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Abstract 

Defining distributions of molecule counts produced in the cell can elucidate stochastic 

dynamics of the underlying biological circuits. For genetic circuits, only a few distributions of 

messenger RNA and protein counts were reported in literature, so the task is to decide which 

of these candidate distributions best fit the observed data. In this paper, we present a 

statistical method to infer distributions of mRNA and protein counts from observed data. The 

main advantage of this method is that it does not require any prior assumptions or knowledge 

about underlying chemical reactions. In particular, a given distribution is fitted to the 

observed copy counts using a histogram with optimized bin sizes in order to reduce the fitting 

error. The goodness of fit is evaluated by Kolmogorov-Smirnov and chi-square statistical 

tests to accept or reject the hypothesis that observed molecule counts were generated from 

given distribution. The distribution fitting also yields the values of distribution parameters, or 

they can be estimated using the Bayes theorem. These parameters appear to be themselves 

random processes. The presented statistical framework for analyzing the observed mRNA and 

protein copy counts is illustrated for a simulated model of lac genetic circuit in Escherichia 

coli. For reaction rates assumed in the model, the results in literature predict that mRNA and 

protein counts at steady-state are gamma distributed. Our analysis shows that both mRNA 

and protein in the lac circuit model can be considered gamma distributed in at least 70% of 

times from the initial state until steady-state. The shape and scale parameters of observed 

gamma distributions are also gamma distributed, giving rise to double stochastic processes. 

More importantly, as shown previously, the distribution parameters are functions of 

transcription and translation rates, so presented statistical framework can be used to estimate 

or optimize reaction rates in biochemical systems. 

Keywords: Bayesian inference, gamma distribution, gene expression, goodness of fit, Markov chain Monte Carlo 

sampling 

 

1. Introduction 

Proteins are the most versatile building blocks of 

biological circuits. Protein engineering has many industrial 

and biomedical applications [1]. The biological cells rely on 

complex networks of protein-to-protein interactions to carry 

out various living functions [2, 3] including responding to 

information signals from the extracellular environment [4, 

5]. A classic example of such biochemical signal processing 

is chemotaxis of Escherichia coli (E. coli) which is mediated 

by a well-characterized signal transduction network [6]. 

Despite growing knowledge about molecular components of 

cellular circuits, their dynamics are much less understood 

[7]. These circuits can be often considered as having 

modular structures [8-10]. The modularity allows reusing 

the same sub-parts to design similar biological circuits with 

different functionality such as amplifiers, switches and 

oscillators. More importantly, to guide the design of these 

circuits in synthetic biology applications, it is crucial to have 

accurate statistical description of the underlying stochastic 

protein production and processing [13-16]. Such knowledge 

is presently still limited due to protein versatility in function, 

dynamics and interactions [1]. There is even less knowledge 

about production statistics of the corresponding messenger 
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RNA (mRNA) which is a key component to translate the 

protein. Moreover, mRNA has been recently suggested as a 

novel target for controlling the protein production [11, 12].  

Theoretical modeling of stochasticity in gene circuits has 

been subject to intense investigations to elucidate the effects 

of stochastic noise on the gene expression [17-19]. The 

stochasticity of protein and mRNA synthesis in the cell can 

be described by chemical master equation (CME) [20]. 

Solving the CME yields a time evolution of mRNA and 

protein distributions. However, in most cases, the CME is 

mathematically intractable, so it is solved numerically using 

simulations [21-23]. Mathematical models and simulation 

algorithms can also inform experimental techniques [20]. 

The existing studies of gene expression circuits usually 

assume random bursts of proteins with exponentially 

distributed number of molecules. The assumption of protein 

lifetime being longer than mRNA lifetime has been made in 

models considered in [24-27] in order to simplify the model 

analysis. Such assumption was shown to yield gamma 

distributed protein synthesis at steady-state. In addition, the 

observed steady state protein distributions are not 

symmetric, so they are poorly characterized by their mean 

and variance [28]. Simple 2-stage and 3-stage models of 

gene expression were solved analytically in [28] and [29] to 

provide time evolutions of reaction rates dependent protein 

distributions. It is shown that protein distribution can vary 

significantly depending on specific reaction rates and initial 

molecule counts. However, none of these works considered 

the statistics of parameters of protein distributions such as 

scale and shape in case of gamma distribution. 
Predictions of protein distributions presented in [28] and 

[29] are limited by knowledge of reaction rates. In 

laboratory experiments, such knowledge is at best limited or 

not available at all. In addition, gene regulatory networks of 

studied biological systems may not be fully known or not 

easily approximated by 2-stage or 3-stage model of gene 

expression. In such scenarios, it is necessary to obtain 

empirical distributions from observed molecule counts, 

since simple sample mean and sample variance are not 

representative of asymmetric distributions [28]. 

