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Abstract

By investigating path-distribution dependent stochastic differential equations, the
following type of nonlinear Fokker-Planck equations for probability measures (fu):>0
on the path space € := C([—r, 0]; R?), is analyzed:

61}/.L(t) = L;,ut:utv > 07
where 1u(t) is the image of j; under the projection € > ¢ — £(0) € R?, and

d d
1 ok ) .
Lt,u(ﬁ) = 5 Z alj(tagau)ai + Zbl(ufvu)ia t Z 075 € %a/'b € ‘@6)

by £0:%0), = e (0);

Under reasonable conditions on the coefficients a;; and b;, the existence, uniqueness,
Lipschitz continuity in Wasserstein distance, total variational norm and entropy, as
well as derivative estimates are derived for the martingale solutions.
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1 Introduction

In this paper, we investigate nonlinear PDEs for probability measures on the path space
using path-distribution dependent SDEs. To explain the motivation of the study, let us
start from the following classical PDE on Z(R%), the set of probability measures on R?
equipped with the weak topology:

(1.1) Ou(t) = L*pu(t). t >0,

for a second-order differential operator

Zawaa +Zb<‘9@,

zgl

where a = (a;;) : R? - R*®@ R? and b = (b;) : R? — R? are locally integrable. (1.1) is just
the (linear) Fokker—Planck—Kolmogorov equation (FRKE) associated to the operator L in
the sense of [4]. We call u € C(R,; 2(R?)) a solution of (1.1), if

du(t) = d d (Lf)dpu( 0 C(RY).
[ ity = [ o)+ [as [ wnaue), 120 e cp@y

To construct and analyze solutions of (1.1) using the time marginal distributions of Markov
processes as proposed by A. N. Kolmogorov [15], K. 1t6 developed the theory of stochastic
differential equations (SDEs), see e.g.[14]. Let o be a matrix-valued function such that
a = oo, and let W (t) be a d-dimensional Brownian motion. Consider the following 1t6 SDE

(1.2) AX (1) = b(X (1))t + (X (£))dW (2).

By Ito’s formula, the time marginals p(t) := Zx ) = the law of X (t) for t > 0, solve the
equation (1.1). This enables one to investigate FPKEs using a probabilistic approach.

Obviously, (1.1) is a linear equation. In applications, many important PDEs for probabil-
ity measures (or probability densities) are nonlinear, see, for instance, [7, 8,9, 11, 12, 23] and
references within for the study of Landau type equations. Such PDEs are also of Fokker—
Planck type, but are non-linear (see Sections 6.7 and 9.8 (v) in [4]). To analyze non-
linear FPKEs for probability measures, McKean-Vlasov equations are introduced by using
SDEs with coefficients depending on the distribution of the solution Consider the following
distribution-dependent version of (1.2):

(1.3) dX(t) = b(t, X(t), Lxw)dt + o(t, X(t), Lxu))dW (1),

where

b:Ry xR x Z(R?) = R, o:Ry xR x Z(R?) — R @ R?

are measurable. For any ¢t > 0 and p € 2(R?), consider the second order differential

operator
d
Zaa Jis(t, -, 1)0:0; +Zb (t,, ).
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Under reasonable integrability conditions on ¢ and b, by Ito’s formula we see that for a
solution X (t) of (1.3), u(t) := ZLx) solves the nonlinear FPKE

(1.4) du(t) = L ,@m(t)

in the sense that

/Rdfdu(t)Z/ fdu(0 /ds/ Lo f)du(s), t>0,f € CF(RY.

There are plentiful references on this type SDEs but most are concerning the existence,
uniqueness and moments estimates, see [21, 16] and references within. In the recent paper
[31], regularity estimates on the distribution, including the exponential convergence and
gradient-Harnack type inequalities, are presented. See also [5, 8, 9, 10] for the study of
ergodicity of distribution dependent SDEs.

In the above two situations, the stochastic systems are Markovian (or memory-free); i.e.
the evolution of the system does not depend on its past. However, many real-world models,
in particular those arising from mathematical finance and biology, are with memory, so that
the associated evolution equations are path dependent, see, for instance, the monograph
[17] for specific models. See also [2, 3, 13] and references within for the study
of regularities and ergodicity for the associated FPKEs (i.e. the distribution of
the functional solutions).

In this paper, we investigate nonlinear FPKEs on the path space by using path-distribution
dependent SDEs. In Section 2, we introduce the framework of the study and the main re-
sults on nonlinear FPKEs for probability measures on path space. To prove these results,
we investigate the corresponding path-distribution dependent SDEs in Sections 3-5, where
strong/weak existence and uniqueness of solutions as well as Harnack type inequalities are
derived respectively. We will mainly follow the ideas of [31], but substantial additional efforts
have to be made in order to generalize the results in there to the case, where the coefficients
do not only depend on the time marginals, but are also on the distribution of the path.

2 Nonlinear PDEs for measures on path space

Throughout the paper, we fix ry > 0 and consider the path space € := C([—r,0]; R?)
equipped with the uniform norm |[{||oc := supge(_,,.q 1€(0)]- Let P be the class of proba-
bility measures on % of finite second-order moment, i.e. u(| -|1%) == [, [|€]]Zn(dE) < oo.
Then £Y is a Polish space under the Wasserstein distance

Wa(u,v) = inf ( / Cgl!f—nHioW(déldn))Q,

WSAVRY)

where € (u,v) denotes the class of couplings for y and v. It is well known that (225, W)
is a Polish space and the Wy-metric is consistent with the weak topology. We will study
non-linear FPKEs on 277 .



