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US Economic Uncertainty, EU Business Cycles and the Global Financial Crisis1 

 

 

 

Abstract 

This paper investigates the impact of the US economic uncertainty on the business cycles 

(changes in the industrial production) of twelve European Union (EU) countries before and 

during the global financial crisis.  Empirical tests are conducted using the linear and nonlinear 

causality tests, impulse response function and variance decomposition.  Results show ample 

evidence of causality from the US uncertainty to EU business cycles only when the crisis period 

is included in the analysis.  Both the linear and non-linear tests confirm the significance of US 

uncertainty as a short-term predictor of business cycles of the EU.   
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1. Introduction  

Research interest in the economic uncertainty modelling and its role in predicting 

macroeconomic fluctuations have revived in the recent years (Caldara et al., 2016; Baker et al., 

2015; Dzielinski, 2012; Jurado et al., 2015). During periods of financial crisis, economic 

uncertainty arises because of negative news, which lowers expectations of future economic 

activity. During the recent global financial crisis, the US experienced an exceptional increase 

in macroeconomics and financial uncertainty (Cesa-Bianchi et al., 2014).  Caldara et al., (2016) 

claim that the global financial crisis has cast doubt on the traditional sources of business cycles 

fluctuations.2  And, in response recent research have pointed to economic uncertainty as 

alternative driver of economic fluctuation (Bloom, 2009; Bloom et al., 2014; Christiano et al., 

2014; Gilchrist et al., 2014).   

Lately, uncertainty has been defined in two different ways.  First, according to Jurado et al. 

(2015) uncertainty is defined as the conditional volatility of a stochastic process that is not 

forecastable from the perspective of economic agents. Alternatively, Bloom (2009) and Baker 

et al. (2015) defined uncertainty as a situation where future state of the economy is not known 

with certainty.3 They also report that the economic uncertainty is countercyclical i.e. 

uncertainty on average is much lesser in the expansionary times as compared to the recessions. 

This paper studies the effect of the global financial crisis on the spillover effect of the US 

economic uncertainty on the European Union (EU) business cycles. 

                                                      
2

 See Rebelo (2005) for a good discussion on the sources of business cycles fluctuations. 

 
3This uncertainty can be triggered by various factors such as changes in the economic fundamentals and policies, 

heterogeneous future growth prospects and productivity movements, geopolitical scenarios and natural disasters, 

etc, (Baker et al., 2015). 
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An increase in economic uncertainty can produce an adverse effect on the economy by reducing 

employment, investment and output through various channels (Bloom, 2009; Baker et al., 

2015; Colombo, 2013; Born and Pfeifer, 2014; Jurado et al., 2015). Some of the channels 

identified in the existing literature are i) real options effect (Bernanke, 1983); ii) precautionary 

savings effect (Leland, 1968), and iii) financial frictions effect (Gilchrist et al., 2014). On the 

demand side, higher uncertainty leads to reduction in investment demand for firms and delays 

in the new projects. This is because, the firms gather new information and are concerned due 

to irreversibility of costs involved. Households also respond to the uncertainty in a similar way, 

by reducing consumption of durable goods and waiting for certainty (Bernanke, 1983; Bloom, 

2009; Bloom et al., 2014). On the supply side, in times of higher economic uncertainty, the 

employers curb the employment opportunities that reflect costly adjustment of personnel 

(Bloom, 2009; Bloom et al., 2014). The firms’ ability to raise capital and finance their 

investment initiatives reduces significantly as the creditors tend to expect higher rate of returns. 

This leads to decline in the output growth rate. This negative correlation between 

macroeconomic uncertainty and the output is indicated by Claessens et al., (2012).  Caldara et 

al., (2016) also indicate a robust negative effect of economic uncertainty on economic activity. 

Sum (2013) has reported a long-term equilibrium relationship between the US and EU 

economic policy uncertainty. 

Research involving the US economic or economic policy uncertainty has predominantly 

focussed on the impact it has on the various US macroeconomic and financial variables. Many 

studies have highlighted that any significant shock that affects a leading economy, such as the 

US, is expected to result in a spillover effect on to the macroeconomic variables as well as on 

to the financial markets of other countries (Favero and Giavazzi, 2008; Ehrmann and 

Fratzscher, 2009).  However, evidence from literature on the spillover effect of the US 
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economic uncertainty shocks onto the economies of other countries is very limited. 4 This paper 

addresses this gap in the literature by analysing the impact of the US economic uncertainty on 

the business cycles of the twelve European Union (EU) countries using the linear and nonlinear 

causality tests, impulse response function, and variance decomposition. We address the 

question: “Does the US economic uncertainty cause the economic activities of the major EU 

countries?” In this context, some important empirical questions arise: Is there is a causal 

relationship between US economic uncertainty and the business cycles of the EU countries 

which runs in either direction?  Furthermore, is the nature of this relationship linear or are there 

nonlinearities that need to be taken into consideration? Even further, given the jump in the US 

uncertainty during the financial crisis period has this causality changed during the crisis period?  

