

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in: Composites Part B: Engineering
Cronfa URL for this paper:
nttp://cronfa.swan.ac.uk/Record/cronfa46044
Paper:
Aria, A. & Friswell, M. (2018). A nonlocal finite element model for buckling and vibration of functionally graded nanobeams. <i>Composites Part B: Engineering</i> http://dx.doi.org/10.1016/j.compositesb.2018.11.071

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior permission for personal research or study, educational or non-commercial purposes only. The copyright for any work remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/

Accepted Manuscript

A nonlocal finite element model for buckling and vibration of functionally graded nanobeams

A. Imani Aria, M.I. Friswell

PII: \$1359-8368(18)32983-4

DOI: https://doi.org/10.1016/j.compositesb.2018.11.071

Reference: JCOMB 6256

To appear in: Composites Part B

Received Date: 10 September 2018
Revised Date: 1 November 2018
Accepted Date: 15 November 2018

Please cite this article as: Aria AI, Friswell MI, A nonlocal finite element model for buckling and vibration of functionally graded nanobeams, *Composites Part B* (2018), doi: https://doi.org/10.1016/j.compositesb.2018.11.071.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

A nonlocal finite element model for buckling and vibration of functionally graded nanobeams

A. Imani Aria^a, M. I. Friswell^{b, 1}

^aTabriz University, Department of Mechanical Engineering, Tabriz, Iran.

Abstract

In this paper, a nonlocal (strain-driven) finite element model is presented to examine the free vibration and buckling behaviour of functionally graded (FG) nanobeams on the basis of first-order shear deformation theory (FSDBT). The proposed beam element has five nodes and ten degrees of freedom. The material properties of the FG nanobeam are assumed to vary in the thickness direction according to the power-law form. The stretching-bending coupling effect is eliminated by employing the neutral axis concept. Governing equations are deduced with the aid of Hamilton's principle. Buckling loads and natural frequencies are calculated for different nonlocal coefficients, boundary conditions (BCs), power-law indices, and span-to-depth ratios. The accuracy of the proposed element is verified by comparing with available benchmark results in the literature.

Keywords: Functionally graded materials; Nonlocal elasticity theory; Finite element method; Free vibration; Buckling; First-order shear deformation theory.

1. Introduction

Many new materials and devices can be manufactured by nanotechnology techniques for a wide range of applications, such as cell manipulation [1], microsurgery [2], nanosensors, nanocomposites and smart systems and structures [3]. Investigation of micro/nano structural elements such as beams and plates at the micro/nano- length scale has gained the attention of many researchers, recently. Because of the high cost of atomic and molecular simulations, continuum models are commonly employed to study these elements where size effects are important in the simulations [4].

High order continuum theories to model micro/nano-scale structures have been used to capture the size effects of such structures considering the interactions of non-adjacent atoms and molecules. The most common continuum mechanics theory for modelling nanostructures is nonlocal elasticity. Nonlocal elasticity theory (strain-driven), which was developed by Eringen [5], models long range interactions between atoms. In accordance with Eringen's nonlocal model, the stress of a given point in a continuum body has interaction with strains at all points in that continuum body, not only those near the specific point. Later, Eringen [5] introduced a differential constitutive theory, and proved that for a particular type of kernel function the nonlocal integral constitutive relation could be transformed to differential form, which can be solved much easier, compared with the integral model. This differential formulation was used

.

^bSwansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, UK

¹ Corresponding author: Tel: +44 (0)1792 602969 E-mail address: m.i.friswell@swansea.ac.uk

later in applications to bounded continuous structural models [6]. However, the fact that the constitutive boundary conditions on the stress naturally appear when working with bounded domains was neglected [7-10]. By adding the corresponding constitutive boundary conditions, an ill-posed problem is obtained. This happens because of the conflict between the constitutive and equilibrium conditions on the stress field. Hence, there is no solution for the continuous nonlocal elasto-static problem and this justifies the existence of the paradoxical results in literature [11-13]. This problem can be solved by employing a stress-driven model where the roles of stress and strain fields are interchanged [14]. Recently, some applications have been reported on the basis of the stress-driven model [15-19].

However, it should also be recognised that the nonlocal model in integral form is unable to model detailed local effects at boundaries, and hence there are always likely to be discrepancies between the actual and simulated bending moment at the boundary. Given that these discrepancies at the boundaries are always likely to be present whichever model used, here the differential form of the equations, or strain-driven model, is used [20]. Friswell et al. [21] proposed a finite element formulation for nonlocal elastic and viscoelastic foundations for Euler-Bernoulli beams. They studied the free vibrations of beams on nonlocal foundations and reported corresponding results for different kernel functions. Phadikar and Pradhan [22] presented a variational formulation and used finite element analysis to capture the size effects of nanobeams and nanoplates employing nonlocal elasticity theory. Murmu and Adhikari [23] introduced a nonlocal double-elastic beam model, and used it to analyse size effects on the free vibration of double-nanobeam systems. Mustapha and Zhong [24] studied the free vibration of an axially loaded single-walled carbon nanotube resting on a two parameter elastic foundation by employing the Bubnov-Galerkin method. Roque et al. [25] studied the mechanical behaviour of Timoshenko nanobeams in bending, buckling and free vibration using a meshless method. Thai [26] and Thai and Vo [27] used Eringen's nonlocal elasticity theory to introduce nonlocal shear deformation beam theory for bending, buckling and vibration of homogeneous materials. Lei et al. [28] employed velocity-dependent external damping to investigate the dynamic behaviour of damped nonlocal Timoshenko beams. Civalek and Demir [29] analysed buckling of microtubules on an elastic medium using finite element method and achieved critical buckling loads for various types of microtubules.

Functionally graded materials (FGMs) are composites, which possess variable microstructure that changes from one material to another with a specific gradient, with a corresponding variation in the effective material properties (i.e. shear modulus, material density and elasticity modulus). The FGMs take advantage of different characteristics of its component phases. For example, in a thermally dominant situation; the ceramic portion is employed to resist high temperature gradients because of its great thermal resistance properties, while the metal part provides suitable force endurance performance [30]. For specific functions and applications, the corresponding FGMs are designed in order to provide the optimum distribution of component materials. Moreover, FGMs have been intensely utilized in micro/nano devices, such as atomic force microscopes (AFMs) [31], electrically actuated actuators [32] and microswitches [33]. The free and forced vibration behaviour of graded micro and nanobeams have been studied by performing a range of numerical and analytical solutions. The following summarises the

academic studies that have employed Eringen's nonlocal elasticity model to study vibration and buckling of nanobeams. Eltaher et al. [34] investigated the linear nonlocal free vibration of a Euler-Bernoulli FG nanobeams by employing finite element analysis. Uymaz [35] solved the free vibration problem of graded nanobeams for various beam theories by employing Navier's solution. Vibration behaviour of nonlocal FG beams was examined by Rahmani and Pedram [36]. They employed closed-form solutions to analyse the effects of length scale parameter, slenderness ratio and gradient index on natural frequencies. Nejad and Hadi [37] used the Generalized Differential Quadrature Method (GDQM) to analyse the nonlocal free vibration of bi-directional graded Euler-Bernoulli nanobeams. The nonlinear free vibration of a nonlocal FG Euler-Bernoulli nanobeam with nonlinear von Kármán strains was studied by Simsek et al. [38]. Niknam and Aghdam [39] investigated the large amplitude buckling and free vibration of nonlocal graded nanobeams embedded in elastic foundations exploiting He's variational method while accounting for the nonlinear von Kármán strains. El-Borgi et al. [40] employed the method of multiple scales and Galerkin's method to investigate the nonlocal nonlinear free and forced vibration behaviour of FG nanobeams embedded in a nonlinear elastic foundation. Thai et al. [41] utilized Eringen's elasticity theory to examine the postbuckling behaviour of functionally graded nanoplates. Eringen's strain-driven nonlocal integral formulation was employed by Baretta et al. [42] in order to investigate the size dependent bending response of Euler-Bernoulli nanobeams. Dastjerdi and Akgoz [43] studied the dynamic and static behaviours of FGM nanoplates by exploiting three-dimensional elasticity theory with the nonlocal theory of Eringen.

The finite element method (FEM) is one of the commonly employed numerical methods in analyses of nanostructures, although there are few developed finite elements to investigate FG nanobeams. On the basis of the classical beam theory, Eltaher et al. [34] proposed a two-noded, six degrees-of-freedom finite element to examine free vibration of FG nanobeams. They employed nonlocal elasticity theory in order to incorporate size effects. In a separate work, Eltaher et al. [44] studied the static and stability analysis of FG nanobeams based on Euler-Bernoulli beam theory (EBT), exploiting a two-noded beam element.

Finite element studies investigating FG nanobeams [34,44] that are reported in the literature, have employed a two-noded beam element with six degrees of freedom on the basis of EBT. A novel contribution of this study is to propose a five-noded nonlocal beam element with ten degrees of freedom considering shear displacements in addition to axial displacements. The present study develops an accurate finite element analysis in accordance with the first-order shear deformation theory (FSDBT) in the framework of Eringen's nonlocal elasticity theory for vibration and buckling analysis of functionally graded nanobeams, where material distribution is imposed as a through-thickness power-law variation. The weak form of equations and the corresponding boundary conditions are deduced using Hamilton's principle. The finite element has five nodes and ten degrees of freedom. The validity of the element is verified by comparing with benchmark results available in the literature for buckling loads and natural frequencies of functionally graded beams and homogenous nanobeams with different nonlocal coefficients, boundary conditions, power-law indices, and span-to-depth ratios.

2. Formulation

2.1 Functionally graded materials

For an FGM beam (Fig. 1), the material properties vary continuously in the z direction, and are assumed to take the form

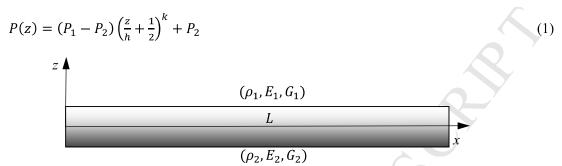


Fig.1 Geometry and coordinate system of a functionally graded beam.

where k is the non-negative power-law exponent, and P_1 and P_2 are the related material properties of the ceramic and metal constituents. The Young's modulus, E(z), shear modulus, G(z), and material density, $\rho(z)$, may be defined based on this distribution function as

$$E(z) = (E_1 - E_2) \left(\frac{\bar{z}}{h} + \frac{1}{2}\right)^k + E_2$$
 (2)

$$G(z) = (G_1 - G_2) \left(\frac{\bar{z}}{h} + \frac{1}{2}\right)^k + G_2$$
 (3)

$$\rho(z) = (\rho_1 - \rho_2) \left(\frac{\overline{z}}{h} + \frac{1}{2}\right)^k + \rho_2 \tag{4}$$

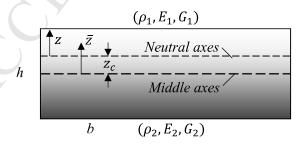


Fig.2 The position of the middle and neutral axis of FG beam.

In non-homogeneous beams, the variation of the elasticity modulus through the thickness is not symmetric with respect to the mid-plane. So, the neutral axis of the beam and the mid-plane do

not coincide with each other. Thus, the position of the neutral axis has to be found and z axis defined from the neutral axis (Fig. 2). The position of the neutral axis (z_c) can be calculated by [45-47]:

$$z_c = \frac{\int_A E(\bar{z})\bar{z}dA}{\int_A E(\bar{z})dA} \tag{5}$$

Based on the position of the neutral axis, the effective Young's modulus E(z), the effective shear modulus G(z), and the effective material density $\rho(z)$, are defined as

$$E(z) = (E_1 - E_2) \left(\frac{z}{h} + \frac{1}{2}\right)^k + E_2 \tag{6}$$

$$G(z) = (G_1 - G_2) \left(\frac{z}{h} + \frac{1}{2}\right)^k + G_2 \tag{7}$$

$$\rho(z) = (\rho_1 - \rho_2) \left(\frac{z}{h} + \frac{1}{2}\right)^k + \rho_2 \tag{8}$$

2.2 Nonlocal elasticity theory

Based on the nonlocal elasticity theory [5], the elastic strain field ε^{el} is the solution of a Fredholm integral equation. Hence, the stress σ is obtained by a convolution between the local feedback to the elastic strain and a scalar kernel dependent on a positive nonlocal parameter μ . The stress at a point \mathbf{x} in an elastic body, not only depends on the strain at that specific point, but also on the strain at all points in the continuum body. Hence, the nonlocal stress tensor is given by

$$\boldsymbol{\sigma} = \int_{V} \alpha_{\mu}(\boldsymbol{x} - \boldsymbol{x}') \cdot \boldsymbol{C}(\boldsymbol{x}') \cdot \boldsymbol{\varepsilon}^{el}(\boldsymbol{x}') dV$$
(9)

where α_{μ} is the principal attenuation kernel function that determines the constitutive equations for the nonlocal effects at the reference point x produced by the local strain at the source x'. e_0a denotes the nonlocal parameter that incorporates the nonlocal elastic stress field, where e_0 is a constant appropriate to each material and a is an internal characteristic length, c is the fourth-order elasticity tensor, c is the strain tensor and ":" denotes double-dot product of tensors.