In silico experiments can readily produce large amount of 

data of molecule counts. Consequently, our aim is to 

investigate a statistical methodology to identify the 

distribution of molecule count time series which best 

describes the observed data. The main advantage of 

obtaining the distribution empirically is that it does not 

require any assumptions, and can be used even when the 

underlying reaction rates are not known, and when the 

regulatory reaction networks are complex. Equivalently to 

selecting the best distribution from a set of candidate 

distributions, we evaluate the hypothesis that the selected 

distribution is a good fit to the observed data, since none of 

the candidate distributions may be a good fit.      

Our numerical experiments were carried out for a lac 

circuit model of E. coli fully specified in [40]. This model 

contains a single positive feedback loop with 14 chemical 

species interacting in a network of 23 chemical reactions. 

Stochastic simulations were performed in the Lattice 

Microbe software [31] using the Gillespie algorithm [30-32]. 

The stochastic traces of mRNA and protein counts are 

statistically independent, and reflect the cell-to-cell 

variability in otherwise identical cell populations [33]. The 

simulations were run over the span of cell half lifetime 

which is about 1 hour for E. coli in order to guarantee the 

existence of steady-state for both mRNA and protein 

production. The data from simulations are then processed to 

infer time dependent molecule distributions with their 

parameter values. For reaction rates considered, the works 

[24-29] predicts that mRNA and protein counts in the model 

of lac genetic circuit in E. coli should be gamma distributed. 

Our objective is to verify this prediction for mRNA and 

protein during the transition from initial state and also at 

steady state.  

We use goodness of fit to measure how well the selected 

distribution fits the histogram of observed molecule counts. 

In particular, the histogram at each observation time instant 

is optimized in order to reduce the fitting error before 

running the Kolmogorov-Smirnov and chi-square statistical 

tests [34, 35]. These tests yield the significance levels for 

testing the hypothesis that observed data are from a given 

distribution. We found that the assumed gamma distribution 

has time varying shape and scale parameters which 

themselves appear to be random processes. The joint 

distribution of shape and scale parameters can be 

statistically inferred using a Bayesian framework [36, 37]. 

The bivariate posterior distribution of scale and shape 

parameters conditions on observed mRNA and protein 

counts can be visualized using Markov chain Monte Carlo 

(MCMC) methods such as the bivariate Metropolis-Hasting 

(BMH) sampler [38, 39]. Finally, we also measured auto-

correlation of shape and scale random processes to infer 

their statistical dependency across time and to estimate the 

correlations between mRNA and protein productions. 

2. Methods 

2.1 Statistical description of mRNA and protein 

abundances in gene expression 

The reaction rates in the lac circuit considered are kept 

constants and set to default values specified in [40]. It is 

predicted in [28] and [29] that, for these values of 

transcription and translation rates, and mRNA and protein 

degradation rates, the protein synthesis in steady-state 

should yield gamma distribution. We produced 10,000 

independent time trajectories of mRNA and protein counts 
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over 1 hour of cell half lifetime to obtain statistically 

meaningful amount of data for further analysis [31, 49]. 

It has been established that gene expression can be 

modeled as a three-stage process consisting of transcription, 

translation, and switching of the promoter between active 

and inactive states [29, 41]. Recent single-cell studies 

confirmed stochasticity of gene expression [42-44], and the 

bursting nature of mRNA and protein synthesis [45] where 

intermittent production bursts are separated by periods of 

inactivity [46]. A conceptual model of gene circuit is given 

in Figure 1. The full model of the simulated lac circuit is 

presented in [40]. Even though the model in Figure 1 and to 

some extent also more complex model from [40] are 

biologically simplistic [47], both models are useful to 

generate time dependent data of mRNA and protein counts 

for developing statistical methods of data analysis to 

elucidate dynamics of stochastic systems including gene 

expression in prokaryotic cells [48]. 

