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A nonlocal finite element model for buckling and vibration of

functionally graded nanobeams
A. Imani Aria®, M. L. Friswell>'
*Tabriz University, Department of Mechanical Engineering, Tabriz, Iran.
°Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, UK

Abstract

In this paper, a nonlocal (strain-driven) finite element model is presented to examine the free
vibration and buckling behaviour of functionally graded (FG) nanobeams on the basis of first-
order shear deformation theory (FSDBT). The proposed beam element has five nodes and ten
degrees of freedom. The material properties of the FG nanobeam are assumed to vary in the
thickness direction according to the power-law form. The stretching-bending coupling effect is
eliminated by employing the neutral axis concept. Governing equations are deduced with the aid
of Hamilton’s principle. Buckling loads and natural frequencies are calculated for different
nonlocal coefficients, boundary conditions (BCs), power-law indices, and span-to-depth ratios.
The accuracy of the proposed element is verified by comparing with available benchmark results
in the literature.

Keywords: Functionally graded materials; Nonlocal elasticity theory; Finite element method;
Free vibration; Buckling; First-order shear deformation theory.

1. Introduction

Many new materials and devices can be manufactured by nanotechnology techniques for a wide
range of applications, such as cell manipulation [1], microsurgery [2], nanosensors,
nanocomposites and smart systems and structures [3]. Investigation of micro/nano structural
elements such as beams and plates at the micro/nano- length scale has gained the attention of
many researchers, recently. Because of the high cost of atomic and molecular simulations,
continuum models are commonly employed to study these elements where size effects are
important in the simulations [4].

High order continuum theories to model micro/nano-scale structures have been used to capture
the size effects of such structures considering the interactions of non-adjacent atoms and
molecules. The most common continuum mechanics theory for modelling nanostructures is
nonlocal elasticity. Nonlocal elasticity theory (strain-driven), which was developed by Eringen
[5], models long range interactions between atoms. In accordance with Eringen’s nonlocal
model, the stress of a given point in a continuum body has interaction with strains at all points in
that continuum body, not only those near the specific point. Later, Eringen [5] introduced a
differential constitutive theory, and proved that for a particular type of kernel function the
nonlocal integral constitutive relation could be transformed to differential form, which can be
solved much easier, compared with the integral model. This differential formulation was used
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later in applications to bounded continuous structural models [6]. However, the fact that the
constitutive boundary conditions on the stress naturally appear when working with bounded
domains was neglected [7-10]. By adding the corresponding constitutive boundary conditions, an
ill-posed problem is obtained. This happens because of the conflict between the constitutive and
equilibrium conditions on the stress field. Hence, there is no solution for the continuous nonlocal
elasto-static problem and this justifies the existence of the paradoxical results in literature [11-
13]. This problem can be solved by employing a stress-driven model where the roles of stress
and strain fields are interchanged [14]. Recently, some applications have been reported on the
basis of the stress-driven model [15-19].

However, it should also be recognised that the nonlocal model in integral form is unable to
model detailed local effects at boundaries, and hence there are always likely to be discrepancies
between the actual and simulated bending moment at the boundary. Given that these
discrepancies at the boundaries are always likely to be present whichever model used, here the
differential form of the equations, or strain-driven model, is used [20]. Friswell et al. [21]
proposed a finite element formulation for nonlocal elastic and viscoelastic foundations for Euler-
Bernoulli beams. They studied the free vibrations of beams on nonlocal foundations and reported
corresponding results for different kernel functions. Phadikar and Pradhan [22] presented a
variational formulation and used finite element analysis to capture the size effects of nanobeams
and nanoplates employing nonlocal elasticity theory. Murmu and Adhikari [23] introduced a
nonlocal double-elastic beam model, and used it to analyse size effects on the free vibration of
double-nanobeam systems. Mustapha and Zhong [24] studied the free vibration of an axially
loaded single-walled carbon nanotube resting on a two parameter elastic foundation by
employing the Bubnov—Galerkin method. Roque et al. [25] studied the mechanical behaviour of
Timoshenko nanobeams in bending, buckling and free vibration using a meshless method. Thai
[26] and Thai and Vo [27] used Eringen’s nonlocal elasticity theory to introduce nonlocal shear
deformation beam theory for bending, buckling and vibration of homogeneous materials. Lei et
al. [28] employed velocity-dependent external damping to investigate the dynamic behaviour of
damped nonlocal Timoshenko beams. Civalek and Demir [29] analysed buckling of microtubules
on an elastic medium using finite element method and achieved critical buckling loads for
various types of microtubules.

Functionally graded materials (FGMs) are composites, which possess variable microstructure
that changes from one material to another with a specific gradient, with a corresponding
variation in the effective material properties (i.e. shear modulus, material density and elasticity
modulus). The FGMs take advantage of different characteristics of its component phases. For
example, in a thermally dominant situation; the ceramic portion is employed to resist high
temperature gradients because of its great thermal resistance properties, while the metal part
provides suitable force endurance performance [30]. For specific functions and applications, the
corresponding FGMs are designed in order to provide the optimum distribution of component
materials. Moreover, FGMs have been intensely utilized in micro/nano devices, such as atomic
force microscopes (AFMs) [31], electrically actuated actuators [32] and microswitches [33]. The
free and forced vibration behaviour of graded micro and nanobeams have been studied by
performing a range of numerical and analytical solutions. The following summarises the
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academic studies that have employed Eringen’s nonlocal elasticity model to study vibration and
buckling of nanobeams. Eltaher et al. [34] investigated the linear nonlocal free vibration of a
Euler-Bernoulli FG nanobeams by employing finite element analysis. Uymaz [35] solved the
free vibration problem of graded nanobeams for various beam theories by employing Navier's
solution. Vibration behaviour of nonlocal FG beams was examined by Rahmani and Pedram
[36]. They employed closed-form solutions to analyse the effects of length scale parameter,
slenderness ratio and gradient index on natural frequencies. Nejad and Hadi [37] used the
Generalized Differential Quadrature Method (GDQM) to analyse the nonlocal free vibration of
bi-directional graded Euler-Bernoulli nanobeams. The nonlinear free vibration of a nonlocal FG
Euler-Bernoulli nanobeam with nonlinear von Karman strains was studied by Simsek et al. [38].
Niknam and Aghdam [39] investigated the large amplitude buckling and free vibration of
nonlocal graded nanobeams embedded in elastic foundations exploiting He's variational method
while accounting for the nonlinear von Karman strains. El-Borgi et al. [40] employed the method
of multiple scales and Galerkin's method to investigate the nonlocal nonlinear free and forced
vibration behaviour of FG nanobeams embedded in a nonlinear elastic foundation. Thai et al.
[41] utilized Eringen’s elasticity theory to examine the postbuckling behaviour of functionally
graded nanoplates. Eringen’s strain-driven nonlocal integral formulation was employed by
Baretta et al. [42] in order to investigate the size dependent bending response of Euler-Bernoulli
nanobeams. Dastjerdi and Akgoz [43] studied the dynamic and static behaviours of FGM
nanoplates by exploiting three-dimensional elasticity theory with the nonlocal theory of Eringen.