Let
(2.1) bR xEx Py R 0: R xE x ZY - RI@R?

be measurable. For any t > 0,y € ¢, consider the following differential operator Ly, from
C5°(R?) to the set of all Z(%)-measurable functions: for f € C5°(RY),

d d

Y (00"t € m) (D0, F)(E(0) + D bi(t, & w)(D:f)(£(0)), €€ C.

ij=1 i=1

(Lenf)(E) =

Then the associated nonlinear FPKE for probability measures (p)¢>o on the path space €
is

(2.2) Ou(t) = Ly, b,
where p(t) is the marginal distribution of p, at 6 = 0; i.e.
{u®)}(dz) == p({¢ € € : £(0) € da}).

A continuous functional p. : Ry — 2 is called a solution to (2.2), if fot ds [, |Ls ., f
o for f € Cg°(RY) and

dps <

(2.3) /R fdu(t) :/Rd fdu(0)+/otds/%<Ls,usf>dus, t>0, fe€CFRY.

Since (2.3) only characterizes the evolution of the marginal distribution u(t) of 1,
the solution may be not unique. For instance, when L, is distribution indepen-
dent and it has an invariant probability measure ;(0), then any p; with marginal
distribution ;(0) at = 0 solves (2.2) in the sense of (2.3). To select a unique
solution associated with the corresponding path-distribution dependent SDEs,
we will only consider the martingale solutions of (2.2), which are a special class
of solutions realized by marginals of probability measures on the infinite-time
path space %, := C([—rp,); R?). As shown in Theorem 2.1 below, in many cases
the martingale solution is unique.
For a probability measure > on %, consider its marginal distributions

pe(t) = p= o {n(t)} € P(RY), i =pTom € P(€), =0,

where 7(t) : C([—rg,0); RY) — R? and m; : C([—79,00);RY) — € are projection operators
defined by

() = £(t) eRY, & =& € € with &(0) := £(t + 0) for 0 € [—7, 0].

Definition 2.1. A solution (p)i>0 of (2.2) is called a martingale solution, if there exists a
probability measure u> on %, such that

(1) py = pg° for all t > 0.



(2) For any f € Cg°(R?), the family of functionals

M) = 1(r0)) — [ (La D). 620
on % is a p>-martingale; that is,
/Mftgdu /Mftl pe, te >t >0, A€ o(n(s):s<ty),
where o(7(s) : s < t1) is the o-field on %, induced by the projections m(s) for s €

(=70, t1].

To construct the martingale solutions of (2.2) using path-distribution dependent SDEs,
we need the following assumptions.

(H1) (Continuity) For every ¢t > 0, b(t, -, -) is continuous on € x 2% , and there exist locally
bounded functions ay, oy : Ry — R, such that

lo(t,& 1) —a(t,n, )| < ar (D€ —nll% + 2 () Walp, v)*, t > 0560 € Cipv € 25

(H2) (Monotonicity) There exist a constant x > 0 and locally bounded functions Sy, s :
R, — R, such that

2(b(t, &, 1) — b(t,n,v),£(0) = 0(0)) + llo(t, & 1) — o (t,m, V)|l
< BN = nllze + Bo()Wa(p, v)? = KIEO0) = n(0)?, t > 0:&,m € Cipv € Py

(H3) (Growth) b is bounded on bounded sets in [0,00) X € x 22, and there exists a locally
bounded function K : Ry — R, such that

bt 0. 0)” + [l (2, 0.0) 2 < K(O{1 4 (]l - |2)}, =0, pe 5.

The following result characterizes the martingale solutions of (2.2) with Wy-Lipschitz
estimate.

Theorem 2.1. Assume (H1)-(H3). Then for any pg € P25, there exists a unique martingale
solution (pu)i>o0 of (2.2). Moreover,

(1) (]| - |2) 7s locally bounded in t.

(2) For any two martingale solutions (p)i>0 and (v¢)i>o of (2.2),

{W2(Mo; vp)?

Wo(pg, v4)? < inf -

e€(0,1]

« inf exp [(ro—t)é—l— e /0 t{4<0‘1(”+0‘2(”) +Bi(r) + ﬁg(r)}dr]}

5€[0,k] 1—¢ €

holds for allt > 0 and € € (0,1).



From now on, for any vy, 19 € 25, we denote u; and v, the martingale solutions of (2.2)
staring at po and vy respectively.

To estimate the continuity of p; in pp with respect to entropy and total variational norm,
we make the following stronger assumption.