Figure 1. The gene expression model. (R) The repressed promoter when the 

repressor binds to the operator. (A) An active promoter when the RNA 

polymerase binds to the promoter. Each step represents several biochemical 

reactions which are associated with transitions between two promoter states 

(repressed and active). The mRNA and the protein production during 

transcription and translation, respectively, are followed by their 

degradation. Koff, Kon,Ktr, Ktn, γm, and γp are the rate constants associated 

with the these steps as indicated. The auto-regulation step controls the 

protein production. The reaction steps involve binding and dissociation 

events which are occurring randomly. 

 

Ignoring spatial heterogeneity in the cell, time evolution 

of mRNA and protein counts can be obtained by solving the 

corresponding CME. The full state of CME contains copy 

counts or concentrations of all chemical species [30, 31, 49], 

however, we are only interested in abundances of mRNA 

and protein. The complexity of CME for the lac circuit 

model considered necessitates stochastic simulations. At 

each observation time, the probability distributions of 

mRNA and protein counts are estimated using optimized 

histograms. We note that while exact molecule counts are 

readily available from in silico experiments, it is never the 

case in in vivo and in vitro experiments. 

Denote as 𝑦1, … , 𝑦𝑘  the time series of mRNA or protein 

copy counts observed over time interval 𝑘 ∈ [0, 𝑇] where 𝑇 

is the maximum simulation time which is assumed to be half 

lifetime of E. coli, i.e., T=3600 s [50]. For n independent 

simulation replicas, our observation data are, {𝑦𝑖,𝑘∈[0,𝑇]}𝑖=1

𝑛
. 

The task is to estimate the probability density function1 

(PDF) 𝑓𝑘 of random variables yk including their parameter 

values at all times k.  

2.2 Time dependent PDF estimation of mRNA and 

protein counts from observed data 

We use histogram as an unbiased and consistent estimator 

of PDF [51]. The histogram counts the fraction of samples 

that fall into the predefined bins. The number and width of 

the bins affect the accuracy of PDF estimation. Thus, when 

the bins are too narrow, the histogram may have large 

variations between neighboring bins with a number of empty 

bins in between. On the other hand, the histogram has poor 

resolution, if the bins are too wide. In both cases, the 

accuracy of fitting PDF to the histogram is reduced [52]. It 

is therefore desirable, especially for smaller values of n (i.e., 

amount of data), to optimize the bins to achieve better 

accuracy [53].    

Denote as 𝑅𝑘 = 𝑦𝑘,𝑚𝑎𝑥 − 𝑦𝑘,𝑚𝑖𝑛 the value range of data 

considered at specific time k. For N equal size bins, the bin 

width is, ℎ𝑘 = 𝑅𝑘 𝑁 = 𝑐𝑜𝑛𝑠𝑡⁄ . The optimum bin sizes 

minimize the cost function [53, 54]: 
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Provided that  𝑞𝑘,𝑖 are relative frequencies assigned to the i-

th bin at time k, the optimum bin sizes in (1) are obtained by 

the following procedure.  

1. Divide the observation range 𝑅𝑘 into N disjoint 

equal size bins of width ℎ𝑘, and count the bin 

values 𝑞𝑘,𝑖 assuming all n data samples at time k.   

2. Compute the sample mean and variance of 𝑞𝑘,𝑖 as: 
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3. Finally, iteratively minimize the cost function by 

adjusting the number and width of the bins as: 
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Once the optimized histogram has been obtained, it can 

be fitted with the selected PDF expression [55]. It is very 

useful to automate the whole process of obtaining and fitting 

                                                           
1 Strictly speaking, probability mass function (PMF) should be 

considered as PDF is a continuous approximation of discrete 

molecule counts. 
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the histogram, since this procedure needs to be repeated for 

all time instances of interest. 

As discussed above, we can assume that the production 

bursts of mRNA and protein yield exponentially distributed 

number of molecules, and assuming the protein lifetime 

being much larger than the mRNA lifetime, the steady-state 

protein counts y are gamma distributed [24]: 

  

1

( )
( )

 




a y b

a

y e
p y

a b
 (5)

 

where the shape parameter 𝑎 = 𝐾𝑡𝑟 𝛾𝑝⁄  is equal to the 

number of mRNA molecules produced per cell cycle, and 

the scale parameter 𝑏 = 𝐾𝑡𝑛 𝛾𝑚⁄  represents the number of 

protein molecules produced per translation burst from one 

mRNA molecule. Consequently, we can statistically test 

whether gamma distribution is a good description of 

observed protein counts also in transition from the initial 

states, and whether gamma distribution can be also assumed 

to describe the mRNA production. 

