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Abstract 

Gene expression is regulated by a complex transcriptional network. It is of interest to quantify uncertainty 

of not knowing accurately reaction rates of underlying biochemical reactions, and to understand how they 

affect gene expression. Assuming a kinetic model of the lac circuit in Escherichia coli, regardless of how 

many reactions are involved in transcription regulation, transcription rate is shown to be the most im-

portant parameter affecting steady state production of mRNA and protein in the cell. In particular, dou-

bling the transcription rate approximately doubles the number of mRNA synthesized at steady state for 

any rates of transcription inhibition and activation. On the other hand, increasing the rate of transcription 

inhibition by 10% reduces the average steady state count of mRNA by about 7%, whereas changes in the 

rate of transcription activation appear to have no such effect. Furthermore, for wide range of reaction rates 

in the kinetic model of the lac genetic switch considered, protein production was observed to always 

reach a maximum before the degradation reduces its count to zero, and this maximum was found to be 

always at least 27 protein molecules. Such value appears to be a fundamental structural property of genet-

ic circuits making it very robust against changes in the internal and external conditions. 

Keywords: Escherichia coli, lac genetic circuit, steady state synthesis, transcription. 

1. Introduction 

One of the main challenges in system biology is to elucidate design principles of gene regulation 

networks [1]. It is therefore of interest to study properties of regulatory structures or motifs which 

frequently compose regulatory networks [2]. Understanding the function of recurring regulatory motifs 

can shed light on the design of biological systems in which they appear. One such common motif 

implements a negative auto-regulation where transcription factors negatively regulate their own 

transcription [1]. This motif is present in over 40% of transcription factors known in E. coli [3]. In 

addition, understanding the relationship between the dynamics of mRNA and protein production and the 

rates of biochemical reactions comprising genetic circuits is fundamental in explaining the biological 

behavior of these circuits [4]. 

Synthesis of both mRNA and protein are outcomes of specific events, although their counts are only 

observed at selected (discrete) time instances giving rise to time series data. At time scales of interest, it is 

convenient to assume that mRNA and protein production is modeled by stochastic processes producing 

correlated molecule counts which are determined by the considered probability distributions and the 

functional model of gene expression. Moreover, for larger numbers of molecules, it is also convenient to 

approximate discrete molecule counts by continuous random variables in order not to exclude probability 

distributions for continuous random variables from the model. The probability distributions of molecule 

counts are obtained from single-molecule experiments which can be carried out at each stage of gene 

expression [5]. The frequency at which the bursts of mRNA and proteins are synthesized in the cell is 

more informative than the mean alone. General mechanisms of gene expressions can be inferred from 

mathematical models and the observed distributions. The models describing kinetic properties of genetic 

circuits can be either deterministic or stochastic [5-8], and they can assume continuous approximations, 

however, the kinetic mechanisms remain the same [9]. Stochasticity of gene expression emerges from 

random events in transcription and translation processes. The stochasticity can be vital for cell survival 

when the environmental conditions fluctuate [10]. Discovering protein interactions forming regulatory 

networks is important to understand dynamics of gene expression [1].  

Transcription of a DNA strand is carried out by a multi-subunit DNA-dependent RNA polymerase 

(RNAP) [1] (Figure 1A). In the lac operon of E. coli, a separate regulatory gene (lacI) encodes the lac 

repressor which plays a pivotal role in operon control [11, 12] (Figure 1B). Switching between active and 

inactive state in gene circuits does not occur spontaneously [11]. In particular, repressor complexes bind 

to the operator to prevent RNAP to initiate transcription. Therefore, repressor-operator complex switches 

the lac circuit to inactive state whereas unbinding of the repressor from the operator switches the lac 

circuit back to active state [13]. Although regulatory events can affect every step of macromolecular 

synthesis within the cell, transcription initiation represents the most important control step which can be 

exploited to switch the gene and subsequent protein production on and off. In-vivo single-molecule 

measurements provided ample evidence that transcription initiation is a sequential process which plays a 

key role in mRNA dynamics subsequent protein synthesis [22]. It is also crucial to know how switching 

rates affect gene expression dynamics [20, 21]. 
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Synthetic gene circuits can be constructed by rewiring transcription factors and promoters to create 

regulatory networks with novel topology [14-16]. Promoters initiating transcription in response to 

transcription factors and associated ligands are typically derived from endogenous components of the host 

or related species to ensure compatibility with the host transcription machinery. However, transcription 

initiation is a stochastic event and rates of transcription may be time dependent. The Fano factor (i.e., 

ratio of the variance and the mean) of molecule distribution can be used to detect deviations of molecule 

production from a Poission process [17]. Transcription is one of the key steps governing dynamics of 

gene expression [18, 19]. In general, studying mRNA and protein synthesis in the cell and how it is 

affected by reaction rate values can (1) elucidate how the cell responds to internal and external stimuli, (2) 

motivate lab experiments to more precisely determine rates of the most essential reactions, and (3) inform 

techniques of synthetic biology how to effectively modify functions of gene circuits.  

 
Figure 1. Model of operon regulation in the lac circuit of E. coli. (A) Transcription activation by 

binding of RNAP to the promoter. (B) Transcription inhibition by binding of activated repressor to the 

operator. 

