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Abstract

A comprehensive study was carried out on the dynamic viscosity of X30 silica dispersions at
both high and low volume-fractions of colloidal silica particles at various electrolyte ionic
strength and pH values. Booth and Ruiz-Reina and Carrique theoretical models (R-R&C)
were compared in<predicting the primary electroviscous effect (PEE) for viscosity at low
volume fractions. To. this respect the colloidal dispersion was well characterised with regards
to electrolyte properties such as the Debye length, «', calculated from the ionic strength, and
zeta potential, ¢, calculated from the electrophoretic mobility using the full numerical model
by O’Brien and White (O’B&W). R-R&C hard sphere model (which is a modified version of
Simha hard sphere model that includes a boundary condition by Happel on the outer radius of
the cell) and the semi-empirical Krieger-Dougherty (K-D) models were fitted to the
experimental data at high volume fractions. At both low and high volume fractions the
viscosity increased with pH and decreased with ionic strength. At low volume fractions both
theoretical models significantly underestimated the experimental dynamic viscosities
obtained in this work. This could be attributed to the fuzzy structures for silica particles in
aqueous conditions reported previously in the literature, where a significantly larger

electroviscous parameter, p, was obtained experimentally for silica particles. The



experimental electroviscous parameter, pexp, in this work was found to be roughly an order of
magnitude up to 26 times larger than that predicted by Booth and around 5*1 times larger
than the predicted p by R-R&C model allowing the introduction of a correction factor in the
PEE coefficient obtained from R-R&C model enabling good prediction for X30 silica
dispersions by the latter model. The significant improvement of the electroviscous-effect
predictions by R-R&C model compared to Booth model may be attributed to the limitations
invalidating the Booth model at the electrolyte conditions in this study. At high volume
fractions, the R-R&C hard sphere cell model, gave a much better fit to the experimental data
compared to the K-D model, which also had the advantage of being only dependent on a
coefficient that linearly relates an effective volume fraction postulated for the fuzzy silica
particles to the experimental. The K-D model however, depends on the intrinsic viscosity,
[n], which requires the calculation of the experimental slope of the dynamic viscosity against
volume fraction in the dilute limit, and also on a maximum packing fraction as a fitting
parameter. Due to the effect of the fuzzy structures on the viscosity, the latter effective
volume fraction ¢ was calculated using two approaches: i) as a fitting parameter by fitting
the R-R&C hard sphere model to the experimental viscosity data over the entire volume
fraction range, and ii) by fitting only the linear part of the experimental viscosity at low
volume fractions, It is concluded that the R-R&C hard sphere model with the effective
volume fraction accounting for the fuzzy structures fits reasonably well the full range of
experimental results at low and high volume fractions. When the model is used with the
Adamczyk effective volume fraction (i.e, considering only the dilute region in the fitting
procedure), the predictions get worse at high volume fractions where huge deviations from

the experimental results are found upon the increase of pH.

Keywords:
dynamic viscosity; silica dispersion; primary electroviscous effect (PEE); cell model, core

shell model.

1 Introduction

Colloidal nanoparticles have attracted increasing attention as a raw material in
nanotechnology applications due to their unique properties such as thermal conductivity [1]

as well as their stability in suspension [2, 3]. The broad applications of colloidal systems in
2



various industrial sectors such as food, pharmaceuticals, cosmetics, ink, rubber, water
treatment etc., as well as many natural phenomena such as the special characteristics of sand
in sea water has drawn the attention of many scientists to colloidal systems. The nature of
colloidal suspensions, mainly as a result of nano particles dispersed in a continuous media
introduces new characteristics and behaviours, different from normal solutions containing
molecules and ions. This enhanced behaviour of the colloidal systems is most apparent when
the colloidal particles are forced to flow through a pipe, a capillary, or nano pores of a

filtration membrane.

A chemical engineering process which incorporates the flow of a colloidal suspension, such
as transportation and filtration, the viscosity of the suspension is significantly important.
Economic optimization of these industrial processes necessitates an understanding of the
products physical and electrical specifications. Measurements of the viscosity data for a

colloidal suspension at different conditions can be significantly time consuming.

Besides, as demonstrated by previous experimental work [4-8], a small change in any of the
electrochemical conditions such as pH or ionic strength of the suspension can make a
significant difference in the physical properties of the sample which will affect the viscosity
of the suspension dramatically. For example an ultrafiltration model was developed by
Bowen and Williams [9] based on the assumption of viscosity being constant for various
electrical properties of the dispersion and only low volume fractions was considered both of
which points to the lack of experimental data on dynamic viscosity. This model can be
applied in' membrane filtration processes which are crucial to many industrial sectors such as

food, water treatment, pharmaceuticals and many more.

It was reported previously that the particle interactions in a colloidal suspension are
influenced by the electrical charge on the surface of the particles suspended in the bulk media
[10-13]. These interactions enhance the viscosity of the suspension [14]. Such phenomenon is
known as the ‘primary electroviscous effect’ (PEE) for the dilute limit of colloids where the
dynamic viscosity versus volume fractions is a linear function [15-19]. At higher volume
fractions this function becomes non-linear were the double layers overlap and this second

effect is called the ‘secondary electroviscous effect’ (SEE) [13, 20-22].



The process of gaining these data is very time consuming and in most cases a significant
amount of preparation is required to achieve the desired solution conditions for the viscosity
measurements. This certainly motivated many to attempt modelling the viscosity of colloidal
suspensions for various electrical conditions. On the other hand, the theoretical models for
the viscosity behaviour are very complicated or only apply at low concentrations [15-17, 22-
25] and in some cases even at low concentrations these models do not compare with the
experimental dynamic viscosity obtained for the widely used silica dispersions. experimental

results [5, 26]. This motivated the current work to focus on silica dispersions.

