invariant [62].

The last approach is the IB [17, 18] based technique. The IB =_l.eme was introduced to the Lattice
Boltzmann Method by Feng and Michaelides [25] and examine 1 ¥4 ott 2rs [41-43]. It is indicated that
in the initial IB-LBM the non-slip boundary condition is not fuliy »nfuiced and the choice of the spring
constant is arbitrary. Recently, Shu et al. [42] proposed ar, "plicit ' elocity correction based IB-LBM in
which the velocity correction should be determined in su.> a way that the velocity at the boundary
interpolated from the corrected velocity field satisfie. uie non-slip boundary condition. It was then
improved in terms of accuracy of hydrodynamic for~as 44, {5] and computational efficiency [46, 47].
The computational accuracy of hydrodynamic 1.r.es applied to solid particles depends on
determination of the number of boundary nodes " *he solid particle. If the number exceeds a critical
value, this method may suffer from a non-c: .. =772 se problem. If the number is less, the simulation

accuracy of the fluid cannot be guaranteed.

Due to the rapid development of DE /-LBM and its application in fluid-particle coupling, the IMB
scheme has been attracting more ana . ~nr: attention. However, in previous studies, only a few
literatures have compared the acc urac. of "B in terms of moving particle-fluid interactions with other
existing methods [53, 58], e.g the iL"! scheme. Particularly, the detailed algorithm on effectively
identifying fluid and solid lattic 2 nu.'~s in IMB was seldom reported [59]. Therefore, this paper aims at
proposing an efficient and ruou 3t algorithm for the IMB scheme including the application of Gaussian
quadrature for computing u.~ * olid nodal area, and comparing the IMB with a modified |B method [46].
The remainder of this paprr is organised as follows. Section 2 briefly reviews the principles of the
lattice Boltzmann meti.. ' us ng the single relaxation Bhatnagar-Gross-Krook (BGK) model. The
formulation of IMF, and ~n efficient algorithm to identify fluid and solid lattice nodes in IMB are
addressed in deta.’ in &:ction 3, followed by the validation of the proposed method using two
benchmark te .ts in £ ~ction 4. Finally, a brief conclusion will be drawn and future work is suggested in

Section 5.

2 Lattice Boltzinann Method

The lattice Boltzmann method is a modern numerical approach in Computational Fluid Dynamics. It is

originated from the lattice gas automata (LGA) method [48]. In conventional CFD, the fluid phase is
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treated as continuum governed by the NS equations. The primary variables are pressure, velocity and
density. In LBM the fluid domain is divided into regular lattices and the fluid phase is treated as a
group of (imaginary) fluid particle packages resided at the lattice nodes. Each particle package
includes several particles, such as 9 particles in the commonly used D2Q9 mor <. The flow of fluid
can be achieved through resolving the particle collision and streaming | ocesses, and the
Lattice Boltzmann Equation (LBE)is used to solve the streaming and c 'lisirn process of fluid
particles. The primary variables of LBM are the so-called fluid density distrib."an 1u..ctions, which are
portions of fluid density, associated with the fluid particles. Both m'.ss and nomentum of fluid

particles are characterised by the fluid density distribution functions.

The Lattice Boltzmann Equation is described by

Silx+eAt.t+Ar)- fi(x.1) -2 (1)

where 7 are the fluid density distribution functions; xand e, - .= coordinate and velocity vectors

at the current lattice node; fand Q. are, respectively, the c. ent ti ne and the collision operator.

There are mainly two models, the single-relaxatio~ *—. Z_JK model [49, 50] and the Multiple-
Relaxation-Time (MRT) model [51], for handling the collisic.” process between fluid particles. Because
of its better computational efficiency, the BGK moa.! i mostly employed in LBM. In the BGK Model,

Q, is characterised by a relaxation time r and v < ~au.’brium distribution functions £(x.r):

0,=-Y [(x,0) |+ AF, )
L

6]

g _ e 02 - Yy
S =op(1 = X +_}C$(e!.x1) > 1XV) 3)