(A) o(t,x) is invertible, and there exist increasing functions kg, K1, k2, A : R — R such
that for any t > 0,2,y € R, &,n € € and p,v € PY,

[b(t,0, w)* + llo(t, 2)|I* < mo(t)(L + |2 + u(ll - [13)),
lo(t, ) o < A, Nlo(t,z) — o(t.y)llis < ra(t)e -yl
’b<t7€7 :u) - b<t7 n, V)‘ < KQ(t)(Hé - 77”00 + W2(M7 V))

Recall that for any two probability measures p, v on some measurable space (F,.%), the
entropy and variational norm are defined as follows:

[ (log ‘Cil—:)dl/, if v is absolutely continuous with respect to p,

0, otherwise;

Ent(v|p) = {

and
|1t = v]|var := sup [u(A) — v(A)].
AeF

By Pinsker’s inequality (see [6, 18]),

1
(2.4) ln— v, < sEnt(vlp), pve P(EB),

var—2

Then (2.6) below implies

(2.5) e — P < =20

— W 10)%, >, po, v € PY
Uar—2<t_r0) 2(:“0 0) 0, Mo, Vo 2

for some ¢» € C(R;;R,). There are a lot of examples where Wy (i, p1o) — 0 but p, is
singular with respect to o such that Ent(u,|u) = oo and ||, — pio||var = 1. So, both (2.5)
and (2.6) are non-trivial. Indeed, these estimates correspond to the log-Harnack inequality
for the associated semigroups, see Theorem 4.1 below for details.

Theorem 2.2. Assume (A).

(1) There exists 1» € C(Ry;R;) such that

¥(t)

. Wa(po, v0)°, t > 1o, pto, Vo € Py .
— T

(2.6) Ent(v|p:) < ;

(2) If there exists an increasing function k3 : Ry — Ry such that

(2.7) lo(t,2) = o(t,y)ll < Ks(t) (LA |z —yl), t>0,2,y €R,



then there exists a positive continuous function H defined on the domain

D :={(p,t):t>0,p> (1+rs(t)A(t))*},

such that

/ <dyt> dyy < inf / o0 (OO el ) g
d T wet(povo) Jexw

holds for all t > ro and p > (1 + k3(t)A(t))%

Remark 2.1. According to Theorem 2.1(2), if there exists a constant ¢ € (0, 1) such that

1 ("4
(28) hm sup _/ < (al(s) + 0[2(3>> + 51(8) + BQ(S))dS < sup (56_6TO,
oot o e(l—¢) l—¢ 5€[0,x]
then
(29) WQ(MU Vt)2 < ce_MWQ(/JJO’ V0)27 t> 07

holds for some constants ¢, A > 0; i.e.the solution to (2.2) has exponential contraction in
W,. If o(t,-,-) and b(t,-,-) do not depend on ¢, i.e.the equation is time-homogenous, we
pe = P po. By the uniqueness we see that P is a semigroup, i.e. P}, = PP}, s,t > 0.
Then (2.8) implies that P} has a unique invariant probability measure y € 22¢. Combining
(2.9) with the semigroup property of P and (2.5)-(2.6), we conclude that (2.8) also implies
the exponential convergence in entropy and total variational norm:

max{Ent(v:|n), |1 = vil[20,} < aWalp, v 1)® < e ¥ Wo(u,10)?, > 1,1 € P25
for some constants ¢q, co > 0.

Finally, we investigate the shift qua81 invariance and differentiability of u; along Cameron—
Martin vectors in H' := {{ € ¢ : f (s)]*ds < oo}. For n € € and a probablhty measure

pon %, we say that yu is dlfferentlable along Eifforany A € B(€), Ocpu(A) := de u(A+e§) ‘5:0
exists and Jgp(-) is a signed measure on €.

Theorem 2.3. Assume (A) and let b(t,-, p) be differentiable on €, o(t,x) = o(t) be inde-
pendent of x. Then for any t > ro,n € H' and py € PY, 1, is differentiable along 1, both
Oyt and p(-+mn) are absolutely continuous with respect to ., and for some ¥ e C(R4;R;)

é(log%l:m)dut(—i-n) SW(”(@HMH%J,

t

/% (W)édut(- +1) < exp [MMW + ||n||§H1)], p>1,

/ \da"“t q/@)(—‘”t(j“;z'? +lnliz).

7




Proof of Theorems 2.1-2.3. For uy € 25, take a .Fy-measurable random variable X, on €
such that %x, = po. According to Theorem 3.1, Corollary 4.2, Corollary 5.2 and (2.4),
we = ZLx, satisfies the estimates in Theorems 2.1-2.3 under the corresponding assumptions.
So, it suffices to show that (Zx,):>o is the unique martingale solution of (2.2).

Let 1% = Zix(s)}ieiiry - We have Ly, = pi°. By (3.1) and It0’s formula, for any

f € CERY), (M (t))i>0 is a p>-martingale such that p, = ., satisfies
[, Fan(0) = BFXW) = EFXO) + [ (L XS
[ rauto / ds/ Loy f)due, 120, f € C(RY.

Therefore, Zx (s, €[_rg 00y 18 @ martingale solution of (2.2). When the coefficients are distribution-
free, it is well known that the weak solution of (3.1) is equivalent to the martingale solution,
so that the uniqueness of the martingale solutions of (2.2) follows from Theorem 3.1(3) be-
low. In the following, we explain that the same is true for the present distribution dependent
case.