In the past few decades a small number of experimental studies have been carried out on
dynamic viscosity of well characterised spherical latex and silica suspensions at various pH
or ionic strength values which focused on low volume fraction PEE theoretical models [4-8,
27]. However, to date no experimental work has evaluated the most recent state of the art
theoretical model developed by Ruiz-Reina and Carrique [28] and its improvement from the
well-known model by Booth [16]. In some cases the theory has not been compared to the

experimental data at all [17, 19, 22].

On the other hand, a few experimental studies were performed to validate the models on the
dynamic viscosity of colloidal suspensions at high volume fractions [5, 29-40] the majority of
which were only compared to the Krieger-Dougherty model [5, 34-40]. The simplified hard
sphere version of ‘Ruiz-Reina and Carrique (R-R&C) [22], as a modified version of the
original Simha model [41] however, was not examined by any experimental work to this date.
Considering the R-R&C hard sphere cell model (similar to the original Simha model) can be
explored to fit the experimental data incorporating one fitting parameter which can be
introduced to the R-R&C hard sphere model as a correction factor as opposed to Krieger-
Dougherty which includes two fitting parameters, the comparison between the two models
for higher volume fractions would be valuable. Finally, only the work of Adamczyk et al.
was found to study both low and high volume fractions, however, at very few electrolyte
conditions [5]. Adamczyk and Laven & Stein reported an experimental PEE coefficient (p) to
deviate from Booth predictions due to a fuzzy structure for silica particles once in electrolyte
[5, 16, 26]. This motivated the study of silica dispersions in particular to challenge the state
of the art models in predicting the unusually large dynamic viscosities observed

experimentally.



The present work evaluates a wholesome study on the dynamic viscosity of well
characterised colloidal silica dispersions against both low and high volume fractions at two
electrolyte ionic strengths and three pH conditions for each electrolyte concentration. The
zeta potential is estimated from electrophoretic mobility values using a suitable model after
comparisons between a number of well-known models [42-47]. A number of well-known
models (as shown in Table 1) related to both linear (low volume fraction which are discussed
in details in the Supporting Information File: Section 1) and non-linear (high volume
fraction) regions of the viscosity curves were assessed against the experimental data. For the
linear part (PEE) at low volume fractions the Booth equation [16, 48] was compared to the
numerical solution by Ruiz Reina et al. [22] in predicting the experimental data. Regarding
the non-linear part at high volume fractions, the empirical expression by Krieger-Dougherty
[35] was fitted to the experimental data by varying the maximum packing fraction ¢, as a
fitting parameter. Also, the R-R&C hard sphere model (a modified version of the Simha hard
sphere model which includes a boundary condition by Happel on the outer radius of the cell
[22, 41] was fitted to the experimental viscosities by effective volume fractions that take into
account the postulated fuzzy structure of silica particles. This study aimed at identifying the
most suitable models for the linear viscosity range at low volume fractions as well as the non-
linear range at high volume fractions at two ionic strength and three pH electrolyte

conditions.

2 Theoretical Aspects

The electrical contribution to the viscosity of colloidal suspensions is mainly dependant on
the charge determining ions on the surface of the colloidal particles as well as the ionic
strength of the counter-ions present in the electrolyte [10]. Therefore, the effect of {-potential
on the particles and ionic strength of the electrolyte needs to be observed over a wide range

of volume fractions of colloids.

The classic model for predicting the dynamic viscosity behaviour of rigid particles without
surface charge was originally proposed by Einstein in 1906 [49] in which the repulsive

electrostatic interactions between the particles was not taken into account:



Einstein hard sphere model: 7, = %(;5 (1)

where, ¢ is the volume fraction of the dry particles, and 7y, is the specific viscosity:

%=m4=§— @
0

and, 7 and 7 are the dynamic viscosity of the colloid and the electrolyte respectively.

In 1916 a model was proposed by Smoluchowski as shown in Table 1 considering the relative
size of the particles to electrical double layer (EDL) and zeta potential at the slipping plane
(surface potential) of colloidal particles [15]. This was not only the pioneer model indicating
the significance of electrical properties but also led to definition ‘of the so called primary
electroviscous effect (PEE) where the viscosity deviates from Einstein model in equation (1)
which drew the attention of experimentalists [4, 27]. The PEE by definition, refers to
distortion of the double layer due to shearing processes against the electrolyte molecules
which leads to an increase in dynamic viscosity [14]. In general the PEE applies to low
volume fractions where the colloidal particles’ double layers do not overlap due to a much
larger distance between the particles-and only particle-electrolyte interactions occur [10]. The
dynamic viscosity is a linear function at low volume fractions from which the slope is defined
as intrinsic viscosity i.e.:

=5

The Einstein equation for the linear viscosity behaviour for low volume fractions can

3)

therefore be written with respect to intrinsic viscosity:

[7]= 5 4)

And the contribution of the PEE may be defined as:

mp=§¢0+p) 5)

where, p is known as the PEE coefficient.

In 1948 Booth modified Smoluchowski’s electrical term as shown in Table 1 applying an
equations of motion series which was then simplified via a number of assumptions [16, 48,

50]. These terms presented by the Booth equation in Table 1 involved a relaxation function,



{Z (Ka)} which was a power series of the Debye-Hiickel parameter, xa as particle size to

double layer thickness ratio (x is reciprocal of the double layer thickness, and a is the particle

eg

size radius), and electrical to kinematic energies ratio, T (e is charge of an electron, ( is

surface potential, & is the Boltzmann constant, and 7 is temperature). Since Booth equation
was proposed, several attempts were made to predict PEE at low volume fractions, of which
the Watterson and White numerical model [17] was found to behave quite similar to the
Booth equation and underestimate the PEE even more for some electrolyte conditions [15-19,
27, 51-62] (see Table S1). On the other hand, the Booth model agreed quite well with the
experimental viscosity of polystyrene lattices obtained by Stone-Masui in 1968 [4].

