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We study anisotropic power-law inflationary solutions when the inflaton and its derivative couple to a
vector field. This type of coupling is motivated by D-brane inflationary models, in which the inflaton, and a
vector field living on the D-brane, couple disformally (derivatively). We start by studying a phenom-
enological model where we show the existence of anisotropic solutions and demonstrate their stability via a
dynamical system analysis. Compared to the case without a derivative coupling, the anisotropy is reduced
and thus can be made consistent with current limits, while the value of the slow-roll parameter remains
almost unchanged. We also discuss solutions for more general cases, including D-brane–like couplings.

DOI: 10.1103/PhysRevD.97.103534

I. INTRODUCTION

The most recent data on the cosmic microwave
background radiation temperature fluctuations [1,2] favor
the simplest inflationary scenario to provide their origin.
This simple scenario makes robust predictions for the
primordial inhomogeneities of the universe: they are
adiabatic, highly isotropic, approximately scale invariant,
and nearly Gaussian. In this framework, a single scalar field
drives a period of quasi–de Sitter accelerated expansion,
while its quantum fluctuations are stretched to observable
scales, setting up the initial conditions for structure growth.
Most inflationary models are based on scalar field dynam-
ics, where inflation is driven by a single scalar field. The
current data have severely constrained some of these
models; however, many remain compatible [3]. With more
precise observations to come in the future, it will be
possible to determine whether more complicated models
of inflation are needed, which will narrow down the
landscape of observably viable scenarios.
In particular, multifield models of inflation arise natu-

rally in extensions of the simplest cosmological framework,
for example, in fundamental theories such as supergravity
and string theory. Usually, models with more than one
scalar field are considered in these extensions. However,
fields with other spins, such as gauge fields, may play an
interesting and testable role during inflation as well [4–6].

Gauge fields are not commonly considered in the study of
inflation, due to the cosmic no-hair conjecture, which states
that spacetime rapidly approaches quasi–de Sitter space-
time during inflation. Thus, matter fields satisfying the
dominant and strong energy conditions will be rapidly
diluted. However, the authors of [7] found the first working
model (free from ghosts) of inflation with a vector field that
can produce persistent anisotropy in the background
spacetime. This brought forward the interesting possibility
that light gauge fields may affect cosmological observa-
tions by generating some observable amount of statistical
anisotropy (for reviews on anisotropic inflation see [4–6]).
Another possibility for generating observable statistical

anisotropies in the presence of vector fields is the vector
curvaton scenario [8–10]. In this scenario, the inflaton is a
scalar driving inflation, while the vector field becomes
important after inflation, when it may dominate the uni-
verse and imprint its perturbation spectrum before it
decays, as in the scalar curvaton scenario (for a review
of the vector curvaton see [11]).
In the context of D-brane inflationary models, the

inflaton is typically identified with the scalar field para-
metrizing the transverse fluctuations of the D-brane (that
is, its position in the internal compact six-dimensional
space). Such a brane features a world-volume two form
field Fμν, associated with the longitudinal fluctuations of
the D-brane. Therefore, it is natural to investigate the role
of this brane field in the dynamics of inflation. Indeed, in
[12], a D-brane vector curvaton realization was discussed,
while in [13] a Wilson line inflationary model was studied
with interesting predictions. In this case, it is precisely
one of the D-brane vector internal components that drives
inflation.
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In a D-brane scenario, the scalar field associated with
brane position, identified with the inflaton, and the vector
field couple disformally via the Dirac-Born-Infeld (DBI)
action describing the D-brane dynamics.1 In particular, the
gauge kinetic function, f, depends on the scalar field ϕ and
its derivative X ≡ 1