Our aim is to elucidate how reaction rates influence dynamics of the lac circuit by quantifying mRNA 

and protein synthesis. Ideally, insights from lab experiments, theory and computer simulations to study 

biological systems are aligned and can inform each other [23]. Stochastic kinetic models of genetic 

circuits are often assumed to provide more realistic insights than the models involving rate equations, 

even though the former are computationally and analytically expensive even for biochemical networks of 

moderate sizes [24]. Moreover, analytical solutions often require approximations, and they may become 

intractable when there are multiple or multi-level feedback control loops. The biochemical model of lac 

circuit considered in our work contains only a single feedback loop. However, the number of reaction 

rates in this model is relatively large, so we resort to stochastic simulations to study its steady-state 

dynamics. Specifically, we devise efficient sampling strategies of multi-dimensional space of reaction 

rates by utilizing the structure of lac circuit model. Specifically, we observed that regulatory reactions 

pertaining to gene activation and inactivation can be scaled jointly with no apparent loss of generality. 

This greatly reduces dimension of the parameter space of reaction rates to be explored. The values of 

reaction rates are uniformly sampled from specified intervals. In order to distinguish among different 

sampling sub-spaces, each sampling strategy of reaction rates is labeled by a model number. Productions 

of mRNA and protein are studied separately assuming different sampling strategies and numerical 

experiments. Biochemical reactions comprising the kinetic model of lac genetic switch are given in [13].  

In this paper, we investigate how transcription and regulatory reaction rates affect mRNA and protein 

production in the lac circuit of E. coli. We explore how changes in transcription and translation rates 

modulate both mRNA and protein synthesis. We determine conditions when steady state production of 

mRNA and protein exist by measuring the mean molecule counts. This extends the results presented in 

[21, 26-28] on factors affecting mRNA production in E. coli. In general, it is challenging to rigorously 

define steady state of mRNA or protein production, especially for long-term dynamic processes or 

processes occurring at multiple time scales such as continuous proliferation of cells. However, it is well-

known that mRNA levels at steady state determine steady-state protein levels [29]. 

2. Methods 

2.1. Modeling and simulation framework 

Kinetic model of the lac genetic switch considered in this paper is fully defined in [25] and [13], and, 

for convenience, it is also summarized in Table S3 in Supporting Information. The lac model is evaluated 
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by computer simulations performed in open source Lattice Microbe software [25]. We first focus on 

mRNA synthesis followed by protein synthesis. In order to cope with high dimensionality of the 

parameter space, we exploit the structure of kinetic model to group some rate parameters and scale them 

jointly. Provided that parameter grouping is done carefully, there is no visible loss of generality. 

Numerical experiments assume different parameter sampling strategies with the corresponding interval 

values from which chosen reaction rates are uniformly sampled while all other reaction rates have their 

default values. We emphasize that all reaction rates in all simulations are kept constant. It is a different 

problem than, for example, investigating a genetic switch in [31] where some reaction rates are allowed to 

fluctuate during the cell lifetime. Moreover, we do not consider the problem how to estimate reaction 

rates from observed output molecule counts, nor we search for optimum rate values, for example, to 

maximize protein production under given conditions. 

At steady state, time averages of species counts are equal to ensemble averages of random species 

counts observed over independent system time evolution traces [30]. In order to map reaction rates to 

steady state counts of mRNA and protein, we assume sampling strategies of reaction rates referred to as 

Model R1, R2 and R3 for analysis of steady state mRNA production, and rate sampling strategies denoted 

as Models P1, P2 and P3 for analysis of protein production. Models R1 and P1 represent baseline systems 

with unconstrained stochastic switching between active and inactive states and with all reaction rates 

having their default values. Model R2 explores the effects of gene inactivation rate on mRNA synthesis 

by assuming the default gene activation rate while the rate of transcription inhibition is sampled from a 

specified interval. Model R3 analyzes the effects of gene activation rate on mRNA synthesis by assuming 

the default gene inactivation rate while sampling the rate of transcription activation. Motivated by 

observation from [32] that the protein responsible for regulation of gene expression could be either locked 

in active or inactive state, we assume rate sampling Model P2 which has all reactions of unbinding 

repressor complexes from the operator removed, so the lac circuit is permanently locked in inactive state. 

Similarly, Model P3 has reactions of binding repressor complexes to the operator removed, so the lac 

circuit is always kept in active state. All other reactions in Models P2 and P3 otherwise remain 

unchanged, and have their default values.  

Numerical experiments were performed in Lattice Microbe software version 2.3 which was 

downloaded and compiled with a GPU support on Fedora 25 Linux workstation. Time evolution traces of 

molecular species counts in a biochemical network of the lac circuit were generated independently using 

the Gillespie algorithm. The number of independent traces at each numerical experiment was set to be 

100 unless stated otherwise. All simulations were performed over E. coli half lifetime which is T = 1 h 

[10]. All simulations also have the same initial species counts which are specified in [13].  

In order to identify steady state of mRNA and protein production when evaluating observed molecule 

counts, we assume the definition provided in [33]. In particular, denote the observed time series of 

molecule counts as, {𝑥𝑖}𝑖=1
𝑇 , and the associated weights, {𝑤𝑖}𝑖=1

𝑇 . The steady state production can be then 

reliably detected by observing the weighted mean 𝜇: 
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In our experiments, we observed that mRNA steady state occurs between 50 s and 1600 s from the initial 

simulation time for all reaction rate values considered, we assumed that 1600 s is sufficient time to 

consider production of both mRNA and protein to be in steady state. 