3

where C, known as the lattice sp 2eq, - re ated to the lattice side, h, and the time step, At by
C=h/At

while p and v are the ma rosr spic fluid density and velocity respectively; F. is the body force term;

and e, is a weighting f .ctor

A popular way of c!~=sifyn.> different BGK models is the DnQm scheme, where "Dn" stands for "n
dimensions" while "Qm" : ‘ands for "m speeds”. In this study, the commonly used D2Q8 model is

adopted for 2 ~ase.. 1he fluid domain is discretized into square lattices with grid side h. Fluid
particles at e. ch latti & node are allowed to move to its eight immediate neighbours with different

velocities ~ /i = 1, £,..,8). A proportion of the particles can rest at the node with a zero velocity ey. The

nine discrete Vv 2locity vectors in total are defined as

e, =(0.0)
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sZ0D Ty (io,.9) (4)

e, =C(co

s 57
e, =C(cos A ,sin i 9}}

The weighting factors are

L 1
a3y = 9’ e = -

O | &

The macroscopic fluid density , and velocity v can be calculated 1. ~m the distribution functions

8 g

The fluid pressure is given by
Ap=C3A, - (7)

where ¢ is termed the fluid speed of sound and is "elar -. ‘0 the lattice speed C

3 Immersed Moving Boundary Scher .e
3.1 Formulations

The immersed moving boundarv s ™~ :me was proposed by Noble and Torczynski [34] to overcome
fluctuations of the hydrodynar. ~ forces calculated by the modified Bounce Back technique [19]. In
this method, a particle is representea oy the solid (lattice) nodes which are located within the particle.
A solid node is called inter or if (s linked nodes are all solid nodes, while if a solid has at least one link
to a fluid node, it is calle 4 a su.”¥ boundary node. A fluid node having at least one link to a solid node
is defined as the fluid ~ouv idar node. Thus, there are four types of node in the IMB scheme: interior
solid node, solid br...dary . Jde, fluid boundary node and normal fluid node, which are respectively

marked in yellow, =d, gret n and blue in an illustrative diagram of IMB in Fig. 1.
Insert Fig. 1

In order to retan *h~ advantages of LBM, namely the locality of the collision operator and the simple

linear strea.nin, uperator, an additional collision term, of, for the boundary nodes covered partially or

fully by the scid is introduced to the standard collision operator of LBM. The modified collision

operator for resolving the fluid-solid interaction in IMB is given by
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Q, =~ (1-B)[ fi(x,1) - £(x.)] + (1- B)AIF, + BQS ®)
T

where B is a weighting function that depends on the local solid ratio &, defined as t' e fraction of the

node area (see Fig. 1).

When B is zero, the collision operator is reduced to the standard one for fluid. The simplest form of B

is that it is equal to the local solid ratio &.

To eliminate Knudsen layer effects (Noble and Torczynski, 1998) appew. ~d 1 the simplest form, the

following form was proposed and a very good accuracy was obtainer'.

5 &(r—0.5) . (8a)
(1—g)+(r—0 3)

Whene =0, B=0; ¢=1, B=1.

The body force term F, is determined by the commonly .~ed method proposed by Guo [52]. The

additional collision term is based on the bounce-rule for “~e non-equilibrium part
Q' =f (x.)-f (. + £ Ug) - f2(p.u) (9)
where 7 is the velocity of the solid node (s~ Fia. *) and u is the velocity of the fluid at the node.

The velocity of the solid node considerin~ *~= effect of particle rotation is described by

Uy cUs 4y, (lh=f(x—% +(—3,)) (10)
where [/, and @ are the veloc’ y and < jular velocities of the solid particle.
The resultant hydrodynamir v, ~e and torque exerted on the solid particle can be calculated by

F,=Ch[ 3(B, X)) ] (11)

T, =Ch{ ) [(x-x,)x(B,).Qe)] } -

Compared to he moc fied bounce-back rule, this more accurate and smooth lattice representation of

a solid particle shape is able to reduce the fluctuation of the computed hydrodynamic forces.

