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Design and implementation of digital phase locked 

loop for single-phase grid-tied PV inverters 

Zhongfu Zhou  

College of Engineering, Swansea University, Bay Campus, Swansea, SA1 8EN, UK. 

Email: z.zhou@swansea.ac.uk 

Abstract: In this paper, a synchronous rotating-frame based phase-locked loop (PLL) for a single-phase PV 

inverter control system is presented.  Detailed PLL mathematical model and the digital implementation for a 

single-phase PV inverter system are presented. A practical solution for transport delay based orthogonal signal 

generation using first-in-first-out (FIFO) circular buffer is also discussed. Details of implementation for a real-

time system using digital signal processor were also described. The performance of the developed PLL was 

experimentally verified on a developed single-phase PV inverter prototype. 
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1. Introduction  

The photovoltaic (PV) technology is now widely applied in industrial, commercial, residential community and 

grid-connected PV plants. The PV inverters can provide an opportunity to maximizing the energy capture, and 

control of generating high-quality energy. Figure 1 shows a grid-connected single-phase photovoltaic electric 

power conversion system [1]. The PV system consists of a solar array, a PV inverter with an output filter, 

insulation transformer. The PV array is connected to utility system through a PV inverter. For a single-phase PV 

system, the PV array comprises a number of series connected solar panels to ensure the dc link voltage is higher 

than the peak ac voltage for converting the dc voltage into a utility grid voltage. It can be seen from Figure 1 that 

the main elements of the control system of the grid-connected PV converter are the synchronization algorithm 

based on phase-locked-loop (PLL), the maximum power point tracking (MPPT), and the current controller 

including the PWM control signal generation. Therefore, the PV inverter controls the PV array’s output voltage 

and current based on the MPPT control algorithm so that the PV array always operate at its maximum power 

points. The PV inverter is also responsible for the control of the output current to provide a unity power factor 

operation by synchronizing the inverter output sinusoidal current in phase with the grid voltage.  The PLL is used 

to synchronize the PV inverter output current with the grid voltage to achieve a unity power factor operation of 

the inverter output as well as to provide a clean sinusoidal reference current ig
* to the current controller.   
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Figure 1 PV system electrical connection 

The key to achieving the synchronous with the grid voltage is to detect the phase angle information of the grid 

voltage. PLL is one of the most common methods to detect the phase angle of grid voltage due to its robustness, 

effectiveness, simplicity [2-6]. A typical single-phase PLL usually comprises of three parts: a phase detector (PD), 

a loop filter (LP) and a voltage controlled oscillator (VCO). A proportional-integral (PI) controller usually 

implements the loop filter, which outputs the estimated angular frequency. The integration of the angular 

frequency determines the phase-angle, which is conducted by the VCO. A phase detector is a frequency mixer or 

analog multiplier that generates a voltage signal that represents the difference in phase between two inputs. The 

phase detector (PD) can be constructed in a stationary frame (SF) [ 4, 5, 6 and 7] or in a synchronous rotating 

frame (SRF) [8, 9]. Figure 2 shows the block diagram of a stationary-frame based PLL. 
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Fig. 2 Block diagram of a stationary-frame based PLL 

In Figure 2, vg is the input voltage signal whose phase angle need to be estimated. A feedforward component ωff  

used in improving the initial dynamic performance of the PLL is the nominal value of the angular frequency of 

the input voltage signal (for 50Hz, ωff =314 rad). The phase angle θ can be estimated by the integration of the 
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Where equation (2) and (3) represents the dc-component and the double-frequency component, respectively. 

For small phase-angle difference equation (2) can be approximated by equation (4). 
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Equation (4) is approximately a constant in steady state and gives the information of the phase difference.  The 

PLL model should be designed to cancel the small dc component so that the output of PLL can represent the phase 

angle of the grid voltage.   

However, it can be seen from the equation (1) that the double-frequency component in the virtual power 'p , have 

a relatively high amplitude, the high double-frequency component will degrade the accuracy of the phase angle 

estimation and therefore must be filtered out.   

Reference [7] and [8] present PLL based on the synchronous rotating frame (SRF), in which the fundamental 

component of the input voltage signal is shifted by 90o to create an orthogonal voltage signal to form a virtual 

two-phase system so that the Park transformation can be applied. With this method, the entire control signals were 

transferred into the synchronous rotating d-q frame so that the PLL closed loop can eliminate the steady-state 

errors with a simple PI regulator.  By using the synchronous rotating frame (SRF) based PLL, the double-

frequency ripple in the stationary frame is eliminated.   

This paper presents the mathematical model and the implementation of a single-phase SRF-PLL. The paper also 

discussed  the generation of orthogonal signals for a single-phase SRF-PLL. In addition, a practical design of the 

SRF-PLL for a real-time system and experimental results and analysis will be presented. 