Diebold and Yilmaz (2013) show that the US is a major transmitter of economic shocks to 

other economies globally. According to Arora and Vamvakidis (2004) US is the growth engine 

of the world economy. They maintain that the most obvious channel in this regard is the trade 

linkage.5 As changes in the US import demand directly reflects the variations in the net exports 

and productivity in other countries6. Bagliano and Morana (2012) also find that trade is the key 

channel for real activity shocks.  Similarly, US foreign direct and portfolio investment play a 

large and growing role in world financial flows. These financial linkages also serve as source 

of transmitting shocks to other countries.  Billio et al. (2016) report larger synchronization of 

business cycles between the US and the European economies at the beginning of the financial 

                                                      
4Colombo (2013) finds a negative influence of the US uncertainty on macroeconomic variables of the total 

Euro area.  In her research, though, Colombo does not apply individual EU countries’ data.  The 2013 IMF study 

shows that the policy uncertainty shocks in the US and the Euro area affected growth in other world regions. 

Klößner and Sekkel (2014) report that the uncertainty around the US and the UK economic policies has a greater 

impact on six other developed countries.  

 

5 Abbott et al. (2008) show that trade intensity and the business cycles corrections are positively related. 

 
6 Grossman and Helpman (1989, 1990, 1991), Rivera-Batiz and Romer (1991a, 1991b), and Romer (1990) for a 

discussion of spillover effects from trade.  
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crisis. Similarly, Jones and Olson (2015) show that US uncertainty shocks lead a significant 

decline in foreign economies’ output. Further according to Apostolakis and Papadopoulos 

(2014) common factors such as global shocks, cross-country contagion and common-lender 

effect may also cause spillover of financial stress and economic uncertainty.  Investors’ herding 

behavior and financial integration of the financial markets may manifest these factors.   

 

The volume of trade during 2016 between the US and the EU was around $1050 billion and 

accounted for one third of the global trade flows.  According to the Transatlantic Economic 

Council , the US and EU account for 56.7% of inward stock of FDI and 71% of outward stock 

of FDI. 15 million workers are employed in mutually on shored jobs on both sides of the 

Atlantic. US investment since 2000 in many European countries has up surged significantly, 

e.g. in comparison to China, 14 times more in the Netherlands, 10 times more in the UK and 6 

times more in the Ireland.  Give the direct link between the two economies it is of empirical 

interest to study the relationship between US economic uncertainty and EU business cycles.   

A significant spillover from the US to EU will have major implications for the EU policy 

makers and economy. 

This paper aims to provide empirical evidence on these unexplored avenues of research and 

contributes to the existing literature in the following ways. First, we empirically investigate the 

causal relationship between the US economic uncertainty and business cycles (represented by 

the industrial production growth rate) of twelve major countries within the EU.  We employ 

monthly data from January 1991 to December 2015 from Austria, Belgium, Denmark, Finland, 

France, Germany, Greece, Ireland, Italy, the Netherlands, Spain and the UK. This potential 

causal relationship can be explained in terms of interdependence and integration between the 

US uncertainty and the EU economy.   
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Second, the vast majority of studies employ linear Granger causality tests (Granger, 1969) 

when assessing the relationship between various macroeconomic variables despite the fact that 

there is clear evidence which points to the existence of nonlinearities (Shiller, 1993, 2005; 

Hiemstra and Jones, 1994; Shin et al., 2013). Thus, we also apply non-linear tests to investigate 

the causality between the variables.  To the best of our knowledge, no other study has applied 

nonlinear bivariate tests to assess the relationship between US economic uncertainty and EU 

business cycles.  

Third, we further study the potential effect of the global financial crisis on the international 

spillover effect of the US economic uncertainty. As stated earlier, there was a substantial 

increase in the US economic uncertainty during the global financial crisis.  It is of empirical 

interest to see if the sudden jump in the US economic uncertainty resulted in a significant 

change in the spillover from the US uncertainty to the EU business cycles.  A substantial change 

in the spillover will have significant policy and economic implications during the crisis era.  

Again, to the best of our knowledge, the impact of the global financial crisishas not been 

studied.   

In this paper business cycles are measured as the monthly change in the industrial production 

of the twelve EU countries.7US economic uncertainty measures are adopted from Jurado et al. 

(2015). Following Jurado et al. (2015), uncertainty here is defined as the conditional volatility 

of a disturbance that is unpredictable from the perspective of economic agents.  

 

Our results provide ample evidence of linear and nonlinear causality from the US uncertainty 

to the EU countries’ business cycles when the crisis period is included in the analysis.  During 

                                                      
7Bekaert et al. (2013) and Colombo (2013) also apply the changes in industrial production as the business cycles. 
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the pre-crisis period very little evidence of causality is found.  Impulse response shows that 

innovations in the uncertainty trigger a significant change in the business cycles. Variance 

decomposition results further show that the US uncertainty shock explains a substantial share 

of variance of the forecast errors of the EU countries’ business cycles.  Finally, we employ 

both linear and nonlinear forecasting regressions and show that US economic uncertainty is an 

important short-term predictor of future economic activity within the EU countries. Overall, 

results indicate the need for EU policy makers to take into consideration both the US economic 

uncertainty spillover effect and nonlinearities when assessing the EU economic outlook.  This 

is especially true during, and after the global financial crisis. 

The remainder of the paper is organised as follows. Section 2 describes the data and the 

methodological approach applied.  Sections 3 and 4 provide a discussion of the empirical 

results.  Finally, section 5 concludes. 