3.2 Computational procedure

Although the IMB scheme has been successfully applied in the coupled DEM-LBM technique, to the
best of the authors’ knowledge the algorithm of IMB was seldom reported [59, 61]. As mentioned
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before, there are four types of nodes in the IMB scheme. It is essential to identify the correct type for
each node in order to accurately calculate the hydrodynamic forces, particularly those contributed by
fluid and solid boundary nodes. Also, as the particles could be continuously movig, this node type
identification procedure has to be performed at each time step. Consequentl , " ~w to efficiently
identify both fluid and solid boundary nodes and compute the solid ratio & used '~ Eq. (8a) will have a
substantial impact on the overall computational cost of DEM-LBM for a »art cle-fluid interaction

problem, particularly when a large number of particles are involved.
3.2.1 Searching boundary nodes
Insert Fig. 2

Here we propose an efficient boundary tracing procedure (See Fiy 2) fo searching solid and fluid
boundary nodes of an arbitrarily shaped convex particle. It is de ived _ ainly based on the modification

of the classic Bresenham's line algorithm [54] for plotting a lire segmer . on a computer screen.
Insert Fig. 3

The essence of our algorithm is linearly searching solid an.' fluid boundary nodes by moving the red
and dotted mesh shown in Figure 2. The movement v, “he dotted mesh is controlled by the directional
pointer MARCHY(:,:) (see Table 1). To make the ~~h method general and efficient, the involved
domain is divided inta four zones based on the cent ~ d of a convex solid particle, and the searching
method is applicable to four different zones. Oni, u.~ searching direction is updated when the dotted

mesh moves to a new zone according to the < *~ al pointer.

The tracing procedure is illustrated in Fig. 3 for a circular particle as an example. It should be
mentioned that this search method is ilso ap, licable to convex polygons or any convex shape. The

detailed implementation of the propc sed a._2r thm is as follows:

Algorithm of IMB

]

Fo T 3 L O 6 3 3 O R

AR}
[T G T S e T T [ S 6 3 (Y S T A I

(eI
=%

n

DO IP=1, NP (Loop over salid s *icles)

Step 1 Divide the solid ".ar :le into four zones with the geometric centre as the local origin of
coordinates (s¢ = Fi,. 2).
Locate the first (lo.. ~st) solid boundary node A and set the zone number (IZONE) as 4,
then record .ne ‘ oordinates of four nodes (A, B, C and D) of the mesh marked by red
dotted linec
Step 2 IF (B is wi*hin u.~ .olid particle) THEN
(like ce se 2 or ~ase 3 in Fig. 4)
r. ark the status of four nodes and get the values of MARCH(X, IZONE) and
MATTIL(Y, IZONE);
EL SE
(lh = case | or case 4)
....aK the status of four nodes and get the values of MARCH(X, IZONE-1) and
“'ARCH(Y, IZONE-1)
END IF
Step 3 Mo 2 to the next mesh according to MARCH and update the positions of the
corresponding nades A-D.
Step 4 IF (node A reach the first (lowest) solid boundary node) THEN
GOTO step 5
ELSE
IF (node A reach new zone) THEN
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update IZONE=IZONE-1
clockwise rotate this mesh by 80 degrees so that A replaces D.
update positions of nodes A-D.

ELSE
GOTO step 2
ENDIF
END IF
Step 5 IP=1P+1
END DO
Insert Table 1
Insert Fig. 4

It is not difficult to deduce that the computational complexity of 1= above boundary tracing algorithm
is linear: O(n).

O(n) =-’T"% (13)

where d is diameter of the particle; n=d/h.

In our previous boundary tracing method [59], the flu.' boundary and solid boundary nodes are
separately searched and the computational comple =1, -

Oy=274 (14)

h
Compared to our previous algorithm, the identi.. ~tion cost can be almost halved.
3.2.1 Computing nodal solid ratio

After both fluid and solid boundary rode. 2re dentified, the solid ratio associated with each of these
nodes will be calculated. Calculat on - 1 th~ solid ratio is a mathematical integration problem and it
takes significant computational ost. Thr geometrical approximation is commonly used to estimate
the solid ratio. Two geometric ap,. ~ximation methods are discussed in reference [38]. The accuracy

of these methods is depend .11 on the (sub) mesh size.

In this paper, an efficient G 'ssian quadrature is used to calculate the nodal solid area. Take the
general case shown "1 Fi . 5 for example. The Gaussian integration of order N for the standard

interval [a=-1, b=1] i= show.~ by

Insert Fig. 5
.
[ f (e (&) (15)

where & a. < 1, are the Gaussian positions and weights respectively; and N is the number of

Gaussian points.