The finite element method (FEM) is one of the commonly employed numerical methods in
analyses of nanostructures, although there are few developed finite elements to investigate FG
nanobeams. On the basis of the classical beam theory, Eltaher et al. [34] proposed a two-noded,
six degrees-of-freedom finite element to examine free vibration of FG nanobeams. They
employed nonlocal elasticity theory in order to incorporate size effects. In a separate work,
Eltaher et al. [44] studied the static and stability analysis of FG nanobeams based on Euler-
Bernoulli beam theory (EBT), exploiting a two-noded beam element.

Finite element studies investigating FG nanobeams [34,44] that are reported in the literature,
have employed a two-noded beam element with six degrees of freedom on the basis of EBT. A
novel contribution of this study is to propose a five-noded nonlocal beam element with ten
degrees of freedom considering shear displacements in addition to axial displacements. The
present study develops an accurate finite element analysis in accordance with the first-order
shear deformation theory (FSDBT) in the framework of Eringen’s nonlocal elasticity theory for
vibration and buckling analysis of functionally graded nanobeams, where material distribution is
imposed as a through-thickness power-law variation. The weak form of equations and the
corresponding boundary conditions are deduced using Hamilton’s principle. The finite element
has five nodes and ten degrees of freedom. The validity of the element is verified by comparing
with benchmark results available in the literature for buckling loads and natural frequencies of
functionally graded beams and homogenous nanobeams with different nonlocal coefficients,
boundary conditions, power-law indices, and span-to-depth ratios.



2. Formulation

2.1 Functionally graded materials
For an FGM beam (Fig. 1), the material properties vary continuously in the z direction, and are
assumed to take the form

z 1 k
P(z)=(P,—P)(2+3) +P, (1)
zA
(p1,E1, Gy)
L >
X
(p2,E2,Gy)

Fig.1 Geometry and coordinate system of a functionally graded beam.

where k is the non-negative power-law exponent, and P; and P, are the related material
properties of the ceramic and metal constituents. The Young’s modulus, E(z), shear modulus,
G (z), and material density, p(z), may be defined based on this distribution function as

E(z) = (B, — E) (2 + %)k +E, Q)

G(2) = (6, - G,) (2+ i)k + G, (3)

@ = (1= p2) (G42) 4+, @
(1, E1,G1)

b (P2, E2, G3)

Fig.2 The position of the middle and neutral axis of FG beam.
In non-homogeneous beams, the variation of the elasticity modulus through the thickness is not

symmetric with respect to the mid-plane. So, the neutral axis of the beam and the mid-plane do
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not coincide with each other. Thus, the position of the neutral axis has to be found and z axis
defined from the neutral axis (Fig. 2). The position of the neutral axis (z.) can be calculated by
[45-47]:

_ J4E(®)zadA
Ze = [,E(2)aA ®)
Based on the position of the neutral axis, the effective Young’s modulus E(z), the effective

shear modulus G(z), and the effective material density p(z), are defined as

E@) = B~ B (2+2) +E, ©)
6@ = 6 -6 (E+Y) +6, @)
p() = (o1 — p) (3 + %)k +p2 ®)

2.2 Nonlocal elasticity theory
Based on the nonlocal elasticity theory [5], the elastic strain field &£°®° is the solution of a
Fredholm integral equation. Hence, the stress o is obtained by a convolution between the local
feedback to the elastic strain and a scalar kernel dependent on a positive nonlocal parameter p.
The stress at a point X in an elastic body, not only depends on the strain at that specific point, but
also on the strain at all points in the continuum body. Hence, the nonlocal stress tensor is given

by
o= [, a,(x—x).C(x"). & (x")dV 9)

el

where a,, is the principal attenuation kernel function that determines the constitutive equations
for the nonlocal effects at the reference point x produced by the local strain at the source x'. ega
denotes the nonlocal parameter that incorporates the nonlocal elastic stress field, where e is a
constant appropriate to each material and a is an internal characteristic length, C is the fourth-

order elasticity tensor, € is the strain tensor and “:” denotes double-dot product of tensors.

Since the £°! is the elastic strain, the model in Eq. (9), expresses the strain-driven nonlocal
integral law [48, 49]. Consequently, the flexural nonlocal elastic law is shown based on an elastic
curvature field ¢p¢ € 3, which is square integrable on [a, b], and having the local elastic

flexural stiffness K € H.



M(x) = fab a,(x —x").K(x"). ¢ (x")dx’ (10)

In the stress-driven model, proposed by Romano and Barretta [14], the roles of bending
interaction and curvature fields are interchanged in comparison with the strain-driven model (Eq.
(9)) and the following relation is obtained

P (x) = f; a,(x—x").K(x").M(x")dx' (11)

Thus, the formulation of the stress-driven model is achieved by interchanging the roles of stress
and strain fields with respect to the strain-driven model [14], giving

el = [ a,(x—x).C(x").a(x")dV (12)

It is worth highlighting that these two laws (strain-driven and stress-driven) do not conflict with

each other and result in different structural models.

In this paper, the differential law obtained from Eringen's strain-driven nonlocal integral

convolution in Eq. (9), equipped with the bi-exponential averaging kernel, is employed

(1—(eqa)?V¥)ae =C: ¢ (13)

2

az | 9% | 9% . :
where V2= wzt 57 to718 the Laplacian operator.

For a beam type structure, by considering the nonlocal behavior in the thickness direction, the
softening effect will depend on the span to depth ratio, in addition to the nonlocal parameter [50].
In this paper, the nonlocal effect in the thickness direction is ignored, and so the softening
behavior is only dependent on the nonlocal parameter. Then, the nonlocal constitutive relation

will take the form:

020,y

Oxx — (eoa)z 2z E(Z)Exx (14)
020y
Oz = (600)* 532 = G(2)Yxs (15)

where g, is the axial normal stress, g,, is the shear stress, &, is the axial strain and y,, is the
shear strain, E(z) denotes the elasticity modulus and G(z) denotes the shear modulus of the

FGBs. Also, by letting eja = 0, constitutive relation for the classical (local) theory is derived.

2.3 Timoshenko beam theory based on nonlocal elasticity



The displacement field of a Timoshenko beam is given by

u,(x,z,t) = ulx, t) —z¢p(x,t) (16)
uy(x,z,t) =0, (17)
u,(x, z,t) = w(x,t) (18)

where u and w denote the displacement components of the mid-surface in the x and z directions,

respectively, and ¢ denotes the slope. Therefore, the Timoshenko strains are given by

oug _ou_ o4

Exx = dx _ax_zax (19)
1,0

2 =3G9 (20)

Eyy = &2z = Vxy = Vyz = 0. (21)

Hamilton’s principle is used in order to derive equation of motion, where
B fff [T — (U —V)]dt =0 22)

Here U, V and T denote the strain energy, the potential energy of the external forces and the

kinetic energy, respectively. The strain energy is defined as
8U = [, 01 8€;dV = [, (0x S€xx + 0z 8Yx,)AV (23)

Stress resultants are given as

h/2 h/2
Nyy = bf h/2 Oxx(2)dz, My, = bf h/2 20xx(2) dz, Qxz = bf h/2 ksoy,(2)dz 24

where k; is the shear correction factor.