2. Data Description and Methodology 

2.1. The Data 

As noted earlier we apply monthly data ranging from January 1991 to December 2015 from 

Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, the Netherlands, 

Spain and the UK.  These countries represent the largest twelve economies from the EU.8  Data 

regarding indices of industrial production for respective countries are obtained from 

Datastream. Figure 1 shows the growth rates in the industrial production indices of the major 

EU countries. The dip in the industrial production during the crisis period can be seen clearly 

in many cases, for example Finland, France, Italy, Spain and the UK.  Uncertainty index data 

                                                      
8

 Size of economies was based on real GDP in 2014 and 2015. 
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has been downloaded from Sydney Ludvigson’s website9. Figure 2 presents the Jurado index 

of uncertainty (in levels) for the sample period. The sharp increase in uncertainty during the 

2007-2008 global financial crisis is clearly visible. Figure 3 presents the changes in the Jurado 

index of uncertainty for the sample period. As noted earlier during the recent global financial 

crisis the US experienced an exceptional increase in macroeconomics and financial uncertainty 

(Cesa-Bianchi et al., 2014). Therefore, it is important to investigate the impact of the financial 

crisis in our study and provide some new evidence.  Empirical tests are first conducted for the 

pre-crisis period (January 1991 to June 2007) and then tests are conducted using the total 

sample period (January 1991 to December 2015) which includes the global financial crisis 

era.10  In this manner, the effect of the crisis on the uncertainty spillover may be investigated.  

We provide a through comparison of the results from the two sample periods. 

As per standard practices, augmented DF test proposed by Dickey and Fuller (1979) and 

Kwiatkowski et al. (1992) KPSS tests show that the first difference series of the underlying 

variables are stationary during both periods, which are then employed for linear and nonlinear 

causality tests.11 These results are not provided to save space but are available on request. 

[Insert Figures 1 and 2 around here] 

2.2. Economic Uncertainty 

Although Economic Policy Uncertainty (EPU) by Baker et al. (2015) has recently gained 

popularity, its main drawback lies in its inability to reflect ‘true uncertainty’ because it fails to 

provide a rationale for the decision-making process by drawing extensively from economy-

wide data. Jurado’s index rather focuses on ameliorating these limitations by econometrically 

                                                      
9Uncertainty index data have been downloaded from http://www.sydneyludvigson.com/data-and-appendices/ 

 
10 The start of the collapse of the US sub-prime mortgage market during July/August 2007 is applied as the start 

of the crisis period in this paper.   

 

11We do not provide the description of the unit root tests as they are available at many sources. 
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extracting the non-forecastable component of uncertainty and providing a measure which can 

be used directly in macroeconomic analysis, without suffering too much from possible 

endogeneity issues. Jurado’s index is free from the structure of specific theoretical models, and 

from dependencies on any single observable economic indicator. The application of the 

nonlinear causality tests and the Jurado index to represent the economic uncertainty makes this 

paper unique in the literature.   

 

Jurado et al. (2015) argue that the conventional econometric measures are not the true measure 

of uncertainty. In fact, Jurado et al. (2015) argue that ‘the conditions under which common 

proxies are likely to be tightly linked to the typical theoretical notion of uncertainty may be 

quite special’.12 In view of these limitations, Jurado’s index exploit a data-rich environment to 

provide direct econometric estimates of time-varying US macroeconomic uncertainty. 

 

In particular, Jurado’s index define a h period ahead of uncertainty in variable 

),,(= 1
 t

y
Nttjt yyYy , and denote )(U hy

jt  to be the conditional volatility of the purely 

unforecastable component of the future value of the series;  

  tthjthjt

y

jt IIyEyEhU |])|[[=)( 2

  , (1) 

 where )|(. tIE  is taken with respect to information 
tI  available to agents at time t . An 

(objective) measure or index of macroeconomic uncertainty is then described as an aggregation 

of individual uncertainty at each date using aggregation weights 
jw :  

 )()(
1=

hUwplimhU y

jtj

y
N

j
y

N

y

t  . (2) 

                                                      
12

 For example, stock market volatility can change over time even if there is no change in uncertainty about 

economic fundamentals.  Similarly, cross-sectional dispersion in individual stock returns can fluctuate without 

any change in uncertainty if there is heterogeneity in the loadings on common risk factors.  
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 The distinguishing feature of this measure of uncertainty from other aggregate measures is its 

ability to remove forecastable component13 ]|[ thjt IyE 
 before computing conditional 

volatility. Failure to do so often leads to estimates that  ‘erroneously categorize forecastable 

variations as ‘uncertain’’. It is argued that Jurado’s index measure of uncertainty provides 

superior econometric estimates of uncertainty that are as free as possible from the structure of 

specific theoretical models, and from dependency on any single (or small number) of 

observable economic indicators.  