Let py = pg°, for some probability measure u™ on %5, be a martingale solution of (2.2).
We intend to prove pu>™ = Zix(s). Clrg.00)? SO that the martingale solution is unique. Let
Q 1= €., F for t > 0 be the completion of o(7(s) : s < t) with respect to u*>°, and P := p>
By Theorem 3.1(3) below, it suffices to prove that the coordinate process

Xt)(w) :=w(t), t>0,we
is a weak solution to (3.1). To this end, for the given (f):>0, define
5(t7£> = 0-<t7£7 ,Ltt), Z_)(t7€> = b<t7 57 :ut)7 t Z 07 5 S (57

and consider the corresponding operator

(LI = 5 360D OANEO) + B EIONEO), 12 0.6€%

for f € C°(RY). Since (u;)i>o is a martingale solution of (2.2), for any f € C$°(R?), the
process

M) = F(X(1) — F(X(0)) — / (L) (X)ds, 120

is a martingale on the probability space (2, (%;)i>0, P). By (H1)-(H3), the martingale prop-
erty also holds for f being polynomials of order 2. In particular, by taking f(x) = = we see
that

(2.10) M(t) = M!(t) = X(t) — X(0) — /t b(s, X,)ds

is a R%-valued martingale, and with f(z) := x;z; we conclude that

t
(M;, M;)(t) = /0 (667)i(s,Xs)ds, 1<i,j<d.



Then according to Stroock—Varadhan (see, for example, Theorems 4.5.1 and 4.5.2 in [20]),
we may construct a d-dimensional Brownian motion W(t) on a product probability space
of (Q, jt, 1[5) with (Q,.%;,P) as a marginal space, and when ¢ is invertible these two spaces
coincide, such that

M(t) = /Ota(s,)_(s)dW(s), t>0.

Combining this with (2.10), we see that X(¢) solves the stochastic functional differential
equation

(2.11) AX (t) = b(t, X;)dt + 7 (t, X;)dW (t)

with L5, ls = ZLx,lp = po- Since, by definition, i, = ZLx,|z = Lx,lp, X(t) solves the
path-distribution dependent SDE

AX (t) = b(t, X;, Ly, |p)dt + o (t, Xi, Ly, |p)dW (1),

i.e. (X, W) is a weak solution of (3.1). Noting that u™® := ZLxp = Ly by the weak
uniqueness of (3.1) due to Theorem 3.1(3) below, we obtain > = Zx(s), Clorg.ee) @S desired.
]

3 Path-distribution dependent SDEs

Recall that for y(-) € C([~rp, 00); R?), the segment functional v. € C(R ;%) is defined by
Y%(0) :=~(t+0), 0¢€[-ry0],t>0.

For o,b in (2.1), consider the following path-distribution dependent SDE on R¢:

(3.1) dX(t) =b(t, Xy, Zx,) dt + o(t, Xy, Lx,) AW (1),

where W = (W (t))i>0 is a d-dimensional standard Brownian motion with respect to a
complete filtered probability space (2, %, {.%}i>0,P), Lx, is the distribution of X;. We
investigate the strong solutions of (3.1) and determine properties, of their distributions.

We first recall the definition of the strong and weak solutions, see for instance [31, Def-
inition 1.1] in the path independent setting. For simplicity, we will only consider square
integrable solutions.

Definition 3.1. (1) For any s > 0, a continuous adapted process (Xs;)i>s on € is called a
(strong) solution of (3.1) from time s, if

t
E[| X4l +/ E{b(r, Xop, Lx. ) + lo(r, Xow, Zx, )P }dr < 00, ¢ >,
and (X, () := X;+(0))>5 satisfies P-a.s.
t t
X, (t) = X(s) +/ b(r, Xy, Lx,, )dr +/ o(r, Xep, Lx,, )AW(r), t>s.

9



We say that (3.1) has (strong or pathwise) existence and uniqueness, if for any s > 0 and
Zmeasurable random variable X, , with E|| X, ,||%, < oo, the equation from time s has a
unique solution (X;;)i>s. When s = 0 we simply denote X, = X i.e. Xo (t) = X (), X0t =
X, t>0.

(2) A couple (Xsy, W (t))iss is called a weak solution to (3.1) from time s, if W(t) is a
d-dimensional Brownian motion a complete filtered probability space (Q, {jt}tZS,]IB), and
X+ solves

(3.2) dX, (t) = b(t, Xap, Lz, |p)dt + 0 (t, KXo, L5, 5)AW (1), > s.

(3) (3.1) is said to satisfy weak uniqueness, if for any s > 0, the distribution of a weak
solution (X, ¢)>s to (3.1) from s > 0 is uniquely determined by Zx, ..

When (3.1) has strong existence and uniqueness, the solution (X;)¢>o is a Markov process
in the sense that for any s > 0, (X;);>s is determined by solving the equation from time s
with initial state X;. More precisely, letting {Xf,t}tZS denote the solution of the equation
from time s with initial state X, = £, the existence and uniqueness imply

¢
(3.3) Xf,t = XU t>u>s>0,¢ is F-measurable with E||€]|2, < oo.

u,t

When (3.1) also has weak uniqueness, we may define a semigroup (P;;);>s on ¥ by
letting P;,p = Lx,, for Zx,, = p € 23 . Indeed, by (3.3) we have
(3.4) Ply=PF,, P, t>u>s2>0.
For simplicity we set P = Py, ¢ > 0.
Theorem 3.1. Assume (H1)-(H3).

(1) Forany s >0 and Xs4 € L*(Q — €;.F5), (3.1) has a unique strong solution (Xs)i>s
with

(3.5) E sup | Xo |2 < HT)A+E|X.|2), T>t>s>0
te(s,T)

for some increasing function H : R, — R,..
(2) For any two solutions X, and Yy, of (3.1) with Zx, ., %,, € 23,
{EHXS,S — Y;sngo

E[[Xs: — Yiull% < inf

€€(0,1) 1—¢

ere /t {4(041(7“) + as(r))

X inf —1)0
in exp[(ro—l—s ) +1—5 6

5€[0,x],e€(0,1)

%—ﬁﬂr)+¢%0ﬂ}dr]}.