In terms of the stress resultants, the variation of the strain energy is

aé as
8U = [y (Nux 32 = My 22+ 0y 5 — Q1,69 dix (25)

The variation of the kinetic energy is

oT = f p(z)A%6 (6 f p(z)A auz (aautz> dx




L
=[5 Omo 2 —my 228 (55) dx + [ (my 52— my 596 (32) dae + [ (mp 208 (55 ) dx - (26)
where the mass moments of inertia are defined as
mo 1

=p [ w2 2 (P@)dz (27)
mz z?
The variation of the externally applied forces is defined as
sv = fff, (fou + qow + PZ22) av (28)
where f, q and P denote the axial distributed forces, the transverse distributed forces and the
axial concentrated force, respectively.

By substituting Egs. (25), (26) and (28) into Eq. (22), performing integration by parts, and
collecting coefficients of du, §¢p and dw ,the equations of motion for a Timoshenko beam are

obtained as

ONyxx 2%u

ou: ™ —moat2+m16t2+f—0 (29)
M,y 92 a2

8¢ Quz— 22 —m, 2t m It =0 (30)

Sw: 2z gy Bw . p2W 31)

W ox 052 74 axz (

Furthermore, the mathematical process just derived provides the corresponding boundary

conditions at x = 0 and x = L as

éu = either N,, =0 or u=0 (32)
8¢ = either My, =0 or ¢ =0 (33)
éw = either Q,, — PZ—: =0 or w=0 34)

Substituting Eqs. (19) and (20) into Egs. (14) and (15), and using (24), one the obtains stress

resultants

ou ap

92 Nxx
Nxx = (eao)z + (Axxa_ Bxx E)' (35)



Qus = (ea0)? 222 1 kA, — ), (36)

M, = (eqq)? LM 8 4 (Bex o2 — Dax 22). (37)

XX dx XX x

Here the extensional coefficient A,,, the extensional-bending coefficient B,,, the bending

coefficient D,., and the shear coefficient A,., are defined as

Axx _p (2 1
I2n)2y 2 (E(@)dz (38)

Dxx z*
=b [")* k,G(2)dz 39)

In view of Egs. (29)-(31), Egs. (35)-(37) may be written in displacement form as

a3 % a¢

Nex = (eag)?(mo oz —my —2- = 2y 4 (4, 2 — B, 2%, (40)
a3 a a3 0

Quz = (€ag)* (Mo 5— — =L+ P==) + ksAxy 52— ¢), (41)
a2 3¢ a3 a o

Moy = (eag)?(mo e = my o by e 4 L pOY gy 1 (B 24— D, 22 (42)

By substituting Egs. (40)-(42) into Egs. (29)-(31) the governing equations of motion with respect

to the displacements for a Timoshenko beam is derived as

92 a%¢p 92 9%¢
(Ax 28— B 22) = (1 — (eap)? 2 (my 3t — my 2 — ), (43)

ow 9%u 92¢
k sz Ox -k szd) xﬁ*’ Dxxm

a%u a*¢p a2¢ a%u
= (eap)® (m1 oxzoz 2 axzatZ) TG T M 44
92 92 92
Koflas (22 = 22) = (1 = (eag)? 2 (mo 22 — g + PL), (45)

Multiplying Egs. (43)-(45) by du, ¢ and Sdw respectively, and integrating over the beam

length, the weak form is derived as



(25— 5, 2258 — (1 e ) (o my 0 )

du 06 dp 96 92
( ksza 6¢+ksz¢8¢ xau a:"'Dxxai) aj)"’ (1_(8‘10)2@)( 16t2 5¢+
ow 068 92 92
My 2269 + kgy (—p 2 + 2220y 1 (1 — (eap)? ) (mo T2 6w + qow +
ow 9sw _
aa—)] = 0. (46)

In Eq. (46), by ignoring the time dependent terms, the weak form related to buckling is derived.

2.4 Finite element formulation

In Fig. 3 a five-node beam element, with four equally spaced nodes and one node at the middle is
shown. This finite beam element has ten degrees-of freedom containing three axial, three
rotational and four transverse displacements that are measured at the neutral axis. Accordingly,
the nodal displacement vector is given by

q = {u; Uy uz wy W, wz wy ¢y ¢ ¢3}T 47)
wi w, w, w,
A A A
GIG u | O w ] a % ‘s
N N
I L/3 I L/3 | L/3
][ L/Z] | | L/2
| 1

Fig. 3 Beam element with ten degrees of freedom.

The domain of the Timoshenko beam is discretized into a set of elements. The weak form is
applied to each of the discrete elements of length [, with domain U¢ = (x,, X.41). Assuming that
the solutions are given by u(x,t) = Y3, @;(x)e't, w(x,t) = Yi, P (x)et, dp(x,t) =
¥3 . 0;(x)e!t with no axial or transverse distributed forces, one obtains the general form of
Eq. (46) for all nodes of a single element, as

2
Jy (A 222 -B 52 20) + (1= (ean)? 55) (mow?e S — myw?08¢) +

Z
(ks Ayy 52 80 + kA, 000 — By 5222+ Dy 2222 + (1= (eag)? o) (—my 0?86 +

My w2060) + koA, (—0 2L + SL2Y

20y + (1= (eae)* 25) (mow?sp + P 2L %Y | 4y = .
(43)
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where @;(x), ¥;(x) and 0;(x) denote the shape functions. The axial displacement of a point
which is not on the neutral axis is a linear function of both u and ¢, and so the degrees of the
polynomials for ¢;(x) and 6;(x) must have equal order. Furthermore, because the shear strain is
a linear function of both the rotation ¢ and the slope of displacement, dw/dx, the degree of the
polynomial for ¥;(x) has to be one order higher than ¢;(x) and 0;(x) in order to satisfy
compatibility. One cubic polynomial for ¥;(x) and quadratic polynomials for ¢;(x) and 6;(x),
which are derived by the Lagrange interpolation formula, are chosen for consistency [29,51] and
given by

0,01 = (1= (1=20), [02,0,] =41 =), 3,051 = ~C(1 = 20),
Pi=01-0(1-30)1-30, ¥,=%0-0(1-3¢), ps=¢0-001-30),
=201 -30)(1-3¢). (49)

Equation of motion for a beam is given as

MU + (K - PK,)U =0 (50)

where the K, M and IT’p are the global stiffness, mass and geometric stiffness matrices,

respectively. U is the displacement vector. For free vibration examinations, the following
eigenvalue relation is deduced from Eq. 50

(K- w?*M)U =0 (51)

Also, for buckling analysis, by neglecting time dependent terms in Eq. 50, the following is
achieved

(K- P,K,)U=0 (52)

The abovementioned global matrices, are deduced by employing the elemental matrices which
are given below in a standard assembly procedure.