2 Mathematical models of SRF-PLL 



Figure 3 shows the block diagram of a single-phase SRF-PLL.   
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Figure 3 block diagram of single-phase SRF-PLL  

Figure 3 shows a synchronous rotating-frame PLL. The Park transformation needs two input voltage signals vα 

and vβ. The two-phase voltage signals can be naturally converted in three-phase systems by using Clarke 

transformation. However, in a single-phase system as there is only one phase voltage signal available so the 

orthogonal voltage signal must be constructed based on the available one phase voltage signal. There are several 

algorithms to generate the orthogonal signal for single-phase systems, such as Hilbert Transformer-Based PLL 

discussed in [18], the transport-delay based method in [19, 20 and 21] and the inverse Park-Transformation based 

PLL discussed in [13] and [22]. 

With the PLL based on Hilbert Transformer, the orthogonal signal is generated using the Hilbert transformer. 

With this method, all the harmonic content is phase-shifted by 90o, and the process is relatively complicated for 

real-time application.  

The transport-delay based method is easily implemented using a first-in-first-out (FIFO) buffer, with a size set to 

one fourth the number of samples contained in one cycle of the fundamental frequency.  All the harmonic content 

of the input signal is subjected to the same time delay.  

With the inverse Park-transformation based PLL, a single-phase voltage vβ, and an internally generated orthogonal 

signal vα are the inputs to a Park transformation block. The vα is obtained using an inverse Park transformation, 

the input data of the reverse park transformation is the output of the Park transformation fed through first-order 

low pass filter. Although the inverse Park transformation based PLL requires only one inverse Park transformation 

and two first-order low-pass filters, it is not very complicated for practical implementation. However, tuning the 

time constant of the filters is a complicated process, as compared with the other PLL algorithms. 



In this paper, the transport-delay method was implemented using a first-in-first-out (FIFO) buffer, with a size set 

to one fourth the number of samples contained in one cycle of the fundamental frequency of grid voltage. For a 

sampling frequency of 25 kHz, there will be 500 sampling points in one period of the fundamental frequency. 

Assume )()( kvkv g=β
, the voltage of αv  at the kth sampling point was constructed by shifting sampled grid 

voltage signal )(kvg
 by 125 points, i.e. )125()( −= kvkv gα

. The method was implemented by using the 

circular memory array available in the ADMC401 microprocessor, which can be provided by most 

microprocessors. Figure 4 shows the practical solution for the transport-delay method.  
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Fig. 4. Practical solution for transport-delay method using first-in-first-out (FIFO) circular buffer 

In Figure 4, assume θβ sinVm== gvv  and θα cosVm=v , where θ is the phase angle of the grid voltage. By 

applying Park transformation to the virtual two-phase voltage signals, 
αv and

βv , the voltage components in  the 

rotating  d-q frame 
dV and 

qV  can be expressed by equation (5). 
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Where  
^

θ  represents the estimated phase angle of the grid voltage. By substituting cosθmVv =α
 and sinθmVv =β

to equation (5), the voltage components in the rotating d-q frame dV and qV  can be expressed as (6):  
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When the difference of -θθ
^

is sufficiently small, the voltage components in rotating frame dV and qV  can be 

expressed as (7): 
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where Vq is proportional to the error between estimated and actual phase angles.  If Vq is regulated to zero, the 

phase angle difference θ-θ
^

will be zero.  This means that the PLL output follows the actual phase angle of the 

grid voltage.  

To effectively achieve the zero-phase difference of the output current against output voltage a PI-controller based 

loop filter must be appropriately designed. Figure 5 shows the small signal model of the PLL closed loop system. 
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Fig.5 Small signal model of the PLL closed loop 

Where Vm is the amplitude of the grid voltage, kp and ki are the proportional and integral gains of the PI controller, 

respectively.  The transfer function of the PLL closed loop system is given by equation (8) 
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Where nω  represents the natural frequency, and it is expressed by 
imn kV=ω , ζ is the damping ratio of the 

closed-loop system, and it is expressed by 
n

i

p

k

k
ωζ

2
= . 

Equation (8) is a typical transfer function of a second-order system. The damping ratio ζ was set as 0.707. The 

response speed of the PLL can be determined by the value of natural frequency nω . The higher the natural 

frequency, the faster the dynamic response and less damp effect. Therefore, a trade-off must be considered 

between response speed and damping effect. For a single-phase PV system with a voltage of 240V/50Hz, the 

corresponding ki and kp of the PI regulator were set as 46.4 and 0.52,  respectively. Figure 6. shows the dynamic 

response of the PLL closed-loop system with different damping ratios and different natural frequencies.  In this 

paper, the natural frequency 
nω was set as 314250 === πω imn kV  rad. 