(3) (3.1) satisfies weak uniqueness, and for any t > 0,
WQ(MOa V0)2
1—-¢

e [ 40 (r) + aa(r))
[

Wa(Ppo, Prvo) < inf {

€€(0,1)

1—¢

X inf e —1)0 +
56[0,;}2—:6(0,1) *P {(TO )

+@m+@u&w}
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We will prove this result by using the argument of [31]. For fixed s > 0 and .#,-measurable
% -valued random variable X, , with E||X||2, < oo, we construct the solution of (3.1) by
iterating in distribution as follows. Firstly, let

X (0) = Xea(0 A (t = 5 +9)) for 6 € [=r0, 0], i = Ly, t25.

For any n > 1, let (X (n ))t>s solve the classical path-dependent SDE
(3.6)  dXO(E) = b(t, X, e + ot X0, ul V) AW (), X0 = Xt > s,

where ,ugfl) =2 -1 and XS(T? (6) == X (t — 5+ 6) for 6 € [—ro,0].

Lemma 3.2. Assume (Hl) (H3). For every n > 1, the path-dependent SDE (3.6) has a
unique strong solution X, t) with

(3.7) E sup |XS(7”)(15)|2 <oo, T>s,n>1.

te[s—ro,T]

Moreover, for any T > 0, there exists to > 0 such that for all s € [0,T] and X5 € L*(Q —
¢ Fs),

38 E sup [X"VE)-XM@))P<4e™E sup [XP®)P, s€0,T,n>1

t€ls,s+to] t€[s,s+to]

Proof. The proof is similar to that of [31, Lemma 2.1]. Without loss of generality, we may
assume that s = 0 and simply denote Xy (t) = X (t), Xo: = X;,t > 0.
(1) We first prove that the SDE (3.6) has a unique strong solution and (3.7) holds.
Forn =1, let

b(t, &) = b(t, & ™), (6,6 = o(t,61”), 1206 €.
Then (3.6) reduces to
(3.9) AXO ) = b, XM dt + o (t, X)aw (1), X = Xo,t > 0.

By (H1)-(H3), the coefficients b and & satisfy the standard monotonicity condition which
imply strong existence, uniqueness and non-explosion for the stochastic functional differential
equation (3.9), see e.g. [26, Corollary 4.1.2] with D = R? and u, = 1. It is also standard to
prove (3.7) using Itd’s formula

ﬂxmwﬁzxdmdiw%aw>xmm>
L2000, X, 1), XO@)) + (o, XN, 1) |17 bt

By (H1)-(H3), there exists an increasing function H : R, — R, such that
0
2(b(t, &), £(0)) + o (1, €, ") s

11



< 2(b(t, &, p”) = b(t, 0, V), € >+2Ibt0u(0))l €(0)]
+2||a<t &1y = o(t,0 MO))HHSHHU@ 0, 11 1%5
O+ €)% + 1O - 12)), t>0,6e%.

Combining this with (H3) and applying the BDG inequality for p = 1, for any N € [1, 00)
and 7y = inf{t > 0 : | XM (t)| > N}, we have

tATN
E  sup |[XD(s)]? <4E|XSV|% + 2HOE / (14 IXD)2 + O] - 1%)) ds
0

86[77‘0775/\7]\]}

[N

tATN
rarE( [ IXOGP X 4O 12)ds)
0

1
< 4EHX H2 + 21[-3 sup ]X(l)(s)\2

SE[—T0,tATN]
tIATN
HHO+SHONE [ (14 X%+ 00 - [2)ds, ¢ 20
0

This implies

E sup XV <SE|X"|2

SE[—T0,tATN]

+ {4H(t) + 16H (1) }/{1+E sup (XD £ O |2)bds, ¢ >0,
r€[—ro,sATN]

By first applying Gronwall’s Lemma then letting N — oo, we arrive at

E sup |XW(s)> <oo, t>0.

SE[—ro,t]

Therefore, (3.7) holds for n = 1.
Now, assuming that the assertion holds for n = k for some k > 1, we intend to prove it
for n = kK + 1. This can be done by repeating the above argument Wlth (X.(Hl), ;z.(k), X.(k))

replacing (X.(l)7 ,u.(o), X.(O)), s0, we omit the proof.
(2) To prove (3.8), let

M (t) = X" () = XM (1),
A = ot XD ) = o, X ")
B™ = b(t, X" 1y — b, XM i),

Y

By (H2) and It6’s formula, there exists an increasing function K; : R, — RJF such that
Al ) < 207 AW (), € (1)) + KO {67 12 + W™, ") bt

By the BDG inequality for p = 1 and since Wy(ul"”, 5" V)2 < E||£)]12., we obtain

E sup |$(”)(s)|2 < 2E sup /S(Afn”)dW(r),f(")(T))
1J0

s€[0,t] s€[0,t

12



+ K0 [ (B + W )7 s

3 t
<48 ( [ @PIARIP}as) + Ka) [ {RIEIE + W, 0 s

0
1

2 s€[0,t]
Combining this and (H1) we deduce that
t
E sup [€)(s)[* < Ka () / {E sup [€()2 + Wa(u, u" V)2 }ds, ¢ 0
s€[0,t] 0 r€(0,s]

for some increasing function K, : Ry — R, . By Gronwall’s Lemma, we obtain

E sup [€0(s) < £Ey(£)e20 sup Wa(u, D)2

s€[0,t] s€[0,t]