~ Koo kB 0 0 0] _ mit 0 m'3
K =]0 k2 k2| [K/]=|0 Kk 0. [MY]=| 0 m? o0 (53)
k31 k32 k33 0 0 0 m31 0 m33
where
k'™ = Ayykaar, k™ = =Byxkaar, k?* = Ay ke, k2 = keAyzkaa+DaxKaars
k?? = kAxzkppr, m™ = mow?keq+(eag)*mow?koqr, mt = —miw?keq(eag)*miw?koq,
m* = myw?kaq + (€a0)*myw?kaqr, m*? = mow?ky, + (eag)*mow?kpps,
klz)z = kpp1 + (€ag)?kppy. (54)

These matrices are explicitly defined in Appendix A.
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3. Numerical results

3.1 Validation

This section is composed of two parts. Section 3.1.1 provides validation for vibration and
buckling of a functionally graded Timoshenko beam and Section 3.1.2 presents a validation
study for the nonlocal elasticity formulation of the present model.

3.1.1 Free vibration and buckling of a functionally graded

Timoshenko beam

A convergence study is performed first for the proposed finite element. Unless otherwise stated,
a functionally graded beam composed of aluminum (Al) as the metal and alumina (Al,05) as the
ceramic is considered, in which E,, = 70GPa, p,, = 2702 kg/m3, v,, = 0.3, E, = 380GPa,
pe = 3960 kg/m3and v, = 0.3 [52]. For the buckling studies, in order to have a comparison
with Li & Batra [53], v,,, = v, = 0.23 is employed. It should be mentioned that all of the
references used for comparison in this section have assumed the coincidence of the cross-
sectional geometric and elastic centres. Tables 1 and 2 give the nondimensional natural
frequencies and critical buckling loads respectively, for functionally graded beams with various
boundary conditions for L/h = 5 and k = 1. The rapid convergence of the proposed element can
be seen in Tables 1 and 2. Furthermore, the results of the present element are in a good
agreement with the analytical and numerical values reported by [52], [53] and [30].

12



Tablel. Nondimensional frequency @ = w L2 /h+/pm/Em.

Mode Pinned-pinned

Number of elements
Simsek | Kahya & Turan
2 6 10 14 18 22 25 26 52] 30]

=N

3.9850 | 3.9710 | 3.9708 | 3.9708 | 3.9708 | 3.9708 3.9708 3.9708 | 3.9902 3.9708

2(12.1786 | 12.0971|12.0963 | 12.0962 | 12.0962 | 12.0962 | 12.0962 | 12.0962 - -

3115.5291 (14.4210|14.4140 | 14.4132 | 14.413 | 14.4129 | 14.4129 | 14.4129 - -

Fixed-fixed

Number of elements
Simsek | Kahya & Turan
2 6 10 14 18 22 25 26 [52] [(30]

—_

7.9927 | 7.9012 | 7.8999 | 7.8998 | 7.8997 | 7.8997 7.8997 7.8997 | 7.9252 7.8992

2|21.0862 | 18.3211|18.3044 | 18.3025 | 18.3021 | 18.3020 | 18.3019 | 18.3019 - -

3125.4111|25.2976 | 25.2963 | 25.2962 | 25.2962 | 25.2962 | 25.2962 | 25.2962 - -

Fixed-free

Number of elements
Simsek | Kahya & Turan
2 6 10 14 18 22 25 26 52] [30]

—_

1.4634 | 1.4628 | 1.4627 | 1.4627 | 1.4627 | 1.4627 1.4627 1.4627 | 1.4630 1.4627

2| 8.0267 | 7.9731 | 7.9718 | 7.9717 | 7.9717 | 7.9717 7.9717 7.9717 - -

3| 12.711 {12.7061|12.7060 | 12.7060 | 12.7060 | 12.7060 | 12.7060 | 12.7060 - -
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Table 2. Nondimensional buckling load P = P x 12L%/E,,h3.

Pinned-pinned

Number of elements

. Kahya
Mode| 2 6 10 14 18 22 30 38 42 43 |Hi&Batal o n
[63]
[30]
1 | 24.8586 | 24.6894 | 24.6874 | 24.6871 | 24.6871 | 24.6871 | 24.6871 | 24.6871 | 24.6871 | 24.6871 | 24.687 |24.6871
2 | 92.9300 | 80.5933 | 80.5103 | 80.5008 | 80.4987 | 80.4981 | 80.4977 | 80.4976 | 80.4975 | 80.4975 | - ;
3 | 168.5654 |139.0647 | 138.5501 | 138.4888 | 138.4747 | 138.4702 | 138.4676 | 138.4670 |138.4668 | 138.4668| - ;
Fixed-fixed
Number of elements
. Kahya
Mode| 2 6 10 14 18 22 30 38 42 43 |Hi&Batale
531 [*
1 | 81.2963 | 80.5934 | 80.5104 | 80.5009 | 80.4987 | 80.4981 | 80.4977 | 80.4976 | 80.4975 | 80.4975 | 80.498 |80.4983
2 | 156.8757 |126.4330 | 126.0977 | 126.0571 | 126.0478 | 126.0448 | 126.0430 | 126.0426 |126.0425|126.0425| - ;
3 | 295.4300 |186.8627 | 185.3840 | 185.1968 | 185.1532 | 185.1390 | 185.1308 | 1851287 | 1851282 |1851282| - ;
Fixed-free
Number of elements
. Kahya
Mode| 2 6 10 14 18 22 30 38 42 43 |Hi&Batajg o
[63]
[30]
1 | 65459 | 6.5426 | 6.5426 | 6.5426 | 65426 | 6.5426 | 6.5426 | 6.5426 | 6.5426 | 6.5426 | 6.6002 | 6.5426
2 | 521717 | 50.7734 | 50.7544 | 50.7522 | 50.7517 | 50.7516 | 50.7515 | 50.7515 | 50.7515 | 50.7515 | - ;
3 | 127.2740 |110.7389 | 110.5024 | 110.4749 | 110.4686 | 110.4666 | 110.4655 | 110.4652 |110.4652|110.4652| - :

Another comparison is made for the nondimensional fundamental frequencies and critical
buckling loads of FGBs with various boundary conditions for L/h =5 in Tables 3 and 4,
respectively. The results of the present model are compared to the results for different higher-
order beam theories such as parabolic shear deformation theory (PSDBT) [52], higher-order
shear deformation theory (HSDBT) [54], Reddy-Bickford beam theory (RBT) [55], a quasi-3D
theory [56] and first order shear deformation theory (FSDBT) [15]. Note that the results obtained
by Simsek [52] and Nguyen [54] are based on analytical solutions, while the rest of the
investigations are performed by the finite element method (Vo et al. [55], Vo et al. [56] and
Kahya & Turan [30]). According to these tables, the proposed finite element model is in a good
agreement with the two analytical and three finite element references. These two tables complete
the validation study for vibration and buckling response of a local functionally graded beam.
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Table 3. Comparison of the nondimensional fundamental frequencies @ = w L?/h \/ pp/Epm of
functionally graded beams with various boundary conditions and power-law exponents (L/h =
5).