Since the $\boldsymbol{\varepsilon}^{el}$ is the elastic strain, the model in Eq. (9), expresses the strain-driven nonlocal integral law [48, 49]. Consequently, the flexural nonlocal elastic law is shown based on an elastic curvature field $\phi^{el} \in \mathcal{H}$, which is square integrable on [a, b], and having the local elastic flexural stiffness $K \in \mathcal{H}$.

$$M(x) = \int_{a}^{b} \alpha_{\mu}(x - x') \cdot K(x') \cdot \phi^{el}(x') dx'$$
 (10)

In the stress-driven model, proposed by Romano and Barretta [14], the roles of bending interaction and curvature fields are interchanged in comparison with the strain-driven model (Eq. (9)) and the following relation is obtained

$$\phi^{el}(x) = \int_{a}^{b} \alpha_{\mu}(x - x') . K(x') . M(x') dx'$$
(11)

Thus, the formulation of the stress-driven model is achieved by interchanging the roles of stress and strain fields with respect to the strain-driven model [14], giving

$$\boldsymbol{\varepsilon}^{el} = \int_{V} \alpha_{\mu}(\boldsymbol{x} - \boldsymbol{x}') \cdot \boldsymbol{C}(\boldsymbol{x}') \cdot \boldsymbol{\sigma}(\boldsymbol{x}') dV$$
 (12)

It is worth highlighting that these two laws (strain-driven and stress-driven) do not conflict with each other and result in different structural models.

In this paper, the differential law obtained from Eringen's strain-driven nonlocal integral convolution in Eq. (9), equipped with the bi-exponential averaging kernel, is employed

$$(1 - (e_0 a)^2 \nabla^2) \boldsymbol{\sigma} = \boldsymbol{C} : \boldsymbol{\varepsilon} \tag{13}$$

where $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ is the Laplacian operator.

For a beam type structure, by considering the nonlocal behavior in the thickness direction, the softening effect will depend on the span to depth ratio, in addition to the nonlocal parameter [50]. In this paper, the nonlocal effect in the thickness direction is ignored, and so the softening behavior is only dependent on the nonlocal parameter. Then, the nonlocal constitutive relation will take the form:

$$\sigma_{xx} - (e_0 a)^2 \frac{\partial^2 \sigma_{xx}}{\partial x^2} = E(z) \varepsilon_{xx} \tag{14}$$

$$\sigma_{xz} - (e_0 a)^2 \frac{\partial^2 \sigma_{xz}}{\partial x^2} = G(z) \gamma_{xz} \tag{15}$$

where σ_{xx} is the axial normal stress, σ_{xz} is the shear stress, ε_{xx} is the axial strain and γ_{xz} is the shear strain, E(z) denotes the elasticity modulus and G(z) denotes the shear modulus of the FGBs. Also, by letting $e_0a = 0$, constitutive relation for the classical (local) theory is derived.

2.3 Timoshenko beam theory based on nonlocal elasticity

The displacement field of a Timoshenko beam is given by

$$u_x(x,z,t) = u(x,t) - z\phi(x,t) \tag{16}$$

$$u_{\nu}(x,z,t) = 0, \tag{17}$$

$$u_z(x, z, t) = w(x, t) \tag{18}$$

where u and w denote the displacement components of the mid-surface in the x and z directions, respectively, and ϕ denotes the slope. Therefore, the Timoshenko strains are given by

$$\varepsilon_{xx} = \frac{\partial u_x}{\partial x} = \frac{\partial u}{\partial x} - z \frac{\partial \phi}{\partial x} \tag{19}$$

$$\gamma_{xz} = \frac{1}{2} \left(\frac{\partial w}{\partial x} - \phi \right) \tag{20}$$

$$\varepsilon_{yy} = \varepsilon_{zz} = \gamma_{xy} = \gamma_{yz} = 0. \tag{21}$$

Hamilton's principle is used in order to derive equation of motion, where

$$\delta \int_{t_1}^{t_2} [T - (U - V)] dt = 0 \tag{22}$$

Here U, V and T denote the strain energy, the potential energy of the external forces and the kinetic energy, respectively. The strain energy is defined as

$$\delta U = \int_{V} \sigma_{ij} \, \delta \epsilon_{ij} dV = \int_{V} (\sigma_{xx} \, \delta \epsilon_{xx} + \sigma_{xz} \delta \gamma_{xz}) dV \tag{23}$$

Stress resultants are given as

$$N_{xx} = b \int_{-h/2}^{h/2} \sigma_{xx}(z) dz, \quad M_{xx} = b \int_{-h/2}^{h/2} z \sigma_{xx}(z) dz, \quad Q_{xz} = b \int_{-h/2}^{h/2} k_s \sigma_{xz}(z) dz$$
 (24)

where k_s is the shear correction factor.

In terms of the stress resultants, the variation of the strain energy is

$$\delta U = \int_0^L \left(N_{xx} \frac{\partial \delta u}{\partial x} - M_{xx} \frac{\partial \delta \phi}{\partial x} + Q_{xz} \frac{\partial \delta w}{\partial x} - Q_{xz} \delta \phi \right) dx \tag{25}$$

The variation of the kinetic energy is

$$\delta T = \int_0^L \rho(z) A \frac{\partial u_x}{\partial t} \delta\left(\frac{\partial u_x}{\partial t}\right) dx + \int_0^L \rho(z) A \frac{\partial u_z}{\partial t} \delta\left(\frac{\partial u_z}{\partial t}\right) dx$$

$$= \int_{0}^{L} \left(m_{0} \frac{\partial u}{\partial t} - m_{1} \frac{\partial \phi}{\partial t} \right) \delta \left(\frac{\partial u}{\partial t} \right) dx + \int_{0}^{L} \left(m_{2} \frac{\partial \phi}{\partial t} - m_{1} \frac{\partial u}{\partial t} \right) \delta \left(\frac{\partial \phi}{\partial t} \right) dx + \int_{0}^{L} \left(m_{0} \frac{\partial w}{\partial t} \right) \delta \left(\frac{\partial w}{\partial t} \right) dx \quad (26)$$

where the mass moments of inertia are defined as

$${m_0 \atop m_1 \atop m_2} = b \int_{-h/2}^{h/2} {1 \atop z \atop z^2} \rho(z) dz$$
(27)

The variation of the externally applied forces is defined as

$$\delta V = \iiint_{V} \left(f \delta u + q \delta w + P \frac{\partial w}{\partial x} \frac{\partial \delta w}{\partial x} \right) dV \tag{28}$$

where f, q and P denote the axial distributed forces, the transverse distributed forces and the axial concentrated force, respectively.

By substituting Eqs. (25), (26) and (28) into Eq. (22), performing integration by parts, and collecting coefficients of δu , $\delta \phi$ and δw , the equations of motion for a Timoshenko beam are obtained as

$$\delta u: \frac{\partial N_{xx}}{\partial x} - m_0 \frac{\partial^2 u}{\partial t^2} + m_1 \frac{\partial^2 \phi}{\partial t^2} + f = 0$$
 (29)

$$\delta\phi: Q_{xz} - \frac{\partial M_{xx}}{\partial x} - m_2 \frac{\partial^2 \phi}{\partial t^2} + m_1 \frac{\partial^2 u}{\partial t^2} = 0$$
(30)

$$\delta w: \frac{\partial Q_{xz}}{\partial x} - m_0 \frac{\partial^2 w}{\partial t^2} + q - P \frac{\partial^2 w}{\partial x^2} = 0$$
(31)

Furthermore, the mathematical process just derived provides the corresponding boundary conditions at x = 0 and x = L as

$$\delta u \Rightarrow \text{ either } N_{xx} = 0 \text{ or } u = 0$$
 (32)

$$\delta \phi \Rightarrow \text{either } M_{\chi\chi} = 0 \text{ or } \phi = 0$$
 (33)

$$\delta w \Rightarrow \text{either } Q_{xz} - P \frac{\partial w}{\partial x} = 0 \text{ or } w = 0$$
 (34)

Substituting Eqs. (19) and (20) into Eqs. (14) and (15), and using (24), one the obtains stress resultants

$$N_{xx} = (ea_0)^2 \frac{\partial^2 N_{xx}}{\partial x^2} + (A_{xx} \frac{\partial u}{\partial x} - B_{xx} \frac{\partial \phi}{\partial x}), \tag{35}$$

$$Q_{xz} = (ea_0)^2 \frac{\partial^2 Q_{xz}}{\partial x^2} + k_s A_{xz} (\frac{\partial w}{\partial x} - \phi), \tag{36}$$

$$M_{xx} = (ea_0)^2 \frac{\partial^2 M_{xx}}{\partial x^2} + \left(B_{xx} \frac{\partial u}{\partial x} - D_{xx} \frac{\partial \phi}{\partial x} \right). \tag{37}$$

Here the extensional coefficient A_{xx} , the extensional-bending coefficient B_{xx} , the bending coefficient D_{xx} and the shear coefficient A_{xz} are defined as

$$\begin{cases}
A_{xx} \\
B_{xx} \\
D_{xx}
\end{cases} = b \int_{-h/2}^{h/2} \begin{cases} 1 \\ z \\ z^2 \end{cases} E(z) dz \tag{38}$$

$$A_{xz} = b \int_{-h/2}^{h/2} k_s G(z) dz \tag{39}$$

In view of Eqs. (29)-(31), Eqs. (35)-(37) may be written in displacement form as

$$N_{xx} = (ea_0)^2 \left(m_0 \frac{\partial^3 u}{\partial x \partial t^2} - m_1 \frac{\partial^3 \phi}{\partial x \partial t^2} - \frac{\partial f}{\partial x}\right) + \left(A_{xx} \frac{\partial u}{\partial x} - B_{xx} \frac{\partial \phi}{\partial x}\right),\tag{40}$$

$$Q_{xz} = (ea_0)^2 \left(m_0 \frac{\partial^3 w}{\partial x \partial t^2} - \frac{\partial q}{\partial x} + P \frac{\partial^3 w}{\partial x^3}\right) + k_s A_{xz} \left(\frac{\partial w}{\partial x} - \phi\right),\tag{41}$$

$$M_{xx} = (ea_0)^2 \left(m_0 \frac{\partial^2 w}{\partial t^2} - m_2 \frac{\partial^3 \phi}{\partial x \partial t^2} + m_1 \frac{\partial^3 u}{\partial x \partial t^2} + \frac{\partial f}{\partial x} + P \frac{\partial^2 w}{\partial x^2} - q\right) + \left(B_{xx} \frac{\partial u}{\partial x} - D_{xx} \frac{\partial \phi}{\partial x}\right). \tag{42}$$

By substituting Eqs. (40)-(42) into Eqs. (29)-(31) the governing equations of motion with respect to the displacements for a Timoshenko beam is derived as

$$\left(A_{xx}\frac{\partial^2 u}{\partial x^2} - B_{xx}\frac{\partial^2 \phi}{\partial x^2}\right) = \left(1 - (ea_0)^2 \frac{\partial^2}{\partial x^2}\right) \left(m_0 \frac{\partial^2 u}{\partial t^2} - m_1 \frac{\partial^2 \phi}{\partial t^2} - f\right),\tag{43}$$

$$\left(k_s A_{xz} \frac{\partial w}{\partial x} - k_s A_{xz} \phi - B_{xx} \frac{\partial^2 u}{\partial x^2} + D_{xx} \frac{\partial^2 \phi}{\partial x^2}\right)$$

$$= (ea_0)^2 \left(m_1 \frac{\partial^4 u}{\partial x^2 \partial t^2} - m_2 \frac{\partial^4 \phi}{\partial x^2 \partial t^2} \right) + m_2 \frac{\partial^2 \phi}{\partial t^2} - m_1 \frac{\partial^2 u}{\partial t^2}. \tag{44}$$

$$k_s A_{xz} \left(\frac{\partial^2 w}{\partial x^2} - \frac{\partial \phi}{\partial x} \right) = (1 - (ea_0)^2 \frac{\partial^2}{\partial x^2}) (m_0 \frac{\partial^2 w}{\partial t^2} - q + P \frac{\partial^2 w}{\partial x^2}), \tag{45}$$

Multiplying Eqs. (43)-(45) by δu , $\delta \phi$ and δw respectively, and integrating over the beam length, the weak form is derived as

$$\int_{0}^{L} \left[\left(A_{xx} \frac{\partial u}{\partial x} \frac{\partial \delta u}{\partial x} - B_{xx} \frac{\partial \phi}{\partial x} \frac{\partial \delta u}{\partial x} \right) - \left(1 - (ea_{0})^{2} \frac{\partial^{2}}{\partial x^{2}} \right) \left(m_{0} \frac{\partial^{2} u}{\partial t^{2}} \delta u - m_{1} \frac{\partial^{2} \phi}{\partial t^{2}} \delta u + f \delta u \right) + \left(-k_{s} A_{xz} \frac{\partial w}{\partial x} \delta \phi + k_{s} A_{xz} \phi \delta \phi - B_{xx} \frac{\partial u}{\partial x} \frac{\partial \delta \phi}{\partial x} + D_{xx} \frac{\partial \phi}{\partial x} \frac{\partial \delta \phi}{\partial x} \right) + \left(1 - (ea_{0})^{2} \frac{\partial^{2}}{\partial x^{2}} \right) \left(-m_{1} \frac{\partial^{2} u}{\partial t^{2}} \delta \phi + m_{2} \frac{\partial^{2} \phi}{\partial t^{2}} \delta \phi \right) + k_{s} A_{xz} \left(-\phi \frac{\partial \delta w}{\partial x} + \frac{\partial w}{\partial x} \frac{\partial \delta w}{\partial x} \right) + \left(1 - (ea_{0})^{2} \frac{\partial^{2}}{\partial x^{2}} \right) \left(m_{0} \frac{\partial^{2} w}{\partial t^{2}} \delta w + q \delta w + P \frac{\partial w}{\partial x} \frac{\partial \delta w}{\partial x} \right) \right] dx = 0.$$
(46)

In Eq. (46), by ignoring the time dependent terms, the weak form related to buckling is derived.