2.3 Statistical tests for fitting gamma distribution 

to observed mRNA and protein data  

We consider the Kolmogorov-Smirnov test and the chi-

square test to measure the goodness of fit of gamma 

distributions to mRNA and protein abundances at different 

time instances. 

Kolmogorov-Smirnov statistical test 
The Kolmogorov-Smirnov (K-S) test is a statistical 

measure to compare two cumulative distribution functions 

(CDFs). In particular, let 𝐹̂𝑘(𝑦) be the CDF of gamma 

distribution to be statistically compared with the empirical 

CDF 𝐹𝑘(𝑦) obtained from the observed data [56, 57]. The 

empirical CDF 𝐹𝑘(𝑦) for the observed random molecule 

counts 𝑦𝑘,1, … , 𝑦𝑘,𝑛 is computed as:  

 

( )
( )  k

k

I y
F y

n
 (6)

 

where n is the sample size, and 𝐼𝑘(𝑦) counts the number of 

samples smaller than y. The K-S test statistic 𝐷𝑘 is defined 

as the maximum absolute difference between the empirical 

CDF 𝐹𝑘(𝑦) and the hypothetical CDF  𝐹̂𝑘(𝑦), i.e.: 

 
 sup ( ) ( ) k k k

y

D F y F y  (7)
 

The null hypothesis that the observed data can be described 

by the hypothetical CDF is rejected, provided that the 

statistic 𝐷𝑘  is larger than a critical value obtained from the 

K-S table of significant values [58, 59]; otherwise, the null 

hypothesis is accepted. In addition, for each K-S test, we 

also determine the level of significance that the null 

hypothesis is true. 

Chi-square statistical test  

In order to detect any bias of the K-S test, we also use the 

chi-square test to decide whether gamma distribution is a 

good description of observed data. The empirical 

distributions of observed data at selected time instances are 

again obtained by first optimizing the bin sizes of the 

histogram, and then calculating the empirical CDF (6). The 

time dependent two-sided chi-square statistic is [60-62]: 
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2

, ,2

,
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where 𝑂𝑘,𝑖 and 𝐸𝑘,𝑖 are the observed and the expected 

relative frequencies, respectively, for the optimized bins 

computed at time k. For two-sided test, the chi-square 

statistic xk
2 is compared with the tabulated upper-tail and 

lower-tail critical values [62, 63]. Provided that the chi-

square statistic (8) is between these critical values, the 

corresponding significance level represents the level of 

acceptance of the null hypothesis that observed data can be 

described by the hypothetical CDF. 

2.4 Time-varying shape and scale parameters of 

gamma distributed mRNA and protein counts 

By fitting gamma distribution to observed mRNA and 

protein counts at different times, we obtain time series for 

shape and scale parameters of gamma distribution. These 

parameters appear as other random processes with their own 

PDF. Since these distributions have positive support and are 

positively skewed, we again assume that they are both 

gamma distributed. 

Denote as 𝑓𝑘(𝑦𝑘|𝛼𝑘 , 𝛽𝑘) the gamma distribution of 

mRNA or protein counts in the cell at time k where 𝛼𝑘 and  

𝛽𝑘 are the shape and scale parameters, respectively. The 

parameters 𝛼𝑘 and  𝛽𝑘 are assumed to be gamma distributed, 

i.e., 𝛼𝑘~Gamma(𝑎𝑘 , 𝑏𝑘) and 𝛽𝑘~Gamma(𝑢𝑘, 𝑣𝑘). The task 

is to use the observed mRNA or protein counts 𝑦 𝑘 =

[𝑦𝑘,1, … , 𝑦𝑘,𝑛] at time k across n simulation traces to infer 

the joint PDF of shape and scale parameters 𝛼𝑘 and  𝛽𝑘 

while assuming their marginal gamma distributions: 
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Since the data across multiple simulation traces are 

independent, the likelihood of shape and scale parameters is 

given by the product: 
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The likelihood function can be rewritten as: 
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Using the Bayes theorem, the joint posterior PDF of shape 

and scale parameters can be calculated as: 

     , | | , , / ( )      k k k k k k k k kp p py y y

 
(13) 

By ignoring the proportionality factor p(yk), and assuming 

the independence of scale and shape parameters, so their 

joint prior distribution is the product of marginal 

distributions (9) and (10), we obtain the joint posterior 

distribution of scale and shape parameters conditioned on 

the observed mRNA or protein counts: 
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(14) 

Numerically evaluating the distribution (14) has complexity 

O(n2). Since n is typically very large, we can visualize the 

distribution (14) using the BMH sampler [38]. We can then 

investigate the convergence and mixing properties of the 

BMH sampler to generate samples 𝛼𝑘 and  𝛽𝑘 having the 

density 𝑝(𝛼𝑘|𝛽𝑘 , 𝑦𝑘), and 𝑝(𝛽𝑘|𝛼𝑘 , 𝑦𝑘), respectively. 