< LR (t)e™ R sup [€7Y(s)P, £ > 0.
s€[0,t]

Taking ¢y > 0 such that to/K,(T)e (") < ¢! we arrive at

E sup |§(")(s)|2 < e 'E sup |§(”_1)(3)|2, n > 1.
s€[0,to] s€[0,to]

Since

E sup [€0(s) < 2B{|X(0) + sup [XD(s)]P} <4E sup [XD(s)P?

s€[0,to] s€[0,to] s€[0,t0]

we obtain (3.8).

t t
< JE sup €+ 8 [ BIADIPds + Ka(t) [ {BIED I + Wa(ul w00 .
0 0

O

Proof of Theorem 3.1. Without loss of generality, we only consider s = 0 and simply denote

)(07 = X, i.e. X()’(t) = X(t),XO,t = Xt,t Z 0.

(1) Since the uniqueness follows from Theorem 3.1(2), which will be proved in the next
step, in this step we only prove existence and estimate (3.5). By Lemma 3.2, there exists a

unique adapted continuous process (X¢):e[o4,] such that

(3.10) lim sup Wz( ,,ut) < lim E sup |[X™(t) — X(t)]* =0,

=00 ¢(0,t0) n=00  +c(0,t0]

where p; is the distribution of X;. By (3.6),
XO0) = x0) + [ oo X001+ [ oo, X0l (),
0 0
Then (3.10), (H1), (H3) and the dominated convergence theorem imply that P-a.s.
X(t)=X(0)+ /tb(s,Xs,us)ds + /ta(s,Xs,,uS)dW(s), t €0,
0 0

13



Therefore, (Xi)ic(o,) solves (3.1) up to time to, and (3.10) implies Esup ¢y, | X (s)|* < oo.
The same holds for (X )ic(s,(s+to)ar] and s € [0,T]. So, by solving the equation piecewise
in time, and using the arbitrariness of 7" > 0, we conclude that (3.1) has a strong solution
(Xt)tZO with

(3.11) E sup |X(s)]*> < oo, t>0.

s€[0,t]
(2) By Ito’s formula and (H2), we have

d{e™|X (1) =Y ()*} <2e"(X(t) = Y (t), {o(t, Xi, Zx,) — o(t, Y2, L) }dW (1))
+e"{ B1 (1) | X; — Yi||Z + Bo(t)Wa(Lx,, L)? }t.

Noting that Wy(Lx,, £,)* < E[|X; — Y|, we see that v, 1= supse|_,, 4 e X (s) = Y(s)?
satisfies

By <E|Xo— Yl +E [ (61 + B)(r)e” X, - Vlids
(3.12) s 0
+ 2E sup / (X (r) =Y (r),{o(r,X,, Zx,) — o(r,Y,, L, ) }dW (r)).

s€[0,¢] JO

By (H1), the BDG inequality for p = 1 and since Wy(Zx,, % )? < E|| X, — Y;||%,, we have

A sup /Os em"<X(7,) - Y<7n)7 {O’(T‘, Xra ng) - O'(T‘, Y;, er)}dW(r>>

s€[0,t]

1
2

t
<45 ( [ X0 - YO @IX, - Vi + () Wal Ly, 40)7)as
0
4 t
< By + 2 [ (@) + aa(s)BEX - Vo[ ds
4 0 t
< eEvy + ge’”'o / (a1(8) + az(s))Ev,ds.
0

Combining this with (3.12) we obtain

E|Xo—Yol2 e (!4
| f_eollooﬂ_g/0 {E(QI(SH%(S))+51(s)+52(s)}1@%ds, L> s,

So, Gronwall’s Lemma implies

e PRI o [ [ )+ o) + ) + (o) s

€
Noting that Evy; > e(""0*E|| X, — Y;||2,, this implies

E[Xo — Yo%

E|lX;, — V|2 <
X, = il < =

14



e

X exp |(ro —t)Kk +

ko /Ot {é—l(m(S) + as(s)) + Bi(s) + 62(8)}018} ‘

1—¢ €

Since (H2) remains true if x is replaced by a smaller constant 0, this estimate also holds for
d € [0, k] replacing k. Therefore, the estimate in Theorem 3.1(2) holds.

(3) Let (X})e=o solve (3.1) with Zx, = o, and let (X, W (1)) on (Q,{% }1>0,P) be a
weak solution of (3.1) such that Zx,|p = L, |p = o, i.e. X, solves

(3.13) AX (1) = b(t, X;, Ly, [p)dt + 0 (t, Xp, L, [p)AW (),  Lg, = ho.
We aim to prove Zx|p = L5|p. Let pp = Zx,|p and
b(t,&) = b(t, &, ), o(t,&) =o(t,&m), t>0,6€E.
By (H1)-(H3), the stochastic functional differential equation
(3.14) dX (t) = b(t, X,)dt + & (t, X,)dW (1), X, = X,

has a unique solution. According to Yamada—Watanabe, it also satisfies weak uniqueness.
Noting that -
dX(t) = b(t, Xy)dt +o(t, Xy)dW (1), Lx,lp = L5, |

the weak uniqueness of (3.14) implies
(3.15) Lxlp = Lxlp.
So, (3.14) reduces to
AX (t) = b(t, X, Ly, |s)dt + o(t, Xi, Ly, |s)dW (), Xo = Xo.