 

2.3. Linear Causality  

Vector autoregression (VAR) specification is used in this paper to test the Granger causality 

(Granger, 1969) between changes in the business cycles (i.e. industrial production growth rate) 

and changes in the economic uncertainty index proposed by Jurado et al. (2015). This is aimed 

at assessing linear causal relationship between the variables in terms of time precedence. The 

VAR specification applied in this research are in the following form: 

 

𝐵𝐶𝑡 =  𝛼 +  ∑ 𝛽𝑖𝐵𝐶𝑡−𝑖
𝑛
𝑖=1 + ∑ 𝛾𝑖𝐸𝑐𝑜𝑈𝑈𝑆,𝑡−𝑖

𝑛
𝑖=1 + 𝜀1𝑡           (3) 

𝐸𝑐𝑜𝑈𝑈𝑆,𝑡 =  𝜃 +  ∑ 𝜔𝑖𝐵𝐶𝑡−𝑖
𝑛
𝑖=1 + ∑ 𝜑𝑖𝐸𝑐𝑜𝑈𝑈𝑆,𝑡−𝑖

𝑛
𝑖=1 + 𝜀2𝑡   (4) 

 

In equations (3) and (4) BC and EcoUUS denote the changes in the business cycle of selected 

European countries and the US economic uncertainty index, respectively. Equations 3 and 4 

test bivariate causality between BC and EcoUUS.  There is evidence of causality from US 

economic uncertainty (EcoUUS) to business cycles (BC) of the selected European countries 

when γi are significant.  Here presence of linear dependency would imply a possible spillover 

effect between the US economic uncertainty and the business cycles of the European countries. 

                                                      
13 From a large number of macroeconomic and financial variables. 
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Dependencies can be unidirectional or bidirectional between variables which would imply 

feedback effect.  In equation 4 significant 𝜔𝑖 indicates causality from the EU business cycles 

(BC) to the US uncertainty (EcoUUS).  We only present results for equation 3.  Equation 4 is 

estimated for each country and a summary of the result is provided in footnotes.   

 

2.3. Nonlinear Causality  

Nonlinearities in the macroeconomic time series have been reported by a large number of 

studies (Hiemstra and Jones, 1994; Shin et al., 2013, Shiller, 1993, 2005). Nonlinear causality 

was highlighted in the economics/finance literature by Hiemstra and Jones (1994) and 

subsequent research papers have provided further evidence in a nonlinear setting with respect 

to various economic/financial variables (Silvapulle and Choi, 1999; Chen and Wuh-Lin, 2004; 

Diks and Panchenko, 2006; Bekiros and Diks, 2008a, 2008b; Shin et al., 2013; and Bekiros, 

2014). Specifically, there are various factors such as transaction costs or information frictions 

which could give rise to nonlinearities and lead to non-convergence towards the long-run 

equilibrium. For example, Anderson (1997) argues that transaction costs are often ignored in 

studies of asset markets although in practice they could be substantial and prevent the 

adjustment of disequilibrium errors.  Anderson (1997) further shows that estimated models 

which consider these nonlinearities outperform their linear counterparts. Other sources that 

may be responsible for nonlinearities include ‘diversity in agents’ beliefs’ (Brock and LeBaron, 

1996), ‘heterogeneity in investors’ objectives arising from varying investment horizons and 

risk profiles’ (Peters, 1994), and ‘herd behaviour’ (Lux, 1995). Given the above, it is clear that 

the need for nonlinear and asymmetric adjustments is imperative. Hence, this research further 

aims at identifying the presence of nonlinear causality (spillover effect) between the variables. 

Nonlinear causality is tested by means of the model proposed by Hiemstra and Jones (1994). 
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This model is based on the correlation integrals, defined as the probability of the dynamic or 

lagged co-movement between the two stationary time series.  

First, consider two strictly stationary and weakly dependent time series  tX  and  tY , t = 

1,2,….Denote the m-length lead vector of Xt by m

tX and the Lx-length and Ly-length lag vectors 

of  Xt and Yt, respectively, by Lx

t LxX 
and 

Ly

t LyY  . That is, 

1 1

1 1

1 1

( , ,..., ), 1,2..., 1,2,...,

( , ,..., ),

1,2,..., 1, 2,...,

( , ,..., ),

1,2,..., 1, 2,...,

m

t t t t m

Lx

t Lx t Lx t Lx t

Ly

t Ly t Ly t Ly t

X X X X m t

X X X X

Lx t Lx Lx

Y Y Y Y

Ly t Ly Ly

  

    

    

  



   



   

    (5)

 

As stated in Hiemstra and Jones (1994), given values of m, Lx and 1Ly  and for 0e  , Y does 

not strictly Granger cause X if:    

 

 

|   ,   

|  

m m Lx Lx Ly Ly

t s t Lx s Lx t Ly s Ly

m m Lx Lx

t s t Lx s Lx

Pr X X e X X e Y Y e

Pr X X e X X e

   

 

     

         (6) 

In equation (6), Pr(∙) denotes probability and ||∙|| denotes the maximum norm. The left hand 

side of equation (6) is the conditional probability that the distance between two arbitrary m-

length lead vectors of  tX  is less than e, given that the distance between the corresponding 

Lx-length lag vectors of  tX and Ly-length lag vectors of  tY  is also less than e. The right 

hand side of equation (6) is the conditional probability that any two arbitrary m-length lead 

vectors of  tX are within a distance e of each other, given that their corresponding Lx-length 

lag vectors are also within a distance e of each other. For all countries in our paper, Xt represent 
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the business cycle represented by the industrial production growth rate for selected EU 

countries and Yt is the US economic uncertainty index proposed by Jurado et al. (2015) 

represented by the industrial production growth rate for selected EU countries. Therefore, if 

equation (6) is true, this implies that the US economic uncertainty does not affect the respective 

business cycles of the EU countries i.e. no spillover effect. 