Pin-pin
PSDBT HSDBT RBT Quasi-3D FSDBT FSDBT
k Simsek Nguyenetal. | Voetal Vo et al. Kahya &Turan Present
[52] [54] [55] [56] [30]
0 5.15274 5.1528 5.1528 5.1618 5.22193 5.1525
0.5 4.41108 4.4102 4.4019 4.4240 4.46926 4.2312
1 3.99042 3.9904 3.9716 4.0079 4.04967 3.9708
2 3.62643 3.6264 3.5979 3.6442 3.69360 3.7051
5 3.40120 3.4009 3.3743 3.4133 3.48818 3.3605
10 3.28160 3.2815 3.2653 3.2903 3.36434 3.1307
il 2.67732 - - - 2.71328 2.6771
Fixed-fixed
PSDBT HSDBT RBT Quasi-3D FSDBT FSDBT
k Simsek Nguyen et al. Vo et al. Vo et al. Kahya &Turan Present
[52] [54] [53] [56] [30]
0 10.0705 10.0726 10.0678 10.1851 10.08647 9.9975
0.5 8.7467 8.7463 8.7457 8.8641 8.75479 8.4251
1 7.9503 7.9518 7.9522 8.0770 7.98414 7.8998
2 7.1767 71776 7.1801 7.3039 7.27155 7.3228
5 6.49349 6.4929 6.4961 6.5960 6.71481 6.5579
10 6.16515 6.1658 6.1662 6.2475 6.37413 6.0695
0 5.23254 - - - 5.24085 5.1946
Fixed-free
PSDBT HSDBT RBT Quasi-3D FSDBT FSDBT
k Simsek Nguyen et al. Vo et al. Vo et al. Kahya &Turan Present
[52] [54] [55] [56] [30]
0 1.89523 1.8957 1.8952 1.9055 1.90772 1.8944
0.5 1.61817 1.6182 1.6180 1.6313 1.62865 1.5547
1 1.46328 1.4636 1.4633 1.4804 1.47394 1.4627
2 1.33254 1.3328 1.3326 1.3524 1.34469 1.3674
5 1.25916 1.2594 1.2592 1.2763 1.27515 1.2401
10 1.21834 1.2187 1.2184 1.2308 1.26363 1.1540
0 0.98474 - - - 0.99124 0.9843
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Table 4. Comparison of the nondimensional critical buckling loads P = P X 12L?/E,,h® of

functionally graded beams with various boundary conditions and power-law exponents (L/h =
5).

Pin-pin
HSDBT RBT Quasi-3D FSDBT FSDBT
k | Nguyen et al. Vo et al. Vo et al. Kahya &Turan Present
[54] [59] [56] [30]
0 48.8406 48.8401 49.5901 48.5907 48.8352
0.5 32.0013 32.0094 32.5867 31.8238 29.6502
1 24.6894 24.6911 25.2116 24.5815 24.6871
2 19.1577 19.1605 19.6124 19.1617 20.1763
5 15.7355 15.7400 16.0842 15.9417 15.4179
10 14.1448 14.1468 14.4116 14.3445 12.8853
0 - - - 8.95100 8.9959
Fixed-fixed
HSDBT RBT Quasi-3D FSDBT FSDBT
k | Nguyen et al. Vo et al. Vo et al. Kahya &Turan Present
[54] [55] [56] [30]

0 154.5610 154.5500 160.1070 151.9430 154.3511
0.5 103.7167 103.7490 107.6550 101.7439 97.0980
1 80.5940 80.6087 83.6958 79.3903 80.4975
2 61.7666 61.7925 64.1227 61.7449 65.0569
5 47.7174 47.7562 49.3856 49.5828 48.8738
10 41.7885 41.8042 43.1579 43.5014 40.5455
© - - - 27.9896 28.4331
Fixed-free

HSDBT RBT Quasi-3D FSDBT FSDBT

k | Nguyen et al. Vo et al. Vo et al. Kahya &Turan Present

[54] [53] [56] [30]

0 13.0771 13.0771 13.0993 13.0594 13.0769

0.5 8.5000 8.5020 8.5469 8.4899 7.8469
1 6.5427 6.5428 6.6067 6.5352 6.5426

2 5.0977 5.0979 5.1680 5.0981 5.3667

5 4.2772 4.2776 4.3290 4.2926 4.1245

10 3.8820 3.8821 3.9121 3.8970 3.4556
© - - - 2.40570 2.4089

3.1.2 Free vibration and buckling of a homogeneous nanobeam

using nonlocal elasticity

In this section, the wvalidation procedure continues by comparing the nondimensional
fundamental natural frequencies and critical buckling loads of homogenous nonlocal beams with
four nonlocal beam theories including the Euler-Bernoulli (EBT), the first order shear
deformation theory (FSDBT), the Reddy beam theory (RBT) and the Levinson beam theory
(LBT). The results from the proposed finite element model are compared to the analytical
solutions of Reddy [57] in Tables 5 and 6 with different nonlocal parameters. The material
properties are identical to those given by Reddy [57], that is L = 10m, E = 30 X 10°Pa, v =
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0.3, p = 1kg/m3. Although, the proposed beam element is based on a simpler beam theory
compared to RBT and LBT, there are very accurate estimates for the fundamental natural
frequencies and the critical buckling loads.

Table 5. Non-dimensional fundamental natural frequencies (& = wTL \/ p/E) of simply supported
beams.
L/h (eay)?[m?] Theory
EBT FSDBT? RBT LBT FSDBT?
Reddy[57] | Reddy[57] | Reddy[57] | Reddy[57] | Present
0 9.8696 9.8683 9.8683 9.8685 9.8679
0.5 9.6347 9.6335 9.6335 9.6337 9.6331
1.0 9.4159 9.4147 9.4147 9.4149 9.4143
1.5 9.2113 9.2101 9.2101 9.2103 9.2097
2.0 9.0195 9.0183 9.0183 9.0185 9.0180
100 2.5 8.8392 8.8380 8.8380 8.8382 8.8377
3.0 8.6693 8.6682 8.6682 8.6683 8.6678
3.5 8.5088 8.5077 8.5077 8.5079 8.5073
4.0 8.3569 8.3558 8.3558 8.3560 8.3555
4.5 8.2129 8.2118 8.2118 8.2120 8.2115
5.0 8.0761 8.0750 8.0750 8.0752 8.0747

? shear correction factor K, = 5/6.

Table 6. Non-dimensional critical buckling load (P = PL?/EI) of simply supported beams.

L/h (eay)?[m?] Theory

EBT FSDBT? RBT LBT FSDBT?
Reddy[57] | Reddy[57] | Reddy[57] | Reddy[57] Present

0 9.8696 9.8671 9.8671 9.8675 9.8670

0.5 9.4055 9.4031 9.4031 9.4035 9.3989

1.0 8.9830 8.9807 8.9807 8.9811 8.9663

1.5 8.5969 8.5947 8.5947 8.5950 8.5661

2.0 8.2426 8.2405 8.2405 8.2408 8.1956

100 2.5 7.9163 7.9143 7.9143 7.9146 7.8520
3.0 7.6149 7.6130 7.6130 7.6133 7.5331

3.5 7.3356 7.3337 7.3337 7.3340 7.2366

4.0 7.0761 7.0743 7.0743 7.0746 6.9603

4.5 6.8343 6.8325 6.8325 6.8328 6.7027

5.0 6.6085 6.6068 6.6068 6.6070 6.4620

* shear correction factor K; = 5/6.