In 1952 Simha introduced a cell model [41] suitable for high volume fractions representing
units of bulk electrolyte with one particle per unit cell as shown in Fig. 1. A critical ratio,
b/ a was defined in Simha’s model where a and b were the particles hydrodynamic radius

and the radius of the cell unit, respectively. This ratio can be expressed as a function of the
volume fraction and the maximum packing fraction of the nano particles, ¢, as a fitting
parameter. Happel also proposed a cell model [63] which unlike Simha’s expression did not

simplify to Einstein’s equation at boundary condition ¢ — 0 which made Simha’s approach

more suitable for future development.

Figure 1: The cell model diagram for a single spherical particle in an electrolyte.

Later on Simha’s cell model was used in combination with the electroviscous effect by a
number of PEE theoreticians [22-24, 28, 64, 65] among which the most recent work proposed

a numerical solution developed by Ruiz-Reina and Carrique in 2007 [28, 64, 66] as shown in
7



Table 1. This model included overlapping conditions at low salt concentrations where most

previous models fail due to the assumption of thin double layers in their derivations.

In 1959 Krieger and Dougherty (K-D) derived a power expression for high volume fractions
defining a maximum packing volume fraction, ¢, as a fitting parameter [35]. The K-D model
introduced an intrinsic viscosity, [#7] parameter, i.e. the experimental slope obtained from the
linear part of dynamic viscosity curve at low volume fractions. The K-D model was in good
agreement with previous experimental data [32, 35, 67] which should be the case considering
this model is a fit to the experimental data. In 1977 Quemada developed a similar expression
for uncharged hard spheres [29]. Also Ball and Richmond introduced a similar expression in
1980 using a crowding factor k, which was essentially ¢,,' [67]. The intrinsic viscosity in
Quemada and Ball and Richmond models is a constant, which neglects the PEE in the

dynamic viscosity and imposes a limitation in curve fitting of those models.
Adamczyk and Laven & Stein studies reported the unusually large dynamic viscosities for

silica dispersions attributed to the gel-like fuzzy structure of silica in aqueous conditions as

shown in Figure 2even at low volumes fractions [5].

}/gﬁmn

Figure 2: A possible formation of a silica particle in an aqueous electrolyte proposed

similarly by Adamczyk et al. [5].

The proposed model by Adamczyk is discussed in details in the following sections and shown

in brief in Table 1.

Table 1: A summary of the theoretical and empirical models evaluated in this study for low

and high volume fractions:
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Low Volume Fraction Models

Einstein (1906):
5
[7]= 5
d(n,) n
Where, []=—-"2%,and n_ =1, —1=-"——1
[ ] d¢ ' N
Booth (1950):
5
[77] :E[l—l_pBooth]
2
f4
Where p, = 47(1_2“177)0612 (Ka)2 (1 + Ka)2 {Z (Ka)}

Low & High Volume Fraction Models

Krieger-Dougherty (1959):

~[n).., %
¢ exp
nsp = (1 N ¢_ -1

Ruiz-Reina et al. (2005):

=295 (#) (1+ Prsc)

) - 4(1_(¢)§)

10 4 5

4(1 +(¢)3 j - 25¢(1 +(¢)3 ] +42(p)3

Adamczyk et al. effective volume fraction correction (2004):

5 5
nsp (exp) = [n]cxp ¢ = E¢cff = EkA¢

Where, k, can be defined as:

¢ 2.5 a




3 Materials and Methods

3.1 Silica dispersion preparation

Morisol X30 colloidal silica dispersions were purchased from Morrisons Limited. AR
Sodium chloride, HCI, and NaOH were purchased from Fisher Scientific. Deionized water
(with maximum conductivity of 2 uS/cm) was produced by reverse osmosis, and ion

exchange via a Millipore Elix 3.

Morisol silica dispersions were diluted to the desired volume fractions without any
purification since the ionic contaminations after dilution (in the final low volume fraction
dispersions) become negligible compared to the ionic strength even in the case of 3 mM
NaCl. The pH and conductivity of the dispersions were adjusted to the desired values by
measuring and directly adding HCI/NaOH and NaCl respectively to the colloidal suspension

under gentle stirring after each addition.

High volume fractions of silica dispersions with various pH and ionic strength were prepared
in three stages of purification, pH and ionic strength adjustment, and concentration. In all
three steps a cross flow hollow. fiber filter (Romicon HF1-43-PM10, KOCH Membrane
Systems Co.) was used which was fitted in a benchtop Quixstand ultra-filtration rig. The
membrane had a molecular weight cut off of 10 kDa. The filter allows the electrolyte ions to
move through the filter as permeate and the silica particles will be recirculated in the system
as retentate. A Watson Marlow 313S peristaltic pump was used to pump the dispersion in a
silicone tube. To enhance the filtration rate, a positive pressure of 2 bars is applied across the

filter between pressure gauges 1 and 2 as shown in Figure 3.

For each pH and ionic strength condition 400 g of Morisol silica dispersions were first
purified with about 2 litres of deionized (DI) water using a cross flow system shown in Figure
3. The conductivity of permeate was constantly monitored until it was as low as 100 uS/cm
indicating the ionic impurities are negligible (discussed in details in Supporting Information

File: Section 2).

10



— Pressure
9 Gauge 1

_D— pH meter 1
' pH meter 2
L ] Temp.
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Pressure Gauge 2
Peristaltic Pump

Figure 3: Schematic diagram of the filtration system with controlled temperature and

electrical conditions.

The pH and ionic strength of the permeate was continuously monitored using two pH meters
(a PW 9421 Philips pH meter and an 1Q150 pH meter from 1Q Scientific) to ensure the pH
readings are accurate. A Portec P1.§140 conductivity meter was used to monitor the ionic
strength. Fisher Scientific probes were used for the pH meters (Type No: FB68788) and the
Portec conductivity meter (Type No: CDC139/K). The ionic strength adjustment of the
retentate was carried out by addition of a calculated magnitude of NaCl according to the
conductivity readings of permeate via a method explained in the Supporting Information File:

Section 3.