2.5 Shape and scale parameters of gamma 

distribution as random processes 

At steady state, it was shown in [24] and [25] that shape 

and scale parameters of gamma distribution are equal to the 

mean number of protein bursts per cell cycle, and the mean 

number of protein molecules produced per burst, 

respectively. However, our numerical experiments reveal 

that both shape and scale parameters appear to be random 

during the transition to steady-state, giving rise to double-

stochastic processes of both mRNA and protein counts. For 

default constant values of mRNA and protein degradation 

rates, in the transition phase before steady-state, we can 

assume time-varying shape and scale parameters to be 

linearly dependent on equivalent time varying transcription 

and translation rates as: 

 𝑎𝑘 ≈
1

𝛾𝑝
𝐾𝑡𝑟,𝑘  and  𝑏𝑘 ≈

1

𝛾𝑚
𝐾𝑡𝑛,𝑘 (15) 

where the time dependence is removed at steady state as one 

would expect. Hence, for measured values of shape ak and 

scale bk during the transition phase, we can measure the 

equivalent time varying translation rates Ktr,k and Ktn,k, 

respectively.  

In addition to conditional joint bivariate distribution of 

scale and shape parameters (13), we investigate correlations 

of these parameters in time. As shown in [64], the auto-

correlation plots can be used generally to infer the level of 

randomness in stochastic processes. The autocorrelations are 

plotted as functions of time lag which is defined as time 

difference between consecutive mRNA or protein 

production events.  Since both shape and scale processes are 

found to be correlated in time, so do the productions of 

mRNA and protein in the genetic circuit. The 

autocorrelation plots are also indicative of when mRNA and 

protein production reaches steady-state.        

3. Results 

3.1 Fitting gamma distribution to measured mRNA 

and protein counts 

We first obtain optimized histograms of mRNA and 

protein counts as the estimates of their distributions [65] as 

described in Methods. At each time instant, the observed 

value ranges and so do the optimum bin sizes are different. 

The number of samples to create the histogram is equal to 

the number of simulation replicas which is set to n=10,000. 

The mRNA and protein counts are recorded once per second 

from time T=0 s until the time T=3600 s, so that 2×3601 

histograms are produced in total.  

Examples of histograms for mRNA and protein counts 

generated from simulations of the lac circuit in E. coli at 6 

selected time instances are compared in Figure 2 and Figure 

3, respectively. We observe that mRNA distributions are 

usually heavily skewed with long tails whereas the 

corresponding protein distributions at the same time 

instances are skewed much less. In addition to fitting the 

PDF of gamma distribution to these histograms, we also 

produced cumulative histograms defined by Eq. (6) in order 

to investigate fitting of the CDF of gamma distribution to 

the empirically obtained CDF which is shown in last row of 

Figure 2 and Figure 3, respectively.  
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Figure 2. The distributions of mRNA counts synthesized in the lac circuit 

of E. coli. (a), (b), (c), (d), (e), and (f) corresponds to 100, 300, 600, 1000, 

2000, and 3000 s, respectively. (1) The PDF fitting (red color) of gamma 

distribution to the histogram (blue color) of 10,000 independent samples of 

mRNA molecule counts. (2) The CDF fitting (black color) to the 

empirically computed CDF (red color). 

3.2 Goodness of fit tests 

We now report the results of K-S and C-S statistical tests 

to assess the goodness of fitting gamma distribution to the 

measured histograms [66]. Specifically, at each time instant, 

we evaluated the significance level of the null hypothesis 

that the observed data are drawn from gamma distribution. 

Figure 4 shows  the measured significance levels assuming 

the significance threshold 0.05 [56]. 