In inactive state, the repressor can temporarily, for a short period of time, come off the operator before 

it re-binds again. During such event, already bound RNAP may initiate the transcription [34]. Such so-

called basal synthesis is occurring at a rate of approximately one mRNA molecule over the cell half 

lifetime. Furthermore, there exists a maximum transcription rate which can be supported by the lac circuit 

in inactive state. Even for such maximum transcription rate, synthesized mRNA can be completely 

degraded or reach steady state while the lac circuit is still in inactive state. However, when the lac circuit 

switches to active state, transcription rate is significantly increased, and the minimum supported 

transcription rate required to reach steady state for mRNA in active state must be greater than the 

maximum supported transcription rate in inactive state [11, 35]. Moreover, previous experimental results 

such as those in [7] and [36] reported that, in active state, steady state mRNA production in the lac circuit 

can reach at most 50 mRNA molecules which can simultaneously exist in the cell. 

2.2. Mapping regulatory reaction rates to mRNA synthesis 

The mRNA steady state count is a function of kinetic rates Kon and Koff corresponding to repressor 

binding to the operator (the lac circuit turns to inactive state) and unbinding of repressor from the operator 

(the lac circuit switches to active state), respectively [37]. Thus, a regulatory state transition model of 

gene expression is simply: 

 
"On" "Off"

on

off

K

K
       

In active state, transcription, translation and degradation rates are key parameters controlling mRNA and 
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protein synthesis [38]. As we observed in our numerical experiments, without any significant loss of 

generality, some reaction rates can be grouped and scaled simultaneously. It can be exploited to efficiently 

explore high-dimensional parameter spaces of reaction rates. In particular, we found that reaction rates 

pertaining to switching active and inactive states (i.e., corresponding to binding and unbinding of inducer-

repressor species to and from the operator) in the regulatory part of the lac genetic circuit can be scaled 

jointly. In other words, we observed that, for arbitrary values of reaction rates within the same group, the 

same regulatory effect on steady state synthesis can be achieved by jointly scaling their default values. 

Hence, we consider the following two groups of regulatory reaction rates: 

Kon  = {kron, kiron, ki2ron} and Koff  = {kroff, kiroff, ki2roff}. 

The set Kon contains regulation reaction rates to switch the lac circuit to inactive state while the set 

Koff contains reaction rates to switch the lac circuit to active state. Parameters kron, kiron, and ki2ron in Kon are, 

respectively, the rates of binding inducer-repressor species R2, IR2 and I2R2 to the operator. Similarly, 

parameters kroff , kiroff, and ki2roff  in Koff  represent rates of unbinding inducer-repressor species from the 

operator. Default values of these rates are given in [13], and also summarized in Table 1 where they are 

denoted as Kon-d and Koff-d. The default rates Kon-d and Koff-d were obtained from single molecule in vivo 

experiments [13]. For convenience, all rates and variables considered in our work are summarized in 

Table S2 of Supporting Information. 

                 Table 1. Regulation reactions in the lac circuit and their default rates [13]. 

Transcription inactivation Rate set Kon-d (M-1s-1) 

R2 + O  → R2O kron = 2.4e+06 

IR2 + O  → IR2O kiron = 1.2e+06 

I2R2 + O  → I2R2O ki2ron = 2.4e+04 

Transcription activation Rate set Koff-d (s-1) 

R2O  → R2 + O kroff = 6.3e-04 

IR2O  → IR2 + O kiroff = 6.3e-04 

I2R2O → I2R2 + O ki2roff = 3.1e-01 

 

The grouping of parameters enables to scale them jointly as: 

     Kon(a) = a×Kon-d = {akron, akiron, aki2ron}, and 

 Koff(a) = a×Koff-d = { akroff, akiroff, aki2roff}                                              (2) 

where a>0 is referred to as variation coefficient of the default sets Kon-d and Koff-d. The parameters in these 

sets can be then sampled jointly by sampling the value of a. The regulatory rate samples are selected 

uniformly from a 3-dimensional hypercube: 

 Kon ⊆ (kon-min, kon-max)
3 and Koff  ⊆ (koff-min, koff-max)

3                                      (3) 

where kon-min and kon-max are the minimum and maximum rate values for transcription inhibition, and koff-min 

and koff-max are the minimum and maximum rate values for transcription activation, respectively. Hence, 

the same minimum and maximum values are assumed for all three repressor species: 

 kon-min= {kron-min, kiron-min, ki2ron-min}  

 kon-max= {kron-max, kiron-max, ki2ron-max}  

 koff-min= {kroff-min, kiroff-min, ki2roff-min}  

 koff-max= {kroff-max, kiroff-max, ki2roff-max}.  

In order to evaluate the mRNA abundance dependence on regulatory rates, we consider sampling 

Models R1, R2 and R3 in Experiment 1 as defined in Table 2. Specifically, Experiment 1 evaluates Model 

R1 having default rates for gene inactivation and activation, Model R2 assumes 100 random samples of 

gene inactivation rate, and Model R3 assumes 100 random samples of gene activation rate. Gene 

activation and inactivation rates Koff and Kon were uniformly sampled assuming kon-min = 10-1Kon-d, kon-max = 

102Kon-d, koff-min = 10-1Koff-d, and koff-max = 102Koff-d. For each set of sampled reaction rates, mRNA steady 

state count was determined by simulations. Samples of transcription rate ktr were obtained within the 

range of supported transcription rates in active or inactive state, respectively. 