To implement a test based on equation (6), Hiemstra and Jones (1994) express the conditional 

probabilities in terms of the corresponding ratios of joint probabilities: 

1( , , ) 3( , )

2( , , ) 4( , )

C m Lx Ly e C m Lx e

C Lx Ly e C Lx e

 
        (7) 

whereC1, C2, C3, C4 are the joint probabilities.14 For given values of m, Lx, and 1Ly  and

0e   under the assumption that  tX  and  tY  are strictly stationary and weakly dependent, if 

 tY  does not strictly Granger cause  tX  then, 

 

 

 

 
2

1 , , , 3 , ,
  (0, ( , , , ))

2 , , , 4 , ,

C m Lx Ly e n C m Lx e n
n N m Lx Ly e

C Lx Ly e n C Lx e n


  
   

 
   (8) 

The appendix of Hiemstra and Jones (1994) provides further details regarding the definition 

and the estimator of the variance 2( , , , )m Lx Ly e . To ensure robustness, this model is capable 

of testing the bidirectional causality to avoid any bias caused by the feedback effect.  

[Insert Table 1 around here] 

 

 

 

                                                      
14For more details on these joint probabilities and on their corresponding correlation-integral estimators, see 

Hiemstra and Jones (1994). 
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3. Results 

Table 1 presents linear causality results for both the sample periods. During the total sample 

including the crisis period (1991-2015) there is a significant evidence of linear spillover effect 

of the US economic uncertainty to the business cycles of all twelve EU countries.  Using the 

pre-crisis sample (1991-2007) there is limited evidence of causality. Only in the cases of 

Austria and Germany business cycles there is significant causality from the US uncertainty. 

Lack of causality in the pre-crisis period is in line with Stock and Watson (2005) observation 

that the co-movement of macroeconomic aggregates has declined in the globalization era of 

1984-2002. However, rather than linking their results directly to the globalization process, 

Stock and Watson (2005) maintain that their results are explained by the diminished 

importance of common shocks among the advanced economies. For both sample periods, 

respective lag orders for Granger causality have been selected based on Aakiake and Hannan-

Quin information criteria varying with maximum number of lags varying between 4 to 8 for 

different countries. 

 

[Insert Table 2 around here] 

 

Table 2 presents the nonlinear causality test results.  These results are similar to the linear 

results.  Using the total period there is significant evidence of nonlinear causality from the US 

uncertainty to the business cycles for nine out of the twelve EU countries.  Only in the cases 

of France, Germany, and Greece do results fail to indicate any causality. The weak French and 

German results could be due to the strained ties between the US and these countries lately 

caused by the declining economies and resource crunch (Ahearn, 2008; Ahearn and Belkin, 

2010).  Once again during the pre-crisis period results only provide evidence of causality for 

Austria and Germany.  This result is similar to the linear causality test.   As expected there is 
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clear evidence of increased causality from the US uncertainty to the EU business cycles when 

the crisis period is included in the analysis.  This evidence is provided by both the linear and 

nonlinear tests.15 The increase in both the causality when applying the crisis period is due to 

the increased economic uncertainty during the crisis period and increased economic linkage 

between the US and the EU.   

 

[Insert Figures 4 and 5 around here] 

 

Figures 4 and 5 presents the impulse response functions to a one-standard deviation shock to 

the uncertainty index for the pre-crisis and total samples, respectively.  Impulse responses trace 

out the responsiveness of the dependent variables (business cycles) in the VAR to shocks to 

each of the variables (US uncertainty).  The responses of business cycles of all countries are 

significant during both periods.  During the total era including the crisis period (Figure 5) the 

responses of the Danish, French, Irish, Italian, Spanish and the UK business cycles suggest an 

immediate decline in production; for example, the lowest value for the French business cycle 

is reached after five months at more than -8%.  Then these slowly return to their pre-shock 

level after a period of more than one year.  The Italian and the UK results are also very similar 

to the French result, while the Spanish business cycle takes almost twenty months to reach the 

pre-shock level.  The lowest value for the Irish business cycle is less than -4% after five months, 

but the pre-shock level is reached relatively quickly after eight months.  The Danish result is 

similar to the Irish result but with much smaller change.  For the remaining countries the initial 

                                                      
15 As note earlier, linear and nonlinear tests are also conducted to study the unidirectional causality the other way 

around that is the business cycles of the EU countries causing economic uncertainty in the US. These tests have 

been conducted for both pre and including financial crisis periods. Linear causality results show that the US 

economic uncertainty is not affected by most of the countries’ business cycles except Germany and Netherlands 

where relatively weaker impact is observed at 10 percent significance level. In case of nonlinear tests, business 

cycles of the EU countries do not cause economic uncertainty in the US for both sample periods. These results 

are available on request from the authors. 
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reaction is a jump in the business cycles and then a decline afterwards; for example, in Finland, 

after a 2% jump within two months, there is a decline to -3% after four months. The climb to 

the pre-shock level is reached after twelve months.  The Greek result is similar to the Finnish 

result, while results from Austria, Belgium, Germany and Netherlands are very similar.  After 

an initial jump, the lowest level is reached after four months but within seven months recovery 

is observed and the climb to the pre-shock level takes more than eighteen months.  A 

comparison with the pre-crisis results (figure 4) shows a less responsiveness of the business 

cycles to the one-standard deviation to the US uncertainty.  The average time for the business 

cycles to return to the pre-shock level is faster during the pre-crisis period.  This is especially 

true in the cases of Belgium, Germany, Greece, Ireland, Italy, Netherlands, Spain and the UK.  