2
ð∂ϕÞ2, fðϕ; XÞ. This coupling can

thus alter the predictions of the anisotropic background
evolution and the predictions for statistical anisotropies.
Furthermore, fðϕ; XÞ represents a general parametrization
of a generic inflaton-matter coupling. This has recently
been used in studies of the inflationary universe as a
cosmological collider [15]. It is thus important to know
what effect the derivative coupling has on inflationary
evolution. This derivative coupling has also appeared in the
recently proposed Effective Field Theory (EFT) of aniso-
tropic inflation [16,17].
Motivated by the D-brane scenario and the more generic

nature of a derivative coupling between the inflaton and a
vector field (and even more generally, with matter), in this
paper we study anisotropic inflation with derivative cou-
plings. We start by considering a phenomenological model
where the gauge kinetic function has a monomial depend-
ence on X and exponential dependence on ϕ. For the
power-law cases we consider, no stable solutions exist for
when fðXÞ only. On the other hand, for fðϕ; XÞ, stable
anisotropic solutions exist and the anisotropy is consid-
erably reduced in comparison to the nonderivative case.
This is interesting in view of the latest constraints on
anisotropy [18,19]. We next use our general equations to
explore more general solutions. Finally we conclude in
Sec. V with a discussion of our results and prospects for
future work.

II. SCALAR-VECTOR-TENSOR ACTION WITH
GENERAL DERIVATIVE COUPLINGS

Although we will look only at power-law inflationary
solutions, in this section we will keep the discussion as
general as possible when presenting the setup and equa-
tions of motion. This will be useful to describe a variety of
power-law models as we discuss later. In most of the paper
we will concentrate on a simple field theory model that will
serve to illustrate the consequences of taking derivative
couplings into account.
Our starting point is the general scalar-vector-tensor

action of the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R − Pðϕ; XÞ − f2ðϕ; XÞ

4
FμνFμν

�
;

ð1Þ
where Fμν ¼ ∂μAν − ∂νAμ, 2X ¼ ð∂ϕÞ2; thus, we see that
the gauge kinetic function depends on both the inflaton, ϕ,

and its derivative, X. This action is motivated from D-brane
actions in string theory models of inflation, where Pðϕ; XÞ
and fðϕ; XÞ take very specific forms and arise from the DBI
action (see [12] for details). Here we keep these functions
general, in order to cover other possibilities.2

The equations of motion derived from (1) are given by

Rμν −
1

2
gμνR ¼ 8πGðTA

μν þ Tϕ
μνÞ; ð2Þ

1ffiffiffiffiffiffi−gp ∂μ

� ffiffiffiffiffiffi
−g

p �
F2

2
ffXþPX

�
∂μϕ

�
¼F2

2
ffϕþPϕ; ð3Þ

∂μ½
ffiffiffiffiffiffi
−g

p
f2ðϕ; XÞFμν� ¼ 0; ð4Þ

where 8πG ¼ M−2
Pl is the reduced Planck mass and we have

denoted the derivatives as fi ¼ ∂if and similarly for P, for
i ¼ ϕ; X. The energy-momentum tensors for the vector and
the scalar fields are given by

Tϕ
μν ¼ ∂μϕ∂νϕ

�
1

2
ffXF2 þ PX

�
− gμνP; ð5Þ

TA
μν ¼ f2

�
Fν

αFμα − gμν
F2

4

�
: ð6Þ

We are interested in anisotropic solutions, and therefore,
without loss of generality, we consider the following
anisotropic metric:

ds2 ¼ −dt2 þ e2αðtÞ½e−4σðtÞdx2 þ e2σðtÞðdy2 þ dz2Þ�; ð7Þ
where eαðtÞ is identified with the isotropic scale factor, and
eσðtÞ characterizes the anisotropy. Furthermore, we use
gauge invariance to choose A0 ¼ 0, and, for concreteness,
we consider homogeneous fields of the form [7,22]

ϕ ¼ ϕðtÞ; Aμ ¼ ð0; vðtÞ; 0; 0Þ: ð8Þ
With these Ansätze, the equation of motion for the vector
field takes the simple form

d
dt

½f2eαþ4σ _v� ¼ 0; ð9Þ

which can readily be solved to give

f2eαþ4σ _v ¼ pA; ð10Þ
where pA is a constant of integration. Since − _v¼Fx0¼Ex,
pA is the electric field modulated by the expansion of the
universe.