2.4 Finite element formulation

In Fig. 3 a five-node beam element, with four equally spaced nodes and one node at the middle is shown. This finite beam element has ten degrees-of freedom containing three axial, three rotational and four transverse displacements that are measured at the neutral axis. Accordingly, the nodal displacement vector is given by

$$\mathbf{q} = \{u_1 \ u_2 \ u_3 \ w_1 \ w_2 \ w_3 \ w_4 \ \phi_1 \ \phi_2 \ \phi_3\}^T \tag{47}$$

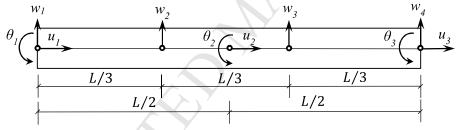


Fig. 3 Beam element with ten degrees of freedom.

The domain of the Timoshenko beam is discretized into a set of elements. The weak form is applied to each of the discrete elements of length l_e with domain $\nabla^e = (x_e, x_{e+1})$. Assuming that the solutions are given by $u(x,t) = \sum_{i=1}^3 \varphi_i(x) e^{i\omega t}$, $w(x,t) = \sum_{i=1}^4 \psi_i(x) e^{i\omega t}$, $\phi(x,t) = \sum_{i=1}^3 \theta_i(x) e^{i\omega t}$ with no axial or transverse distributed forces, one obtains the general form of Eq. (46) for all nodes of a single element, as

$$\int_{0}^{L} \left[\left(A_{xx} \frac{\partial \varphi}{\partial x} \frac{\partial \delta \varphi}{\partial x} - B_{xx} \frac{\partial \theta}{\partial x} \frac{\partial \delta \varphi}{\partial x} \right) + \left(1 - (ea_{0})^{2} \frac{\partial^{2}}{\partial x^{2}} \right) \left(m_{0} \omega^{2} \varphi \delta \varphi - m_{1} \omega^{2} \theta \delta \varphi \right) + \left(-k_{s} A_{xz} \frac{\partial \psi}{\partial x} \delta \theta + k_{s} A_{xz} \theta \delta \theta - B_{xx} \frac{\partial \varphi}{\partial x} \frac{\partial \delta \theta}{\partial x} + D_{xx} \frac{\partial \theta}{\partial x} \frac{\partial \delta \theta}{\partial x} \right) + \left(1 - (ea_{0})^{2} \frac{\partial^{2}}{\partial x^{2}} \right) \left(-m_{1} \omega^{2} \varphi \delta \theta + m_{2} \omega^{2} \theta \delta \theta \right) + k_{s} A_{xz} \left(-\theta \frac{\partial \delta \psi}{\partial x} + \frac{\partial \psi}{\partial x} \frac{\partial \delta \psi}{\partial x} \right) + \left(1 - (ea_{0})^{2} \frac{\partial^{2}}{\partial x^{2}} \right) \left(m_{0} \omega^{2} \psi \delta \psi + P \frac{\partial \psi}{\partial x} \frac{\partial \delta \psi}{\partial x} \right) \right] dx = 0.$$
(48)

where $\varphi_i(x)$, $\psi_i(x)$ and $\theta_i(x)$ denote the shape functions. The axial displacement of a point which is not on the neutral axis is a linear function of both u and ϕ , and so the degrees of the polynomials for $\varphi_i(x)$ and $\theta_i(x)$ must have equal order. Furthermore, because the shear strain is a linear function of both the rotation ϕ and the slope of displacement, $\partial w/\partial x$, the degree of the polynomial for $\psi_i(x)$ has to be one order higher than $\varphi_i(x)$ and $\theta_i(x)$ in order to satisfy compatibility. One cubic polynomial for $\psi_i(x)$ and quadratic polynomials for $\varphi_i(x)$ and $\theta_i(x)$, which are derived by the Lagrange interpolation formula, are chosen for consistency [29,51] and given by

$$[\varphi_{1}, \theta_{1}] = (1 - \zeta)(1 - 2\zeta), \quad [\varphi_{2}, \theta_{2}] = 4\zeta(1 - \zeta), \quad [\varphi_{3}, \theta_{3}] = -\zeta(1 - 2\zeta),$$

$$\psi_{1} = (1 - \zeta)\left(1 - \frac{3}{2}\zeta\right)(1 - 3\zeta), \quad \psi_{2} = 9\zeta(1 - \zeta)\left(1 - \frac{3}{2}\zeta\right), \quad \psi_{3} = \frac{-9}{2}\zeta(1 - \zeta)(1 - 3\zeta),$$

$$\psi_{4} = \zeta(1 - 3\zeta)\left(1 - \frac{3}{2}\zeta\right). \tag{49}$$

Equation of motion for a beam is given as

$$\overline{M}\ddot{U} + (\overline{K} - P\overline{K}_n)U = 0 \tag{50}$$

where the \overline{K} , \overline{M} and \overline{K}_p are the global stiffness, mass and geometric stiffness matrices, respectively. U is the displacement vector. For free vibration examinations, the following eigenvalue relation is deduced from Eq. 50

$$(\overline{K} - \omega^2 \overline{M})U = 0 \tag{51}$$

Also, for buckling analysis, by neglecting time dependent terms in Eq. 50, the following is achieved

$$(\overline{K} - P_{cr}\overline{K}_p)U = 0 (52)$$

The abovementioned global matrices, are deduced by employing the elemental matrices which are given below in a standard assembly procedure.

$$[\overline{\mathbf{K}}^{ij}] = \begin{bmatrix} k^{11} & 0 & k^{13} \\ 0 & k^{22} & k^{23} \\ k^{31} & k^{32} & k^{33} \end{bmatrix}, [\overline{\mathbf{K}}_{P}^{ij}] = \begin{bmatrix} 0 & 0 & 0 \\ 0 & k_{p}^{22} & 0 \\ 0 & 0 & 0 \end{bmatrix}, [\overline{\mathbf{M}}^{ij}] = \begin{bmatrix} m^{11} & 0 & m^{13} \\ 0 & m^{22} & 0 \\ m^{31} & 0 & m^{33} \end{bmatrix}$$
 (53)

where

$$k^{11} = A_{xx}k_{aa1}, k^{13} = -B_{xx}k_{aa1}, k^{23} = -A_{xz}k_{bc1}, k^{33} = k_sA_{xz}k_{aa} + D_{xx}k_{aa1},$$

$$k^{22} = k_sA_{xz}k_{bb1}, m^{11} = m_0\omega^2k_{aa} + (ea_0)^2m_0\omega^2k_{aa1}, m^{13} = -m_1\omega^2k_{aa}(ea_0)^2m_1\omega^2k_{aa1},$$

$$m^{33} = m_2\omega^2k_{aa} + (ea_0)^2m_2\omega^2k_{aa1}, m^{22} = m_0\omega^2k_{bb} + (ea_0)^2m_0\omega^2k_{bb1},$$

$$k_p^{22} = k_{bb1} + (ea_0)^2k_{bb2}.$$
(54)

These matrices are explicitly defined in Appendix A.

3. Numerical results

3.1 Validation

This section is composed of two parts. Section 3.1.1 provides validation for vibration and buckling of a functionally graded Timoshenko beam and Section 3.1.2 presents a validation study for the nonlocal elasticity formulation of the present model.

3.1.1 Free vibration and buckling of a functionally graded Timoshenko beam

A convergence study is performed first for the proposed finite element. Unless otherwise stated, a functionally graded beam composed of aluminum (Al) as the metal and alumina (Al_2O_3) as the ceramic is considered, in which $E_m = 70$ GPa, $\rho_m = 2702$ kg/m³, $v_m = 0.3$, $E_c = 380$ GPa, $\rho_c = 3960$ kg/m³ and $v_c = 0.3$ [52]. For the buckling studies, in order to have a comparison with Li & Batra [53], $v_m = v_c = 0.23$ is employed. It should be mentioned that all of the references used for comparison in this section have assumed the coincidence of the cross-sectional geometric and elastic centres. Tables 1 and 2 give the nondimensional natural frequencies and critical buckling loads respectively, for functionally graded beams with various boundary conditions for L/h = 5 and k = 1. The rapid convergence of the proposed element can be seen in Tables 1 and 2. Furthermore, the results of the present element are in a good agreement with the analytical and numerical values reported by [52], [53] and [30].

Table 1. Nondimensional frequency $\widehat{\omega} = \omega L^2 / h \sqrt{\rho_m / E_m}$.

М	Mode Pinned-pinned												
					Numb	er of eleme	ents						
	2	6	10	14	18	22	25	26	Simsek [52]	Kahya & Turan [30]			
1	3.9850	3.9710	3.9708	3.9708	3.9708	3.9708	3.9708	3.9708	3.9902	3.9708			
2	12.1786	12.0971	12.0963	12.0962	12.0962	12.0962	12.0962	12.0962	-0	y <u>-</u>			
3	15.5291	14.4210	14.4140	14.4132	14.413	14.4129	14.4129	14.4129	-	_			
	Fixed-fixed												
	Number of elements												
	2	6	10	14	18	22	25	26	Simsek [52]	Kahya & Turan [30]			
1	7.9927	7.9012	7.8999	7.8998	7.8997	7.8997	7.8997	7.8997	7.9252	7.8992			
2	21.0862	18.3211	18.3044	18.3025	18.3021	18.3020	18.3019	18.3019	-	-			
3	25.4111	25.2976	25.2963	25.2962	25.2962	25.2962	25.2962	25.2962	-	-			
					I	Fixed-free							
					Numb	er of eleme	ents						
	2	6	10	14	18	22	25	26	Simsek [52]	Kahya & Turan [30]			
1	1.4634	1.4628	1.4627	1.4627	1.4627	1.4627	1.4627	1.4627	1.4630	1.4627			
2	8.0267	7.9731	7.9718	7.9717	7.9717	7.9717	7.9717	7.9717	-	-			
3	12.711	12.7061	12.7060	12.7060	12.7060	12.7060	12.7060	12.7060	-	-			

Table 2. Nondimensional buckling load $\hat{P} = P \times 12L^2/E_m h^3$.

	Pinned-pinned												
	Number of elements												
Mode	2	6	10	14	18	22	30	38	42	43	Li & Batra [53]	Kahya & Turan [30]	
1	24.8586	24.6894	24.6874	24.6871	24.6871	24.6871	24.6871	24.6871	24.6871	24.6871	24.687	24.6871	
2	92.9300	80.5933	80.5103	80.5008	80.4987	80.4981	80.4977	80.4976	80.4975	80.4975	-	-	
3	168.5654	139.0647	138.5501	138.4888	138.4747	138.4702	138.4676	138.4670	138.4668	138.4668	-	-	
	Fixed-fixed												
		1			Nu	mber of ele	ements				1	,	
Mode	2	6	10	14	18	22	30	38	42	43	Li & Batra [53]	Kahya & Turan [30]	
1	81.2963	80.5934	80.5104	80.5009	80.4987	80.4981	80.4977	80.4976	80.4975	80.4975	80.498	80.4983	
2	156.8757	126.4330	126.0977	126.0571	126.0478	126.0448	126.0430	126.0426	126.0425	126.0425	-	-	
3	295.4309	186.8627	185.3840	185.1968	185.1532	185.1390	185.1308	185.1287	185.1282	185.1282	-	-	
						Fixed-fre							
		1			Nu	mber of ele	ements		1		ı	,	
Mode	2	6	10	14	18	22	30	38	42	43	Li & Batra [53]	Kahya & Turan [30]	
1	6.5459	6.5426	6.5426	6.5426	6.5426	6.5426	6.5426	6.5426	6.5426	6.5426	6.6002	6.5426	
2	52.1717	50.7734	50.7544	50.7522	50.7517	50.7516	50.7515	50.7515	50.7515	50.7515	-	-	
3	127.2740	110.7389	110.5024	110.4749	110.4686	110.4666	110.4655	110.4652	110.4652	110.4652	-	-	

Another comparison is made for the nondimensional fundamental frequencies and critical buckling loads of FGBs with various boundary conditions for L/h = 5 in Tables 3 and 4, respectively. The results of the present model are compared to the results for different higher-order beam theories such as parabolic shear deformation theory (PSDBT) [52], higher-order shear deformation theory (HSDBT) [54], Reddy-Bickford beam theory (RBT) [55], a quasi-3D theory [56] and first order shear deformation theory (FSDBT) [15]. Note that the results obtained by Simsek [52] and Nguyen [54] are based on analytical solutions, while the rest of the investigations are performed by the finite element method (Vo et al. [55], Vo et al. [56] and Kahya & Turan [30]). According to these tables, the proposed finite element model is in a good agreement with the two analytical and three finite element references. These two tables complete the validation study for vibration and buckling response of a local functionally graded beam.