Impulse response results confirm and back the results of the causality tests that adding the crisis 

years to the analysis clearly shows the increase in the impact and importance of the US 

economic uncertainty on the business cycles of the EU countries. 16    

 

4. Robustness Check 

This section builds upon the causality results reported above and aims to empirically test the 

role of the US economic uncertainty as a short-term predictor of the changes in the business 

cycles of the twelve European countries. This section compliments and strengthens the 

evidence of Granger linear and nonlinear causality as well as a significant robustness check.  

                                                      
16 Further investigation is conducted by means of the variance decomposition of the forecast errors. The 

variance decomposition highlights the contribution of the US uncertainty in explaining the short-run fluctuations 

in the EU business cycles using the total period, at six months, the US uncertainty shocks explains more than 5% 

of the variation in the business cycles of Austria, France, Italy, Spain and the UK. At twelve months and later, 

and only in the cases of Denmark, Greece, and Ireland, the US uncertainty shock explains less than 5% of the 

variation. US economic uncertainty in the pre-crisis period explains relative lesser variation in the business cycles 

of the EU countries as compared to the full sample period. At six months, less than 1% variation in the business 

cycle of all the selected EU countries may be attributed to the US uncertainty shocks.  These results are available 

on request from the authors. 
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These tests are only conducted for the total period.  For this purpose, initially focus on the 

linear forecasting regression:  

𝑦𝑡+ℎ = 𝑎 +  𝛽𝑥𝑡 +  ∑ 𝛾𝑖𝑦𝑡−𝑖
𝛾
𝑖=0 + 𝜖𝑡+ℎ   (9) 

Where yt+h refers to the changes in the business cycles (i.e. the industrial production growth), 

𝑦𝑡+ℎ =  
1200

ℎ+1
𝑙𝑛 (

𝑌𝑡+ℎ

𝑌𝑡
), h>0 is the forecast horizon, and x represents the changes in the US 

economic uncertainty.  The null hypothesis of β =0 is tested here to observe the predictability 

of changes in the business cycle using the US economic uncertainty. The corresponding results 

for h=1 are presented in table 3.  

[Insert Table 3 around here] 

We report that the US economic uncertainty is a significant short-term predictor of the business 

cycle of most of the EU countries in sample, with the exception of Denmark, Greece and 

Ireland. These forecasting results reaffirm and strengthen the evidence of spillover effect of the 

US economic uncertainty on the major EU countries. 

 

We further extend the forecasting approach presented above and report evidence based on 

nonlinear forecasting models, which allows us to further enhance our understanding of the 

underlying relationship between the US economic uncertainty and EU countries’ business 

cycles. In this context, smooth-transition threshold (STR) models are employed for nonlinear 

forecasting (see, inter alia, Chan and Tong, 1986; Teräsvirta and Anderson, 1992; Granger and 

Teräsvirta, 1993; Teräsvirta, 1994; McMillan, 2003). In contrast to simple threshold models 

which limit abrupt change in parameter values, STR models allow for smooth variations 

between different regimes. The threshold model is presented as follows: 

 

0 1

0 0

( )
p p

t h t i t i t i t i t d t h

i i

y x y x y F y          

 

 
       

 
 

(10) 
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where all variables are defined as in equation (9) while ( )t dF y 
 is the transition function and 

t dy   is the transition variable. Following the literature, the first form of transition function we 

consider is the logistic function which is shown in equation (11) (see also, Chang and Tong, 

1986; Teräsvirta and Anderson, 1992; Teräsvirta, 1994; McMillan, 2003). In this case, the full 

model is referred to as a logistic STR (LSTR) model. 

1( ) (1 exp( ( ))) , 0t d t dF y y c 
     

  
(11) 

where d is the delay parameter,   is the smoothing parameter, and c is the transition parameter. 

This function is monotonically increasing in yt–d. Note that when  , ( )t dF y     becomes a 

Heaviside function: ( ) 0t dF y    when  t dy c   and ( ) 1t dF y    when t dy c  . 

However, monotonic transition might not always be successful in empirical applications. 

Therefore, the second form of transition function we consider is the exponential function with 

the relevant model in this case being referred to as an exponential STR (ESTR) model (see, 

Teräsvirta and Anderson, 1992; Teräsvirta, 1994; McMillan, 2003):  

2( ) 1 exp( ( ) ), 0t d t dF y y c      
   

(12) 

In this case, the transition function is symmetric around c. The ESTR model implies that 

contraction and expansion have similar dynamic structures while the dynamics of the middle 

ground differ (Teräsvirta and Anderson, 1992). As there might be some issues in the STR 

models related to the estimation of the smoothing parameter   which can be problematic, we 

follow the literature and scale   by the standard deviation of the transition variable in the 

LSTR model and by the variance of the transition variable in the ESTR model (see, Teräsvirta 

and Anderson, 1992; Teräsvirta, 1994). Hence, we have the following versions of transition 

functions, respectively:  

1( ) (1 exp( ( ) / ( ))) , 0t d t d t dF y y c y  
      

   
(13) 

2 2( ) 1 exp( ( ) / ( )), 0t d t d t dF y y c y            (14) 
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Table 4 presents the results of the LSTR and the ESTR models.  In the LSTR model results, 

the estimated transition parameter c, which marks the half-way point between the two regimes, 

is significantly different from zero in most of the EU countries, except for Denmark, France, 

Greece and Ireland. Moreover, we observe that in most of the estimated betas are negative and 

significant (at 1% and 5% levels, depending on the case) suggesting that high US economic 

uncertainty forecasts a lower industrial production growth rate in the following month. Further 

the estimates of φ1 in the upper regime significance is found in six out of ten EU countries 

revealing the importance of US economic uncertainty as an explanatory variable of industrial 

production growth rate in both regimes for these countries. Insignificant results are found for 

Denmark, France, Greece and Ireland.  Finally, the estimated parameter λ indicates that the 

fastest speed of transition occurs in Finland, while the slowest are observed in Austria, 

Germany, Netherlands and the UK.   Once again the speed coefficient is insignificant for the 

same four countries.   