To facilitate the computing, the Gaussian quadrature for general intervals [a, b] is given by
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J, 7 (x)ee

(a+b— l*:]) (16)
The computation of the solid ratios of both fluid and solid boundary nodes can t 2 divided into four
cases (shown in Fig. 8). In Case 3, the solid area includes two parts. The first reciangu.. - area can be
easily calculated, and the second part can be obtained by Gaussian quadr .wre (Eg. 16) between

peoints a and b. Cases 1, 2 & 4 can be directly integrated by Eq. 16 between aa,. b.
Insert Fig. 6

In order to examine the accuracy of Gaussian quadrature, a special case | e Fig. 7) where the nodal
area is covered by a quarter of circle is selected so that the solid irea ¢ mputed can be compared
with the analytical solution. The numbers of Gaussian points (2 to 5, =re re .pectively adopted and the
corresponding numerical errors are given in Fig. 8. It can be fcund *'.. * the Gaussian quadrature has
very high accuracy. The computed solid area using two Gai'ssian poi its only has 4.0% error. While,
the Monte Carlo method using 500 points can only achieve 4.5." error, and it is reported to be an
efficient method for computing the solid ratio [60, 61]. H~nce, *he Saussian quadrature is much more

efficient. Quantitative validations of the proposed IMB alaorith. - will be given in Section 4.

It should be highlighted that the Gaussian quadrature can .~ straightforwardly used for computing the
solid ratio in 3-dimensional (3D) problems where th. ¢umputing cost for the solid ratio is much more
expansive than that in 2D simulation. Numerica. = ~ars »f Gaussian quadrature and Monte Carlo in a
certain 3D simulation are given in Fig. 9. It ‘= foun that to achieve 4.0% error Gaussian quadrature

only needs 9 Gaussian points; while, the Monte « ~rlo method needs at least 1000 points.

Finally, the collision and hydrodynami . forc. ‘toque calculations for these nodes can be calculated

using Egs. 11 and 12.
Insert Fig. 7
Insert Fig. 8

Insert Fig. 9

4 Validations and dic ~us sior .

In order to exam e the feasibility and accuracy of the proposed IMB procedure, the standard
benchmark, flow pe =t a cvinder, will be first carried out. Then, the comparison of the IMB scheme and
the implicit vr.ocity ~orrection based IBM-LBM [46] is made through the extensively investigated

single particle . 2adime 1tation in a viscous fluid.
4.1 Flow p. st ". vylinder

Flow past a cyi.nder has long been a subject of interest to researchers in fluid dynamics. Extensive
work including experiments and numerical simulations has been undertaken. In our simulation, this
problem concerns steady and unsteady flows around a circular cylinder placed in a long rectangular

channel. The channel (see Fig. 10) is 1 cm in height (the Y direction) and 8 cm in length (the X
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direction). A cylinder of 0.2 cm in diameter is placed at the position (2.0 cm, 0.5 cm). Both top and
bottom boundaries are solid walls where the no-slip boundary condition is applied. The pressure
boundary condition is applied at both the inlet (left boundary) and the outlet (righ’ boundary) of the
fluid domain (the pressure difference is 7.5 kPa). The fluid domain is divided ir «v 200x%100 lattices

with spacing h = 0.01 cm. The relaxation parameter 7 is 0.5001.

When the fluid approaches the front side of the cylinder, the fluid pressure inc. - 1ses and the fluid is
forced to move along the cylinder surface. With the Reynolds number exceean > a certain value, the
fluid cannot follow the cylinder surface to the rear side but separates rom u. '™ sides and a pair of
symmetric vortices are formed in the near wake (at t = 0.6667 s). As the ."2ynolds number (Re>45)
increases further, the wake becomes unstable. One vortex will dr: w the « nposite vortex across the
wake, and then voriex shedding is initiated at t = 2.2667 s whei. th- Reynolds number further

increases to about 100.

The streamline and corresponding velocity contours at differ. -t tir .e instants are displayed in Fig. 10.
The guantitative comparison of the drag coefficient calcula.. 1 using the proposed LBM procedure
with the experimental, theoretical and CFD numerical 1. ~ults [55] is made in Fig. 11. It is found that
the drag coefficients for Reynold numbers (Re) ber e=. '™ and 110 match the experimental and CFD
data very well; while there are certain differer ~2s w.-en Re is lower than 10. Interestingly, for the
Stokes flow (Re<1) the proposed LBM procedure ‘s 1. ich closer to the theoretical result governed by
Eq. 17.

