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Stress whitening is a long-standing problem 
and scientific work has focused on evaluating 
causes of this in bulk polymer systems. In this 
paper we focus on this optical defect exhibited 
by a complex thermosetting polyester melamine 
coating system used extensively in the pre-coated 
metal industry. There are several mechanisms 
proposed for how stress whitening occurs and 
hence there is uncertainty over the causes in the 
systems mentioned. The most likely explanation 
given to date is that a number of proposed 
micro-mechanisms exist, which one is occurring 
is entirely dependent on the system being 
investigated. The work presented shows that the 
presence of dissimilar particles is the cause of 
the stress whitening. The proposed mechanism 
for whitening and its disappearance in this case 
is a time and temperature dependent change in 
density, i.e. cracking or voiding, where the cracks 
are outside the range that scatters light with an 
increase in temperature. 

1. Introduction 

1.1 Pre-coated Steel 

Pre-coated steel, produced by coil coating, 
has uses within a number of industry sectors 
including architecture, transport and the domestic 
appliance (DA) market (1–3). The coil coating 
market in Europe uses approximately 180–200 
kilotonnes of paint per annum which is worth 
almost €1 billion (1). This work focuses on the 
requirements of the DA market in which polyester 
melamine pre-coated systems are utilised. Pre-
coated sheets are formed during the fabrication 
of panels into the desired shape. During this 
forming stage high strains will be experienced by 
the coating. Forming can lead to various defects 
including cracking, tearing and voids (4–7). In 
some systems a visual problem called stress 
whitening can arise from these defects (3). 
Pre-coated steel consists of several layers. In 
this instance the substrate is pre-treated cold 
rolled steel with a two-coat polyester system on 
top, as seen in Figure 1. The basecoat provides 
the colour and other functional features such 
as corrosion protection, the top coat acts as a 

Topcoat 

Basecoat 

Substrate 

Fig. 1. Schematic diagram of a domestic appliance 
(DA) coating system 
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further barrier layer as well as adding any surface 
finishes required by the customer (1, 8). The 
basecoat is grey silver and the topcoat is a clear 
lacquer. Both coatings consist of a polyester resin 
crosslinked with hexa(methoxymethyl)melamine 
(HMMM), standard additives such as a catalyst and 
required functional additives, such as a structuring 
agent (1, 8). The polyester crosslinks with the 
melamine via a transetherification reaction which 
is thermally activated (1, 8). It is very important 
that the correct temperature and dwell time are 
used for the material, if the temperature is too low 
then the melamine will not crosslink enough and 
the melamine is also found not to distribute evenly 
(8). If the temperature is too high or the dwell 
time too long then the coating over-crosslinks, 
meaning it is too rigid for forming and the coating 
will crack, the coating often becomes brittle and 
has poor adhesion as well. At extremes of time 
or temperature, thermal degradation, shown by 
yellowing, occurs (1, 8, 9). 

1.2 Stress Whitening 

Stress whitening is the effect seen when an 
initially non-white polymeric material undergoes 
mechanical deformation, applying stress to the 
system, which then causes the material to exhibit 
a greater optical brightness and appear white, as 
can be seen in Figure 2. This effect is caused 
by light scattering: a variation in the reflection of 
light from either the surface or the bulk caused by 
a change in the coating (10–17). Features shown 
to cause stress whitening have been found to be 
around the range of visible light in size by Misra 
and co-workers (11, 18). However results within 
the present authors’ research group generally 
agree more with Thiele et al. (19) who find 
scattering materials have particle sizes around 
170–360 nm, which is around the range of visible 
light halved. 