Results for the estimated ESTR models are very similar to the LSTR results. This reaffirms the 

significance of the US economic uncertainty as a short-term predictor of future changes in the 

business cycles of the EU countries in a nonlinear context and compliments the previously 

reported results under the linear framework. Thus, ESTR and LSTR results reinforce the idea 

that the US is often seen as “the engine” of the world economy (Dees and Saint-Guilhem, 

2011), any sign of slowdown or rise in the uncertainty raises concerns about adverse spillover 

effects to other economies.  

 

5. Conclusion 

An increase in economic uncertainty can affect an economy by reducing employment, 

investment and output. During periods of financial crisis, uncertainty arises because of negative 

news, which lowers expectations of future economic activity. Any significant shock that affects 
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a leading economy, such as the US can potentially have a spillover effect on the 

macroeconomic variables and financial markets of other countries.  However, there is very 

limited evidence on the subject and this paper attempts to fill these gaps in the literature. We 

study the impact of the US economic uncertainty on the business cycles of twelve major EU 

countries using the linear and nonlinear causality, impulse response function and variance 

decomposition. We apply monthly data ranging from January 1991 to December 2015 from 

Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, the Netherlands, 

Spain and the UK. Tests are conducted for both the pre-crisis period (January 1991 to June 

2007) and the total sample including crisis period using uncertainty index proposed by Jurado 

et al. (2015).  

 

Results provide ample evidence of linear and nonlinear causality from the US economic 

uncertainty to the EU business cycles when the crisis period is included in the study. There is 

very little evidence of causality during the pre-crisis period which is in line with findings of 

Stock and Watson (2005) that the comovement between macroeconomic aggregates 

diminished during 1984-2002.  Thus, results clearly indicate an increase in the importance of 

the US economic uncertainty during the crisis period, which has implications for EU policy 

makers and businesses. Impulse response shows that innovations in the uncertainty trigger 

significant changes, in the business cycles, which are more prominent when the crisis period is 

included in the sample.  Variance decomposition results show that the US uncertainty shocks 

explain a decent share of variance of the forecast errors of the EU countries’ business cycles.  

For robustness check, we test the role of the US economic uncertainty as a short-term predictor 

of the changes in the business cycles, applying both the linear and non-linear forecasting 

methods.  Both tests indicate that US uncertainty is a significant short term predictor of the 

business cycles of most of the EU countries.     
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Overall, the findings in this paper suggest that policies associated with EU countries’ economic 

activity should take into consideration the spillover effect of the US economic uncertainty and 

the nonlinear dynamics of the underlying relationship.  This is particularly important in periods 

of heightened economic uncertainty such as the recent global financial crisis. 
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Figure 1: Industrial Production Growth Rates 
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Figure 2: US Economic Uncertainty in levels 

 

 
 

Figure 3: First Difference of US Economic Uncertainty 
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Table 1 Linear Causality Results 

 

Countries 
US Eco. Uncertainty  BC 

Before Financial Crisis After Financial Crisis 

Austria 25.95*** 29.24*** 

Belgium 10.2 27.46*** 

Denmark 7.69 11.51* 

Finland 4.66 22.54** 

France 6.76 34.92*** 

Germany 14.76** 34.95*** 

Greece 4.56 20.13** 

Ireland 4.46 22.71** 

Italy 3.51 30.34*** 

Netherlands 8.98 18.11*** 

Spain 8.47 28.66*** 

United Kingdom 6.09 27.12*** 

 

Notes: 

 
Table 1 presents the results of the bivariate linear causality tests, described in Section 3.1, between the US 

economic uncertainty index proposed by Jurado et al. (2015) and the business cycle (represented by the industrial 

production growth rate) for selected European countries. Results are shown with respect to the pre-crisis and full 

sample periods to assess the impact of the recent financial crisis. Asterisks ***, ** and * denote significance at 

the 1%, 5% and 10% conventional levels respectively. Standard diagnostic tests such as Ramsey’s Specification 

Test (RESET), White’s Heteroskedasticity Test; LB: Ljung-Box (1978) test for autocorrelation up to 12 lags;  and 

Jarque-Bera normality of residuals test have been applied.  
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Table 2 

Nonlinear Causality Results from Uncertainty to Business Cycles 

 

Countries US Eco. Uncertainty  BC 

Before Financial Crisis After Financial Crisis 

Austria 1.85** 1.50* 

Belgium 0.89 5.80*** 

Denmark 0.55 2.01** 

Finland 0.65 1.930** 

France 0.75 0.27 

Germany 2.99*** 0.024 

Greece 1.01 1.37 

Ireland 1.07 1.73** 

Italy 0.91 1.81** 

The Netherlands 0.73 2.17** 

Spain 0.97 2.49*** 

United Kingdom 1.05 2.34*** 

 

 
This table presents the results of the Hiemstra and Jones (1994) test statistic (HJ) described in Section 3.2 which 

tests for nonlinear causality between the US economic uncertainty index proposed by Jurado et al. (2015) and the 

business cycle (represented by the industrial production growth rate) for selected European countries. Results are 

shown with respect to the pre-crisis and full sample periods to assess the impact of the recent financial crisis. 