  

Fig. 6 Dynamic response of PLL closed-loop: (a) with 314=nω  and different damping ratios;  

(b) with ζ = 0.707 and different natural frequencies 

Considering the voltage in the rotating d-q frame Vq as the input to the PI regulator, the estimated phase angle of 

the grid voltage in the practical digital implementation is expressed by equation (9). 
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where, )1(θ
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+k  is the reference angle for the next sampling step. The coefficients  A1 and A0 are calculated by 

equation (10)   
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Where f
fundamental

 and f
sample

 are the voltage fundamental nominal frequency and digital sampling frequency 

respectively. The values of sine and cosine for an electrical angle are calculated by equation (11). 
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The approximation is accurate for any value of  from 0o to 90o (the first quadrant). However, because

)sin()sin(  −=−  and )180sin()sin(  −= o , the sine of any angle can be obtained from the sine of an angle 

in the first quadrant. On this scale, 180o equals the maximum positive value 7FFFh, and –180o equals the 
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maximum negative value as shown in Fig.7. The result is accurate to within the least significant bits (LSBs) for 

sin(). 
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Fig.7 Scaled angle values in microprocessor 

The value of cosine can be calculated by using equation (12). 

)90sin()cos(  +=− o      (12) 

The accuracy is again within two least significant bits (LSBs). In a steady-state single-phase system, the voltage 

components in the rotating d-q frame are represented by equation (13): 
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where Vm is the peak value of the input voltage signal, k represents the kth sampling point.  

3. Experimental system configuration and test results  

An experimental single-phase PV inverter prototype was built in the laboratory for the validation of the developed 

PLL control algorithm. The experimental system circuit connection and the developed prototype hardware are 

shown Figure 8 and Figure 9 respectively. The experimental system comprises of four parts: the variable 

transformer-based power supply unit, PV inverter constructed using ST-STGIPL14K60 IGBT module, a boost 

DC/DC converter and an emulated PV source.  

 

 

 

 

 



 

                       

Figure 8 PV inverter experiment circuit connection 

The emulated PV source was built by using an indoor PV panel and a DC power supply in the laboratory. Figure 

9 shows the circuit connection of the constructed PV source, in which a 175W SUNTEC solar panel and a 1250W 

DC power supply (TENMA 72-2940) operating in constant current mode is connected in parallel.  
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Figure 9 (a) Experiment setup of constructed PV source (b) Measured I-V and P-V curves with different external 

excitement currents 

In Figure 9 (a), ICS represents the external excitement current which is injected into the PV module and the PV 

converter. The output current of the proposed PV source is given by 𝐼𝑝𝑣 = 𝐼𝑐𝑠 − 𝐼𝑝 . 

In the laboratory environment, almost no current can be generated from the solar panel, so the photo-generated 

current Iph ≈ 0. In this experiment, the photo-generated current Iph was emulated by the external excitement current 

source Ics. The voltage of the PV panel will depend on the current injected to the solar panel. The electrical 

characteristics of the proposed PV source were measured in the laboratory using a 1800W DC electronics load 

(PRODIGIT 3362F). The measured I-V and P-V curves with 1Amp and 2Amp external excitement currents, 

respectively, are shown in Figure 9(b). 



Figure 10 (a) and (b) shows PV converter experiment test set-up and PV inverter circuit. The single-phase PV 

inverter bridge was constructed by using ST-STGIPL14K60 IGBT module.  

 

Figure 10 (a) PV converter experiment test set-up (b) PV inverter circuit 

The IGBT module is a small and low power loss intelligent module; it is integrated with gate driving circuits and 

freewheeling diodes.  The rating of each IGBT device is 15A/600V. Two aluminum electrolytic capacitors, each 

rated 300F/450V, were connected in parallel.  One resistor with 10KΩ was used across the capacitors to provide 

a discharge path for the energy in the capacitors when the circuit is switched off. A 3mH common coupled inductor 

was employed at the output side of the PV inverter. Two ultra-rapid 5A fuse was used to protect the inverter 

circuit. Differential amplifier circuit was built for measuring the grid voltage. Line current was measured by a 

current sensor ACS712 based circuit. For evaluating the performance of the developed digital PLL, a serial 12-

bit DAC AD7568 converter (each of the converters was configured in voltage mode and provides an analog output 

that is proportional to the applied digital value) was employed to output the signals that was unable to be measured 

directly, such as the voltage components Vd, Vq in the rotating d-q frame, the estimated grid voltage phase angle 

θ and cos(θ). The values are treated in the range from -1 to 0 and 0 to +1 and will be displayed as 0V, 2.5V, and 

5V on the oscilloscope for the values of 0 -1, 0, and +1 respectively. The utility voltage is 240V/50Hz. The role 

of the variable single-phase transformer is to obtain a variable ac supply voltage to the PV inverter so that 

experiment tests can be carried out under relatively low voltage condition for safety reason.  