1For an example of a theory where two scalar fields couple
disformally via the DBI action, see [14].

2Anisotropic inflationary solutions with a DBI kinetic term for
the scalar field and a pure inflaton-dependent gauge kinetic
function f were considered in [20]. More general forms for
Pðϕ; XÞ were further considered in [21].
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The Einstein equations, on the other hand, can be
arranged into the following set of equations:

α̈ ¼ −3_α2 þ 1

6M2
Pl

�
6Pþ f2 _v2e−2αþ4σ

þ 3ϕ̇2

�
PX −

fX
f
f2 _v2e−2αþ4σ

��
; ð11Þ

σ̈ ¼ −3_α _σþ f2 _v2

3M2
Pl

e−2αþ4σ; ð12Þ

_α2 ¼ _σ2 þ 1

3M2
Pl

�
Pþ f2 _v2

2
e−2αþ4σ

þ ϕ̇2

�
PX −

fX
f
f2 _v2e−2αþ4σ

��
; ð13Þ

where we have used (10). Finally, the equation of motion
for the scalar field becomes

ϕ̈

�
−ϕ̇2PXX þPX − f2 _v2e−2αþ4σ

�
fX
f
þ 3

f2X
f2

ϕ̇2 −
fXX
f

ϕ̇2

��

þ ϕ̇

�
ϕ̇PXϕ þ 3_αPX þ f2 _v2e−2αþ4σ

×
fX
f

�
ϕ̇

�
3
fϕ
f
−
fXϕ
fX

�
þ 4_σþ _α

��

þPϕ −
fϕ
f
f2 _v2e−2αþ4σ ¼ 0: ð14Þ

From these equations, it is easy to recover the various
examples studied in the literature, for which fX ¼ 0
[7,20–23].
In what follows we use these equations to look for stable

anisotropic solutions. We start by looking at a phenomeno-
logical example that serves as a prototype to understand the
effect of the derivative coupling between the inflaton and the
vector field, and then we explore more general cases.

III. ANISOTROPIC POWER-LAW INFLATION
WITH DERIVATIVE COUPLINGS

In this section we start the analysis of power-law
anisotropic inflation with derivative couplings, providing
the first explicit example of the situation described in the
EFT description of [16]. We start with a canonically
normalized inflaton,

Pðϕ; XÞ ¼ 1

2
ð∂ϕÞ2 þ VðϕÞ ¼ X þ V; ð15Þ

and thus replace, Pϕ ¼ Vϕ, PX ¼ 1 in the equations of
motion above, (11)–(14). Note that Eqs. (11) and (13)
depend only on the derivative of f with respect to X. One
then immediately sees that a suitable choice of functional
form is given by setting

X
fX
f

¼ −n; ð16Þ

where n ¼ const. This has the solution

fðX;ϕÞ ¼ ð−XÞ−ngðϕÞ; ð17Þ

for some function gðϕÞ. On the other hand, we can also see
that a suitable choice of ϕ dependence is given when
fϕ=f ¼ const, that is, an exponential dependence. So we
find that a suitable Ansatz for the gauge kinetic function’s
dependence on the scalar and its derivative is given by3:

fðϕ; XÞ ¼ M4n
Pl f0

e
ρ

MPl
ϕ

ð−XÞn : ð18Þ

In addition to this, we also consider an exponential
potential for the scalar field

VðϕÞ ¼ V0e
λ

MPl
ϕ: ð19Þ

We are now ready to look for power-law solutions of the
form

α ¼ ζ logðMPltÞ; σ ¼ η logðMPltÞ;
ϕ

MPl
¼ ξ logðMPltÞ þ ϕ0: ð20Þ

Using this Ansatz with the Hamiltonian constraint (13), we
obtain the conditions

λξ ¼ −2; ρξþ 2ζ þ 2ηþ 2n ¼ 1: ð21Þ

We arrive at these two conditions (21) by requiring that,
after substitution of (20) into (11)–(14), powers in t balance
in all equations (i.e., we end up with equations of the form
Ctn ¼ Ktn where C, K are independent of t). The remain-
ing conditions (below) come from ensuring that C ¼ K in
(11)–(14), i.e., that the equations are satisfied (the ampli-
tudes balance) after substitution of (20). For the amplitudes
to balance in (13) (the Hamiltonian constraint), it is
required that