Coma (17)
To examine the convergence of the algrrithn, in terms of the ratio of the particle diameter d to the grid
size h, four fluid cell resolutions wi. Jiffer 2nt grid sizes 0.04, 0.02, 0.01 and 0.005 cm are simulated
and the corresponding errors ¢, *he drag coefficient are presented in Fig. 12. In the convergence test,
the Reynolds is around 104 The reicrence value of the drag coefficient is select as 1.10 from the
experimental results in Fic 11 It can be found that the drag coefficient is sensitive to the grid size or
the size ratio d/h: the e vor o1 [~2 drag coefficient decreases with the increase of the grid size ratio,

but converges when t! = si_e rz 1o is greater than 20, where the error is lower than 3%.
Insert Fig. 10
Insert Fig. 11
Insert Fig. 12

4.2 Single wa.. "'~ sedimentation in viscous fluid

The second pi. hlem has also been extensively employed to validate numerical methods proposed for
resalving fluid-particle interactions. In our simulation, a water-filled tube with 2 cm in width (the X-
direction) and 6 cm in height (the Y-direction) is used. The fluid domain is divided into 200x600

square lattices with spacing h=0.1 mm. The kinematic viscosity and density of fluid are 1.0x10° m?/s
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and 1000 kgr‘mg, respectively. The density of the solid particle is 3000 kg;’ma, and its radius is 0.125
cm. The four boundaries of the fluid domain are treated as stationary walls and thus the no-slip
boundary condition is imposed. Initially, the particle is positioned at point (1cm, 4cm) in rest. Due to
the gravity, the particle will fall down. The IMB scheme is employed to reso'/e the particle-fluid
interaction. The sedimentation process and fluid velocity contours of fluid at five “fferent lime instants,
0.093s, 0.14s, 0.187s, 0.21s, 0.233s, are depicted in Fig. 13. When the par' ~le s released from the
rest, it falls down in an accelerated motion due to the gravitational force. Afte. 2 wr.. 2 it will move with
a constant or termination speed as the gravity, hydrodynamic and bu.yarv forces acting on the

particle reach an equilibrium state.

To valid the proposed algorithm of IMB, the same simulation us 1g the ‘mplicit velocity correction
based IBM scheme [46] is performed. The variation of particle veic ~itv .nd position in the vertical
direction and the hydrodynamic forces applied to the particle with 1e.nect to time are compared in
Figs. 14-16. The computing costs for this simulation using | "B prer- sed in this paper, our previous
IMB algorithm and IBM are 1h 53m 47s, 3h 11m 13s and 3h 26m 56s, respectively, on the computer
(Intel Core i5-3450 CPU@3.10GHz). It can be seen, the ~rop. -~ 4 IMB algorithm can reduce at least

1/3 of the computational cost of IBM and the previous MP ~'~- thm.

Figs. 14-16 show that the motions of the particle si~lated Ly both IMB and IBM schemes match very
well at the early stage of sedimentation and some ‘rall discrepancies appear later. However, it is
very noticeable that the hydrodynamic force calcic*2d oy the IMB scheme evolves smoothly except
at one point where the particle collides the ! ...z 1.~undary; while the drag forces obtained from the
IBM scheme fluctuate heavily around those value. calculated by IMB, indicating that the IBM scheme
has an underlying issue which may ac vers.'v affect its numerical stability when a large number of

particles are present and/or for more cc. *nlex * uid flow cases.
Insert Fig. 13

In order to investigate the inflU -nce of u.id sizes on the hydrodynamic forces calculated by IMB, we
change the diameter of the tube anvu *he radius of the particle used in the above simulation to 3 cm
and 0.15 cm, respectively Th refore, the grid sizes (h) of 0.0625, 0.1, 0.15, 0.3 and 0.6 mm are
chosen so that the ratio~ of v ~ particle diameter to the grid size become 48, 30, 20, 10 and 5. From
Fig. 17 it can be founc that the ~oarse grids result in larger drag forces than the fine grids, but with the
decrease of the gric ~ize, -~ .onvergence of the drag force applied to the particle can be observed.
When the ratio of »article 'iameter to grid size reaches 20 or more, a reasonably accurate simulation

of fluid-particle i~*=ra.*~..s can be achieved.