For further validation, Table 7 compares the fundamental frequencies of the proposed nonlocal
beam element with three numerical investigations including those of Pradhan and Phadikar [58]
based on differential quadrature method (DQM) and Phadikar and Pradhan [22], and Aria and
Biglari [59] using the finite element method. Here, the fundamental natural frequencies are
tabulated for various boundary conditions and three modes of vibration. It can be seen that there
is a good agreement between the results of the proposed finite element model and the literature.
Another validation for the buckling of nonlocal beams is performed in Table 8, where the critical
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buckling loads for different boundary conditions are given and compared with the present study.
This table also shows satisfactory results for the proposed element and hence the validation
procedure of this study is achieved.

Table 7. Non-dimensional fundamental natural frequencies (& = %L \ p/E) for different
boundary conditions (L = 1m,E = 1Pa,I = 1m* A = 1m?).

DaM FEM FEM .

(eap)?[m?]| BOUNdary Mode| o oy one, Phadikar& Aria& "G

condition | No. | oy gikar [58] | Pradhan [22] |Biglari (present)

glari [59]

Pinned- |, 9.8696 9.8697 9.8696 9.8698
pinned

2 39.4784 30.4848 | 39.4784 39.4790

3 88.8249 88.8984 | 88.8264 88.8346

Fixed- | 15.4182 15.4186 - 15.4180
0 pinned

2 49.9648 49.9779 : 49.9659

3 | 104.2471 104.3637 ; 104.2608

Fixed-fixed| 1 22.3733 203745 | 22.3722 22.3732

2 616728 61.6973 | 61.6728 61.6750

3 | 120.9021 121.0840 | 120.9033 | 120.9238

Pinned- | 2.9936 2.9936 2.9936 2.9935
pinned

2 6.2051 6.2061 6.2051 6.2051

3 9.3720 9.379 9.3720 9.3730

Fixed- | 4 4.3182 4.3184 - 4.3182
1 pinned

2 7.6211 7.6238 ; 7.6214

3 10.8302 10.8448 ; 10.8317

Fixed-fixed| 1 6.0566 6.0574 6.0565 6.0566

2 8.8954 8.9011 8.8956 8.8960

3 12.4525 124822 | 12.4530 12.4567

* shear correction factor K; = 5/6.

Table 8. Non-dimensional critical buckling load (P = PL?/EI) for different boundary conditions

(L =1m,E = 1Pa,l = 1m* A = 1m?).

DQM FEM .
(eap)?[m?] | BOUN9AY | praghang Phadikaré | ':Es“gnt)
Phadikar [58] Pradhan [22] P

0 Pinned- 9.8696 9.8747 9.8696
pinned

Fixed-free 2.4749 2.4675 2.4674

Fixed- 20.1907 20.2322 20.1908
pinned

Fixed-fixed 39.4784 39.7753 39.4797

1 Pinned- 0.9080 0.9080 0.9074
pinned

Fixed-free 0.7115 0.7116 0.7113

Fixed- 0.9528 0.9259 0.9521
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pinned
Fixed-fixed 0.9753 0.9755 0.9746

? shear correction factor K, = 5/6.

3.2 Results and discussion

To examine the importance of utilizing nonlocal FGMs on the free vibration and buckling
responses of Timoshenko beams, here an FG beam is considered with the same material
properties as Section 3.1.1. In this section the position of the neutral axis is calculated in order to
determine elastic center. The natural frequencies and critical buckling loads are analyzed for
different through thickness material distributions of FG beams and various nonlocal parameters.

The nondimensional fundamental natural frequencies of FG nanobeams for various nonlocal
parameters and pinned-pinned, fixed-free, fixed-pinned and fixed-fixed boundary conditions are
given in Tables 9-12. The results are tabulated for pure aluminum Al (k = 0), pure alumina Al, 05
(k - ) and for FGMs, which are combinations of these two materials. It can be realized from
Tables 9-12 that increasing the power law exponent and also the nonlocal parameter causes a
reduction in the frequency for all types of boundary conditions. Specifically, for a constant
power law exponent (i.e. k = 0) with L/h = 20 by changing nonlocal parameter from 0 m? to
5 m?, the nondimensional natural frequency decreases by 5.6%, 2.7%, 6.5% and 6.8% for
pinned-pinned, fixed-free, fixed-pinned and fixed-fixed boundary conditions, respectively. It is
observed that, for the fixed-fixed BC, the variation of the nonlocal parameter has the most
influence on the variation of natural frequency, while this influence is the lowest for the fixed-
free boundary condition. Also, for all of the nonlocal parameters with L/h = 20,100, by changing
power law exponent from 0 to o, the nondimensional natural frequency decreases by 48% for
all types of BCs (pinned-pinned, fixed-free, fixed-pinned and fixed-fixed). This highlights an
important fact regarding the relation between the nonlocal parameter and the boundary
conditions; the variation of the natural frequencies of an FGM nanobeam with nonlocal
parameter depends on the boundary conditions while its variation with the power law exponent is
the same for different types of BCs.

Table 9. Nondimensional fundamental natural frequencies of FGBs with varying nonlocal
parameter for a pinned-pinned nanobeam.

(eap)’[m*] | k=0 | k=01]k=02]k=05] k=1 ] k=2 | k=5 [ k=10 [ k>
L/h =20
0 5.4603 [ 5.1841 | 5.0233 | 4.7506 | 4.5336 | 11.7405 | 12.6243 | 9.2014 | 2.8371
1 5.3941 | 51213 | 4.9624 | 4.693 | 4.4787 | 11.5983 | 12.4715 | 9.0900 | 2.8028
2 5.3303 [ 5.0607 | 4.9037 | 4.6375 | 4.4257 | 11.4613 | 12.3241 | 8.9825 | 2.7696
3 5.2688 | 5.0023 | 4.8471 | 4.584 | 4.3746 | 11.3289 | 12.1817 | 8.8788 | 2.7376
4 5.2093 | 4.9458 | 4.7923 | 4.5322 | 4.3252 | 11.2011 | 12.0443 | 8.7785 | 2.7067
5 5.1517 | 4.8912 | 4.7394 | 4.4822 | 4.2775 | 11.0775 | 11.9113 | 8.6816 | 2.6768
L/h =100
0 5.4824 | 5.2039 | 5.0421 | 4.7685 | 4.5515 | 56.7696 | 61.7651 | 44.4031 | 2.8486
1 5.4797 | 5.2014 | 5.0396 | 4.7661 | 4.5493 | 56.7416 | 61.7346 | 44.3812 | 2.8472
2 5.4770 | 5.1988 | 5.0372 | 4.7638 | 4.5471 | 56.7137 | 61.7042 | 44.3593 | 2.8458
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3 5.4743 | 51962 | 5.0347 | 4.7614 | 4.5448 | 56.6858 | 61.6738 | 44.3375 | 2.8444
4 5.4716 | 5.1937 | 5.0322 | 4.7591 | 4.5426 | 56.6579 | 61.6435 | 44.3157 | 2.843
5 5.4689 | 5.1911 | 5.0297 | 4.7568 | 4.5404 | 56.6301 | 61.6132 | 44.2939 | 2.8416

Table 10. Nondimensional fundamental natural frequencies of FGBs with varying nonlocal
parameter for a fixed-free nanobeam.