Table 3. Comparison of the nondimensional fundamental frequencies $\hat{\omega} = \omega L^2 / h \sqrt{\rho_m / E_m}$ of functionally graded beams with various boundary conditions and power-law exponents (L/h = 5).

			Pin-pin									
	PSDBT	HSDBT	RBT	Quasi-3D	FSDBT	FSDBT						
k	Simsek	Nguyen et al.	Vo et al.	Vo et al.	Kahya &Turan	Present						
	[52]	[54]	[55]	[56]	[30]	Present						
0	5.15274	5.1528	5.1528	5.1618	5.22193	5.1525						
0.5	4.41108	4.4102	4.4019	4.4240	4.46926	4.2312						
1	3.99042	3.9904	3.9716	4.0079	4.04967	3.9708						
2	3.62643	3.6264	3.5979	3.6442	3.69360	3.7051						
5	3.40120	3.4009	3.3743	3.4133	3.48818	3.3605						
10	3.28160	3.2815	3.2653	3.2903	3.36434	3.1307						
∞	2.67732	-	-	-	2.71328	2.6771						
	Fixed-fixed											
	PSDBT	HSDBT	RBT	Quasi-3D	FSDBT	CODDI						
k	Simsek	Nguyen et al.	Vo et al.	Vo et al.	Kahya &Turan	FSDBT						
	[52]	[54]	[55]	[56]	[30]	Present						
0	10.0705	10.0726	10.0678	10.1851	10.08647	9.9975						
0.5	8.7467	8.7463	8.7457	8.8641	8.75479	8.4251						
1	7.9503	7.9518	7.9522	8.0770	7.98414	7.8998						
2	7.1767	7.1776	7.1801	7.3039	7.27155	7.3228						
5	6.49349	6.4929	6.4961	6.5960	6.71481	6.5579						
10	6.16515	6.1658	6.1662	6.2475	6.37413	6.0695						
∞	5.23254	-	-	/ -	5.24085	5.1946						
			Fixed-fre	e								
	PSDBT	HSDBT	RBT	Quasi-3D	FSDBT	FSDBT						
k	Simsek	Nguyen et al.	Vo et al.	Vo et al.	Kahya &Turan	Present						
	[52]	[54]	[55]	[56]	[30]	Present						
0	1.89523	1.8957	1.8952	1.9055	1.90772	1.8944						
0.5	1.61817	1.6182	1.6180	1.6313	1.62865	1.5547						
1	1.46328	1.4636	1.4633	1.4804	1.47394	1.4627						
2	1.33254	1.3328	1.3326	1.3524	1.34469	1.3674						
5	1.25916	1.2594	1.2592	1.2763	1.27515	1.2401						
10	1.21834	1.2187	1.2184	1.2308	1.26363	1.1540						
∞	0.98474	· -	_	-	0.99124	0.9843						

Table 4. Comparison of the nondimensional critical buckling loads $\hat{P} = P \times 12L^2/E_mh^3$ of functionally graded beams with various boundary conditions and power-law exponents (L/h = 5).

k HSDBT S4 RBT Vo et al. [55] Quasi-3D [56] FSDBT Kahya &Turan [30] FSDBT Present 0 48.8406 48.8401 49.5901 48.5907 48.352 0.5 32.0013 32.094 32.5867 31.8238 29.6502 1 24.6894 24.6911 25.2116 24.5815 24.6871 2 19.1577 19.1605 19.6124 19.1617 20.1763 5 15.7355 15.7400 16.0842 15.9417 15.4179 10 14.1448 14.1468 14.4116 14.3445 12.8853 ∞ - - - 8.95100 8.9959 Fixed-fixed HSDBT Nguyen et al. [55] [56] [56] [30] FSDBT Fresent 0 154.5610 154.5500 160.1070 151.9430 154.3511 0.5 103.7167 103.7490 107.6550 101.7439 97.0980 1 80.5940 80.6087 83.6958 79.3903 8				Pin-pin									
0.5 32.0013 32.0094 32.5867 31.8238 29.6502 1 24.6894 24.6911 25.2116 24.5815 24.6871 2 19.1577 19.1605 19.6124 19.1617 20.1763 5 15.7355 15.7400 16.0842 15.9417 15.4179 10 14.1448 14.1468 14.4116 14.3445 12.8853 ∞ - - - 8.95100 8.9959 Fixed-fixed HSDBT Nguyen et al. [54] Vo et al. [55] Yo et al. [56] FSDBT Kahya &Turan Present 0 154.5610 154.5500 160.1070 151.9430 154.3511 0.5 103.7167 103.7490 107.6550 101.7439 97.0980 1 80.5940 80.6087 83.6958 79.3903 80.4975 2 61.7666 61.7925 64.1227 61.7449 65.0569 5 47.7174 47.7562 49.3856 49.5828 48.8738	k	Nguyen et al.	Vo et al.	Vo et al.	Kahya &Turan								
1 24.6894 24.6911 25.2116 24.5815 24.6871 2 19.1577 19.1605 19.6124 19.1617 20.1763 5 15.7355 15.7400 16.0842 15.9417 15.4179 10 14.1448 14.1468 14.4116 14.3445 12.8853 ∞ - - - 8.95100 8.9959 Fixed-fixed Fixed-fixed </td <td>0</td> <td>48.8406</td> <td>48.8401</td> <td>49.5901</td> <td>48.5907</td> <td>48.8352</td>	0	48.8406	48.8401	49.5901	48.5907	48.8352							
2 19.1577 19.1605 19.6124 19.1617 20.1763 5 15.7355 15.7400 16.0842 15.9417 15.4179 10 14.1448 14.1468 14.4116 14.3445 12.8853 ∞ - - - 8.95100 8.9959 Fixed-fixed Fixed-fixed Fixed-fixed Fixed-fixed Fixed-fixed Fixed-fixed FSDBT Kahya & Turan [30] FSDBT Present 0 154.5610 154.5500 160.1070 151.9430 154.3511 0.5 103.7167 103.7490 107.6550 101.7439 97.0980 1 80.5940 80.6087 83.6958 79.3903 80.4975 2 61.7666 61.7925 64.1227 61.7449 65.0569 5 47.7174 47.7562 49.3856 49.5828 48.8738 10 41.7885 41.8042 43.1579 43.	0.5	32.0013	32.0094	32.5867	31.8238	29.6502							
5 15.7355 15.7400 16.0842 15.9417 15.4179 10 14.1448 14.1468 14.4116 14.3445 12.8853 ∞ - - - 8.95100 8.9959 Fixed-fixed FSDBT Kahya &Turan Foresent 1 80.5940 80.6087 83.6958 79.3903 80.4975 2 61.7666 61.7925 64.1227 61.7449 65.0569 5 47.7174 47.7562 49.3856 49.5828 48.8738 10 41.7885 41.8042 43.1579 43.5014 40.5455 ∞ - - - 27.9896 28.4331 FSDBT Kahya &Turan FSDBT Kahya &Turan FSDBT Kahya &Turan Foresent	1	24.6894	24.6911	25.2116	24.5815	24.6871							
10 14.1448 14.1468 14.4116 14.3445 12.8853 ∞ - - - 8.95100 8.9959 Fixed-fixed Fixed-fixed Fixed-fixed Fixed-fixed Fixed-fixed Fixed-fixed Fixed-fixed FSDBT Kahya & Turan [30] FSDBT Present 0 154.5610 154.5500 160.1070 151.9430 154.3511 0.5 103.7167 103.7490 107.6550 101.7439 97.0980 1 80.5940 80.6087 83.6958 79.3903 80.4975 2 61.7666 61.7925 64.1227 61.7449 65.0569 5 47.7174 47.7562 49.3856 49.5828 48.8738 10 41.7885 41.8042 43.1579 43.5014 40.5455 ∞ - - - 27.9896 28.4331 FSDBT Kahya & Turan [54] P	2	19.1577	19.1605	19.6124	19.1617	20.1763							
∞ - - - 8.95100 8.9959 Fixed-fixed Fixed-fixed Fixed-fixed k HSDBT Nguyen et al. [55] RBT Vo et al. [56] Quasi-3D Kahya &Turan [30] FSDBT Present Present 0 154.5610 154.5500 160.1070 151.9430 154.3511 0.5 103.7167 103.7490 107.6550 101.7439 97.0980 1 80.5940 80.6087 83.6958 79.3903 80.4975 2 61.7666 61.7925 64.1227 61.7449 65.0569 5 47.7174 47.7562 49.3856 49.5828 48.8738 10 41.7885 41.8042 43.1579 43.5014 40.5455 ∞ - - - 27.9896 28.4331 Fixed-free Fixed-free FSDBT Kahya &Turan FSDBT Kahya &Turan [30] 154] [55] [56] [30] FSDBT FSDBT Kahya &Turan [30] 1	5		15.7400	16.0842	15.9417	15.4179							
k HSDBT [54] RBT [55] Quasi-3D [56] FSDBT [30] FSDBT Present 0 154.5610 154.5500 160.1070 151.9430 154.3511 0.5 103.7167 103.7490 107.6550 101.7439 97.0980 1 80.5940 80.6087 83.6958 79.3903 80.4975 2 61.7666 61.7925 64.1227 61.7449 65.0569 5 47.7174 47.7562 49.3856 49.5828 48.8738 10 41.7885 41.8042 43.1579 43.5014 40.5455 ∞ - - - 27.9896 28.4331 Fixed-free Fixed-free FSDBT Kahya &Turan [30] Present Present [30] 0 13.0771 13.0771 13.0993 13.0594 13.0769 0.5 8.5000 8.5020 8.5469 8.4899 7.8469 1 6.5427 6.5428 6.6067 6.5352 6.5426 <tr< td=""><td>10</td><td></td><td></td><td></td><td></td><td></td></tr<>	10												
kHSDBT Nguyen et al. [54]RBT Vo et al. [55]Quasi-3D Vo et al. [56]FSDBT Kahya &Turan [30]FSDBT Present0154,5610154,5500160,1070151,9430154,35110.5103,7167103,7490107,6550101,743997,0980180,594080,608783,695879,390380,4975261,766661,792564,122761,744965,0569547,717447,756249,385649,582848,87381041,788541,804243,157943,501440,5455∞27,989628,4331Fixed-freekNguyen et al. [54][55]Quasi-3D [56]FSDBT Kahya &Turan [30]FSDBT Present013,077113,077113,099313,059413,07690.58,50008,50208,54698,48997,846916,54276,54286,60676,53526,542625,09775,09795,16805,09815,366754,27724,27764,32904,29264,1245103,88203,88213,91213,89703,4556	∞	-	1	-	8.95100	8.9959							
k Nguyen et al. [54] Vo et al. [55] Vo et al. [56] Kahya &Turan [30] FSDB1 Present 0 154.5610 154.5500 160.1070 151.9430 154.3511 0.5 103.7167 103.7490 107.6550 101.7439 97.0980 1 80.5940 80.6087 83.6958 79.3903 80.4975 2 61.7666 61.7925 64.1227 61.7449 65.0569 5 47.7174 47.7562 49.3856 49.5828 48.8738 10 41.7885 41.8042 43.1579 43.5014 40.5455 ∞ - - - 27.9896 28.4331 Fixed-free Fixed-free FSDBT Kahya &Turan [30] Nguyen et al. [54] [55] [56] [30] FSDBT Present 0 13.0771 13.0771 13.0993 13.0594 13.0769 0.5 8.5000 8.5020 8.5469 8.4899 7.8469 1 <td< td=""><td></td><td colspan="12">Fixed-fixed</td></td<>		Fixed-fixed											
0.5 103.7167 103.7490 107.6550 101.7439 97.0980 1 80.5940 80.6087 83.6958 79.3903 80.4975 2 61.7666 61.7925 64.1227 61.7449 65.0569 5 47.7174 47.7562 49.3856 49.5828 48.8738 10 41.7885 41.8042 43.1579 43.5014 40.5455 ∞ - - - 27.9896 28.4331 Fixed-free RBT Vo et al. [54] Vo et al. [56] [30] FSDBT Present 0 13.0771 13.0771 13.0993 13.0594 13.0769 0.5 8.5000 8.5020 8.5469 8.4899 7.8469 1 6.5427 6.5428 6.6067 6.5352 6.5426 2 5.0977 5.0979 5.1680 5.0981 5.3667 5 4.2772 4.2776 4.3290 4.2926 4.1245 10 3.8820 3.8	k	Nguyen et al.	Vo et al.	Vo et al.	Kahya &Turan								
1 80.5940 80.6087 83.6958 79.3903 80.4975 2 61.7666 61.7925 64.1227 61.7449 65.0569 5 47.7174 47.7562 49.3856 49.5828 48.8738 10 41.7885 41.8042 43.1579 43.5014 40.5455 ∞ - - - 27.9896 28.4331 Fixed-free RBT Vo et al. [54] Vo et al. [56] Kahya &Turan [30] FSDBT Present 0 13.0771 13.0771 13.0993 13.0594 13.0769 0.5 8.5000 8.5020 8.5469 8.4899 7.8469 1 6.5427 6.5428 6.6067 6.5352 6.5426 2 5.0977 5.0979 5.1680 5.0981 5.3667 5 4.2772 4.2776 4.3290 4.2926 4.1245 10 3.8820 3.8821 3.9121 3.8970 3.4556	0	154.5610	154.5500	160.1070	151.9430	154.3511							
2 61.7666 61.7925 64.1227 61.7449 65.0569 5 47.7174 47.7562 49.3856 49.5828 48.8738 10 41.7885 41.8042 43.1579 43.5014 40.5455 ∞ - - - 27.9896 28.4331 Fixed-free RBT Nguyen et al. [54] Vo et al. [56] Vo et al. [30] FSDBT Present 0 13.0771 13.0771 13.0993 13.0594 13.0769 0.5 8.5000 8.5020 8.5469 8.4899 7.8469 1 6.5427 6.5428 6.6067 6.5352 6.5426 2 5.0977 5.0979 5.1680 5.0981 5.3667 5 4.2772 4.2776 4.3290 4.2926 4.1245 10 3.8820 3.8821 3.9121 3.8970 3.4556	0.5	103.7167	103.7490	107.6550	101.7439	97.0980							
5 47.7174 47.7562 49.3856 49.5828 48.8738 10 41.7885 41.8042 43.1579 43.5014 40.5455 ∞ - - 27.9896 28.4331 Fixed-free RBT Nguyen et al. [54] Vo et al. [56] FSDBT Kahya &Turan [30] Present 0 13.0771 13.0771 13.0993 13.0594 13.0769 0.5 8.5000 8.5020 8.5469 8.4899 7.8469 1 6.5427 6.5428 6.6067 6.5352 6.5426 2 5.0977 5.0979 5.1680 5.0981 5.3667 5 4.2772 4.2776 4.3290 4.2926 4.1245 10 3.8820 3.8821 3.9121 3.8970 3.4556	1	80.5940	80.6087	83.6958	79.3903	80.4975							
10 41.7885 41.8042 43.1579 43.5014 40.5455 ∞ - - - 27.9896 28.4331 Fixed-free Fixed-free Fixed-free HSDBT Nguyen et al. [54] Vo et al. [56] FSDBT Kahya &Turan [30] Present 0 13.0771 13.0771 13.0993 13.0594 13.0769 0.5 8.5000 8.5020 8.5469 8.4899 7.8469 1 6.5427 6.5428 6.6067 6.5352 6.5426 2 5.0977 5.0979 5.1680 5.0981 5.3667 5 4.2772 4.2776 4.3290 4.2926 4.1245 10 3.8820 3.8821 3.9121 3.8970 3.4556	2	61.7666	61.7925	64.1227	61.7449	65.0569							
∞ - - - 27.9896 28.4331 Fixed-free k HSDBT Nguyen et al. [54] RBT Vo et al. [55] Quasi-3D Vo et al. [56] FSDBT Kahya &Turan [30] FSDBT Present 0 13.0771 13.0771 13.0993 13.0594 13.0769 0.5 8.5000 8.5020 8.5469 8.4899 7.8469 1 6.5427 6.5428 6.6067 6.5352 6.5426 2 5.0977 5.0979 5.1680 5.0981 5.3667 5 4.2772 4.2776 4.3290 4.2926 4.1245 10 3.8820 3.8821 3.9121 3.8970 3.4556	5	47.7174	47.7562	49.3856	49.5828	48.8738							
Fixed-free k HSDBT Nguyen et al. [54] RBT Vo et al. [55] Quasi-3D Vo et al. [56] FSDBT Kahya &Turan [30] FSDBT Present 0 13.0771 13.0771 13.0993 13.0594 13.0769 0.5 8.5000 8.5020 8.5469 8.4899 7.8469 1 6.5427 6.5428 6.6067 6.5352 6.5426 2 5.0977 5.0979 5.1680 5.0981 5.3667 5 4.2772 4.2776 4.3290 4.2926 4.1245 10 3.8820 3.8821 3.9121 3.8970 3.4556	10	41.7885	41.8042	43.1579	43.5014	40.5455							
k HSDBT Nguyen et al. [54] RBT Vo et al. [55] Quasi-3D Vo et al. [56] FSDBT Kahya &Turan [30] FSDBT Present 0 13.0771 13.0771 13.0993 13.0594 13.0769 0.5 8.5000 8.5020 8.5469 8.4899 7.8469 1 6.5427 6.5428 6.6067 6.5352 6.5426 2 5.0977 5.0979 5.1680 5.0981 5.3667 5 4.2772 4.2776 4.3290 4.2926 4.1245 10 3.8820 3.8821 3.9121 3.8970 3.4556	∞	-	-	-	27.9896	28.4331							
k Nguyen et al. [54] Vo et al. [55] Vo et al. [56] Kahya &Turan [30] FSDB1 Present 0 13.0771 13.0771 13.0993 13.0594 13.0769 0.5 8.5000 8.5020 8.5469 8.4899 7.8469 1 6.5427 6.5428 6.6067 6.5352 6.5426 2 5.0977 5.0979 5.1680 5.0981 5.3667 5 4.2772 4.2776 4.3290 4.2926 4.1245 10 3.8820 3.8821 3.9121 3.8970 3.4556				Fixed-free									
0.5 8.5000 8.5020 8.5469 8.4899 7.8469 1 6.5427 6.5428 6.6067 6.5352 6.5426 2 5.0977 5.0979 5.1680 5.0981 5.3667 5 4.2772 4.2776 4.3290 4.2926 4.1245 10 3.8820 3.8821 3.9121 3.8970 3.4556	k	Nguyen et al.	Vo et al.	Vo et al.	Kahya &Turan								
1 6.5427 6.5428 6.6067 6.5352 6.5426 2 5.0977 5.0979 5.1680 5.0981 5.3667 5 4.2772 4.2776 4.3290 4.2926 4.1245 10 3.8820 3.8821 3.9121 3.8970 3.4556	0	13.0771	13.0771	13.0993	13.0594	13.0769							
2 5.0977 5.0979 5.1680 5.0981 5.3667 5 4.2772 4.2776 4.3290 4.2926 4.1245 10 3.8820 3.8821 3.9121 3.8970 3.4556	0.5	8.5000	8.5020	8.5469	8.4899	7.8469							
5 4.2772 4.2776 4.3290 4.2926 4.1245 10 3.8820 3.8821 3.9121 3.8970 3.4556		6.5427	6.5428	6.6067	6.5352	6.5426							
10 3.8820 3.8821 3.9121 3.8970 3.4556		5.0977	5.0979	5.1680	5.0981	5.3667							
10 010000 010000	5	4.2772	4.2776	4.3290	4.2926	4.1245							
∞ - - 2.40570 2.4089	10	3.8820	3.8821	3.9121	3.8970	3.4556							
	∞		-	-	2.40570	2.4089							