Knowing the approximate weight fraction of the initial colloidal solution and the total weight
of the sample, an approximate volume of the desired concentration can be calculated. The
electrical properties of the accumulated permeate were recorded at the end of the
concentration process. The exact sample concentration in weight % was then calculated by

measuring wet and oven dried masses of each end product.

The purified and concentrated dispersion was diluted by adding a known amount of NaCl
electrolyte (with a similar NaCl concentration and pH to that of the permeate) to a known
mass of the colloidal dispersion. However, the pH may vary during this dilution and a slight
readjustment may be required. This normally does not cause any significant variation in the

conductivity of the dispersion.

11



3.2 Weight and Volume Fraction Measurements

The weight fractions of Morisol stock solutions were initially measured. Three samples of
Morisol silica solution were weighed in three foil containers. The samples were then placed
in an oven and left to dry at 120°C for twelve hours and weighed. The weight fraction of
silica was then calculated and averaged. The same method was applied to find the
concentration of the purified solutions after filtration. From these weight fractions, the
hydrodynamic volume fractions were calculated as described in Supporting Information File:

Section 3.

3.3 Density Measurements

A 25ml pycnometer flask was used for the density measurements via the method described in
British Standards (BS 4522, 1988). The only variable parameter in the calculation of the

density of a colloidal dispersion is the weight of the sample which is used in the equations

below:
m, + A
= X0 6
P ©)
A= paxm, (7)

where p; is the density of the solution at 25 £ 0.1°C, m;, is the apparent mass of the sample in
grams, m; is the apparent mass of the pure water, O, is the density of water at 25°C (0.997044

g/ml) and 4 is the buoyancy correction, where p, is the density of air at 25°C (1.184 mg/ml).

Density data are presented in more details in Supporting Information File: Section 4.

3.4 Viscosity Measurements

In this study dynamic viscosity measurements were carried out for both low and high volume
fractions using a range of Ostwald capillary viscometers which provide good sensitivity to
small changes in viscosity importantly for low volume fractions as demonstrated in previous
literature [4, 6, 8, 27, 68-70]. The Pe numbers in all measurements were less than 2.6x107
demonstrating that the diffusive forces dominate the flow (Supporting Information File:

Section 5).

12



A full description of the method for measuring the viscosity of the dispersions was mentioned
in British Standards [71]. The kinematic viscosity was calculated as a function of time using a
glass capillary viscometer held vertically in a temperature controlled water bath (25 £ 0.1 °C,
Figure 4). The dynamic viscosity was then calculated using the kinematic viscosity and
density of the solutions (Supporting Information File: Section 6). The viscosity measurements
were carried out on silica X30 dispersions at three pH conditions (pH 9, 7, 5) and two ionic
strength conditions (30 mM and 3 mM of NaCl as the electrolyte) i.e. six combinations of

electrolyte pH and ionic strength in total.

Motor

T t —
emperatiTe Viscometer
Control
Heater Thermostatic
\\_\-_J/ bath
/
Stirrer

Figure 4: Schematic diagram of the viscosity measurement setup.

3.5 Colloidal Particle Characterisation
A Malvern High Performance Particle Sizer (HPPS) incorporating NIBS (Non-Invasive Back
Scatter) technology and a Zetasizer Nano ZS were used to measure the hydrodynamic particle

size as well as mono-dispersity of Morisol silica dispersions. Prior to the HPPS
13



measurements, Morisol X30 silica dispersions (4 to 10 g/L) were prepared at each pH and
ionic strength condition and were passed through an Acrodisc 25 mm syringe filter (with 1

um glass fiber membrane, from PALL life sciences) to remove any undesirable particles.

A scanning electron microscope (col/FEG SEM S4800) was used to observe the dry particle
size, mono dispersity, and morphology of X30 silica nanoparticles. Prior to SEM imaging,
samples were prepared by drop-casting 0.5 mL of X30 silica dispersion (0.1 g/L.) onto silicon
wafer followed by oven drying at 150 °C overnight.

The electrophoretic mobility, ug, of X30 silica dispersions were measured using a Malvern
ZetaMaster 2000. For each condition a known volume of the dispersion was injected into the
cell capillary and the mobility values were averaged over a minimum of thirty measurement
runs. The zeta potential of the silica dispersions was then obtained from the electrophoretic
mobility values using O’B&W numerical model after comparing with some other well-

known models [42-47].

4 Results and Discussions

4.1 Particle characterisation

The hydrodynamic and dry particle size for silica X30 particles is shown in Table 2. Figure 5
confirms the mono-dispersity of these particles. The dry particle size was the average of
measurements taken from the SEM images shown in Figure 4. It can be seen that the SEM
average dry particle size from the SEM imaging is quite similar to the average hydrodynamic
particle size from DLS measurements. However, the DLS measurements were carried out in
the same aqueous conditions as the viscosity measurements, and the hydrodynamic radius
obtained from this method showed a much smaller standard deviation compared to the SEM
observations. Therefore, the hydrodynamic radius obtained from the DLS measurements was

used in all viscosity models.

14



Table 2: Particle size characterization.

Hydrodynamic particle size (DLS) | Dry size (SEM imaging)
Particle Average
) ) ] ) Particle radius
Particle type radius poly-dispersity
. (nm)
(nm) index
. 11.8 £ 2.4 (averaged using
X30 Silica 10.68 £0.28 0.19+0.03
measurements in Figure 5)

54800 30.0kV 8.3mm x300k SE(M) 100nm $4800 5.0kV 2.1mm x800k SE(U)

Figure 5: (left panel) X30 particles (300k magnification); (right panel) with approxiate

particle size'measurements (8§00k magnification).