As shown in Figure 4 A1, only 980 K-S tests in time 

intervals [1310, 1440] (s) and [1475, 2290] (s) have the 

significance levels below the threshold value of 0.05. Thus, 

only about 26% of the K-S tests did not allow us to accept 

the null hypothesis that mRNA counts are gamma 

distributed. Assuming the significance levels in Figure 4 A2 

for protein counts, only 1040 K-S tests in time interval [955, 

 

Figure 3. The distributions of protein molecule counts synthesized in the 

lac circuit of E. coli. (a), (b), (c), (d), (e), and (f) corresponds to 100, 300, 

600, 1000, 2000, and 3000 s, respectively. (1) The PDF fitting (red color) of 

gamma distribution to the histogram (blue color) of 10,000 independent 

samples of protein molecule counts. (2) The CDF fitting (black color) to the 

empirically computed CDF (red color). 

 

1990] (s) (i.e., about 29% of all tests) did not allow us to 

accept the null hypothesis.  

Recall that C-S test compares the empirically observed 

relative frequency and the expected relative frequency. The 

measured significance levels are compared with the 

tabulated critical values to decide whether the null 

hypothesis can be accepted. As for K-S test, the default 

threshold value for the significance level was set to 0.05 

[56]. Figure 4 B1 shows that only 765 tests or 21% of all 

tests of mRNA counts in time interval [1310, 2075] (s) did 

not allow us to accept the null hypothesis. Finally, the 

significance levels in Figure 4 B2 for protein counts 

revealed that 1005 or 28% of the tests in time interval [1090, 

2106] (s) did not allow us to accept the null hypothesis. 
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Figure 4. The goodness of fit tests. (A) Chi-square test and (B) 

Kolmogorov-Smirnov test. (1) mRNA molecule counts and (2) protein 

molecule counts. (Red color) Default significance level of 0.05 and (blue 

color) the measured significance levels for the null hypothesis. 

 

In summary, in all cases considered, at least 70% of all 

statistical tests performed confirm that mRNA and protein 

counts are gamma distributed. Moreover, we observe from 

Figure 4 that towards the end of the cell cycle, the 

significance levels are equal to the significance threshold; 

thus, at steady-state, we can both reject or accept the null 

hypothesis. Provided that these cases are also included in 

acceptance of the null hypothesis, the probabilities of 

mRNA or protein being gamma distributed increase to 85, 

83, 84 and 76%, respectively, for 4 cases in Figure 4. 

3.3 Bayesian analysis of gamma distribution 

parameters 

In order to visualize the conditional bivariate distribution 

of gamma distribution scale and shape parameters, we set n 

equal to 25, and use the BMH sampler to draw 10,000 

samples from the joint PDF of shape and scale according to 

Eq. (14) assuming 𝑎𝑘 = 𝑢𝑘 = 0.25 and 𝑏𝑘 =  𝑣𝑘 = 0.025. 

The initial values for the BMH sampler are 𝛼𝑘 = 10−2 and 

𝛽𝑘 = 10−4. The generated histograms are shown in Figure 5 

and Figure 6 assuming gamma distributed mRNA and 

protein counts, respectively. We observe that the 

corresponding distributions are positively skewed at smaller 

time instances, i.e., for times 250, 650, 1050, and 1450 s in 

Figure 5. Moreover, towards the end of the cell half lifetime, 

the histograms show lower tails, i.e., at time 2650 and 3050 

s in Figure 5 which is due to mRNA degradation at the end 

of the cell half lifetime. More importantly, despite the 

assumption used in (14) that the priors of shape and scale 

parameters are independent, the concentration of samples 

along the diagonal in Figure 5 indicates that the posteriors of 

the shape and scale parameters are strongly correlated. 

Moreover, the bivariate distributions of scale and shape can 

be bimodal as shown in Figure 5 for time 1450 s, and also in 

Figure 6 for all times considered. Unlike in Figure 5, the 

correlations between shape and scale in Figure 6 appear to 

vary from highly correlated to much less correlated at 

different time instances. 

The convergence of the BMH sampler can be checked, 

for instance, by observing the sample means. The BMH 

sampler appears to be very sensitive to the initial values. 

The sample means are computed using a sliding window of 

1000 and 4500 samples of shape and scale, respectively, and 

they are shown in Figure 7. We found that the BMH sampler 

needs to produce at least 1000 samples for mRNA and 3000 

samples for protein in order to generate a stationary 

distribution. The correlations between shape and scale 

parameters can be also deduced from Figure 7.  

The default values of key reaction rates of transcription, 

translation, mRNA degradation and protein degradation are 

summarized in Table 1 [40]. These values yields theoretical 

shape and scale parameters of protein production [24, 25]: 

𝛼 = 𝐾𝑡𝑟 𝛾𝑝⁄ = 600 and  𝛽 = 𝐾𝑡𝑛 𝛾𝑚⁄ = 4. 