3.1.2 Free vibration and buckling of a homogeneous nanobeam using nonlocal elasticity

In this section, the validation procedure continues by comparing the nondimensional fundamental natural frequencies and critical buckling loads of homogenous nonlocal beams with four nonlocal beam theories including the Euler-Bernoulli (EBT), the first order shear deformation theory (FSDBT), the Reddy beam theory (RBT) and the Levinson beam theory (LBT). The results from the proposed finite element model are compared to the analytical solutions of Reddy [57] in Tables 5 and 6 with different nonlocal parameters. The material properties are identical to those given by Reddy [57], that is L = 10m, $E = 30 \times 10^6$ Pa, $\nu =$

0.3, $\rho = 1 \, \text{kg/m}^3$. Although, the proposed beam element is based on a simpler beam theory compared to RBT and LBT, there are very accurate estimates for the fundamental natural frequencies and the critical buckling loads.

Table 5. Non-dimensional fundamental natural frequencies ($\widehat{\omega} = \frac{\omega L}{h} \sqrt{\rho/E}$) of simply supported beams.

L/h	$(ea_0)^2[m^2]$			Theory		
		EBT	FSDBT ^a	RBT	LBT	FSDBT ^a
		Reddy[57]	Reddy[57]	Reddy[57]	Reddy[57]	Present
	0	9.8696	9.8683	9.8683	9.8685	9.8679
	0.5	9.6347	9.6335	9.6335	9.6337	9.6331
	1.0	9.4159	9.4147	9.4147	9.4149	9.4143
	1.5	9.2113	9.2101	9.2101	9.2103	9.2097
	2.0	9.0195	9.0183	9.0183	9.0185	9.0180
100	2.5	8.8392	8.8380	8.8380	8.8382	8.8377
	3.0	8.6693	8.6682	8.6682	8.6683	8.6678
	3.5	8.5088	8.5077	8.5077	8.5079	8.5073
	4.0	8.3569	8.3558	8.3558	8.3560	8.3555
	4.5	8.2129	8.2118	8.2118	8.2120	8.2115
	5.0	8.0761	8.0750	8.0750	8.0752	8.0747

^a shear correction factor $K_s = 5/6$.

Table 6. Non-dimensional critical buckling load ($\hat{P} = PL^2/EI$) of simply supported beams.

L/h	$(ea_0)^2[m^2]$			Theory		
		EBT	FSDBT ^a	RBT	LBT	FSDBT ^a
		Reddy[57]	Reddy[57]	Reddy[57]	Reddy[57]	Present
	0	9.8696	9.8671	9.8671	9.8675	9.8670
	0.5	9.4055	9.4031	9.4031	9.4035	9.3989
	1.0	8.9830	8.9807	8.9807	8.9811	8.9663
	1.5	8.5969	8.5947	8.5947	8.5950	8.5661
	2.0	8.2426	8.2405	8.2405	8.2408	8.1956
100	2.5	7.9163	7.9143	7.9143	7.9146	7.8520
	3.0	7.6149	7.6130	7.6130	7.6133	7.5331
	3.5	7.3356	7.3337	7.3337	7.3340	7.2366
	4.0	7.0761	7.0743	7.0743	7.0746	6.9603
	4.5	6.8343	6.8325	6.8325	6.8328	6.7027
	5.0	6.6085	6.6068	6.6068	6.6070	6.4620

^a shear correction factor $K_s = 5/6$.

For further validation, Table 7 compares the fundamental frequencies of the proposed nonlocal beam element with three numerical investigations including those of Pradhan and Phadikar [58] based on differential quadrature method (DQM) and Phadikar and Pradhan [22], and Aria and Biglari [59] using the finite element method. Here, the fundamental natural frequencies are tabulated for various boundary conditions and three modes of vibration. It can be seen that there is a good agreement between the results of the proposed finite element model and the literature. Another validation for the buckling of nonlocal beams is performed in Table 8, where the critical

buckling loads for different boundary conditions are given and compared with the present study. This table also shows satisfactory results for the proposed element and hence the validation procedure of this study is achieved.

Table 7. Non-dimensional fundamental natural frequencies ($\widehat{\omega} = \frac{\omega L}{h} \sqrt{\rho/E}$) for different boundary conditions ($L = 1m, E = 1Pa, I = 1m^4, A = 1m^2$).

$(ea_0)^2[m^2]$	Boundary condition	Mode No.	DQM Pradhan& Phadikar [58]	FEM Phadikar& Pradhan [22]	FEM Aria& Biglari [59]	FEM ^a (present)
	Pinned- pinned	1	9.8696	9.8697	9.8696	9.8698
		2	39.4784	39.4848	39.4784	39.4790
		3	88.8249	88.8984	88.8264	88.8346
0	Fixed- pinned	1	15.4182	15.4186		15.4180
		2	49.9648	49.9779)-	49.9659
		3	104.2471	104.3637	_	104.2608
	Fixed-fixed	1	22.3733	22.3745	22.3722	22.3732
		2	61.6728	61.6973	61.6728	61.6750
		3	120.9021	121.0840	120.9033	120.9238
	Pinned- pinned	1	2.9936	2.9936	2.9936	2.9935
		2	6.2051	6.2061	6.2051	6.2051
		3	9.3720	9.3796	9.3720	9.3730
1	Fixed- pinned	1	4.3182	4.3184	-	4.3182
		2	7.6211	7.6238	-	7.6214
		3	10.8302	10.8448	-	10.8317
	Fixed-fixed	1	6.0566	6.0574	6.0565	6.0566
		2	8.8954	8.9011	8.8956	8.8960
		3	12.4525	12.4822	12.4530	12.4567

^a shear correction factor $K_s = 5/6$.