4.2 Effects of pH and ionic strength on specific viscosity

The experimental data are compared at constant ionic strength and variable pH values. The

experimental ‘dynamic viscosity, 7., was normalised to experimental specific viscosity,

Msp (exp) » @S previously defined in the literature [6]:

ﬂsp (exp) = nexp / nNaCl _1 = 77r (exp) _1 (8)
where 7., is the experimental dynamic viscosity and 7y, is the respective solvent

viscosity. As shown in Figure 6 the specific viscosity increased when increasing pH. For
instance, at 30 mM NaCl and ¢ = 0.3 the viscosity was more than doubled when pH was
increased by two units and more than tripled when increasing pH a further two units. This
effect was almost similar at lower ionic strength (3 mM NaCl) and ¢ = 0.27 where from pH 5

to 7 viscosity was more than doubled and from pH 7 to 9 it was more than tripled. Also, for

15



each pH condition the dynamic viscosity was increased with decrease in ionic strength.

100 100
e pH9 3 mM NaCl ° pHY 30 mM NaCl
go; " PHT go| " PH7
» pH5 » pH5
s 60 : i - s 60 : '
= 40 . o = 40 ] . I
e x
20 | G “* 20 | ot .
- -m .t % * » -~
0 s - . ‘ O P ™ ‘ A ‘
0.1 0.2 0.3 0.4 0.2 0.3 0.4
¢ ¢

Figure 6: Comparison between the experimental data (n=3) of specific viscosity for X30
silica at different pH values and ionic strengths. Left panel: ¢ =3 mM, right panel: ¢ =30
mM.

4.3 Low volume fraction Intrinsic Viscosity (PEE)
The viscosity of a colloidal solution at low volume fractions was originally calculated by
Einstein’s (1906, 1911) linear equation [49, 72] where the intrinsic viscosity predicted by

Einstein was 2.5. For our low volume fraction viscosity data we explore a similar equation:

nexp = 77NaCl (1 + ¢ [77]) (9)
This equation can be rearranged and combined with equation (3) to give:
d 775 (exp) .
[n]exp = % = The linear slope of 7, Vs. ¢ (10)

The experimental intrinsic viscosity values, [n]exp calculated from experimental data were

different from Einstein’s prediction, and were then compared to Booth and R-R&C
theoretical models [15, 16, 66] as shown in Figure 7. The colloidal dispersion properties such
as pH, zeta potential, xa, as well as experimental intrinsic viscosity, and ratios of
experimental PEE coefficients to the predicted ones by Booth and R-R&C were shown in
Table 3. The zeta potential values were obtained from { obtained from the electrophoretic

mobilities using the full numerical model by O’Brien and White after comparison with other

well-known models (for details see Supporting Information File: Section 7). The [77]

exp
experimental values were used in Krieger-Dougherty model for high volume fractions as one

of the fitting parameters.
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5.0 5.0

3mM NacCl 30mM NaCl
4.5 4.5
4.0 4.0
= =
35 | 35 | %
3.0 | 3.0 |
.//'/.
o/—/°/. - 0
2.5 w w w w w 2.5 >
4 5 6 7 8 9 10 4 5 6 7 8 9 10
pH pH

Figure 7: Experimental intrinsic viscosity at various pH for low volume fractions (black, solid
line) compared to Booth model (blue, solid line), R-R&C model (red, solid line), and R-R&C
model with 5.45 correction according to equation (11) (red, dashed line). Left panel: ¢ =3

mM, right panel: ¢ =30 mM.

Table 3: Experimental intrinsic viscosities at various pH and ionic strengths as well as the
ratio of experimental PEE coefficients to theoretical ones. Some more details are given in the

Supporting Information File: Section 8.

c NaCl Electrolyte | pH Ka CoBaw | [Mlexp | Pexp/ PBooth | Pexp/ PR-R&C
ase
Ionic Strength
No: r
(mmole-L™) ) ) (mV) ) ) )

1 3 9 1.92 -66.35 4.74 8.2 6
2 3 7 1.92 -57.6 4.07 7.9 4.8
3 3 5 1.92 -50.31 3.84 9 49
4 30 9 6.08 -54.66 3.62 11.3 5.6
5 30 7 6.08 -44.8 3.37 12.5 5
6 30 5 6.08 28 3.29 26.66 6.4

As shown in Figure 7 both models significantly underestimate the experimental intrinsic

viscosities for all conditions. This large deviation from the theoretical data was found in
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previous literature mainly by the work of Adamczyk et al. [5] as well as Laven and Stein [26]
for silica colloidal dispersions. The discrepancies between the R-R&C and the experiments

are discussed in more depth in the next section.

In comparison between the two theoretical models, the numerical model by R-R&C [22, 28]
generally showed slight improvement of the intrinsic viscosity for all conditions yet well
below the experimental values for all conditions. In addition, the ratio of experimental PEE
values, pexp, to that of Booth and R-R&C models were shown in Table 3. It was observed that
Booth model underestimated the PEE by an order of magnitude for most cases whereas R-
R&C model underestimated the PEE by roughly 5.5 times. Interestingly, one can observe
from Table 3 that the pey, / pr-rec ratio is almost constant for all cases unlike large variations
N Pexp / PBooth. One may obtain an average pexy / pr-r&c Which could be used as a correction
factor for pr.r&c in the R-R&C equation for predicting the viscosity of silica X30 dispersions

at low volume fractions:
5 4
Ty =5¢S(¢)(1+pR-R&C) (11)

where pg pec = 545X Pprec- On the other hand, the large pexp / prootn values may be reflect

the limitations in Booth model failing to predict the PEE. In developing the equations of
motion, Booth applied a few assumptions for the particle-electrolyte interface [16] of which
perhaps the assumption of the double layer being small in thickness compared to the average
distance between the particles had the most impact to underestimate the double layer effects
even for low volume fractions. Also the modified Booth model used in this study as shown in
Table 1 is restricted to zeta potential values less than 25.4 mV which is less than all the
observed values in this work as shown in Table 3. Since the numerical solution by R-R&C
model are not limited by these assumptions it is expected to see improvement in the viscosity

predictions.