Asterisks ***, ** and * denote significance at the 1%, 5% and 10% conventional levels respectively.  
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Figure 4 : Impulse Response Functions – Before Financial Crisis  

(Response of BC to Cholesky One S.D. Innovations in US Eco Uncertainty) 
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Figure 5: Impulse Response Functions – Total Period 

(Response of BC to Cholesky One S.D. Innovations in US Eco Uncertainty) 
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Table 3: Linear Forecasting Results  

 
 
 

Country JEU Adj. R2 
Austria 6.49** 

(2.23) 

0.52 

Belgium 5.94** 

(2.03) 

0.48 

Denmark 1.50 

(0.79) 

0.42 

Finland -0.43* 

(1.92) 

0.056 

France -1.019** 

(1.97) 

0.164 

Germany -1.88** 

(2.41) 

0.41 

Greece 0.479 

(0.37) 

0.12 

Ireland 1.89 

(0.82) 

0.26 

Italy -1.57** 

(2.95) 

0.14 

Netherlands 4.15** 

(2.44) 

0.27 

Spain -1.96*** 

(3.46) 

0.19 

United 

Kingdom 

-1.25*** 

(3.03) 

0.13 

 
This table presents the results from the linear forecasting regressions described in Section 5 (equation (9)) during 

the full sample period (i.e. Jan-1991 to Dec-2015) and when the forecast horizon is 1. For each country, the 

dependent variable is the change in its economic activity (i.e. the log-change in the total industrial production 

index, which is our business cycle indicator, BC). The main predictive variable is the change in the US economic 

uncertainty index proposed by Jurado et al. (2015). For each regression, the estimated coefficients are given in 

the first row while the corresponding t-statistics are reported in parentheses below. Asterisks *** and ** denote 

significance at the 1%, and 5% levels, respectively. 
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Table 4: Nonlinear Forecasting Results 

 
Panel – I: Exponential Smooth Transition Threshold Model (ESTR) 

 
Country α ß φ0 φ1 λ c Adj. R2 

Austria -52.04*** 10.49*** 56.99*** -5.33*** 0.055** -17.29*** 0.69 

Belgium 19.80** -1.14** -79.13*** 17.64*** 1.18 19.49*** 0.64 

Denmark 38.60 -41.15 -27.57 41.56 0.0016 -15.93 0.38 

Finland 13.31*** -19.69*** -11.49*** 18.83*** 9.71*** -19.71*** 0.27 

France -4.63 -3.51* 5.09 2.45 0.089 -9.28*** 0.25 

Germany -51.21** -8.6** 57.34** 8.26* 0.046** -49.28 0.54 

Greece -0.04 -0.99 11.45 0.05 0.006 44.63 0.14 

Ireland 11.93 -5.09 -3.75 11.73 4.70 -6.74 0.22 

Italy -40.84 -55.72*** 40.72*** 55.54*** 0.10*** -60.74** 0.28 

Netherlands -7.31 5.30** -25.71** -5.41** 0.035** 13.06** 0.53 

Spain 22.55 -16.37** -22.22 15.14** 0.144** -20.34 0.23 

UK -5.67 -4.21*** 6.52 3.77** 0.068** -7.30** 0.18 

 
 
Panel – II: Logistic Smooth Transition Threshold Model (LSTR) 

 
Country α ß φ0 φ1 λ c Adj. R2 

Austria -7.67** 2.04*** 12.03* 2.24** 0.091** 2.38** 0.74 

Belgium 31.27*** 11.97** -25.35*** -16.52 0.012*** 23.52*** 0.69 

Denmark 23.82 29.45 23.71 28.01 0.568 -3.775 0.37 

Finland 1.96*** 0.42*** -11.5*** -6.07*** 0.03*** 3.73*** 0.19 

France 0.84 -0.46 -2.19 -2.67 0.049 15.47*** 0.24 

Germany 3.33** -4.53** 0.37 6.93* 0.048** 1.94** 0.44 

Greece 3.36 -5.46 -2.79 5.14 0.013 -1.009 0.12 

Ireland -14.74 -33.8 14.81 35.08 0.063 19.05** 0.31 

Italy 5.66 2.75** -6.02 -5.14** 0.064** 1.66*** 0.20 

Netherlands -17.56*** 5.01** 16.97* -4.27** 0.015*** -42.33*** 0.52 

Spain 0.56 -2.17** -1.61 -6.43*** 0.003* -1.61** 0.26 

UK 1.02** -1.53** -1.22 0.31*** 0.013*** 39.89** 0.19 
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This table presents the results of the smooth-transition threshold (STR) models which were described in Section 

5. LSTR refers to the case where the transition function is the logistic function while ESTR employs an 

exponential function instead. Results are reported for all countries under consideration during the full sample 

period (i.e. Jan-1991 to Dec-2015). Asterisks ***, ** and * denote significance at the 1%, 5% and 10% levels, 

respectively. 

 