−ζ2 þ η2 þ 1

6
ξ2 þ 1

3
uþ ð1 − 4nÞ4−nξ4n w

6
¼ 0; ð22Þ

where we have defined u, w as

u ¼ V0

M4
Pl

eλϕ0 ; w ¼ p2
A

M4
Pl

f−20 e−2ρϕ0 : ð23Þ

3In a string theory scenario, the effective four-dimensional
(4D) action can be written in terms of the 4D MPl, which would
be a function of the string scale and coupling, as well as the
compactification volume.
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From the equation for the scale factor (11) we then obtain

3ζ2 − ζ − uþ 4−nð6n − 1Þξ4n w
6
¼ 0: ð24Þ

Similarly from the anisotropy equation (12) we get

−ηð3ζ − 1Þ − 4−nξ4n
w
3
¼ 0: ð25Þ

Finally from the equation for the inflaton we obtain

−ξþ3ζξþλuþ4−nξ4n−1w½2nðζþ4ηþ4n−1Þ
þρξð4n−1Þ�¼0: ð26Þ

Using these equations, we can solve for u and w to get

u ¼ −ζ þ 3ζ2 þ 1

2
η − 3nη −

3

2
ζηþ 9nζη;

w ¼ 3η4nξ−4nð3ζ − 1Þ: ð27Þ

Substituting these into the inflaton equation (26), and using
the constraints for ξ and η from (21), gives

ð−1þ 3ζÞ½8þ λ2ð1 − 6ζ þ 2nð−1þ 9ζð−1þ 2nþ 2ζÞÞÞ
−4λρð−2þ 3ζ þ 3nð1þ 3ζÞÞ þ 12ρ2� ¼ 0: ð28Þ

In contrast with [22], we now obtain a cubic, rather than
a quadratic equation for ζ. As in [22], we have the solution
ζ ¼ 1

3
which gives u ¼ w ¼ 0, implying that there is no

anisotropy and no potential driving inflation. We hence
discard this solution and focus on the other two:

ζþ ¼ Aþ ffiffiffiffi
B

p

72nλ2
; ζ− ¼ A −

ffiffiffiffi
B

p

72nλ2
; ð29Þ

where

A ¼ 6λ2 þ 18nλ2 − 36n2λ2 þ 12λρþ 36nλρ; ð30Þ

and

B ¼ A2 − 144nλ2ð8þ λ2 − 2nλ2 þ 8λρ − 12nλρþ 12ρ2Þ:
ð31Þ

These solutions trivially satisfy (22), and it is important to
remember that they are constrained from the requirement
that w, u must be positive by definition, (23).
To look for inflationary solutions we define the average

slow-roll parameter, ϵ in terms of the Hubble parameter
defined by H ¼ _α, as

ϵ≡ −
_H
H2

¼ 1

ζ
: ð32Þ

Hence there are two branches of solutions for ϵ corre-
sponding to ζ�. To have inflation, we need ϵ ≪ 1; that is,
we are looking for regions in the parameter space
where ζ� ≫ 1.
The anisotropy is characterized by

Σ
H

≡ _σ

_α
¼ η

ζ
; ð33Þ

where η is given by

η ¼ 1

2
þ ρ

λ
− ζ − n: ð34Þ

As for ϵ, there are two possible branches of solutions,
associated with ζ�.
Let us now discuss two cases of interest. First, ρ ¼ 0,

which corresponds to a gauge kinetic function that depends
only on the derivative of the scalar field. And second,
ρ ≠ 0, when it depends on both.
a. Shift symmetric coupling, ρ ¼ 0. A purely shift

symmetric coupling of the inflaton with the vector field
arises for ρ ¼ 0 [see (18)]. This type of coupling of the
inflaton to matter was considered recently in [15]. For
inflationary solutions to arise, we need ζ ≫ 1. Moreover,
the solutions should satisfy u; w > 0 [see (27)]. In terms of
ζ (with ρ ¼ 0), w and u are given by