In summary, despite the improvement of the PEE parameter, p, by R-R&C model as shown in
Table 3, both theoretical models fail to predict the intrinsic viscosities by a significant margin
as shown in Figure 7 which was reported in the literature to be due to the fuzzy structure of
silica particles in aqueous media [5, 26]. The numerical solution by Ruiz-Reina and Carrique
[22, 28] marginally improved the predicted intrinsic viscosities and the PEE parameter, p,

significantly from Booth equation. Also a correction factor of 5.45 was necessary for the R-
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R&C model to match the experimental viscosities of silica X30 samples at low volume
fractions, in spite of the R-R&C model is intended to be valid for non-dilute suspensions and

arbitrary zeta potentials, even for the cases of overlapping of neighbour EDL’s.

4.4 High Volume Fraction Viscosity
In the present section we will study and compare some theoretical and semi-empirical
approaches to the experimental specific viscosity of the X30 Silica suspensions in the region

of high-volume fractions.

First of all, we have tested in Figure 8 whether the electroviscous R-R&C model [22, 28] is
able to predict the experimental results for different pH and ionic strength conditions. This
model predicts the viscosity of a concentrated colloidal suspension of charged spherical
particles including electroviscous effects linked to electric body forces in the double layers,
and possible overlapping between adjacent double layers of neighbor particles. As it is clearly
observed in Figure 8, the R-R&C model predicts values well below the experimental ones.
Also, in this Figure, R-R&C hard sphere results (no electroviscous effects included) are
displayed for the same cases to show that the complete R-R&C prediction hardly differs from
the simpler hard sphere one.<These results show similar behavior to the low volume fraction
viscosities in which the R-R&C model values are well below the experimental values even

for the pHS5, 30mM ionic strength case. For clarity, the two predictions are reproduced here:

5
R-R&C model: 7,, = 3 #S () (1+ Prrec) (12)

R-R&C hard sphere model: 7, = %ng (¢) (13)

being prrsc the electroviscous coefficient which in this case encompasses all the
electroviscous effects. In the R-R&C model, the function S(¢) in Table 1 follows from a
modified version of the general Simha function A(y) when a boundary condition by Happel
[41] on the outer radius of the cell, y = a/b = ¢'°, is imposed. This boundary condition fixes

the radius of the cell by obliging that the particle volume fraction calculated with a single unit

cell coincides with the particle volume fraction of the whole suspension.
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To explain the discrepancies found between experiments and the R-R&C model we have
explored a composite core/shell silica particle model. In the literature [5, 26], some
discrepancies with colloidal silica particles between experiment and theory led to the
postulation of a fuzzy, gel-like structure, responsible for the large specific viscosity
deviations observed. In aqueous solutions, a gel-like layer seems to be formed onto the silica
particles. This fact could explain the apparent particle density decrease for low ionic strength
and high pH, and also that the thickness of the gel-like layer could apparently be correlated
with the double-layer thickness.

Originally, Adamczyk et al. [5] confirmed that their experimental results of the specific
viscosity didn’t follow the Einstein hard sphere model in the low volume fraction region [49,
72]. Next, they tried to explain their experiments in such region making use of primary
electroviscous effects implicit in the electroviscous coefficient, p, [S] and they found that
such electroviscous effects could not be responsible for the observed discrepancies after a
theoretical estimation of p, that turned out to be two orders of magnitude smaller than those

necessary to explain the experiments.

Adamczyk et al. [5, 26] finally assumed the above-mentioned fuzzy structure for their silica

particles and derived an apparent or effective particle volume fraction: ¢, =k,¢, which

depended linearly on-the volume fraction, to explain their viscosity experiments in the low
volume fraction region. The linear coefficient k4 is obtained from the slope of the linear fit of
the experimental specific viscosity, [#]exp versus volume fraction in the latter region:

Adamczyk et al. correction: 7, .. = [n]exp ¢ = §¢eff = %kA¢ (14)

where, ka can be defined as:
3
kA:&:m:(l'Fé) (15)
¢ 2.5 a
where, a is the dry particle radius, and 0 is the thickness of the gel layer around the particle
in aqueous conditions. In all their experiments kx > 1, whereas the value expected for ka if

the experiments had followed the Einstein viscosity model for hard spheres would be one.

Also, these effective volume fractions were used for the interpretation of their experimental

viscosity results in the high-volume fraction region [5]. In their case, the hard sphere model
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of Batchelor for low-medium volume fractions range [73] was used in conjunction with
effective volume fractions, but it was not sufficient to match their results. The posterior
inclusion of a correction accounting for secondary electroviscous effects with Russel theory

[20], led to a better comparison for volume fractions lower than 0.2.

With regards to the X30 Silica particles, and following Adamczyk et al. insights [5], an

effective volume fraction for the high volume fraction region was derived here: @, =k¢,

being the linear k coefficient (examples of the linear fit are provided in Supporting
Information File, Section 9, Figure S13) an adjustable parameter that can be obtained by
fitting the high-volume fraction specific viscosity experiments with the R-R&C hard sphere
model (the electroviscous effects are rather negligible according to Figure 8) for each pH and
ionic strength. The linear relation, in the full range, between the estimated effective volume
fraction and the experimental volume fraction ¢, was in agreement with a constant thickness

of the gel-like layer o, being independent of ¢.