Since the strong uniqueness of (3.13) is ensured by Step (1), we obtain X = X. Therefore,
(3.15) implies L5 |p = Lx|p as wanted.

Finally, since % is a Polish space, for any ug, vy € 25, we can take .Z;-measurable
random variables Xy, Y such that Zx, = po, Ly, = v and Wy(uo, 11)? = E|| Xy — Yol

Combining this with Wy (P o, Prrg)? < E||X; — Yi||%,, we deduce the estimate in Theorem
3.1(3) from that in Theorem 3.1(2). O

4 Harnack inequality and applications

To prove Theorem 2.2, we investigate Harnack inequalities of the operator P; defined by

(4.1) (Bof) (o) = [g AP o). | € B(E)t > 0,0 € FE.

We will consider the Harnack inequality with a power p > 1 introduced in [24], and the
log-Harnack inequality developed in [19, 27], where classical SDEs on R? and manifolds are
considered. To establish these inequalities for the present path-distribution dependent SDEs,

15



we will adopt coupling by change of measures introduced in [1, 25]. We refer to [26] for a
general theory on this method and applications.

To construct the desired coupling for the segment solution X;, we need to assume that
o(t, &, 1) = o(t,£(0)); that is, we consider the following simpler version of (3.1):

(4.2) dX (t) = b(t, Xy, Lx,)dt + o(t, X (t))dW (2).

Theorem 4.1. Assume (A). Then there exists Hy € C(R;R.) such that for any o, vo €
DY, Fo-measurable random variables Xo, Yy with Lx, = po, Ly, = v, and f € B, (€),

[X(0) = Y(0)?
T — To

(43) (Prlog f)(v0) < log(Prf) (o) + H«T)E( IXo - Youio), T> .

If moreover (2.7) holds for some increasing k3 : R — Ry, then there exists Hy € C(D;R,),
where D is as in Theorem 2.2, such that

1 1X(0) - (0)|? vy
(44)  (Prf)w) < (Pr?)3 (uo)B (0D 0SS R)) g sy 1) € D

holds for pg, vy and Xo, Yy as above.

As a consequence of Theorem 4.1, we have the following result, see, for instance, the
proof of [30, Prposition 3.1].

Corollary 4.2. Assume (A) and let T > ro. For any po,vo € Pa, Piuo and Pruyy are
equivalent and the Radon-Nykodim derivative satisfies the entropy estimate

APy, . |X(0) = Y(0)]?
1 L2 VAP, < f E|H(T X,-Y? T >r.
\[g ( Og dPI*’IUO) TVO - fxozﬁgfyozuo |: 1( )( T — 7"0 +H 0 OHOO ’ "o

If (2.7) holds, then for any T > 1o and p > (14 k3(T)N(T))?,

1
/ (dP T”’) ‘AP < inf E(eHQ(p’T)(1+)W+XO_YOlgO)).
z \dP5 1o Lxo=10,Lyy=V0

Proof of Theorem 4.1. For u; :== P}y and v := Py, we may rewrite (4.2) as
(4.5) dX(t) = b(t, X,)dt + o(t, X ())dW (t), Lx, = Ho,
where

b(t, &) :=b(t, &, vy), AW (t) :=dW (t) +7(t)dt,
y(t) = U_1<tv X(1)[b(t, X¢, ) — b(t, Xy, 1))

By assumption (A) and Theorem 3.1(3), we have

(4.6) ()] < AB) 2 () Walpue, 1) < K(6)Wa(po, 10), ¢ € [0,T]
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for some increasing function K : R, — R,. Let

(A7) Rp:wp{—AzﬂQﬂMKﬁf—%A”Wﬁﬁ%},teﬂlﬂ.

By Girsanov’s theorem, {W(t)};(0.7] is a d-dimensional Brownian motion under the proba-
bility measure Py := R7P.

Next, according to the proof of [26, Theorem 4.3.1] or [30, Theorem 1.1], we can construct
an adapted process J(t) on R? such that

(a) Under the probability measure Py,

Romewf- [ a3 [ plsfds) . te o

is a martingale, such that IF’T = RTPT = RTRT]P’ is a probability measure under which

IW&:W@+A&@@=W@+ACWHW@M&te&ﬂ

is a d-dimensional Brownian motion.

(b) Letting Y'(t) solve the following stochastic functional differential equation under the
probability measure Py with the given initial value Yj:

(4.8) dY (t) = b(t, Y;)dt + o(t, Y (t))dW (t),
we have Q?YO@ =%, =voand Xr =Yy Pr-a.s.