w ¼ −3 × 2−2n−1ð3ζ − 1Þ
�
−
1

λ

�
−4n

ð2ζ þ 2n − 1Þ; ð35Þ

u ¼ −
1

4
ð2n − 1Þð3ζ − 1Þð6ζ þ 6n − 1Þ: ð36Þ

Therefore, for w, u to be positive, n must be negative and
jnj ≫ 1, so that n < 1=2 − ζ. From the expressions for ζ�
(29) we see that for jnj ≫ 1, ζ� ∼ n

2
ð−1� 1Þ.4 Thus in

principle there are anisotropic inflationary solutions that
satisfy all necessary conditions for sufficiently large jnj.
For example, n¼−105;λ¼1, gives ϵ ∼ 10−4;Σ=H ∼ 10−9,
as required by current bounds [18,19]. Note that requiring
sufficiently small anisotropy requires very large values of
jnj. However, we find no stable solutions when ρ ¼ 0.5

b. More general coupling, ρ ≠ 0. Let us now consider
the case when the gauge kinetic function depends on both
the inflaton and its derivative, that is, ρ ≠ 0. As before,
inflationary solutions require ζ ≫ 1. Furthermore, the
conditions for a positive w (and u) can be obtained by
looking at (27), which takes the form

4Notice that to see that u is positive in this limit (as required)
one needs to include the next to leading order term in the large
n expansion for ζ�.

5This has been confirmed recently in [24].
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w¼−3×2−2nð3ζ−1Þ
�
−
1

λ

�
−4n

�
ζþn−

ρ

λ
−
1

2

�
: ð37Þ

Therefore for sufficiently large ζ, w can be positive for
positive or negative n and large values of ρ=λ, which is also
required to obtain large values of ζ [see Eq. (29)]. In the
limit ρ=λ ≫ 1, the solutions ζ� become

ζ� ≃
ρ
	
1þ 3n�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3n − 1Þ2 − 8n

ρ2

q 


6nλ
: ð38Þ

Examining this, we see that for n > 0, the numerator is
always positive since ð1þ 3nÞ >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3n − 1Þ2 − ð8nÞ=ρ2

p
meaning ζ� are both positive. Similarly for n < 0, we see
that j1þ 3nj <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3n − 1Þ2 − ð8nÞ=ρ2

p
, which tells us that

ζþ is negative while ζ− is positive. That is, in this limit,
there are positive solutions for both ζ� for positive n, while
for negative n only one solution is positive. We are also
interested in small anisotropy, Σ=H ≪ 1 (33), where in
terms of the parameters we have

Σ
H

¼ 1

ζ

�
ρ

λ
þ 1

2
− n − ζ

�
; ð39Þ

which further selects the appropriate solution for ζ.6 With
these conditions, one can check that there is a range of
values for which anisotropic solutions exist for n > 0. A
stability analysis shows that for these cases, both the
isotropic and the anisotropic solutions are attractors.
Therefore the evolution of the system depends on the
initial conditions. Since we are interested in the case where
the anisotropic solution is the only attractor, in what follows
we focus our search for anisotropic stable solutions to the
case n < 0.
In Fig. 1 we show the behavior of the slow-roll

parameter, ϵ, as a function of the parameters λ and ρ for
different values of n. As one can see, the slow-roll

parameter ϵ decreases very slightly as the magnitude of
n increases. Conversely, as can be seen in Fig. 2 the
anisotropy, Σ=H, can be reduced by the introduction of a
derivative coupling: the greater the magnitude of n, the
smaller the magnitude of anisotropy.
We can understand the decrease in the anisotropy as

follows. Since we are only interested in solutions where the
anisotropic point is a single attractor (and since the only
observable anisotropic effects come from the final value of
the anisotropy), we do not have to worry about the initial
value for the gauge field. If the anisotropy converges to a
number, its final value is given by the ratio of energy
density of the vector field to that of the scalar field [25].
From Eq. (12), we can define this ratio R as