In Figure 8, the fits of the experimental results with the R-R&C hard sphere model with this
effective volume fraction correction are shown for all the pHs and ionic strengths studied.
They are named:

R-R&C hard sphere with effective volume fraction ¢, = k¢

o =5 00S(e ) = 2 S(k) (16

On the other hand, as Adamczyk et al. did in his work with silica particles [5], where the use
of effective volume fractions was extended to the high-volume fraction region, in Figure 8 R-
R&C hard sphere predictions with Adamczyk et al’s effective volume fractions have been
included for comparison. They are named:

R-R&C hard sphere with effective volume fraction ¢, =k, ¢

5

5
Ny = §¢eff s(¢eﬁ ) = 5 AP S(k @) (17)

The k4 coefficients for the X30 Silica studies were obtained from the slopes of the linear fits
of the specific viscosity, [#]ep versus volume fraction in the low volume fraction region for
all the pHs and ionic strengths studied in this work (see the Supporting Information File,
Section &, Figures S7 to S12 and Table S5).
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Finally, the semi-empirical Krieger-Dougherty model (K-D) [37]:

_[7]]exp¢m
n, =(1—¢£j 1 (18)

where, [#7]exp stand for the experimental slopes defined above and ¢y, is a maximum packing
fraction coefficient to be used as adjustable parameter. In Figure 8 the K-D fits are also
shown for all the experimental conditions of pH and ionic strength in the high-volume
fraction region. Estimated values for the linear k5 and k coefficients of the effective volume
fractions and maximum packing fraction coefficients ¢, of the K-D model for the best fits to

the X30 Silica experiments are summarized inTable 4.

Table 4: Linear coefficients of the effective volume fraction according the R-R&C hard
sphere model, and maximum packing fraction coefficient of the K-D model for best fits to

X30 Silica experiments.

NaCl Electrolyte | pH ka k Pm
Case
Ionic Strength
No: 4
(mmole-L™) ) Q) ) )
1 3 9 1.90 2.48 0.26
2 3 7 1.63 1.86 0.33
3 3 5 1.54 1.49 0.43
4 30 9 1.45 1.94 0.31
5 30 7 1.35 1.67 0.36
6 30 5 1.32 1.40 0.41
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Figure 8: Specific viscosity against volume fractions for X30 silica at all pHs 5,7 and 9 for
3mM and 30mM NaCl concentrations; R-R&C hard sphere model (squares); R-R&C model
(triangles); experimental results (circles); R-R&C hard sphere model with effective volume

fraction @, =k¢ (solid lines); R-R&C hard sphere model with Adamczyk et al. effective
volume fraction ¢, =k,¢ (dashed lines); Krieger-Dougherty (K-D) model (dotted lines).

Left panels: ¢ = 3mM, right panels: ¢ = 30mM and Upper panels: pH = 5, middle panels: pH
=7, and lower panels: pH =9

Whatever the case studied, the best fits to the experimental specific viscosities, especially for

3 mM NaCl ionic strength, are given by the R-R&C hard sphere model with effective volume
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fraction ¢, =k¢. Adamczyk et al’s effective volume fraction does not seem to be a good

approach for the high volume fraction studies for pHs larger than 5. Also the K-D fits in

Figure 8 are not good enough for adjusting our experiments.

An effective volume fraction can be related to a gel-like layer onto the bare silica particle, its

thickness daccording the two approaches can be easily derived:

Npﬂﬁa3 N ﬂ7r(a+5)3
Py = (19)
yoooor v

S S

where N, is the number of particles and V; is the suspension volume. As ¢ =Cg, (C can be

k or k4 in our analysis) then,

Psr :(a+3§) :(1+é) =C (20)
$ a a
then,
L @1
a

Also, a thickness of the gel-like layer can be obtained for the K-D model [37]:

S _[fn)_
a_(%j 1 (22)

being ¢ the maximum packing fraction attainable for the system. For hard spheres the

maximum packing fraction for both face-centered cubic and hexagonal close pack in crystal

lattices is 0.7404.

In Figure 9 and Figure 10 (see also Figure S14 of the Supporting Information File, Section 9)
the ratios of the thickness of the gel-like layer to the particle radius are displayed as a
function of experimental conditions such as zeta potential, pH and ionic strength according to
the three approaches described above, to find possible correlations with such properties.
Initially, the thickness ratios as a function of zeta potential at fixed ionic strength were
studied as shown in Figure 9. For both ionic strengths, 3 and 30 mM NaCl, the thickness ratio
increases with zeta potential for all approaches. It is remarkable that the K-D model generally

shows the largest thickness ratios, which imply an overestimation in comparison with the R-
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R&C approach shown in Figure 8 which fits well with the experimental data. The Adamczyk
et al’s approach on the other hand shows the smallest ones, which indicates and
underestimation compared to the R-R&C model and it was clearly shown in Figure 8. For
fixed ionic strength, it is quite reasonable that the larger the surface potential the thicker the

charged gel-like layer surrounding the bare particle.

0.45 ———— T 0.35
—® RREC3MM I [~Fe—RR&C30mM ®
0.40 | —A— Adamczyk 3 mM ) S —A— Adamczyk 30 mM
~©-KD3mM - 0.30 F ¥ KD 30 mM
0.35F 1 >
0.25
0.30 F B e
N] S 4 7
= 025 = 020} P
020F ¢ 015 |
A
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0.10 A A
010t v oy e L . . . . .
50 -52 -54 56 -58 -60 -62 -64 -66 -68 25 .-30 -35 -40 45 50 55
¢ (mV) ¢ (mv)

Figure 9: Thickness ratio calculated from R-R&C model with effective volume fraction
¢ =k, Adamczyk et al.’s effective volume fraction ¢, =k,¢, and Krieger-Dougherty

(K-D), as a function of zeta potential. Left panel: ¢ = 3 mM NaCl; right panel: ¢ = 30 mM
NacCl.