 
Table 1. Default values of the key reaction rates.  

Reaction Rate (s-1) 

Transcription ktr = 1.26e-01 

Translation ktn = 4.44e-02 

mRNA degradation 𝛾𝑚= 1.11e-02 

Protein degradation 𝛾𝑝= 2.1e-04 

 

The theoretical values of shape and scale parameters can 

be estimated from Figure 7 as the long-term mean values. In 

particular, the estimated shape value at steady state is 554 

and 667 assuming gamma distributed mRNA and protein, 

respectively, whereas the estimated scale values are 3.9 for 

mRNA nad 4.9 for protein.  

The empirical auto-correlations of scale and shape 

parameters are compared in Figure 8. For protein synthesis, 

both scale and shape parameters have correlated values over 

the span of as many as 185 observation samples whereas this 

values is reduced to about 100 samples in case of mRNA 

synthesis. Hence, the observed counts of mRNA and 

protein, respectively, are highly correlated over 10’s of 

samples.   
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Figure 5. The histograms of 10,000 random scale and shape samples 

generated using the BMH sampler of the bivariate posterior distribution for 

the case of mRNA synthesized by the lac circuit in E. coli. The time 

instances considered are the same as those in Figures 2 and 3. 

4. Discussion 

Our statistical analysis of simulated time dependent 

mRNA and protein counts produced by the lac circuit 

revealed that gamma distribution is a good fit for both 

mRNA and protein counts in over 70% of times from initial 

state to steady state. The scale and shape parameters of 

gamma distributed mRNA and protein counts can be also 

considered to be gamma distributed. The Bayes theorem was 

used to find the posterior bivariate distributions of scale and  

 

Figure 6. The histograms of 10,000 random scale and shape samples 

generated using the BMH sampler of the bivariate posterior distribution for 

the case of protein synthesized by the lac circuit in E. coli. The time 

instances considered are the same as those in Figures 2 and 3. 

shape parameters conditioned on the observed counts. In 

order to visualize joint PDF of scale and shape parameters, 

the BMH sampler was implemented to obtain the 

corresponding bivariate histograms. 

The product of shape and scale parameters is equal to the 

mean of gamma distribution, and very similar relationship 

can be obtained for the mode of gamma distribution. In 

general, gamma distribution is unimodal while the bivariate 

distributions of scale and shape parameters can be bimodal. 

Since the bivariate distributions of scale and shape are not 

circularly symmetric, these parameters controlling the 

properties of gamma distribution are strongly correlated. 
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Figure 7. The convergence of the moving average sample means of the 

scale and shape parameters for the mRNA and protein production using a 

sliding window of 1000 and 4500 samples, respectively. However, the 

BMH sampler requires to through away the first 1500 and 3500 samples, 

respectively, in order to start generating a stationary distribution. 

 

 

In general, gamma distribution is commonly used to 

model randomness in living systems such as pausing times 

and other stochastic phenomena in biological circuits. 

Gamma distribution can be also used as conjugate prior, so 

that both the prior and the posterior distributions of gamma 

distribution parameters are gamma distributed.  

Biological significance of shape and scale parameters 

were considered in [24] and [28]. These parameters for 

gamma distributed mRNA depend linearly on the ratio of 

transcription and degradation rates [26][32]. This explains 

the observed auto-correlation values which were obtained 

using our histogram analysis. We also observed that mRNA 

transcription tends to be more bursty than the subsequent 

protein translation with the latter appearing to be more 

evenly spread over time. Since protein synthesis is the most 

  

Figure 8. The estimated autocorrelation of shape and scale parameters 

representing mRNA and protein production, respectively. 

 

energy-consuming process in proliferating living cells, 

understanding what controls protein abundances is one of 

the key questions in molecular biology and biotechnology 

[67]. A number of previous research works have suggested 

that mRNA distribution can be the target for controlling 

distributions of protein synthesis [68-70]. A Bayesian 

approach could be used to infer mRNA distribution from 

empirically obtained protein distributions using observed 

molecule counts.  