Σ
H

≃
2

3
R; R ¼ ρv

VðϕÞ ∼
f2

2
_v2e−2αþ4σ

VðϕÞ : ð40Þ

Using (10), (18), and (19), this ratio can be written as

R ∼ ϕ̇4ne−2ρϕ−4α−4σ−λϕ ∼ ξ4nt−2ρξ−4ζ−4η−λξ−4n; ð41Þ

where in the second expression we used (20). Furthermore,
using the conditions (21), we find that the ratio becomes a
constant given by

R ∼ ξ4n ¼ 1

ξ4jnj
; n < 0; ð42Þ

and thus we see why the anisotropy decreases with jnj in
the case with derivative couplings. Since ξ4n is coming
from the energy density of the vector field, we see that the
anisotropy is reduced because the energy density of the
vector field becomes small during inflation.

A. Stability of the anisotropic solutions

We now study the stability of the solutions above using a
dynamical system analysis. For this, we define the dimen-
sionless variables:

FIG. 1. In these plots we show how the slow-roll parameter, ϵ, varies with λ (for ρ ¼ 20) and ρ (for λ ¼ 0.1), for the values of n shown.

6We focus only on solutions with jnj ≥ 1, which guarantees
real values for w in the λ > 0 we are interested in.
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W ¼ _σ

_α
; Y ¼ 1

MPl

ϕ̇

_α
; Z ¼ fðϕ;XÞe−αþ2σ

MPl

_v
_α
; ð43Þ

where we use the e-fold number as time coordinate, dα ¼
_αdt. Using these variables, the Hamiltonian constraint (13)
can be written as

−
V

M2
Pl _α

2
¼ 3ðW2 − 1Þ þ Y2

2
þ Z2

2
ð1 − 4nÞ: ð44Þ

Since the inflationary potential is positive definite, we
immediately see that (44) implies

W2 þ Y2

6
þ Z2

6
ð1 − 4nÞ < 1: ð45Þ

In terms of the variables (43), the slow-roll parameter ϵ,
becomes

ϵ ¼ 3W2 þ Y2

2
þ Z2

3
ð1 − 3nÞ: ð46Þ

Using the Hamiltonian constraint (44), the equations of
motion in terms of (43) can be written as

dW
dα

¼ 1

3
Z2ðW þ 1 − 3nWÞ þW

�
3ðW2 − 1Þ þ 1

2
Y2

�
;

ð47Þ

dY
dα

¼ 1

6
Yf18W2 þ 3Y2 þ 2Z2 − 6nZ2 þ 3CðY; ZÞ

× ½−4nZ2ð1þ 4WÞ þ Yð−6Y þ 6λðW2 − 1Þ þ λY2

− Z2ð−1þ 4nÞðλþ 2ρÞÞ�g; ð48Þ

dZ
dα

¼ 1

6
Zf−12 − 12W þ 18W2 þ 3Y2 þ 2Z2 − 6nZ2

− 6ρY − 6nCðY; ZÞ½4nZ2ð1þ 4WÞ
− Yð−6Y þ 6λðW2 − 1Þ þ λY2

− Z2ð4n − 1Þð2ρþ λÞÞ�g; ð49Þ

where

CðY; ZÞ ¼ 1

Y2 þ 2nZ2ð1 − 4nÞ : ð50Þ

We can now find the fixed points of the system by setting
dW=dα ¼ dY=dα ¼ dZ=dα ¼ 0. From (47), we find