(eag)?[m?] | k=0 | k=01]k=02[k=05] k=1 ] k=2 | k=5 [ k=10 [ k>

L/h = 20
0 1.9495 | 1.8507 | 1.7932 | 1.696 | 1.6188 | 6.4382 | 6.8303 [ 5.0543 [ 1.013
1 1.9383 | 1.8401 | 1.7829 | 1.6862 | 1.6095 | 6.4163 | 6.8075 | 5.0371 | 1.0071
2 1.9273 | 1.8296 | 1.7728 | 1.6766 | 1.6003 | 6.3946 | 6.7849 | 5.0201 | 1.0014
3 1.9164 | 1.8193 | 1.7628 | 1.6672 | 1.5913 | 6.3732 | 6.7625 | 5.0032 | 0.9958
4 1.9057 | 1.8091 | 1.7529 | 1.6579 | 1.5824 | 6.3519 | 6.7404 | 4.9865 | 0.9902
5 1.8952 | 1.7991 | 1.7433 | 1.6487 | 1.5736 | 6.3308 | 6.7184 | 4.9699 | 0.9847

L/h =100
0 1.9533 | 1.854 [ 1.7964 | 1.6989 | 1.6216 | 29.0404 [ 31.4625 | 22.7287 | 1.0149
1 1.9528 | 1.8536 | 1.796 | 1.6985 | 1.6212 | 29.0367 | 31.4586 | 22.7259 | 1.0147
2 1.9524 | 1.8532 | 1.7956 | 1.6981 | 1.6209 [ 29.0331 [ 31.4546 | 22.723 | 1.0144
3 1.9519 | 1.8527 | 1.7951 | 1.6977 | 1.6205 | 29.0294 | 31.4507 | 22.7201 [ 1.0142
4 1.9514 | 1.8523 | 1.7947 | 1.6973 | 1.6201 [ 29.0257 | 31.4467 | 22.7173 | 1.014
5 1.951 | 1.8519 [ 1.7943 | 1.6969 | 1.6197 [29.0221 | 31.4428 | 22.7144 | 1.0137

Table 11. Nondimensional fundamental natural frequencies of FGBs with varying nonlocal
parameter for a fixed-pinned nanobeam.

(eap)’[m?] | k=0 [k=01]k=02]

k=05] k=1 | k=2 | k=5 [ k=10 | k>

L/h =20

0 8.4813 | 8.0591 | 7.8176 | 7.4176 | 7.1106 | 13.1859 | 13.8712 | 10.3556 | 4.4068
1 8.3621 | 7.9458 | 7.7077 | 7.3134 | 7.0108 | 13.0095 | 13.6888 | 10.2168 | 4.3449
2 8.2476 | 7.837 | 7.6023 | 7.2133 | 6.915 | 12.8397 | 13.5132 | 10.0833 | 4.2854
3 8.1377 | 7.7325 | 7.5009 | 7.1172 | 6.8229 | 12.6762 | 13.3439 | 9.9546 | 4.2283
4 8.0319 | 7.632 | 7.4034 | 7.0247 | 6.7344 | 12.5186 | 13.1807 | 9.8306 | 4.1733
5 7.9301 | 7.5352 | 7.3095 | 6.9357 | 6.6491 | 12.3665 | 13.0231 | 9.7109 | 4.1204
L/h =100
0 8.5626 | 8.1314 | 7.8859 | 7.4812 | 7.1728 | 58.1436 | 62.9689 | 45.5078 | 4.4491
1 8.5576 | 8.1268 | 7.8814 | 7.4769 | 7.1687 | 58.1143 | 62.9372 | 45.4849 | 4.4465
2 8.5527 | 8.1221 | 7.8769 | 7.4726 | 7.1646 | 58.085 | 62.9057 | 45.4619 | 4.444
3 8.5478 | 8.1174 | 7.8724 | 7.4683 | 7.1605 | 58.0557 | 62.8741 | 45.439 | 4.4414
4 8.5429 | 8.1128 | 7.8679 | 7.464 | 7.1564 | 58.0265 | 62.8426 | 45.4161 | 4.4389
5 8.538 | 8.1081 | 7.8633 | 7.4598 | 7.1523 | 57.9974 | 62.8112 | 45.3933 | 4.4363

Table 12. Nondimensional fundamental natural frequencies of FGBs with varying nonlocal
parameter for a fixed-fixed nanobeam.

(eap)?[m?]] k=0 [ k=01]k=02]k=05] k=1 | k=2 | k=5 [ k=10 [ koo
L/h = 20
0 12.2201 [ 11.6121 [ 11.2563 | 10.6496 | 10.1633 | 14.7594 | 15.2026 | 11.6303 | 6.3495
1 12.0372 [ 11.4382 | 11.0877 | 10.49 | 10.0109 | 14.5456 | 14.9888 | 11.4615 | 6.2545
2 11.862 | 11.2717 | 10.9262 | 10.3371 | 9.865 | 14.3403 | 14.7832 | 11.2994 | 6.1635
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11.694 | 11.112 | 10.7713 | 10.1906 | 9.7251 | 14.1427 | 14.5854 | 11.1434 | 6.0762

8
4 11.5328 | 10.9586 | 10.6227 | 10.0499 | 9.5908 | 13.9526 | 14.3947 | 10.9933 | 5.9924
5 11.3778 | 10.8113 | 10.4798 | 9.9147 | 9.4618 | 13.7694 | 14.2109 | 10.8487 | 5.9119

L/h =100

12.4215 | 11.791 | 11.4246 | 10.8047 | 10.3132 | 59.5421 | 64.1903 | 46.6357 | 6.4541

12.4138 | 11.7837 | 11.4175 | 10.7981 | 10.3068 | 59.5114 | 64.1575 | 46.6116 | 6.4502

12.4062 | 11.7765 | 11.4105 | 10.7914 | 10.3005 | 59.4808 | 64.1247 | 46.5876 | 6.4462

12.3986 | 11.7693 | 11.4035 | 10.7848 | 10.2942 | 59.4502 | 64.092 | 46.5636 | 6.4423

12.391 | 11.7621 | 11.3966 | 10.7782 | 10.2879 | 59.4196 | 64.0593 | 46.5396 | 6.4383

Q| (WIN| =[O

12.3834 | 11.7549 | 11.3896 | 10.7716 | 10.2816 | 59.3891 | 64.0267 | 46.5157 | 6.4344

The nondimensional critical buckling loads of FG nanobeams for different nonlocal parameters
and pinned-pinned, fixed-free, fixed-pinned and fixed-fixed boundary conditions are reported in
Tables 13-16. Once again, the material properties are given in Section 3.1.1. The results are
calculated for pure aluminum Al (k = 0), pure alumina Al,03 (k — o) and an FGM which is
composed of these two materials. Tables 13-16 show that increasing the power law exponent and
the nonlocal parameter causes a reduction in the critical buckling load for all types of boundary
conditions. For example, for a constant power law exponent (i.e. k = 0) with L/h = 20, by
changing the nonlocal parameter from 0 m? to 5 m?, the nondimensional critical buckling load
decreases by 86%, 45%, 93% and 96% for the pinned-pinned, fixed-free, fixed-pinned and
fixed-fixed boundary conditions, respectively. Similar to the vibration behavior, for a fixed-fixed
BC, the variation of the critical buckling load is most sensitive to the nonlocal parameter, while it
is least sensitive for the fixed-free boundary condition. On the other hand, for a constant nonlocal
parameter (i.e. (eag)? = 0), by changing power law exponent from 0 to oo , the nondimensional
critical buckling load decreases by 81.6% for all four kinds of BCs (pinned-pinned, fixed-free,
fixed-pinned and fixed-fixed) examined in this paper. Hence, the variation of the critical
buckling load of an FGM nanobeam with nonlocal parameter is dependent on the boundary
conditions while its variation with the power law exponent is the same for all types of BCs.