Table 2. Sampling models to study steady state mRNA abundances. 

 Rate Model R1 Model R2 Model R3 

Experiment 1 Koff default default 100 samples 

Kon default 100 samples default 

ktr 1,000 samples 1,000 samples 1,000 samples 

# simulations 1,000 100,000 100,000 
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2.3. Deterministic model of transcription 

In order to compare the results obtained from simulating stochastic kinetic model of the lac genetic 

switch, we now consider deterministic model of mRNA synthesis. The deterministic model of gene 

expression is described by an ordinary differential equation (ODE) assuming rate equations for time 

dependent concentrations of mRNA m(t), for times 𝑡𝜖[0, 𝑇] over the cell half lifetime T, i.e. [39]: 

 

( )
. . ( )

offon A R
m

on off on off

KKdm t
m t

dt K K V K K V

 
  

 
 

 (4) 

where V, 𝛿𝐴, and 𝛿𝑅 represents, respectively, the cell volume, the average value synthesis for activated 

gene circuit, and the average synthesis for repressed gene circuit. At steady state, mRNA production does 

not vary, so that ( ) / 0ssdm t dt , and Eq. (4 ) becomes:  

 

1
( )

( )

on A off R

ss

m on off

K K
m t

K K V

 



 
  

    

 (5) 

for 

  
( )

on A off R

tr

on off

K K
k

K K V

 



, and  ( )ss tr mm t k 

 
 (6) 

Eq. (5) defines a deterministic linear relationship between regulatory kinetics rates and mRNA abundance 

at steady state. Eq. (6) presents a linear dependence between mRNA abundance at steady state and the 

transcription rate. Consequently, Eq. (5) and (6) predict that mRNA steady state abundances increase 

linearly with transcription rate. 

2.4. Mapping rates of regulatory reactions to protein production 

Understanding the relationship between regulatory reaction rates and protein production can reveal 

how much the lac circuit is robust against changes in regulation mechanisms, for example, due to genetic 

mutations, or due to changes in the intracellular and extracellular conditions. We designed numerical 

experiments to study this relationship similar to the experiments for investigating mRNA. The 

corresponding sampling strategies of reaction rates are denoted as Model P1, Model P2, and Model P3. 

These models are defined in Table 3. Again, unless stated otherwise, all other parameters have their 

default values given in [13]. Recall that the reactions considered and their rates are summarized in Table 

S3 in Supporting Information. 

In Experiment 2, samples of transcription rates were generated from the range of transcription rates 

which are supported in inactive state (Model P2) or in active state (Model P3). These ranges of 

transcription rates are reported in Results. Transcription rates for Model P1 are assumed to be the same as 

for Model P3. Simulations were performed for each sample of transcription rate and all three sampling 

models considered. Experiment 3 is similar to Experiment 1, except now both Kon and Koff  are sampled in 

given intervals. In particular, the sampling intervals defined in (3) assume kon-min = 10-1kond, kon-max = 

102kond, koff-min = 10-1koffd, and koff-max = 102koffd. Experiment 4 explores the dependency of protein production 

on the protein degradation rate. The protein degradation rate was uniformly sampled from the interval 

(24kdegpd, 103kdegpd) where kdegpd denotes the default value. In Experiment 5, we combined the samples of 

protein degradation rate generated for Experiment 4 with a new set of 100 samples of transcription rates 

as they were generated for Model P3 in Experiment 2. Finally, in order to assess the influence of 

translation rate on protein steady state abundance by Model P1 in Experiment 6, we first selected 100 

representative transcription rate values while translation rate was uniformly sampled from the interval 

(10-2ktnd, 102ktnd) where ktnd is the default translation rate. 

Table 3. Sampling models to study steady state protein abundances. 

 Rate Model P1 Model P2 Model P3 

Experiment 2 Koff default - default 

Kon default default - 

ktr 1,000 samples 1,00 samples 1,000 samples 

# simulations 1,000 1,00 1,000  

Experiment 3 Koff 100 samples - 100 samples 

Kon 100 samples 100 samples - 

# simulations 10,000 100  100  

Experiment 4 kdegp 100 samples 100 samples 100 samples 

# simulations 100  100  100  

Experiment 5 ktr - - 100 samples 

kdegp - - 100 samples 

# simulations - - 10,000 

Experiment 6 ktr 100 samples - - 

ktrans 1000 samples - - 

# simulations 100,000 - - 
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3. Results 

3.1. Supported transcription rates in active and inactive state 

The measured rate for synthesizing exactly one molecule of mRNA in inactive state yields the 

minimum transcription rate 4 3 1

min 2 7.87 10inac

tr trdk k s     . The maximum supported transcription rate in 

inactive state corresponds to the observed limit of at most 2 mRNA molecules generated by basal 

synthesis. Both these molecules are completely degraded during the cell half lifetime, 1

max 0.021 inac

trk s . 

Therefore, in active state, the lac circuit must produce at least 2 mRNA molecules. We found that the 

measured transcription rate in active state is independent of particular inducer-repressor species present in 

the cell. Assuming that the maximum number of mRNA molecules synthesized in active state is about 50 

[36], the corresponding maximum supported transcription rate is, 1

max 0.504 ac

trk s . Figure 2 depicts 

basal mRNA synthesis in inactive state and mRNA synthesis in active state of the lac circuit. The 

corresponding measured ranges of transcription rates in both active and inactive states are also 

highlighted in Figure 2. Additional simulation results are presented in Figures S1 and S2.  