Table 8. Non-dimensional critical buckling load ($\hat{P} = PL^2/EI$) for different boundary conditions ($L = 1m, E = 1Pa, I = 1m^4, A = 1m^2$).

$(ea_0)^2[m^2]$	Boundary condition	DQM Pradhan& Phadikar [58]	FEM Phadikar& Pradhan [22]	FEM ^a (present)
0	Pinned- pinned	9.8696	9.8747	9.8696
Y	Fixed-free	2.4749	2.4675	2.4674
	Fixed- pinned	20.1907	20.2322	20.1908
	Fixed-fixed	39.4784	39.7753	39.4797
1	Pinned- pinned	0.9080	0.9080	0.9074
	Fixed-free	0.7115	0.7116	0.7113
	Fixed-	0.9528	0.9259	0.9521

pinned			
Fixed-fixed	0.9753	0.9755	0.9746

^a shear correction factor $K_s = 5/6$.

3.2 Results and discussion

To examine the importance of utilizing nonlocal FGMs on the free vibration and buckling responses of Timoshenko beams, here an FG beam is considered with the same material properties as Section 3.1.1. In this section the position of the neutral axis is calculated in order to determine elastic center. The natural frequencies and critical buckling loads are analyzed for different through thickness material distributions of FG beams and various nonlocal parameters.

The nondimensional fundamental natural frequencies of FG nanobeams for various nonlocal parameters and pinned-pinned, fixed-free, fixed-pinned and fixed-fixed boundary conditions are given in Tables 9-12. The results are tabulated for pure aluminum Al(k = 0), pure alumina Al_2O_3 $(k \to \infty)$ and for FGMs, which are combinations of these two materials. It can be realized from Tables 9-12 that increasing the power law exponent and also the nonlocal parameter causes a reduction in the frequency for all types of boundary conditions. Specifically, for a constant power law exponent (i.e. k = 0) with L/h = 20 by changing nonlocal parameter from 0 m² to 5 m², the nondimensional natural frequency decreases by 5.6%, 2.7%, 6.5% and 6.8% for pinned-pinned, fixed-free, fixed-pinned and fixed-fixed boundary conditions, respectively. It is observed that, for the fixed-fixed BC, the variation of the nonlocal parameter has the most influence on the variation of natural frequency, while this influence is the lowest for the fixedfree boundary condition. Also, for all of the nonlocal parameters with L/h = 20,100, by changing power law exponent from 0 to ∞, the nondimensional natural frequency decreases by 48% for all types of BCs (pinned-pinned, fixed-free, fixed-pinned and fixed-fixed). This highlights an important fact regarding the relation between the nonlocal parameter and the boundary conditions; the variation of the natural frequencies of an FGM nanobeam with nonlocal parameter depends on the boundary conditions while its variation with the power law exponent is the same for different types of BCs.

Table 9. Nondimensional fundamental natural frequencies of FGBs with varying nonlocal parameter for a pinned-pinned nanobeam.

$(ea_0)^2[m^2]$	k = 0	k = 0.1	k = 0.2	k = 0.5	k = 1	k = 2	k = 5	k = 10	$k \to \infty$
L/h = 20									
0	5.4603	5.1841	5.0233	4.7506	4.5336	11.7405	12.6243	9.2014	2.8371
1	5.3941	5.1213	4.9624	4.693	4.4787	11.5983	12.4715	9.0900	2.8028
2	5.3303	5.0607	4.9037	4.6375	4.4257	11.4613	12.3241	8.9825	2.7696
3	5.2688	5.0023	4.8471	4.584	4.3746	11.3289	12.1817	8.8788	2.7376
4	5.2093	4.9458	4.7923	4.5322	4.3252	11.2011	12.0443	8.7785	2.7067
5	5.1517	4.8912	4.7394	4.4822	4.2775	11.0775	11.9113	8.6816	2.6768
L/h = 100									
0	5.4824	5.2039	5.0421	4.7685	4.5515	56.7696	61.7651	44.4031	2.8486
1	5.4797	5.2014	5.0396	4.7661	4.5493	56.7416	61.7346	44.3812	2.8472
2	5.4770	5.1988	5.0372	4.7638	4.5471	56.7137	61.7042	44.3593	2.8458

3	5.4743	5.1962	5.0347	4.7614	4.5448	56.6858	61.6738	44.3375	2.8444
4	5.4716	5.1937	5.0322	4.7591	4.5426	56.6579	61.6435	44.3157	2.843
5	5.4689	5.1911	5.0297	4.7568	4.5404	56.6301	61.6132	44.2939	2.8416

Table 10. Nondimensional fundamental natural frequencies of FGBs with varying nonlocal parameter for a fixed-free nanobeam.

$(ea_0)^2[m^2]$	k = 0	k = 0.1	k = 0.2	k = 0.5	k = 1	k = 2	k = 5	k = 10	$k \to \infty$
L/h = 20									
0	1.9495	1.8507	1.7932	1.696	1.6188	6.4382	6.8303	5.0543	1.013
1	1.9383	1.8401	1.7829	1.6862	1.6095	6.4163	6.8075	5.0371	1.0071
2	1.9273	1.8296	1.7728	1.6766	1.6003	6.3946	6.7849	5.0201	1.0014
3	1.9164	1.8193	1.7628	1.6672	1.5913	6.3732	6.7625	5.0032	0.9958
4	1.9057	1.8091	1.7529	1.6579	1.5824	6.3519	6.7404	4.9865	0.9902
5	1.8952	1.7991	1.7433	1.6487	1.5736	6.3308	6.7184	4.9699	0.9847
L/h = 100									
0	1.9533	1.854	1.7964	1.6989	1.6216	29.0404	31.4625	22.7287	1.0149
1	1.9528	1.8536	1.796	1.6985	1.6212	29.0367	31.4586	22.7259	1.0147
2	1.9524	1.8532	1.7956	1.6981	1.6209	29.0331	31.4546	22.723	1.0144
3	1.9519	1.8527	1.7951	1.6977	1.6205	29.0294	31.4507	22.7201	1.0142
4	1.9514	1.8523	1.7947	1.6973	1.6201	29.0257	31.4467	22.7173	1.014
5	1.951	1.8519	1.7943	1.6969	1.6197	29.0221	31.4428	22.7144	1.0137

Table 11. Nondimensional fundamental natural frequencies of FGBs with varying nonlocal parameter for a fixed-pinned nanobeam.

$(ea_0)^2[m^2]$	k = 0	k = 0.1	k = 0.2	k = 0.5	k = 1	k = 2	k = 5	k = 10	$k \to \infty$
L/h = 20									
0	8.4813	8.0591	7.8176	7.4176	7.1106	13.1859	13.8712	10.3556	4.4068
1	8.3621	7.9458	7.7077	7.3134	7.0108	13.0095	13.6888	10.2168	4.3449
2	8.2476	7.837	7.6023	7.2133	6.915	12.8397	13.5132	10.0833	4.2854
3	8.1377	7.7325	7.5009	7.1172	6.8229	12.6762	13.3439	9.9546	4.2283
4	8.0319	7.632	7.4034	7.0247	6.7344	12.5186	13.1807	9.8306	4.1733
5	7.9301	7.5352	7.3095	6.9357	6.6491	12.3665	13.0231	9.7109	4.1204
L/h = 100									
0	8.5626	8.1314	7.8859	7.4812	7.1728	58.1436	62.9689	45.5078	4.4491
1	8.5576	8.1268	7.8814	7.4769	7.1687	58.1143	62.9372	45.4849	4.4465
2	8.5527	8.1221	7.8769	7.4726	7.1646	58.085	62.9057	45.4619	4.444
3	8.5478	8.1174	7.8724	7.4683	7.1605	58.0557	62.8741	45.439	4.4414
4	8.5429	8.1128	7.8679	7.464	7.1564	58.0265	62.8426	45.4161	4.4389
5	8.538	8.1081	7.8633	7.4598	7.1523	57.9974	62.8112	45.3933	4.4363

Table 12. Nondimensional fundamental natural frequencies of FGBs with varying nonlocal parameter for a fixed-fixed nanobeam.

$(ea_0)^2[m^2]$	k = 0	k = 0.1	k = 0.2	k = 0.5	k = 1	k = 2	k = 5	k = 10	$k \to \infty$
L/h = 20									
0	12.2201	11.6121	11.2563	10.6496	10.1633	14.7594	15.2026	11.6303	6.3495
1	12.0372	11.4382	11.0877	10.49	10.0109	14.5456	14.9888	11.4615	6.2545
2	11.862	11.2717	10.9262	10.3371	9.865	14.3403	14.7832	11.2994	6.1635

3	11.694	11.112	10.7713	10.1906	9.7251	14.1427	14.5854	11.1434	6.0762
4	11.5328	10.9586	10.6227	10.0499	9.5908	13.9526	14.3947	10.9933	5.9924
5	11.3778	10.8113	10.4798	9.9147	9.4618	13.7694	14.2109	10.8487	5.9119
L/h = 100									
0	12.4215	11.791	11.4246	10.8047	10.3132	59.5421	64.1903	46.6357	6.4541
1	12.4138	11.7837	11.4175	10.7981	10.3068	59.5114	64.1575	46.6116	6.4502
2	12.4062	11.7765	11.4105	10.7914	10.3005	59.4808	64.1247	46.5876	6.4462
3	12.3986	11.7693	11.4035	10.7848	10.2942	59.4502	64.092	46.5636	6.4423
4	12.391	11.7621	11.3966	10.7782	10.2879	59.4196	64.0593	46.5396	6.4383
5	12.3834	11.7549	11.3896	10.7716	10.2816	59.3891	64.0267	46.5157	6.4344

The nondimensional critical buckling loads of FG nanobeams for different nonlocal parameters and pinned-pinned, fixed-free, fixed-pinned and fixed-fixed boundary conditions are reported in Tables 13-16. Once again, the material properties are given in Section 3.1.1. The results are calculated for pure aluminum Al~(k=0), pure alumina $Al_2O_3~(k\to\infty)$ and an FGM which is composed of these two materials. Tables 13-16 show that increasing the power law exponent and the nonlocal parameter causes a reduction in the critical buckling load for all types of boundary conditions. For example, for a constant power law exponent (i.e. k = 0) with L/h = 20, by changing the nonlocal parameter from 0 m² to 5 m², the nondimensional critical buckling load decreases by 86%, 45%, 93% and 96% for the pinned-pinned, fixed-free, fixed-pinned and fixed-fixed boundary conditions, respectively. Similar to the vibration behavior, for a fixed-fixed BC, the variation of the critical buckling load is most sensitive to the nonlocal parameter, while it is least sensitive for the fixed-free boundary condition. On the other hand, for a constant nonlocal parameter (i.e. $(ea_0)^2 = 0$), by changing power law exponent from 0 to ∞ , the nondimensional critical buckling load decreases by 81.6% for all four kinds of BCs (pinned-pinned, fixed-free, fixed-pinned and fixed-fixed) examined in this paper. Hence, the variation of the critical buckling load of an FGM nanobeam with nonlocal parameter is dependent on the boundary conditions while its variation with the power law exponent is the same for all types of BCs.

Table 13. Nondimensional critical buckling load of FGBs with varying nonlocal parameter for a pinned-pinned nanobeam.

$(ea_0)^2[m^2]$	k = 0	k = 0.1	k = 0.2	k = 0.5	k = 1	k = 2	<i>k</i> = 5	k = 10	$k \to \infty$
L/h = 20									
0	53.253	47.046	43.383	37.132	32.236	26.6616	18.9054	15.0478	9.810
U	7	4	6	3	6				1
1	36.015	34.134	32.494	28.639	24.643	19.7942	13.1382	9.9832	6.634
	4	3	6	9	2				5
2	18.045	17.103	16.281	14.350	12.347	9.9177	6.5828	5.002	3.324
	4		5	2	6				2
3	12.038	11.409	10.861	9.5734	8.2374	6.6164	4.3916	3.337	2.217
3	6	9	9						7
4	9.0321	8.5604	8.1492	7.1826	6.1802	4.964	3.2948	2.5036	1.663
4									8
5	7.2272	6.8498	6.5208	5.7473	4.9452	3.972	2.6364	2.0033	1.331
5									3

L/h = 100									
0	53.564	47.301	43.611	37.321	32.402	26.8019	19.0112	15.1368	9.867
		4	2	4	2				2
1	53.511	47.254	43.568	37.284	32.370	7575.893	5307.054	3970.052	9.857
	1	8	2	6	2	7	1	5	5
2	53.458	47.208	43.525	37.247	32.338	4107.723	2784.889	2141.130	9.847
	4	2	2	8	3	4	8	1	8
3	53.405	47.161	43.482	37.211	32.306	2784.43	1887.744	1451.370	9.838
	6	6	3	1	4		1	1	/
4	53.353	47.115	43.439	37.174	32.274	2105.990	1427.786	1097.736	9.828
		1	4	4	6	2	1	8	3
5	53.300	47.068	43.396	37.137	32.242	1693.388	1148.056	882.67	9.818
	3	7	6	7	8		6	7	6

Table 14. Nondimensional critical buckling load of FGBs with varying nonlocal parameter for a fixed-free nanobeam.