From the afor. mentio \ed numerical tests, the accuracy and feasibility of the proposed algorithm have
been well '~mnnstrated. The simulation of the fluid-particle interaction is accurate and stable due to
the smooth . - presentation of the particle surface. In addition, the applicability of IMB to the fluid-
particle systems involving a large number of particles has also been demonstrated in our previous
work [26, 56, 57]. Compared to the FEM and FVM, this procedure can be efficiently applied to fluid-
multiple particle systems with minimum assumption, and no adaptive meshes are needed for

considering moving particles.
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Insert Fig. 14
Insert Fig. 15
Insert Fig. 186

Insert Fig. 17

5 Conclusions

In this paper, an efficient and robust IMB algorithm has been developed . fficiently identify both fluid
and solid boundary nodes associated with a solid particle, and cr .npute the solid nodal ratio. This

novel algorithm is demonstrated through two benchmark tests. Some <oncl' sions can be drawn.

1) The novel boundary tracing procedure proposed in this pap 'r is .oL ist and efficient. Compared to
our previous linear searching algorithm, the computing cost i. -adu~-. by half. Although only circular
particles are used to illustrate the novel searching method the alg: rithm itself is universal and can be
easily implemented for convex polygons and other shape =~ The unly difference is that the equation of
circle will be replaced by the polygon equation or th~ = . __sion for the convex shape concerned

while determining the type of boundary nodes.

2) The Gaussian quadrature for computing the solil’ 1odal ratio is of high accuracy and efficiency.
Compare to another commonly used method, Munw Carlo Simulation, to achieve the same and high
accuracy only a few points are needed, whii .2 ' 2r needs at least a thousand. The importance of
Gaussian quadrature will be more apparent in 3-Jimensional simulations where the computation of

the solid ratio is more complicated and *.me-c *nsuming.

3) The accuracy of the proposed pr ,cedu. ~ fur fluid-particle interactions is dependent on the ratio of
the particle size to the grid size of LBl , ar i it has been proven that to attain a reasonable result, the

ratio should be at least 20 for 2I' cases.

4) The IMB scheme is more stable /3an the IBM scheme in terms of the calculated hydrodynamic
force, and therefore is mor 2 rot ust to simulate problems with a large number of particles and/or more

complex fluid flow patter is.

However, the propose.' Founr.ary tracing algorithm is only valid for the 2-dimensional fluid-particle
coupling. Different rracinn approaches have to be used for 3-dimensional problems which will be

reported elsewhere
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Fig. 1 IMB scheme and definition of local solid ratio e
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Fig. 2 Boundary nodes tracing scheme
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Fig. 3 Flow chart of the searching algorithm
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Fig. 4 Potential sta\'lus of nodes
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Fig. 5 Gaussian integration for solid nodal area
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Fig. 6 Four cases in the computation of solid ratio
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Fig. 7 A special case of solid nodal area with analytical soluti
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Fig. 8 Numerical errors for 2D simulafion
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Fig. 9 Numerical errors for 3D simulafion

12 ¢
10 >
o 3D
— 8 [
S
5 6T
o
4 F o
o]
2 &
0 1 1 [ 1 1
0 5 10 15 20 25 30
Number of Gauss points
a) Gaussian quadrature
8.0 r
6.0 8
@]
40 F 8
O
§ 20T O % 6
goo G glén e By
LpOo 1eH0 1 o 100000
. 20 | 8
O
40 ©
S
-6.0
O
-8.0 b

Numbe. of p. ints

b) Mom. “urlo



Fig. 10 Velocity contours at different stages
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Fig. 11 Variation O\T_d'rag coefficient with Reynold number
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Fig. 12 Grid size eLﬁ.-ct on the error of drag coefficient
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Fig. 13 Total velocity contour at different stages
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Fig. 14 Comparison of particle movementin Y direcfion
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Fig. 15 Comparison of particle velocity in Y direction
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Fig. 16 Comparison of drag forces applied to particle
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Fig. 17 Grid size eLﬁ.-ct on fluid-particle interaction
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Table 1

Table 1 The increment value of movement

IZONE v 1 I
MARCH(X, IZONE) =1 0 0
MARCH(Y, IZONE) 0 N1 -1