3.2. Transcription rate controls mRNA abundance at steady state 

The effects of transcription rate and gene inactivation rate on steady state mRNA synthesis were 

studied in Experiment 1. The 100 uniformly distributed samples of inactivation rates Kon were generated 

while activation rates Koff were kept at their default values. For each of 100 rate samples of Kon, the 

mRNA count synthesized at steady state was determined by simulation. For clarity of presentation, we 

chose the following 4 representative samples of Kon to illustrate the main results:  

 Kon1=Kon(10-1), Kon2=Kon(1), Kon3=Kon(10), and Kon4=Kon(102). 

Since inac ac

tr trk k , 100 uniformly distributed samples of transcription rates for inactive state were 

generated from the interval min max,inac inac inac

tr tr trk k k    , and 1000 uniformly distributed samples of 

transcription rates for active state were generated from the interval min max,ac ac ac

tr tr trk k k    . For each sample 

of Kon, simulations were used to measure the mean mRNA count synthesized at steady state. Figure 3A 

shows the measured mRNA counts versus transcription rates for 4 selected values of transcription 

inactivation rates Kon(a) defined in (1).  

Considering deterministic model descripted in Eq. (5) and (6), we assume the E. coli cell volume 

𝑉 = 1𝜇𝑚3 [40], and 𝛿𝐴 = 50, and 𝛿𝑅 = 5 [39]. Figure 3B shows the measured mRNA counts versus 

transcription rate for 4 selected values of transcription inactivation rates. 

 

Figure 2: Transcription rates attainable in active and inactive state of the lac circuit.  The red 

curve represents the number of mRNA molecules synthesized at given transcription rates (s-1). The 

transcription rates in the range (0.00787, 0.021) (s-1) defines basal synthesis of mRNA in inactive state. 

Active state experiences transcription rates at least 0.021 s-1 whist their maximum is unbounded.  

Graph origin: 7.87.10-3 on x-axis and 0 on y-axis 

Due to very small number of mRNA molecules produced in inactive state (at most 2), the impact of 

transcription and gene regulation rates on mRNA synthesis in inactive state cannot be perceived easily. 

However, the results obtained in Experiment 1 can be summarized as follows. First, the number of mRNA 

molecules synthesized at steady state grows approximately linearly with transcription rate. Thus, provided 

that transcription rate ktr produces N mRNA molecules at steady state, transcription rate 2×ktr
 
produces 

about 2×N mRNA molecules at steady state. This behavior was observed over a wide range of samples 

Kon. This result is somewhat intuitive (despite the presence of a positive feedback loop), and is also 

confirmed by the deterministic model in Eq. (5) and (6).  
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Figure 3. Steady state mRNA abundances for different transcription rates and gene inactivation 

rates. Transcription rates are modulated by selected inactivation rates Kon1, Kon2, Kon3, and Kon4 shown as 

black, red, blue and purple lines, respectively. (A) Simulated stochastic model. (B) Deterministic model. 

Graph origin: 7.87.10-3 on x-axis and 0 on y-axis 

 

We can conclude that there is a linear relationship between transcription rate and the steady state 

mRNA count. However, there is an inverse relationship between the number of mRNA synthesized at 

steady state and the scaling of reaction rates Kon. More specifically, the mRNA count at steady state 

slightly decreases when the rates Kon are scaled up by any factor greater than one. Additional simulation 

results to illustrate this behavior are provided in Figure S3.  

3.3. Rates of transcription activation do not affect mRNA synthesis 

We now investigate sampling Model R3 defined in Table 2, assuming that rates Kon have their default 

values while 100 random samples of rates Koff  are uniformly generated from the interval (koff-min, koff-max) = 

(10-1,102). In addition, for each sample Koff, 1000 uniformly distributed samples of transcription rates were 

generated from the interval min max,ac ac ac

tr tr trk k k    where 1

min 0.021 ac

trk s  and 1

max 0.504ac

trk s . Overall, 1e5 

simulations were performed in total in order to evaluate mRNA steady state abundances.  For the sake of 

presentation clarity, we report the results for the following 4 representative samples of transcription 

activation rates: 

 Koff1 = Koff(10-1), Koff2 = Koff(1), Koff3 = Koff(10), and Koff4 = Koff(102). 

  

Figure 4. mRNA steady state abundances for varying transcription rates and 4 selected gene 

activation rates. The black, red, green and blue lines are mRNA steady state counts corresponding to 

rates Koff1, Koff2, Koff3, and Koff4, respectively, while rates Kon have their default values. (A) Simulated 

stochastic model. (B) Deterministic model. Graph origin: 7.87.10-3 on x-axis and 0 on y-axis 

 

The mRNA steady state counts for different transcription rates and 4 selected rates Koff are shown in 

Figure 4A. We can make two observations from Figure 4A. First, we found that the number of mRNA 

molecules synthesized at steady state grows approximately linearly with transcription rate for all rate 

samples Koff considered. Second, the number of mRNA molecules synthesized at steady state for different 
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rates of transcription activation is approximately the same. Hence, we can claim that the 4 selected 

samples of Koff  are representative of all 100 samples which were simulated as shown by additional 

simulation results in Figure S4. Assuming deterministic model, similar conclusions can be reached as for 

stochastic model as indicated by the results shown in Figure 4B. 