(ea	$(0)^{2}[m^{2}]$	k =	= 0	k =	0.1	k =	0.2	k =	0.5	k =	= 1	k	z = 2	k	= 5	k	= 10	k -	$\rightarrow \infty$	
L/h	a = 20																			
	0	13.3	374	11.8	114	10.8	3903	9.3	32	8.0	915	6	.6928	4	.747	3	.7793	2.4	637	
	1	13.2	856	11.7	337	10.8	3189	9.2	59	8.0	385	19	.7943	13	.1382	9	.9832	2.4	474	
	2	13.1	184	11.6	455	10.7	7381	9.19	903	7.9	787	9	.9177	6.	5828	5	5.002	2.4	287	
	3	12.0	384	11.4	079	10.6	6452	9.11	122	7.9	107	6	6164	4.	3916	3	3.337	2.2	176	
	4	9.03	321	8.56	304	8.1	492	7.18	325	6.18	802	4	.964	3.	2948	2	.5036	1.6	638	
	5	7.22	272	6.84	197	6.5	207	5.74	172	4.9	452	(1)	3.972	2.	6364	2	.0033	1.3	313	
	L/h = 1	100								1										
	0		13.393	34	11.82	274	10.90	046	9.33	318	8.10	019	6.701	6	4.753	6	3.784	9	2.46	73
	1		13.390	01	11.82	244	10.90	019	9.32	295	8.09	999	7575.04	446	5307.17	717	3969.70)13	2.46	666
	2		13.386	38	11.82	215	10.89	992	9.32	272	8.09	979	4107.8	208	2784.96	302	2141.17	795	2.46	66
	3		13.383	35	11.81	186	10.89	965	9.32	249	8.09	959	2784.49	992	1887.79	938	1451.4	05	2.46	554
	4		13.380	02	11.81	157	10.89	938	9.32	226	8.09	939	2106.0	438	1427.82	245	1097.76	337	2.46	48
	5		13.376	39	11.81	128	10.89	911	9.32	203	8.09	919	1693.43	318	1148.08	379	882.69	19	2.46	42

Table 15. Nondimensional critical buckling load of FGBs with varying nonlocal parameter for a fixed-pinned nanobeam.

				1												
$(ea_0)^2[m^2]$	k = 0	k = 0	0.1 k =	= 0.2	k =	0.5	k	= 1	k	z = 2	k	: = 5	k	= 10	k -	→ ∞
L/h = 20			1													
0	108.1294	95.67	709 88.4	4238	76.2	2232	66.	.832	55	.7539	39	.2415	30	.8956	19.9	9189
1	36.0158	34.13	348 32.4	4952	28.6	6406	24.0	6437	19	.7943	13	.1382	9.	.9832	6.6	345
2	18.0454	17.10	03 16.2	2815	14.3	3502	12.	3476	9.	9177	6.	5828	5	5.002	3.3	242
3	12.0386	11.40	099 10.8	8619	9.5	734	8.2	2374	6.	6164	4.	3916	3	3.337	2.2	177
4	9.0321	8.560	04 8.1	492	7.1	826	6.1	802	4	.964	3.	2948	2.	.5036	1.6	638
5	7.2272	6.849	98 6.5	208	5.7	473	4.9	452	3	.972	2.	6364	2.	.0033	1.3	313
L/h = 1	100															
0	109.5	453	96.8373	89.46	84	77.10	004	67.61	126	56.424	47	39.74	13	31.30	87	20.1
1	109.3	243	96.6421	89.2	88	76.94	449	67.47	762	7575.02	283	5307.19	947	3969.6	979	20.1
2	109.1	039	96.4472	89.1	80	76.78	398	67.34	101	4107.84	456	2784.97	723	2141.1	842	20.0
3	108.8	839	96.2528	88.92	284	76.6	35	67.20)44	2784.5	161	1887.8	02	1451.4	082	20.0
4	108.6	644	96.0589	88.74	192	76.48	306	67.06	889	2106.05	566	1427.83	307	1097.7	662	20.0
5	108.4	454	95.8653	88.57	705	76.32	266	66.93	338	1693.4	42	1148.09	826	882.69	939	19.9

Table 16. Nondimensional critical buckling load of FGBs with varying nonlocal parameter for a fixed-fixed nanobeam.

$(ea_0)^2[m^2]$	k = 0	k = 0.1	k = 0.2	k = 0.5	k = 1	k = 2	k = 5	k = 10	$k \to \infty$
L/h = 20									
0	209.2283	185.0674	170.7491	146.2145	126.9186	104.9293	74.3296	59.1058	38.5427
1	36.0158	34.1349	32.4953	28.6407	24.6438	19.7944	13.1383	9.9833	6.6345
2	18.0454	17.103	16.2815	14.3502	12.3476	9.9178	6.5828	5.002	3.3242
3	12.0386	11.4099	10.8619	9.5734	8.2374	6.6164	4.3916	3.337	2.2177
4	9.0321	8.5604	8.1492	7.1826	6.1802	4.9641	3.2948	2.5036	1.6638
5	7.2272	6.8498	6.5208	5.7473	4.9452	3.9721	2.6364	2.0033	1.3313

L/h = 100							\sim		
0	214.1002	189.0778	174.3307	149.1907	129.5258	107.1373	75.9916	60.5025	39.4401
1	213.2567	188.333	173.644	148.6031	129.0156	7574.7624	5307.525	3969.5846	39.2848
2	212.4167	187.5915	172.9604	148.0182	128.5078	4108.1133	2785.1718	2141.3276	39.13
3	211.5803	186.8533	172.28	147.436	128.0023	2784.7073	1887.9433	1451.5098	38.976
4	210.7474	186.1184	171.6027	146.8565	127.4992	2106.2049	1427.9399	1097.8447	38.8225
5	209.9181	185.3868	170.9285	146.2798	126.9984	1693.5631	1148.1817	882.7578	38.6697

To show the role of material distribution and size effects on the natural frequency and buckling load of nonlocal FG Timoshenko beams graphically, the following properties are considered, as given by Reddy [60]: $E_1 = 14.4$ GPa, $E_2 = 1.44$ GPa, $\rho_1 = 12.2 \times 10^3$ kg/m³, $\rho_2 = 1.22 \times 10^3$ kg/m³, $h = 17.6 \times 10^{-6}$ m, h = 2h and h = 20h. Also, it is assumed that h = 2h as given by [60], where h = 1, 2 denotes the two different materials.

The effect of the nonlocal parameter and the power-law exponent k on the natural frequencies of the pinned-pinned FG beam are examined with Timoshenko beam theory, and the first four natural frequencies are plotted in Fig. 4 for both local and nonlocal $[(ea_0)^2 = 0.1 \text{ nm}^2]$ cases and various power-law exponents. The prominent influence of through-thickness grading of the FGM on the natural frequencies is observed and consequently this fact could be employed to optimise the natural frequencies for design purposes. The influence of nonlocality is more significant when considering higher-order frequencies.

The effect of the nonlocal parameter and the power-law exponent k on the critical buckling load of the pinned-pinned FG beam is examined with Timoshenko beams theory, and the first four buckling modes are plotted in Fig. 5 considering both local and nonlocal $[(ea_0)^2 = 0.1 \text{ nm}^2]$ cases and various power-law exponents. It is clear that, adjacent to the phase material 1, which has higher Young's modulus and density, the nondimensional critical bucking load changes quickly with varying exponent k, while the slope of the buckling load with respect to the exponent k, becomes almost zero as we approach material 2. Also, the effect of nonlocality will be more prominent when considering higher-order buckling modes.

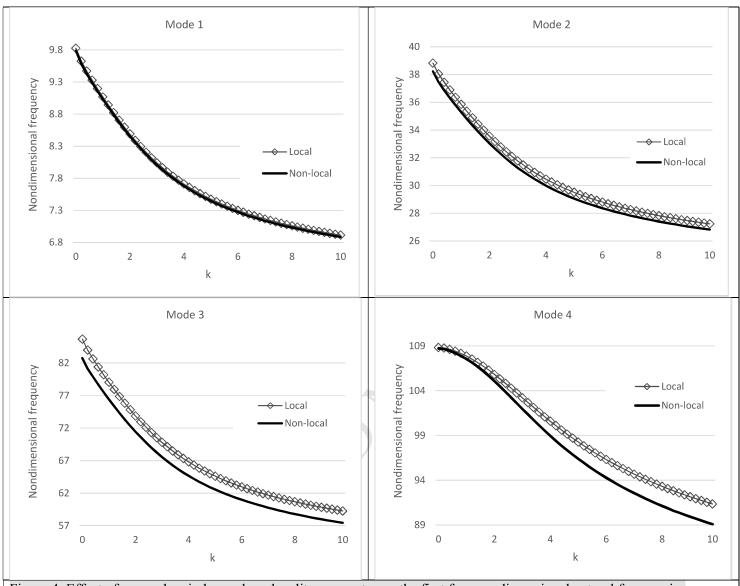


Figure 4. Effect of power-law index and nonlocality parameter on the first four nondimensional natural frequencies $(\hat{\omega} = \omega L^2 \sqrt{\rho_2 A/E_2 I})$ of a simply supported FGM beam with L/h = 100.

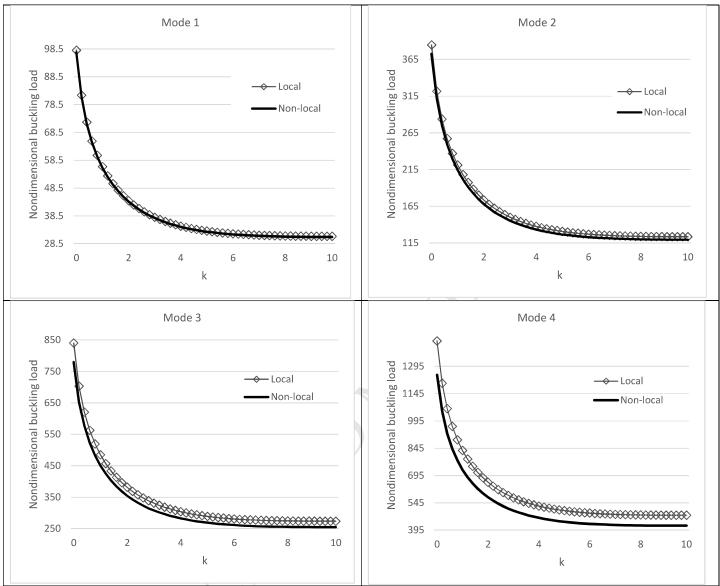


Figure 5. Effect of power-law index and nonlocality parameter on the first four nondimensional critical buckling loads $(\hat{P} = P \frac{12L^2}{E_2 h^3})$ of a simply supported FGM beam with L/h = 100.

4. Conclusion

Based on the estimated neutral axis, a size-dependent 5-noded Timoshenko beam model is presented in the framework of strain-driven nonlocal elasticity theory for analyzing the free vibration and buckling of FGBs, with a through-thickness power-law variation. Both strain-driven and stress-driven formulations are discussed. By using Hamilton's principle, the governing equations and corresponding boundary conditions for FG Timoshenko beams are

derived. The Timoshenko beam model includes a nonlocal parameter introduced to incorporate the importance of the nonlocal elastic stress field. Verification of the proposed model is performed in two stages including a validation procedure for an FG beam with different power law exponents and another one for a nonlocal homogeneous beam with various nonlocal parameters. Based on the results, the proposed model is able to accurately predict the fundamental natural frequencies and the critical buckling loads of functionally graded nanobeams for different BCs with a low computation effort. The significant effect of through-thickness material distribution of the FGM on the natural frequencies is seen. As a result, this fact can be used to optimise the natural frequencies for design purposes. Also, the effect of nonlocality is more prominent for higher-order frequencies and buckling loads.

Appendix A

$$k_{aa} = \frac{L}{15} \begin{bmatrix} 2 & 1 & -1/2 \\ 1 & 8 & 1 \\ -1/2 & 1 & 2 \end{bmatrix}, \tag{A1}$$

$$k_{aa1} = \frac{1}{3L} \begin{bmatrix} 7 & -8 & 1 \\ -8 & 16 & -8 \\ 1 & -8 & 7 \end{bmatrix},\tag{A2}$$

$$k_{aa2} = \frac{16}{L^3} \begin{bmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{bmatrix},\tag{A3}$$

$$k_{bb} = \frac{L}{1680} \begin{bmatrix} 128 & 99 & -36 & 19\\ 99 & 648 & -81 & -36\\ -36 & -81 & 648 & 99\\ 19 & -36 & 99 & 128 \end{bmatrix}, \tag{A4}$$

$$k_{bb1} = \frac{1}{^{40L}} \begin{bmatrix} 148 & -189 & 54 & -13 \\ -189 & 432 & -297 & 54 \\ 54 & -297 & 432 & -189 \\ -13 & 54 & -189 & 148 \end{bmatrix}, \tag{A5}$$

$$k_{bb2} = \frac{81}{L^3} \begin{bmatrix} 1 & -5/2 & 2 & -1/2 \\ -5/2 & 7 & -13/2 & 2 \\ 2 & -13/2 & 7 & -5/2 \\ -1/2 & 2 & -5/2 & 1 \end{bmatrix}, \tag{A6}$$

$$k_{bc1} = \frac{1}{120} \begin{bmatrix} -83 & -44 & 7\\ 99 & -108 & 9\\ -9 & 108 & -99\\ -7 & 44 & 83 \end{bmatrix}, \tag{A7}$$

$$k_{bc2} = \frac{1}{2L^2} \begin{bmatrix} -27 & 18 & -9\\ 63 & -54 & 45\\ -45 & 54 & -63\\ 9 & -18 & 27 \end{bmatrix}, \tag{A8}$$

where L is length of the beam element.