It may be useful to also consider other distributions 

whether they may provide better fit than the gamma 

distribution over larger periods of time. The main reason we 

considered gamma distribution is that it has been assumed in 

many papers previously. One class of suitable distributions 

to consider are truncated distributions. For instance, we 

could assume truncated Gaussian distribution with 

additional one or two parameters defining the truncation 

interval. 
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Furthermore, due to a linear relationship between the 

shape parameter and transcription rate, and the scale 

parameter and translation rate, the estimated scale and shape 

parameters can be used to infer the corresponding gene 

expression rates. Prior reaching the steady-state, scale and 

shape parameters appear to be random processes. One can 

define time–varying transcription and translation rates 

assuming constant mRNA and protein degradation rates as 

suggested in Eq. (15). The empirical autocorrelation values 

of scale and shape processes in the transition phase prior to 

steady-state points to highly correlated values of mRNA and 

protein production across 10’s of observed samples.     

Unlike mRNA synthesis, protein production in the lac 

circuit appears to be inversely affected by values of scale 

and shape parameters. The protein distributions were found 

to be less skewed and more Gaussian-like (Figure 6) 

whereas mRNA distributions remained heavily skewed 

(Figure 5). This could be explained by the fact that sufficient 

protein synthesis requires abundance of the corresponding 

mRNA molecules to ensure enough translation events. Thus, 

mRNA and protein copy counts are highly correlated. 

However, if protein degrades more slowly, so that proteins 

from different translation bursts can co-exist in the cell, their 

distribution is less skewed, and mRNA and protein counts 

are less correlated. 

Our analysis of observed mRNA and protein counts does 

not require knowledge of reaction rates nor the structure of 

genetic circuit considered. The analysis is numerically 

efficient and is well suited to process large amount of data 

form in silico experiments. In vitro and in vivo experiments, 

on the other hand, are likely to produce much less data while 

these data can be also noisy. The histogram estimators of 

molecule count distributions may suffer from large 

estimation errors when fitting a distribution to a few noisy 

data. In such cases, it is possible to compute likelihood or a 

posteriori probabilities of observed molecule counts for 

several candidate distributions, and decide which one is the 

best fit to the observed data. 

In the transition from initial to steady state, the observed 

molecule counts represent a non-stationary random process. 

Such processes are often doubly-stochastic meaning that 

their distribution parameters are themselves random. We 

have observed this phenomenon assuming gamma 

distributed mRNA and protein counts in the lac circuit 

model of E. coli. Parameters of these gamma distributions 

appear to be themselves gamma distributed. However, a 

better strategy to model the molecule count distributions 

may be to approximate the distribution parameters by time-

dependent deterministic functions. Thus, assuming a given 

distribution with time varying parameters to model time 

evolution of molecule counts during the transition phase 

before reaching steady state may provide computationally 

efficient models for describing stochastic dynamics of 

genetic circuits. More importantly, assuming models 

obtained empirically from measured data can yield 

mathematical expressions more amenable to further 

mathematical and statistical analysis than trying to 

analytically solve CME.   

The measured autocorrelations of gamma distribution 

parameters in the lac circuit show that mRNA and protein 

counts are both highly correlated in time. Understanding the 

correlations in mRNA and protein synthesis is, in general, 

useful in designing synthetic biological circuits with more 

predictable properties, inferring model parameters, 

suppressing observation noise, optimizing production, also 

in experiment design [71]. For instance, maximizing the 

recombinant protein synthesis is of great interest for 

industrial production of pharmaceuticals and biofuels [72]. 

Since overproduction of the recombinant protein imposes a 

significant stress on the host organism [73, 74], knowing a 

time evolution of protein distribution can be exploited to 

balance the production while consuming the host’s 

resources. This may even lead to choice of a different host 

organism or to changes of growth conditions. 

5. Conclusion 

We have presented a statistical methodology to obtain 

distribution of mRNA and protein in transition from initial 

state as well as in steady state. The method does not require 

any assumptions. The method was illustrated to investigate 

whether mRNA and protein counts in the model of lac 

circuit in E. coli can be considered as gamma distributed. 

Using optimized histogram and two statistical tests, we 

found that both mRNA and protein counts can be considered 

to be gamma distributed in at least 70% of times from the 

initial state until steady state. In addition, shape and scale 

parameters of gamma distribution are themselves gamma 

distributed. The Bayes theorem and the BMH sampler were 

used to further study the gamma distribution parameters.  

We observed that shape and scale parameters are 

statistically correlated, and their joint PDF is often bimodal. 

These parameters have been previously linked to ratios of 

key reaction rates in the genetic circuit. Here, we have 

considered these definitions in transition phase prior 

reaching steady state by assuming equivalent time-varying 

transcription and translation rates. 
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