3.4. Synthesized protein abundances in the lac circuit 

Unlike Models R2 and R3 in Experiment 1, protein production is assessed while the lac circuit either 

freely switches between active and inactive state (Model P1), or while it is locked in inactive state (Model 

P2) or in active state (Model P3). Enforcing active or inactive state is achieved by removing 

corresponding reactions from the model, or by setting their reaction rates to zero. In particular, in order to 

keep the lac circuit in inactive state (Model P2), unbinding reactions of repressor complexes in Table 1 

are removed. Similarly, the lac circuit is kept in active state (Model P3) by removing binding reactions of 

repressor complexes in Table 1. Assuming Experiments 2 and 3 with default reaction rates, Figure 5 

presents the measured protein counts synthesized the cell half lifetime of 1 hour for all three Models P1, 

P2 and P3 considered. We found that, in full kinetic Model P1 as well as in Model P2, the protein counts 

did not reach steady state, but they attained a maximum before their gradual degradation which came into 

effect after some delay (Figure 5Aa and 5Ab). Model P3 shows similar behavior (Figure 5Ac). In order to 

investigate when steady state of protein synthesis occurs, we varied protein degradation rate between 

2.1e-4 s-1 and 14.4e-3 s-1 while all other parameters had their default value. Even though the protein 

experiences a complete degradation in Model P1 (Figure 5Ba) and in Model P2 (Figure 5Bb), we found 

that steady state protein production only occurs when the lac circuit is locked in active state (Model P3, 

Figure 5Bc). Moreover, the maximum protein count produced in Model P3 is always larger than in Model 

P1. For example, Figure 5Aa and Figure 5Ac show maxima of 160 proteins in Model P1 versus 190 

proteins in Model P3, respectively.  

We now investigate how the maximum protein count synthesized in the lac circuit evolves when 

transcription rate is increased for all three models considered. Hence, we generated 1000 uniformly 

distributed samples of transcription rates for Models P1 and P3 but only 100 of such samples for Model 

P2 (Experiment 2 in Table 3). We found that whether the lac circuit is in active or inactive state, the 

maximum protein count synthesized before degradation increases with transcription rate for all three 

Models P1, P2 and P3.  Additional simulation results are presented in Figure S5. 

 

Figure 5. Protein counts synthesized in Models P1, P2 and P3 with default reaction rates. (a) 

Unconstrained Model P1, (b) Model P2 which remains in inactive state, and (c) Model P3 which is locked 

in active state. (A) The default protein degradation rate 2.1e-4 s-1, and (B) the protein degradation rate is 

changed to 14.4e-3 s-1. All other parameters have their default values. Graph origin: 0 on x-axis and 0 on 

y-axis 

3.5. Steady state protein synthesis in active state 

From the results presented so far, it is apparent that increasing protein degradation rate is an important 

factor for the emergence of steady state protein synthesis. Assuming Model P3 when the lac circuit is 

locked in active state, we investigate the relationship between protein degradation rate, transcription rate, 

and steady state protein counts (Experiment 5 in Table 3). Transcription rates ktr were selected from the 

interval [ktr0, 8ktr0] where ktr0 =ktrd/2
2, and ktrd represents the default transcription rate, i.e., ktr∊ (0.0315, 

0.504) s-1. The 100 samples of protein degradation rates were generated uniformly from the interval 

(24kdegpd, 103kdegpd) where kdegpd is the default protein degradation rate. For all pairs of transcription and 

degradation rates, we found that steady state protein count in Model P3 varies between 1 and 70. Steady 
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state protein abundances for 5 representative samples of transcription rates are given in Table 4. These 

results show that steady state protein abundances are approximately halved when protein degradation rate 

is doubled. On the other hand, the protein counts at steady state are approximately doubled when 

transcription rate is doubled. Additional simulation results are provided in Figure S6. 

Table 4. Protein counts synthesized at steady state in Model P3. 

 

kdegp (𝒔−𝟏) 

ktr(𝒔−𝟏) 

0.0315 0.063 0.126 0.252 0.504 

3.36e-3 

6.72e-3 

13.44e-3 

26.88e-3 

53.76e-3 

107.52e-3 

215.04e-3 

430.08e-3 

860.16e-3 

1720.32e-3 

3440.64e-3 

69 

36 

18 

9 

4 

2 

1 

 

68 

36 

18 

8 

4 

2 

1 

 

 

66 

36 

18 

8 

4 

2 

1 

 

 

 

67 

35 

17 

8 

4 

2 

1 

 

 

 

 

 

69 

37 

19 

9 

5 

2 

1 

 

3.6. Maximum protein counts synthesized before their degradation 

We further investigated how the maximum protein count which is produced before their degradation 

is affected by other reaction rates (Experiment 6 in Table 3). We assume full kinetic Model P1 to evaluate 

the relationship between protein production and translation rate. We generated 100 transcription rate 

samples from the interval (𝑘𝑡𝑟0, 8𝑘𝑡𝑟0 ). For each transcription rate, 1000 uniformly sampled translation 

rates were generated from the interval (ktransd /100, 10ktransd) with the default rate ktransd = 4.44e-2 s-1. The 

simulation results for all 100 samples of transcription rates are similar; therefore, we chose 4 

representative samples of transcription rates as, ktr(n) =  2n×ktrd where n={-2,-1,0,1}, so n=0 corresponds 

to the default value of 0.126 s-1. We can make three important observations about protein production in 