Data Availability

All of the results given in the paper are simulated based on the proposed finite element model. The paper contains full details of the developed finite element and the geometry and material properties for the examples. Hence, there is no raw data, and data in the figures and tables maybe be reproduced by coding the described model.

References

- 1. Johnson, K.L, Gidley, M.J, Bacic, A, Doblin, M. S. (2018). Cell wall biomechanics: a tractable challenge in manipulating plant cell walls 'fit for purpose'. Current Opinion in Biotechnology, 49, pp. 163-171.
- Lebaschi, A. H, Deng, X. H, Camp, C. L, Zong, J, Cong, G. T, Carballo, C.B, Album, Z, Radeo, S. (2018), Biomechanical, histologic, and molecular evaluation of tendon healing in a new murine model of rotator cuff repair, Arthroscopy: The Journal of Arthroscopic & Related Surgery, 34(4), pp. 1173-1183.
- 3. Jandaghian, A. A, Rahmani, O. (2017), Size-dependent free vibration analysis of functionally graded piezoelectric plate subjected to thermo-electromechanical loading, Journal of Intelligent Material Systems and Structures, 28(20), pp. 3039–3053.
- 4. Şimşek, M., (2016). Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach. International Journal of Engineering Science, 105, pp. 12-27.
- 5. Eringen, A.C., (1983). On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of applied physics, 54(9), pp. 4703-4710.
- Peddieson, J., Buchanan, G.R. and McNitt, R.P., 2003. Application of nonlocal continuum models to nanotechnology. International Journal of Engineering Science, 41(3-5), pp. 305-312.
- 7. Romano, G., Barretta, R., Diaco, M. and de Sciarra, F.M., 2017. Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. International Journal of Mechanical Sciences, 121, pp. 151-156.

- 8. Barretta, R., Čanadija, M., Feo, L., Luciano, R., de Sciarra, F.M. and Penna, R., 2018. Exact solutions of inflected functionally graded nano-beams in integral elasticity. Composites Part B: Engineering, 142, pp. 273-286.
- 9. Barretta, R., Diaco, M., Feo, L., Luciano, R., de Sciarra, F.M. and Penna, R., 2018. Stress-driven integral elastic theory for torsion of nano-beams. Mechanics Research Communications, 87, pp. 35-41.
- Barretta, R., Čanađija, M., Luciano, R. and de Sciarra, F.M., 2018. Stress-driven modeling of nonlocal thermoelastic behavior of nanobeams. International Journal of Engineering Science, 126, pp. 53-67.
- 11. Challamel, N. and Wang, C.M., 2008. The small length scale effect for a non-local cantilever beam: a paradox solved. Nanotechnology, 19(34), paper 345703.
- 12. Li, C., Yao, L., Chen, W. and Li, S., 2015. Comments on nonlocal effects in nano-cantilever beams. International Journal of Engineering Science, 87, pp. 47-57.
- 13. Barretta, R., Feo, L., Luciano, R. and de Sciarra, F.M., 2016. Application of an enhanced version of the Eringen differential model to nanotechnology. Composites Part B: Engineering, 96, pp. 274-280.
- 14. Romano, G. and Barretta, R., 2017. Nonlocal elasticity in nanobeams: the stress-driven integral model. International Journal of Engineering Science, 115, pp. 14-27.
- 15. Romano, G., Luciano, R., Barretta, R. and Diaco, M., 2018. Nonlocal integral elasticity in nanostructures, mixtures, boundary effects and limit behaviours. Continuum Mechanics and Thermodynamics, 30(3), pp. 641-655.
- 16. Barretta, R., Faghidian, S.A. and Luciano, R., 2018. Longitudinal vibrations of nano-rods by stress-driven integral elasticity. Mechanics of Advanced Materials and Structures, pp. 1-9.
- 17. Barretta, R., Faghidian, S.A., Luciano, R., Medaglia, C.M. and Penna, R., 2018. Stress-driven two-phase integral elasticity for torsion of nano-beams. Composites Part B: Engineering, 145, pp. 62-69.
- 18. Barretta, R., Luciano, R., de Sciarra, F.M. and Ruta, G., 2018. Stress-driven nonlocal integral model for Timoshenko elastic nano-beams. European Journal of Mechanics-A/Solids, 72, pp. 275-286.
- 19. Barretta, R., Faghidian, S.A., Luciano, R., Medaglia, C.M. and Penna, R., 2018. Free vibrations of FG elastic Timoshenko nano-beams by strain gradient and stress-driven nonlocal models. Composites Part B: Engineering, 154, pp. 20-32.
- 20. Ouakad, H.M., El-Borgi, S., Mousavi, S.M. and Friswell, M.I., 2018, Static and dynamic response of CNT nanobeam using nonlocal strain and velocity gradient theory. Applied Mathematical Modeling, 62, pp. 207-222.

- 21. Friswell, M.I., Adhikari, S. and Lei, Y., 2007. Vibration analysis of beams with non local foundations using the finite element method. International Journal for Numerical Methods in Engineering, 71(11), pp. 1365-1386.
- 22. Phadikar, J.K. and Pradhan, S.C., 2010. Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates. Computational materials science, 49(3), pp. 492-499.
- 23. Murmu, T. and Adhikari, S., 2010. Nonlocal transverse vibration of double-nanobeam-systems. Journal of Applied Physics, 108(8), paper 083514.
- 24. Mustapha, K.B. and Zhong, Z.W., 2010. Free transverse vibration of an axially loaded non-prismatic single-walled carbon nanotube embedded in a two-parameter elastic medium. Computational Materials Science, 50(2), pp. 742-751.
- 25. Roque, C.M.C., Ferreira, A.J.M. and Reddy, J.N., 2011. Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method. International Journal of Engineering Science, 49(9), pp. 976-984.
- 26. Thai, H.T., 2012. A nonlocal beam theory for bending, buckling, and vibration of nanobeams. International Journal of Engineering Science, 52, pp. 56-64.
- 27. Thai, H.T. and Vo, T.P., 2012. A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams. International Journal of Engineering Science, 54, pp. 58-66.
- 28. Lei, Y., Adhikari, S. and Friswell, M.I., 2013. Vibration of nonlocal Kelvin–Voigt viscoelastic damped Timoshenko beams. International Journal of Engineering Science, 66, pp. 1-13.
- 29. Civalek, Ö. and Demir, C., 2016. A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method. Applied Mathematics and Computation, 289, pp. 335-352.
- 30. Kahya, V. and Turan, M., 2017. Finite element model for vibration and buckling of functionally graded beams based on the first-order shear deformation theory. Composites Part B: Engineering, 109, pp. 108-115.
- 31. Kahrobaiyan, M.H., Asghari, M., Rahaeifard, M. and Ahmadian, M.T., 2010. Investigation of the size-dependent dynamic characteristics of atomic force microscope microcantilevers based on the modified couple stress theory. International Journal of Engineering Science, 48(12), pp. 1985-1994.
- 32. Zhang, J. and Fu, Y., 2012. Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory. Meccanica, 47(7), pp. 1649-1658.

- 33. Shariat, B.S., Liu, Y. and Rio, G., 2013. Modelling and experimental investigation of geometrically graded NiTi shape memory alloys. Smart Materials and Structures, 22(2), paper 025030.
- 34. Eltaher, M.A., Emam, S.A. and Mahmoud, F.F., 2012. Free vibration analysis of functionally graded size-dependent nanobeams. Applied Mathematics and Computation, 218(14), pp. 7406-7420.
- 35. Uymaz, B., 2013. Forced vibration analysis of functionally graded beams using nonlocal elasticity. Composite Structures, 105, pp. 227-239.
- 36. Rahmani, O. and Pedram, O., 2014. Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory. International Journal of Engineering Science, 77, pp. 55-70.
- 37. Nejad, M.Z. and Hadi, A., 2016. Non-local analysis of free vibration of bi-directional functionally graded Euler–Bernoulli nano-beams. International Journal of Engineering Science, 105, pp. 1-11.
- 38. Şimşek, M., 2014. Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory. Composites Part B: Engineering, 56, pp. 621-628.
- 39. Niknam, H. and Aghdam, M.M., 2015. A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation. Composite Structures, 119, pp. 452-462.
- 40. El-Borgi, S., Fernandes, R. and Reddy, J.N., 2015. Non-local free and forced vibrations of graded nanobeams resting on a non-linear elastic foundation. International Journal of Non-Linear Mechanics, 77, pp. 348-363.
- 41. Thai, S., Thai, H.T., Vo, T.P. and Lee, S., 2018. Postbuckling analysis of functionally graded nanoplates based on nonlocal theory and isogeometric analysis. Composite Structures, 201, pp. 13-20.
- 42. Barretta, R., Fazelzadeh, S.A., Feo, L., Ghavanloo, E. and Luciano, R., 2018. Nonlocal inflected nano-beams: A stress-driven approach of bi-Helmholtz type. Composite Structures, 200, pp. 239-245.
- 43. Dastjerdi, S. and Akgöz, B., 2018. New static and dynamic analyses of macro and nano FGM plates using exact three-dimensional elasticity in thermal environment. Composite Structures, 192, pp. 626-641.
- 44. Eltaher, M.A., Emam, S.A. and Mahmoud, F.F., 2013. Static and stability analysis of nonlocal functionally graded nanobeams. Composite Structures, 96, pp. 82-88.
- 45. Barretta, R., Feo, L., Luciano, R., de Sciarra, F.M. and Penna, R., 2016. Functionally graded Timoshenko nanobeams: a novel nonlocal gradient formulation. Composites Part B: Engineering, 100, pp. 208-219.

- 46. Čanađija, M., Barretta, R. and de Sciarra, F.M., 2016. On functionally graded Timoshenko nonisothermal nanobeams. Composite Structures, 135, pp. 286-296.
- 47. Barretta, R., 2013. On Cesàro-Volterra method in orthotropic Saint-Venant beam. Journal of Elasticity, 112(2), pp. 233-253.
- 48. Romano, G., Barretta, R. and Diaco, M., 2017. On nonlocal integral models for elastic nanobeams. International Journal of Mechanical Sciences, 131, pp. 490-499.
- 49. Romano, G. and Barretta, R., 2017. Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams. Composites Part B, 114, pp. 184-188.
- 50. Li, L., Tang, H. and Hu, Y., 2018. The effect of thickness on the mechanics of nanobeams. International Journal of Engineering Science, 123, pp. 81-91.
- 51. Yuan, F.G. and Miller, R.E., 1990. A higher order finite element for laminated beams. Composite structures, 14(2), pp. 125-150.
- 52. Şimşek, M., 2010. Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nuclear Engineering and Design, 240(4), pp. 697-705.
- 53. Li, S.R. and Batra, R.C., 2013. Relations between buckling loads of functionally graded Timoshenko and homogeneous Euler–Bernoulli beams. Composite Structures, 95, pp. 5-9.
- 54. Nguyen, T.K., Nguyen, T.T.P., Vo, T.P. and Thai, H.T., 2015. Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory. Composites Part B: Engineering, 76, pp. 273-285.
- 55. Vo, T.P., Thai, H.T., Nguyen, T.K., Maheri, A. and Lee, J., 2014. Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory. Engineering Structures, 64, pp. 12-22.
- 56. Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J., 2015. A quasi-3D theory for vibration and buckling of functionally graded sandwich beams. Composite Structures, 119, pp. 1-12.
- 57. Reddy, J.N., 2007. Nonlocal theories for bending, buckling and vibration of beams. International Journal of Engineering Science, 45(2-8), pp. 88-307.
- 58. Pradhan, S.C. and Phadikar, J.K., 2009. Bending, buckling and vibration analyses of nonhomogeneous nanotubes using GDQ and nonlocal elasticity theory. Structural Engineering and Mechanics, 33(2), pp. 193-213.
- 59. Aria, A.I. and Biglari, H., 2018. Computational vibration and buckling analysis of microtubule bundles based on nonlocal strain gradient theory. Applied Mathematics and Computation, 321, pp. 313-332.

60. Reddy, J.N., 2011. Microstructure-dependent couple stress theories of functionally graded beams. Journal of the Mechanics and Physics of Solids, 59(11), pp. 2382-2399.