Table 13. Nondimensional critical buckling load of FGBs with varying nonlocal parameter for a
pinned-pinned nanobeam.

(eag)?[m?]| k=0 |k=01|k=02|k=05| k=1 k=2 k=5 k=10 ’ioo
L/h =20
53.253 | 47.046 | 43.383 | 37.132 | 32.236 | 26.6616 | 18.9054 | 15.0478 | 9.810
g 7 4 6 3 6 1
1 36.015 | 34.134 | 32.494 | 28.639 | 24.643 | 19.7942 | 13.1382 | 9.9832 | 6.634
4 3 6 9 2 5
5 18.045 | 17.103 | 16.281 | 14.350 | 12.347 | 9.9177 6.5828 5.002 3.324
4 5 2 6 2
3 12.038 | 11.409 | 10.861 | 9.5734 | 8.2374 | 6.6164 4.3916 3.337 2.217
6 9 9 7
4 9.0321 | 8.5604 | 8.1492 | 7.1826 | 6.1802 | 4.964 3.2948 2.5036 | 1.663
8
5 7.2272 | 6.8498 | 6.5208 | 5.7473 | 4.9452 3.972 2.6364 2.0033 | 1.331
3
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L/h = 100
0 53.564 | 47.301 | 43.611 | 37.321 | 32.402 | 26.8019 | 19.0112 | 15.1368 | 9.867
4 2 4 2 2
1 53511 | 47.254 | 43.568 | 37.284 | 32.370 | 7575.893 | 5307.054 | 3970.052 | 9.857
1 8 2 6 2 i 1 5 5
2 53.458 | 47.208 | 43.525 | 37.247 | 32.338 | 4107.723 | 2784.889 | 2141.130 | 9.847
4 2 2 8 3 4 8 1 8
3 53.405 | 47.161 | 43.482 | 37.211 | 32.306 | 2784.43 | 1887.744 | 1451.370 | 9.838
6 6 3 1 4 1 1
4 53.353 | 47.115 | 43.439 | 37.174 | 32.274 | 2105.990 | 1427.786 | 1097.736 | 9.828
1 4 4 6 2 1 8 3
5 53.300 | 47.068 | 43.396 | 37.137 | 32.242 | 1693.388 | 1148.056 | 882.67 | 9.818
3 i 6 i 8 6 6

Table 14. Nondimensional critical buckling load of FGBs with varying nonlocal parameter for a
fixed-free nanobeam.
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1693.4318

1148.0879

882.6919

2.4642

Table 15. Nondimensional critical buckling load of FGBs with varying nonlocal parameter for a
fixed-pinned nanobeam.
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Table 16. Nondimensional critical buckling load of FGBs with varying nonlocal parameter for a

fixed-fixed nanobeam.
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38.6697

To show the role of material distribution and size effects on the natural frequency and buckling
load of nonlocal FG Timoshenko beams graphically, the following properties are considered, as
given by Reddy [60]: E; = 14.4GPa, E, = 1.44GPa, p; = 12.2 X 103 kg/m3, p, = 1.22 X
103kg/m3, h = 17.6 X 107°m, b = 2h and L = 20h. Also, it is assumed that k,G; = E;/3.16,
as given by [60] , where i = 1,2 denotes the two different materials.

The effect of the nonlocal parameter and the power-law exponent k on the natural frequencies of
the pinned-pinned FG beam are examined with Timoshenko beam theory, and the first four
natural frequencies are plotted in Fig. 4 for both local and nonlocal [(ea,)? = 0.1 nm?] cases and
various power-law exponents. The prominent influence of through-thickness grading of the FGM
on the natural frequencies is observed and consequently this fact could be employed to optimise
the natural frequencies for design purposes. The influence of nonlocality is more significant
when considering higher-order frequencies.

The effect of the nonlocal parameter and the power-law exponent k on the critical buckling load
of the pinned-pinned FG beam is examined with Timoshenko beams theory, and the first four
buckling modes are plotted in Fig. 5 considering both local and nonlocal [(ea,)? = 0.1 nm?] cases
and various power-law exponents. It is clear that, adjacent to the phase material 1, which has
higher Young’s modulus and density, the nondimensional critical bucking load changes quickly
with varying exponent k, while the slope of the buckling load with respect to the exponent £,
becomes almost zero as we approach material 2. Also, the effect of nonlocality will be more
prominent when considering higher-order buckling modes.
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Figure 4. Effect of power-law index and nonlocality parameter on the first four nondimensional natural frequencies

(@ = wl?\/p,A/E,I) of a simply supported FGM beam with L/h = 100.
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Figure 5. Effect of power-law index and nonlocality parameter on the first four nondimensional critical buckling loads
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) of a simply supported FGM beam with L/h = 100.

4. Conclusion

Based on the estimated neutral axis, a size-dependent 5-noded Timoshenko beam model is
presented in the framework of strain-driven nonlocal elasticity theory for analyzing the free
vibration and buckling of FGBs, with a through-thickness power-law variation. Both strain-
driven and stress-driven formulations are discussed. By using Hamilton’s principle, the
governing equations and corresponding boundary conditions for FG Timoshenko beams are
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derived. The Timoshenko beam model includes a nonlocal parameter introduced to incorporate
the importance of the nonlocal elastic stress field. Verification of the proposed model is
performed in two stages including a validation procedure for an FG beam with different power
law exponents and another one for a nonlocal homogeneous beam with various nonlocal
parameters. Based on the results, the proposed model is able to accurately predict the
fundamental natural frequencies and the critical buckling loads of functionally graded
nanobeams for different BCs with a low computation effort. The significant effect of through-
thickness material distribution of the FGM on the natural frequencies is seen. As a result, this
fact can be used to optimise the natural frequencies for design purposes. Also, the effect of
nonlocality is more prominent for higher-order frequencies and buckling loads.
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where L is length of the beam element.

Data Availability

All of the results given in the paper are simulated based on the proposed finite element model.
The paper contains full details of the developed finite element and the geometry and material
properties for the examples. Hence, there is no raw data, and data in the figures and tables maybe

be reproduced by coding the described model.
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