the lac circuit from these results. First, increasing transcription rate increases the maximum number of 

proteins produced before their degradation (Figure 6A). Second, increasing translation rate increases 

slightly the maximum number of proteins produced before degradation (Figure 6A). Third, regardless of 

reduction in transcription and translation rates, the maximum number of proteins produced before the 

degradation is always at least 27 molecules (Figure 6B and 6C). Additional simulation results are 

provided in Figure S7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The maximum protein counts produced versus translation rate in Model P1. The 4 

transcription rates kr(-2), kr(-1), kr(0) and kr(1) has value 0.31e-1 s-1, 0.63e-1 s-1, 1.26e-1 s-1, and 2.52e-1 s-1, 

respectively. The mRNA and the protein degradation rates have their default values. (A) The maximum 
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number of proteins produced before degradation grows slightly with translation rate. Increasing 

transcription rate shows only a slight increase of the maximum protein count produced. (B) Zoom-in area 

of Figure (A). The maximum number of proteins produced before their degradation is always at least 27 

for all the rates considered. (C) The maximum count of proteins produced for all 100 samples of 

transcription rates. Graph origins: (A) 2.27.10-3 on x-axis and 0 on y-axis, (B) 2.27.10-3 on x-axis and 10 

on y-axis, (C) 2.27.10-3 on x-axis and 10 on y-axis 

4. Discussion 

Several recent studies point out that gene activity is normally bursty rather than Poissonian [41, 42]. 

The bursty nature of gene expression can be effectively modeled by a 2-stage or 3-stage model [42, 43]. 

Such models can be described by ordinary differential equations (Section 2.3) and solved analytically to 

obtain mean mRNA and protein production at steady state. Dependency of deterministic and stochastic 

models on reaction rates were compared in Figure 3 and Figure 4. Both models are showing good 

agreement in predicting linear dependency of the mean mRNA steady state production on transcription 

rate. The agreement between these two models is better when rates Kon are varied while rates Koff have 

their default values. Stochastic model can be also used to obtain probabilistic distributions of molecule 

counts in transition to and at steady state. The distribution of molecule counts is more informative than 

the mean counts in cases when the distribution is asymmetrical and highly skewed.  

Our objective is to investigate how mRNA synthesis is modulated at steady state by rates controlling 

transcription activation and inhibition. Increasing rates Kon to improve the probability that the lac circuit is 

in inactive state showed a slight decrease of steady state mRNA counts. On the other hand, varying rates 

Koff affecting the probability of active state did not exhibit any noticeable effect on steady state mRNA 

synthesis. We then also considered steady state protein production. We found that protein production 

exhibits steady state only when the lac circuit is permanently locked in active state regardless whether the 

protein degradation is considered or not. Furthermore, for all reaction rates considered in Models P2 and 

P3, the protein counts produced at steady state are always at most 70 molecules. In full kinetic Model P1, 

time evolution of protein always exhibits a maximum before the degradation comes into effect. This 

maximum value appears to be never exceeded under any conditions or changes in reaction rate values. 

Considering mRNA synthesis, we found that mRNA steady state abundances are strongly correlated 

with the rate of gene expression in inactive state for all rates assumed in Model R2. In particular, mRNA 

steady state abundance increases slightly when rates Kon are reduced. Provided that transcription is 

modeled as a Poisson process, it was shown in [44] that the probability of a single transcription event 

producing one mRNA molecule is proportional to the number of active genes. Thus, we can conclude that 

increasing rates Kon slightly reduces the probability of mRNA transcription. Our numerical results 

quantify how transcription regulation affects gene expression in the lac circuit. The rate at which the gene 

is transcribed is controlled by RNAP which binds to a specific DNA site known as the promoter (Figure 

1) [45]. The affinity of RNAP binding to the promoter determines the gene transcription rate. Specific 

RNAP normally transcribes different genes. Binding affinity of RNAP to the promoter is crucially 

affected by the presence of inducer-repressor species at the operator [46]. Even in inactive state, the 

inducer-repressor may temporarily unbind from the operator which enables transcription to be initiated 

before the repressor again rebinds the operator. In active state, the rate of unbinding repressor complex 

from the operator does not affect transcription rate, as the rebinding of repressor complex to the operator 

rarely occurs, so the probability of temporarily blocking transcription is very small. 

A number of previous studies assumed that transcription rate is one of the main factors determining 

mRNA abundance at steady state [21, 26-28]. We extended these studies by showing that, regardless of 

the rates assumed in the lac operon regulation, increasing transcription rate increases steady state mRNA 

synthesis. Specifically, doubling transcription rate approximately doubles steady state mRNA count over 

wide range of regulatory reaction rate values. Additional results are shown in Figures S3 and S4. 

Although there are multiple reactions involved in transcription regulation, a slight moderation of 

transcription rates have a linear effect on mRNA count produced at steady state. Therefore, we can claim 

that transcription rate represents the most important parameter affecting mRNA production at steady state. 