15 mm 

Fig. 2. Stress whitening induced in coating systems 

There are several proposed changes which are 
attributed to stress whitening. The two categories 
they fall into are structural changes or changes in 
density (15, 16). Structural changes are seen in 
semi-crystalline polymers and are associated with 
changes in crystal orientation (15, 16). Cherry et al. 
(15) have concluded that the primary mechanism 
by which high density polyethylene (HDPE) stress 
whitens is a change in structure, associated with 
permanent plastic deformation. Changes in density 
have been seen in a plethora of polymers and 
include voids, crazes or cavities among others 
(11). Owing to the nature of the coating as a 
thermosetting system and therefore amorphous 
(8) in structure, only changes in density will be 
investigated in the present study. 
As an example of differing density mechanisms 
in different polymers, Young and Lovell (14) have 
found stress whitening in high impact polystyrene 
(HIPS) and rubber toughened poly(methyl 
methacrylate) (RTPMMA). HIPS exhibited more 
whitening than RTPMMA. Scanning electron 
microscopy (SEM) micrographs of the two 
materials were compared and crazes emanating 
from dissimilar rubber particles in bulk polymer 
surface were seen in HIPS, however no crazing 
was visible in RTPMMA. The RTPMMA has much 
smaller rubber particles at 200–300 nm. The 
authors concluded this was the reason no 
crazes were emanating from the rubber. Their 
secondary conclusion, that cavitation within the 
nanoparticulate rubber was the cause of observed 
whitening, is in agreement with the findings of 
Breuer et al. (16), who evaluated rubber-modified 
polyvinyl chloride (PVC) which was shown to be 
stress whitening by cavitation occurring in the 
rubber modifiers. Contrary to the conclusions of 
Young and Lovell (14), the further work conducted 
by Breuer et al. (16) found that variation of the 
polymer was most likely to be the cause of a 
change in mechanism as opposed to the size of 
rubber particles, which the group have associated 
with the extent of stress whitening. Breuer 
et al. (16) also cited the crazing mechanism as the 
source of stress whitening in polystyrene. 
Misra and co-workers (10, 11, 18, 20) have 
published a number of studies on stress whitening, 
including investigation on polyethylene and 
polybutylene and the effects of various additives 
on these polymers. Misra et al. (10) have stated 
that the primary factors influencing stress 
whitening are composition, molecular weight, 
percentage crystallinity and phase transformation. 
The effects seen in materials in regions of tensile 
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strain where stress whitening is visible include, 
but are not limited to wedges, tearing, crazes, 
cracking and fibrillation. In an early paper Misra 
et al. (21) concluded that small voids will scatter 
more visible light and yield a whiter appearance 
whereas larger voids absorb in the visible light 
range and reduce whitening; however Misra et al. 
(11, 22) later went on to state the complexities 
of the relationship between light scattering and 
deformation and the dependence upon refractive 
index, surface roughness and the already 
mentioned void size. 
There are limited publications discussing stress 
whitening in thermoset polymers (3, 23), and 
these do not explore the mechanism of whitening 
or contain a useful level of detail; however stress 
whitening has been seen as a prevalent problem 
within the thermoset coatings industry for many 
years. 

1.3 Summary of Literature Findings 

From the preceding review it has been found 
that, to date, research has investigated stress 
whitening in homopolymer systems (15, 24) or 
single modifier polymer systems (10, 12, 16, 20, 
24–26). Complex systems such as coatings have 
not been investigated to confirm whether or not the 
same mechanism(s) are occurring. Tensile strain 
in coatings has been heavily investigated (4, 27); 
previous foci have been essential work of fracture 
(3, 28), fracture mechanics (29) and other physical 
properties such as viscoelastic responses (2, 30), 
however there has not previously been a focus on 
evaluating visual concerns in coatings. This work is 
the start of research into the visual phenomenon 
of stress whitening appearing in complex coatings 
systems, with the aim of identifying the cause 

of stress whitening and determining its potential 
mechanism(s). 

1.4 Hypothesis 

Industry hypothesises that stress whitening in 
coatings is largely due to heterogeneous particles 
in the bulk resin mixture. These could be mineral 
additions for pigmentation or strengthening, anti-
corrosive pigments or a range of other additives and 
extenders (1). Given the mechanisms presented 
for various polymer systems, the heterogeneous 
particles hypothesis seems a reasonable 
assumption; however it is important to monitor 
both the bulk system and the additives currently 
included as both can affect the mechanism and 
occurrence of stress whitening. 
In order to establish the exact cause of stress 
whitening in DA systems the coatings used were 
consecutively reconstructed by adding different 
component parts, such as catalysts, to the bulk 
resin. Functional agents were added separately, 
and in combination, to determine the cause of 
stress whitening. Once this was completed and 
the cause attributed, then a likely mechanism for 
stress whitening was established. 

1.5 Strategic Choices 

The coating used was a DA coating, which had been 
known to stress whiten under set circumstances. 
The ingredients in the coating were needed to 
achieve the specifications of the DA market. These 
include a polyester melamine crosslink resin system 
as the main polymer, solvents, a structuring agent 
and a liquid dispersion of particles used as a slip 
additive. Table I highlights key details of the resin 
mixture and the two heterogeneous additives. 