(c) There exists C' € C(R4;Ry) such that

| X(0) — Y(0)]
T —rg

T 2
B, [ (o) Pas < g 1% =l
0

By the definition of b we see that (Y;, W (t)) is a weak solution to the equation (4.5) with
initial distribution 1y, so that by the weak uniqueness, Zy, |z = v,t € [0,T]. Combining
this with (b) we obtain

(Prf)(n) = Es, [f(Yr)] = Ep, [f(X1)] = E[RrRe f(X1)], f € B (F).
Letting Ry = Ry Ry, by Young’s inequality and Holder’s inequality respectively, we obtain
(4.9)  (Prlog f)(v) < E[Rrlog Ry] +log E[f(Xr)] = E[Rrlog Rr] + log(Prf)(10),
and

(410)  (Prf(w)? < (ERF ) NEf/(Xr)) = (ERF V'~ Prf*(uo), p> L.
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We are now ready to prove assertions (1) and (2) as follows.
By (4.6) , (c) and since Wy (pu0, 11)? < E||Xo — Yo

[

1 r 5
E[Rrlog Ry] < JEs, / 7(s) +7(s)|*ds
0

<Bs, [ Fe)Pds+ [ [s)Pds

. J, B )

<Bs, [ Beas+ [ @0 Wl v

X(0) — Y(0)
T—TO

holds for some H; € C'(R;;R, ). Combining this with (4.9) we obtain (4.3).
Finally, according to the proof of [30, Theorem 4.1], there exists C' € C'(D; R ) such that

SH1<T>E( +HXo—YoH§o), T

P |X (0-Y(0)|2
(&, B < B(CODHEERE NN sy 1) € D

For any p > p(T) := (1 + r3(T)A(T))?, by applying this estimate for p; := 2(p + (p(T)) and
combining with Ry = Ry Ry, (4.6), (4.7) and Wa (0, 1) < E[| Xy — Yol|%,, we arrive at

p .\ b=l _p 1\ Bzt e Pl __p \E”
(BR;T) 7 = (B, RyTRFT) 7 < (B, RPT) ™ (Be RET)

rP—pP1

| X (0-Y (0)[? A
< E<ec(p1’T)(1+W+“X0Y0”g0)) (ER;WI> "

< B (oD (RN s 7)€ D

for some Hy € C(Ry; R, ). Therefore, (4.4) follows from (4.10). O

5 Shift Harnack inequality and integration by parts
formula

To prove Theorem 2.3, we investigate the shift Harnack inequality and integration by parts
formula introduced in [29]. Assume that o(t,&, ) = o(t) is invertible. Then the path-
distribution dependent SDE (3.1) becomes

dX(t) = b(t, Xy, Lx,)dt + o (t)dW (1), Lx, = to-
To apply the existing shift Harnack inequality and integration by parts formula, we let
b(t,€) = b(t, &, ), pu:=Lx, = Pipo, t>0,6€C
and rewrite this equation as
dX (t) = b(t, Xy)dt + o(t)dW (), Lx, = Ho.
Then the following result follows from [26, Theorem 4.2.3].
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Theorem 5.1. Let 0 : [0,00) = REQR? and b : [0,00) x € x P¢ — R? satisfy (A), and
assume that for any (t,p) € Ry x PY, b(t,-, u) is differentiable. Then

AMT) = sup [o(t)||* <o, K(T):= sup |[[Vb(t,-,p)5 < oo, T>0.

t€[0,77] t€[0,T),uc 2F
Moreover:
(1) For anyp > 1,T > ro, g € 2§ ,n € H' and f € B} (€),
(Prf)" (o) <(PrfP(n+-)) (ko)
PA(T) (1+ T2 (1)) (22 4 2,
(p—1)

X exp }, p>1,

and

(Pr 108 1)) < og(Pas -+ (o) + AT) (1 2R (0) (200 g2 ).

(2) For any T > rg, let

n(=7o)

L ()0 (¢ = T),
T—T0+ (T 07T]()77( )

P (t) =1 [0,7—ro] (t)
tt

O(t) :/0 O(s)ds, t € [—rg,T).

Then for any f € CY(€), n € H' and po € LY,
E(Vyf)(X1) = E[f(XT)/O (o(t) 7 (@(t) — Ve, b(t, -, P 1) (X4)), dW(t)>]-

As consequence of Theorem 5.1 we have the following result.

Corollary 5.2. In the situation of Theorem 5.1. For any po € 2§, n € H' and T > ry,
pr = Prug satisfies

[g (108 —d’“‘Td(/; "))duT(« +1) < A(T)(1+ T°K(T)) (—'"(__”;Z'Q + Il ).

T
[g (W)édﬁ”(' + 1) < exp {A(T>((1])t7;j2[((T)) (‘77(—7’0)‘2 i ”77”1%11”7 p>1,

doy pur |2 2 ’77(_7"0)’2 2
dur < A(TY(1+ K(TYT*) | ———— 1.

Proof. The first two estimates follow from Theorem 5.1(1), see [29] or [26, §1.4]. As the last
estimate is not explicitly given in these references, we present a brief proof below. It is easy
to see that

M) = [ (o) (@) = Ta bt i) X0). aW(0)

19



satisfies

BM(TY? < 01) = A1+ Kr) (M0 e, ).

Then, Theorem 5.1(2) implies that

C'9)3 1 @)= (51 [ aurt+en))

e=0
is a densely defined bounded linear functional on L?(ur) with
@) (1] < pr(SPYEM(T)? < C(T)pr(2).

By the Riesz Representation Theorem, it uniquely extends to a bounded linear functional

<wmm:éwwmfemw>

for some g € L*(ur) with ur(g?) < C(T). Consequently, ur is differentiable along n with
(Ogur)(A) = [, gdpur, A € B(F), and 9,ur is absolutely continuous with respect to pr such

that 49 )
nHT 2
—— d :/ dur < C(T).
[g( dHT> KT (5’9 HT (T)

]
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