Understanding why transcription rate is the most important parameter affecting gene expression is 

fundamental to elucidating design structure of genetic circuits. In particular, a popular coarse-grained 3-

stage model of protein synthesis involves only these 6 reactions: switching of gene between active and 

inactive states, transcription of mRNA, translation of protein, and independent degradation of mRNA and 

protein. Such model is mainly motivated to mimic bursty production of mRNA and protein which has 

been observed in many living cells. More importantly, 3-stage model can be considered universally as a 

first order approximation of gene expression in all prokaryotic and eukaryotic cells. In other words, no 

matter how complex gene regulatory network there is, it can always be approximated by a simple 3-stage 

model. Typical modeling strategy in research papers appears to be to keep a given value of transcription 

rate determined from some experiment from fitting observed data, regardless whether more regulatory 

reactions are later added to the model. Our numerical results indicate that rate of transcription is more 

important for gene expression dynamics than gene switching between active and inactive states. This 

could be intuitively explained as follows. Occasional gene activation which is interrupted by relatively 

long periods of inactivity must be exploited efficiently in order to produce enough mRNA for protein 

synthesis. Since one mRNA molecule can translate several protein molecules, transcription affects gene 
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expression dynamics more than subsequent translation while we kept both degradation rates constant. 

Consequently, we hypothesize that transcription rate is the key parameter of gene expression whenever 

the gene spends more time in inactive state than in active state, regardless of complexity of gene 

regulatory network. 

Protein production reaches steady state only when the lac circuit is kept in active state (Figure 4Bb), 

regardless whether the protein degradation is assumed. Previous studies have shown that there is a 

positive correlation between protein production rate and protein degradation rate [47-49]. We carried out 

numerical experiments to obtain protein steady state counts in active state (Model P3) while protein 

degradation rate varies and transcription rate remains constant. Selected results are presented in Table 4. 

Measurements of mRNA and protein synthesized in the cell were performed in [26]. It was shown 

that, generally, in both bacteria and eukaryotes, the cellular concentration of protein is positively 

correlated with abundance of the corresponding mRNA, although not very strongly, and that molecular 

abundances are affected by interplay between the rates of production and degradation. Similar 

conclusions were reached in [50]. It was further shown that 40% of variations in protein production can 

be explained by varying mRNA counts in the cell [51, 52]. Moreover, many proteins show production 

changes during different cell growth phases, and these changes seem to be coordinated with the rate of 

cell growth rather than the environmental conditions or protein function [50]. Our numerical experiments 

again confirmed that transcription rate is one of the key factors affecting the maximum number of 

proteins synthesized before their degradation (Figure 4A). 

More importantly, regardless of the internal and environmental conditions which may modulate 

reaction rates of the intracellular processes, we found that, under wide range of reaction rates, a certain 

minimum number of protein molecules is guaranteed to be always synthesized in the cell. It indicates the 

existence of a safety margin for the cell to be able to always rely on some minimum level of protein 

production. This is shown in Figures 5B and 5C for several values of transcription rates. In case of the lac 

switch model considered, we found that the minimum number of proteins produced is at least 27 

irrespective of how much translation and transcription rates were reduced while the protein degradation 

rate remained constant. Such observation can be used to understand the minimal guaranteed functionality 

of essential systems in the cell during different phases of the cell cycle [53].  

We need to also point out some limitations of our modeling methodology. The dependency of mRNA 

and corresponding protein production is certainly more complex than assumed in our model (Figure 1). 

For instance, the cellular resources (energy, molecular material) are shared by mRNA transcription and 

protein translation processes, so reaction rates in models of genetic expression cannot be varied 

independently [41]. Correlations between protein production statistics and mRNA statistics were obtained 

in [54]. In our numerical experiments, we assumed constant mRNA and protein degradation rates while 

sampling other reaction rates. We confirmed that a widely adopted two-state gene activity model [41, 55] 

affects both mRNA synthesis at steady state as well as the maximum number of proteins produced in 

active state before their degradation occur.  

In some cases the rate sampling intervals are not symmetrical with respect to a default rate value. Our 

reasoning was to bias rate sampling towards larger values if the default value was already rather small. 

This does not affect accuracy or bias our analysis in any way. The number of reaction rates in the assumed 

lac circuit model to be sampled was reduced by grouping some of reaction rates, and then scaling them 

jointly. We verified that this does not bias the analysis, provided that grouping of reaction rates is done 

properly. In particular, we claim that for any values of reaction rates in the group, there exists a scaling 

factor of default reaction rate values which have the same effect on transcription and translation 

dynamics. In case of the lac circuit, these groups of reaction rates were naturally identified as regulatory 

reactions. However, for more complex biochemical models, how to group reaction rates, so that they can 

be scaled jointly without biasing the analysis can be much more difficult problem to consider. 

5. Conclusion 

Transcription rate appears to be one of the key factors affecting steady state mRNA and protein 

productions in the lac circuit of E. coli. In particular, we found that doubling transcription rate 

approximately doubles mRNA count synthesized at steady state. In addition, varying reaction rates of 

transcription inactivation in the lac circuit resulted in only small changes of steady state mRNA synthesis. 

Thus, increasing the rate of transcription inactivation by 10% led to a 7% decrease of mRNA count at 

steady state. On the other hand, varying the reaction rates controlling transcription activation has no effect 

on mRNA production at steady state. 

For all values of reaction rates considered, a two-state kinetic model of lac circuit always exhibits 

time evolution of protein counts with a single maximum before the degradation comes into effect. Our 

analysis of the maximum protein count revealed that, over a wide range of environmental and cellular 

conditions, or equivalently, over a wide range of reaction rates, the lac circuit is guaranteed to always 

synthesize a certain minimum number of protein molecules. For the model of lac circuit in E. coli 

considered, we observed that no matter how much transcription and translation rates are reduced, the lac 

circuit always produces at least 27 protein molecules. 
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