Table I Topcoat Components 

Name Purpose State Appearance Approximate 
particle size, μm 

Glass transition 
temperature Tg, 
°C 

Resin mixture Binder Viscous liquid Transparent n/a Onset 31 
pale yellow Midpoint 37 

Additive 1 Structuring Powdery solid Opaque white Up to 80 n/a 
agent 

Additive 2 Slip Dispersion of Opaque white 30 n/a 
additive particles 

© 2018 Johnson Matthey 
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2. Method 

2.1 Coating Procedure 

In stress whitened systems previous studies have 
shown that there is a correlation between defect 
formations from tensile strain and the presence 
of dissimilar particles in the polymer system. In 
these coatings the most likely cause of stress 
whitening is a particular additive. The formulae of 
two polyester melamine paints, which make up the 
two coat DA system, were analysed, and the most 
likely particular additives were noted. 
To determine if stress whitening was linked to any 
particles in the systems, different combinations 
of the coatings were made. The focus was on the 
presence or absence of these particular additives 
in the system in order to verify which ones, if 
any, were causing stress whitening. All possible 
variations were investigated. Table II shows the 
differing combinations made for the topcoat. The 
full topcoat system featured a basic polyester 
melamine resin mixture, including solvents, 
catalyst and defoamer, which was homogeneous. 
The slip additive and structuring agent, also 
included, were both heterogeneous to the resin 
mixture. 

Table II Topcoat Formulation Combinations 

Name 
of coating 

Included in coating 

Resin 
mixture 

Slip 
additive 

Structuring 
agent 

Coating 1   

Coating 2   

Coating 3   

Coating 4   

2.2 Panel Manufacture 

Panels of the various coating permutations were 
manufactured; the substrate used was 0.6 mm 
thick cold rolled steel. The basecoat and topcoat 
were applied using a standard draw down method. 
The basecoat had a dry film thickness (DFT) of 
13 ± 3 µm. The topcoat had a DFT of 15 ± 3 µm. 
The following method of curing, for the coatings, 
mimics a coil line cure. For the basecoat, panels 
were placed in a paint oven at 300°C for 35 s and 
then removed and quenched with a heat sink. For 
the topcoat, panels were placed in a paint oven at 
300°C for 40 s and then removed and quenched 
in water. The basecoat peak metal temperature 

(PMT) was 216–224°C. The PMT for the topcoat 
was 241–249°C. 
The panels underwent basic industrial quality 
control tests, which showed the additions or 
lack of have no overall effect on the mechanical 
performance of the system. However, there was 
a difference in surface appearance. Coatings 
1 and 2 containing the structuring agent had a 
wrinkled or textured surface, whereas Coatings 
3 and 4 produced a smooth and shiny surface. 
Coating 1 had a more patterned wrinkled surface 
than Coating 2 and is reminiscent of Swiss 
cheese. 

2.3 Induction of Stress Whitening 

For this system, the method of inducing stress 
whitening required samples to be cooled to –20°C 
and stress applied. To determine the best method 
of applying stress, Coating 1, as the full system, 
underwent various tensile tests. The tests chosen 
were all industry standards for testing coatings 
(1). The most consistent test results were seen 
with either a cylindrical or conical mandrel bend, 
as seen in Figure 3. The cylindrical mandrel bends 
a sample not more than 1 mm thick and 50 mm 
wide through an angle up to 180° over a period 
of 2–3 s. Different width cylinders exist, in this 
case a diameter of 16 mm was used. This causes 
a shallow bend angle of 160° ± 3°. The conical 
mandrel bend consists of a 20 cm long metal 
cone with an initial diameter of 3.2 mm increasing 
up to 38 mm, the mandrel conforms to the DIN 
EN ISO 6860 test standard. Erichsen cup draw 
tests and tensile pull tests among others were 
also investigated; however it was not possible to 
consistently whiten Coating 1, ruling out the use 
of these methods. 