Unipolar PWM switching strategy with 25kHz of switching frequency for the single-phase PV system was 

implemented for the control of the single-phase PV inverter. A boost DC/DC converter was built to boost the PV 

source voltage for the PV inverter. Experiments were carried out under low grid voltage by using a single-phase 

variable transformer.  Figure 11 (a) shows the performance of the developed PLL under steady-state operating 

condition.  



  

(a) Waveforms from top to bottom are virtual two-phase voltage signals, vα, vβ, grid voltage vg (55V/Div.) 

and cos (θ) (2V/div) 

 

 

(b) Waveforms from the top are Vd in the rotating d-q frame, estimated phase angle θ, (144o/div), grid voltage 

vg (55V/div) and cos (θ) (2V/div) 

 Fig.11 Test results in steady state operating condition 

The waveforms from top to bottom are the virtual two-phase voltage signals vα, vβ, the grid voltage vg, and the 

cosine value of the estimated phase angle.  In the experiment, the cosine value of the grid voltage phase angle is 

output by DAC-AD7568 of the ADMC401 microprocessor based development board (for the values of ±1, the 

outputs are ±2.5V). It can be seen from Figure11 that cos (θ) was synchronized successfully to the actual grid 

voltage phase angle. Although there are harmonics in the grid voltage, the phase angle is still estimated accurately. 
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Figure 11 (b) shows the characteristics of the developed digital PLL under steady state. Results shown from top 

to bottom are: the dc component Vd in the rotating d-q frame, the estimated grid voltage phase angle θ which 

varies linearly between 0 to 360o), the grid voltage vg, and cos (θ) of the input voltage. The dc component Vq is 

controlled to be zero by the operation of the PLL, and this wasn’t shown in the test results. 

Fig. 12 shows the transient response of the developed PLL in the start operation. The results shown from top to 

bottom are:  Vd in the rotating d-q frame, estimated grid voltage phase-angle, θ, the grid voltage and the cos (θ). 

The PLL output was well synchronized to the input voltage phase angle within 60 ms of the start operation (i.e., 

the grid voltage changes from 0 to full voltage).  

 

Fig.12 Estimated characteristics of the PLL under initial start-up condition, from top: Vd in the rotating d-q 

frame, estimated phase angle θ, (144 degrees /div), grid voltage vg (55V/div) and cos (θ) (2V/div).  

Fig. 13 shows the transient response of the implemented PLL with step increase of 40% in grid voltage. The 

results from top to bottom are:  Vd in the rotating d-q frame, estimated grid voltage phase-angle, θ, grid voltage 

and the cosine value of the estimated grid voltage phase angle. It can be seen with the step change of 40% in grid 

voltage, the phase angle of the grid voltage was well tracked by the PLL. Only a small distortion appears in the 

curve of the estimated grid voltage phase angle.  
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Fig 13. Test results for PLL with input voltage with 40% of input voltage increment, from top: Vd in the rotating 

d-q frame, estimated phase-angle θ (144o/div), grid voltage vg (55V/div) and cos (θ) (2V/div).  

It is worth mentioning that the transient tests were only carried out with step changes in the grid voltage. The 

response to frequency changes in the input voltage was not tested as it is difficult to change the frequency of the 

utility system in a laboratory environment.  

Figure 14 (a) shows the output voltage of the emulated PV source and the DC link voltage Vdc as well as the PWM 

signal for the boost DC/DC converter. Perturb & Observer (P&O) based maximum power point tracking algorithm 

was developed to control the PV source operating voltage.  Figure 14 (b) shows the PV inverter output voltage 

and current waveforms; the output current is controlled in phase with the grid voltage based on the PLL presented 

in this paper. 
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Figure 14 (a) operation voltage of the emulated PV source (20V/Div), (b) PV inverter output voltage vac 

(55V/Div) and current iac (1A/Div) 

CONCLUSION 

In this work, a rotating d-q frame based single-phase PLL was designed and implemented for a single-phase grid-

tied PV inverter prototype. Detailed PLL structure, mathematical model, and practical implementation were 

described in the paper. Detailed orthogonal voltage signal was constructed based on transport-delay algorithm for 

single-phase systems this was implemented using a circular buffer (FIFO). The designed PLL was implemented 

in an ADMC401 based control system for a single-phase PV inverter. Experimental results show that the 

implemented PLL was well designed with a very good dynamic performance in both steady-state and transient 

conditions. 
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