In Figure S14 of the Supporting Information File, Section 9 the thickness ratio is shown as a
function of pH at fixed ionic strength. Similar conclusions as the previous Figure can be
drawn as zeta potential increases with pH at fixed ionic strength (see Table 4). Finally, in
Figure 10 the thickness ratio as a function of ionic strength is displayed for fixed pH. With
the exception of the pH5 case in Figure 10, where the K-D ratio increases with ionic strength,
unlike the two other approaches, it can be said that overall the thickness ratio decreases with
ionic strength at fixed pH. It is probably an effect of the well-known double layer
compression with the increase of ionic strength that partially compresses the charged gel-like

layer.
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Similar tendencies have been found with aqueous silica sols in the literature. For instance,
Adamczyk et al. [5] derived K-D thickness ratios of 0.28 and 0.13 for their silica particles at
fixed pH = 10 and zeta potentials of —42 mV (ionic strength of 0.02 M) and —35 mV (ionic
strength of 0.05 M), respectively. This coincides well with findings in this study in which
some correlation between the thickness of the gel-like layer and the double layer-thickness is

observed.

5 Conclusion

A comprehensive study was carried out on the dynamic viscosity of X30 silica dispersions at
both high and low volume fractions of colloidal silica particles at various electrolyte pH and
ionic strength values. The initial results showed a comprehensive trend where lower salt
concentration and higher pH led to larger dynamic viscosity of the suspension for both low

and high volume fractions.

The experimental findings at low volume fractions were compared with the predictions by

Booth and R-R&C theoretical models for which colloidal silica dispersions were well
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characterised with respect to the particle size measured using both SEM imaging as well as
DLS, Debye length, x/ was calculated from the ionic strength and zeta potential, ¢ obtained
from the electrophoretic mobilities using the full numerical model by O’Brien and White
after comparison with other well-known models. The first observation from these
comparisons was the anomalously larger experimental intrinsic viscosities (slope of the
specific viscosities) at low volume fractions as compared to the predicted values from Booth
and R-R&C theoretical models. This unusual behaviour by silica dispersions were reported
by Adamczyk ef al. [S] and Laven & Stein [26] and both studies postulated a fuzzy gel-like
structure for silica particles in aqueous environment as the explanation for such behaviour.
Booth and R-R&C models showed similar qualitative behaviour to the experimental data at
various pH and ionic strengths [16, 28, 66]. The R-R&C model showed up to 4% improved
intrinsic viscosities and more than double PEE coefficient, p compared to Booth model. This
may be due to the restrictions of small double layers and zeta potential (< 25.4) invalidating
Booth model for most of the studied conditions. Instead, the R-R&C model is intended to be
valid for non-dilute suspensions and arbitrary zeta potentials, even for the cases of
overlapping of neighbour EDL’s. Also further studying p for both models compared to the
experimental data showed a consistent ratio of pey, / pr-r&c Which was not the case for Booth
model. This enabled the R-R&C model to predict the low volume fraction viscosities quite

accurately for silica X30 particles by introducing a simple correction factor in pgr_rac.

For the high volume fraction studies, firstly, the electroviscous R-R&C model [22, 28] was
investigated to explore its ability to predict the experimental results for different pH and ionic
strength conditions. This model predicts the viscosity of a concentrated colloidal suspension
of charged spherical particles including electroviscous effects linked to electric body forces in
the double layers, and possible overlapping between adjacent double layers of neighbor
particles. It was observed that the R-R&C model predicts values well below the experimental
data. Also, the R-R&C hard sphere results (no electroviscous effects included) were
displayed for the same cases which showed that the complete R-R&C prediction hardly
differs from the simpler hard sphere one. These results showed similar behavior to the low
volume fraction viscosities in which the R-R&C model predictions are well below the

experimental values even for the pHS, 30mM ionic strength case.
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To explain the discrepancies found between experiments and the R-R&C model, composite
core/shell silica particle model was explored. As reported in the literature [5, 26], some
discrepancies with colloidal silica particles between experiment and theory led to the
postulation of a fuzzy, gel-like layer forming around the silica particles in aqueous
conditions, responsible for the large specific viscosity deviations observed. This fact could
explain the apparent particle density decrease for low ionic strength and high pH, and also
that the thickness of the gel-like layer could apparently be correlated with the double-layer
thickness.

To examine this core-shell approach, effective volume fractions were obtained two ways: by
fitting the R-R&C hard sphere model to the experimental data, and also by the linear fits to
the low volume fraction viscosity data, according to Adamczyk et al’s [5]. It has been shown
for all conditions that the R-R&C hard sphere model with effective volume fraction gives the
best fits to the experimental specific viscosities, especially for 3 mM NaCl ionic strength.
Likewise, Adamczyk et al’s effective volume fraction does not seem to be a good approach
for the high volume fraction studies for pHs larger than 5. Also the well-known K-D model
was compared to the high volume fraction data, where the majority of the K-D fits

overestimated the viscosity and were not good enough for adjusting our experiments.

In order to find possible correlations with such properties, the ratios of the thickness of the
gel-like layer to the particle radius were displayed for all experimental conditions of zeta
potential, pH.and ionic strength according to the three approaches described. From the
thickness ratio. as a function of zeta potential at fixed ionic strength study, for both ionic
strengths, 37and 30 mM NaCl, the thickness ratio increases with zeta potential for all
approaches. Remarkably, the K-D model generally showed the largest thickness ratios which
implied an overestimation in comparison with the R-R&C approach. The Adamczyk et al’s
approach on the other hand showed the smallest ratios which indicated and underestimation
compared to the R-R&C model. For fixed ionic strengths, it is quite reasonable that the larger

the surface potential the thicker the charged gel-like layer surrounding the bare particle.

Finally, the thickness ratio as a function of ionic strength was studied for fixed pH. Overall

the thickness ratio decreased with ionic strength which was probably an effect of the well-
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known double layer compression with the increase of ionic strength that partially compresses

the charged gel-like layer.

In summary, for the present set of experiments with X30 Silica, it can be concluded that the
present R-R&C hard sphere model suffices to match appreciably well the experimental
viscosities if effective volume fractions are assumed. Such effective volume fractions are
linked to the postulation of a fuzzy, gel-like structure for the colloidal silica particles. In
addition, some correlations between the thickness ratio of the silica particles and pH, zeta
potential or ionic strength have been found that might be correlated with the double layer

thickness.
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