(a) (b) 

Fig. 3. (a) Conical and (b) cylindrical mandrels 
used to induce stress whitening 

© 2018 Johnson Matthey 
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2.4 Microhardness Testing Procedure 

In order to explore any influence of particle 
hardness, each coating underwent microhardness 
testing, as well as samples of the additives. 
Hardness testing was completed using a Fischer 
microhardness tester at 19 ± 0.5°C where the 
diamond tip forms a 2 µm indent into the surface. 
Once 2 µm has been reached the indenter is held 
in place for approximately 60 s and then removed. 
A probe in the indenter feeds results back to the 
WIN-HCU® software, which processes the hardness 
curves and provides a measurement of hardness. 
The software made nine random indents across 
the surface of the panel using this method, which 
then generated an average hardness as well as 
the standard error. To ensure comparability, this 
method was used for both the coating panels and 
the additives. To increase reliability, three panels 
of the same sample were manufactured, all of 
which underwent hardness tests. The results were 
collated and an average value determined. These 
results will be discussed in Section 3.2. 

2.5 Scanning Electron Microscopy 
Procedure 

SEM was used to evaluate nanofeatures on the 
coating surfaces. SEM imaging of samples was 
conducted on a Jeol 7800F FEG-SEM. The operating 
parameters were 2 kV accelerating voltage with 
the lower electron detector set with +300 V bias 
at an approximate working distance of 7–10 mm. 
Samples were prepared from the desired coated 
panels by cutting a small section from the middle. 
The top was then cleaned using compressed air. 
Samples were mounted on an appropriate platen 
for the SEM and secured using electroless silver 
paint, also referred to as Silver DAG (Agar Scientific 
Ltd, UK). Finally, the mounted samples are sputter 
coated with 2–3 nm of platinum using an Agar high 
resolution sputter coater. 

3. Results and Discussion 

3.1 Stress Whitening Results 

In every system that stress whitened, whitening was 
found to be transient and was no longer evident upon 
warming to room temperature or after a prolonged 
period at the lowered temperature. Re-cooling the 
samples did not make whitening re-appear. 
The topcoat combinations were tested. None of 
the coatings stress whitened at room temperature. 

Both Coatings 1 and 2 (Table II) exhibited stress 
whitening after being cooled to –20°C for at least 
1 h, and bent, as seen in Figure 4. Whitening did 
not last for more than a minute when in ambient 
conditions and did not last for more than one 
month when immediately re-stored at –20°C. 
A conical mandrel and a cylindrical mandrel both 
induced stress whitening in the samples. The stress 
whitening appeared speckled in both Coatings 
1 and 2. For Coating 1 specifically the white 
speckles appeared to be at the base of the craters 
or ‘Swiss cheese’ like holes. A single additive was 
shown to be responsible for stress whitening, this 
was additive one or the structuring agent. 

10 mm 

Fig. 4. Transient stress whitening caused by 
structuring agent 

Mandrel testing revealed that the basecoat did 
not stress whiten for any combination, it was ruled 
that only the topcoat stress whitened. However the 
silver pigment in the basecoat may have enhanced 
the appearance of stress whitening in the topcoat. 
Characterisation of the coatings was conducted 
to test for property variation and to highlight any 
differences between the additive and the coating. 
The only consistent element between Coatings 
1 and 2 that was not present in Coatings 3 and 4 
was the structuring agent, producing the conclusion 
that the presence of the structuring agent causes 
stress whitening. 

3.2 Microhardness Testing Results 

The hardness results listed in Table III show no 
statistically significant variation between Coatings 
1 through to 4; however the additives were 
significantly softer than the coatings. Given that 
the structuring agent was found to be the source 
of stress whitening, it is notable that the coating 
was significantly harder than the structuring agent. 
Variation in hardness can produce different reactions 
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to strain, where a hard system has a short elastic 
response followed by a viscoelastic and plastic 
response; a soft system is more likely to have a 
greater elastic response, with only a small amount 
of viscoelastic or plastic response occurring. The 
presence of heterogeneous particles has been cited 
as the initiation point for various defects. 

Table III Hardness Measurements Accrued 
from Micro-Hardness Tester 

Sample Marten’s 
Hardness, 
N mm–2 

Standard 
deviation, 
N mm–2 

Coating 1 170 22 

Coating 2 175 25 

Coating 3 164 14 

Coating 4 176 5 

Slip additive 19 3 

Structuring 24 9 
agent 

3.3 Scanning Electron Microscopy 
Analysis 

SEM images have been captured for all of the 
samples. These were before bending or tensile 
testing had occurred. The SEM images were used 
as a comparison to isolate whether any particles 
can be seen that correlate to the structuring agent. 
SEM was also used as a stage of elimination, as 

100 μm 

Fig. 5. SEM micrograph of Coating 1 before 
bending. Coating 1 is the full system and the 
micrograph features surface artefacts associated 
with both slip additive and structuring agent. It 
also has features which do not appear in any of the 
other coatings, these are the amorphous shapes 
which are around 100 µm 

any particles or surface artefacts only present in 
Coatings 3 or 4 were not causing stress whitening 
and so can be ruled out in the other systems. The 
20–70 µm circular craters visible in Coatings 1 and 
3 are an example of an artefact not associated with 
the structuring agent, meaning they cannot be 
the cause of whitening. The circular craters in fact 
correspond in size with either a single particle or 
an agglomeration of the slip additive and are most 
likely caused by this. Figures 5 to 8 show overview 
SEM micrographs of Coatings 1 through 4. 

100 μm 

Fig. 6. SEM micrograph of Coating 2 before 
bending. Coating 2 only contains resin mixture and 
structuring agent. The circular depressions with 
smaller approximately 30 µm circular artefacts 
within them are associated with the structuring 
agent 

100 μm 

Fig. 7. SEM micrograph of Coating 3 before 
bending. Coating 3 contains only resin mixture and 
slip additive. The circular concave artefacts are 
attributed to either single particles or agglomerates 
of the slip additive. They have a size range of 
approximately 20–70 µm 

© 2018 Johnson Matthey 
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Figure 9 shows a surface artefact only found in 
Coatings 1 and 2. This is the most likely artefact 
that can be attributed to the structuring agent, 
which is the cause of stress whitening. These 
artefacts will be the point of focus in SEM studies 
of the bent coatings. 
Figure 10 is a schematic representation of the 
proposed mechanism for stress whitening in this 
heterogeneous polyester melamine coating. Given 
the transient nature of the stress whitening, a 
feasible hypothesis is that the particles of structuring 
agent and the polymer are responding differently to 
the stress on the system. The different responses 
are time dependent, i.e. kinetic, meaning the 
initial response is not the material’s final response 

and after a short time the material reaches 
equilibrium. At this equilibrium the conditions for 
stress whitening are no longer present, unlike in 
the initial response, meaning stress whitening is no 
longer visible. This would also account for the lack 
of stress whitening at a warmer temperature, as 
the system will go through elastic and visco-elastic 
changes far more quickly than when at –20°C. 
The most likely scenarios are either a self-healing 
effect where any nano-cracks or defects present 
in the correct range are sealed by the final time-
dependant viscoelastic response of the resin 
matrix and particle to the strain applied; or the 
nano-cracks or defects in the coating have become 
larger than the range which interferes with light 

100 μm 

Fig. 8. SEM micrograph of Coating 4 before 
bending. Very few if any surface artefacts are 
visible. There are no repeating artefacts across 
the entire sample, leading to the conclusion that 
any individual artefacts are either dirt or specific 
surface defects into the coating 

10 μm 

Fig. 9. SEM micrograph of Coating 2 before 
bending. This shows a close-up of the 
approximately 30 µm surface artefact, which is 
potentially structuring agent 

Tensile stress 

Light scattering 

Crack caused by tensile 
stress 

Harder bulk material 
e.g.: polyester 

Softer particle 
e.g.: structuring agent 

Fig. 10. Proposed mechanism of stress whitening in heterogeneous coating system 
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reflection as equilibrium is reached in cases where 
the two materials have different end reactions to 
strain. Due to the transient nature of the stress 
whitening, determining which is true for this 
system is challenging. 

4. Conclusions 

In conclusion, the structuring agent present in the 
coating caused stress whitening when tensile strain 
occurred in the system. The structuring agent is a 
softer particle, which is not detectable by micro-
hardness in the bulk coating system. Previously 
industry has only observed stress whitening in 
systems with harder heterogeneous particles. Stress 
whitening is caused by light scattering off defects 
present in the coating; the most likely defects are 
voids or nano-cracks around the heterogeneous 
structuring agent particles, which act as an initiation 
point for defects. The transient nature of the stress 
whitening is most likely attributed to this difference 
in hardness. SEM micrographs show surface features 
indicative of a potential point of defect, surface 
comparison has ruled out many surface artefacts. 
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