Z2 ¼ 3Wð−6þ 6W2 þ Y2Þ
2ð−1 −W þ 3nWÞ ; ð51Þ

These equations are solved numerically for suitable values
of the parameters λ, ρ, and n (chosen so that w is positive)
such that W, Y, and Z are all nonzero and real. To choose
appropriate solutions, we perform a linear stability analysis.
The isotropic fixed point solution is located atW ¼ Z ¼ 0,
Y ¼ −λ, corresponding with the coupling fðϕ; XÞ being
switched off. The linearized equations of motion around
this point reduce to

dδW
dα

¼
�
1

2
λ2 − 3

�
δW; ð52Þ

dδY
dα

¼
�
1

2
λ2 − 3

�
δY; ð53Þ

dδZ
dα

¼
��

1

2
− n

�
λ2 þ ρλ − 2

�
δZ: ð54Þ

When λ is small, the left-hand sides of these equations are
all negative (corresponding to the isotropic fixed point
being an attractor solution) if λ2ð1 − 2nÞ þ 2ρλ < 4. If,
however, λ2ð1 − 2nÞ þ 2ρλ > 4, the isotropic fixed point is
unstable. Since we are searching for anisotropic solutions,
this is the parameter space we want to consider: we require
that ρ > 2

λ −
λ
2
ð1 − 2nÞ.

Now, we look at two explicit examples to demonstrate
that stable derivative anisotropic solutions can be found
with small but nonzero anisotropy in agreement with
recent data. Consider first the case with n¼−1, λ ¼ 0.1,

FIG. 2. In these plots we show how the anisotropy, ΣH, varies with λ (for ρ ¼ 20) and ρ (for λ ¼ 0.1), for negative values of n as shown.
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and ρ ¼ 20, which has a fixed point at ðW;Y; ZÞ ¼
ð3.08249 × 10−6; − 9.92559 × 10−2; � 5.26275 × 10−3Þ.
Linearization around this point gives

dδW
dα

¼ −2.99504δW − 3.05955 × 10−7δY

� 3.50854 × 10−3δZ; ð55Þ

dδY
dα

¼ −2.29684 × 10−3δW − 3.08768δY � 0.87150δZ;

ð56Þ

dδZ
dα

¼ ∓1.07688 × 10−2δW ∓ 0.434252δY

þ 9.26389 × 10−2δZ; ð57Þ

where the change in signs is due to choosing either the
positive or the negative Z solution. This system has eigen-
values ð−2.99504;−2.96384;−3.11922 × 10−2Þwhose real
parts are all negative. This system has an average slow-roll
parameter of ϵ ¼ 4.96279 × 10−3 [from both (46) and ϵ− in
(32)] and anisotropy Σ=H ¼ 3.08249 × 10−6, which is,
however, too large compared to current data [18,19]. As a
reference, from (23), we can also evaluate the constant of
integration for the vector field defined in (10) in terms
of MPl, f0, and ϕ0.

7 We can compare this solution with the
nonderivative stable one λ ¼ 0.1,ρ ¼ 50,n ¼ 0. In that case,
Σ=H ¼ 4 × 10−4, and thus we clearly see that the derivative
coupling decreases the level of anisotropy.
As a second example we take n ¼ −2, λ ¼ 0.01, and

ρ ¼ 200. This has a stable fixed point at ðW;Y;ZÞ ¼
ð2.97549× 10−10; − 9.99875× 10−3; � 5.17484× 10−5Þ.
Linearization of the W, Y, Z equations around this point
gives the equations

dδW
dα

¼ −2.99995δW − 2.97512 × 10−12δY

� 3.44989 × 10−5δZ; ð58Þ

dδY
dα

¼ −4.28930 × 10−6δW − 3.00295δY � 0.145051δZ;

ð59Þ

dδZ
dα

¼ ∓1.03586 × 10−4δW ∓ 7.25192 × 10−2δY

þ 3.00290 × 10−3δZ; ð60Þ

where the change in signs is due to choosing either
the positive or the negative Z solution, respectively.

The eigenvalues for this set of equations are ð−2.99995;
−2.99945;−5.00566 × 10−4Þ. The eigenvalues’ real parts
are all negative, and hence this fixed point is stable.
Therefore, this corresponds to a stable solution that
produces anisotropy during inflation. Using (46), we find
the slow-roll parameter to be ϵ ¼ 4.99938 × 10−5 matching
perfectly with the ζ− solution in (29), which gives the
slow-roll parameter (for λ, ρ, n given above) as ϵ− ¼
4.99938 × 10−5. The average anisotropy is given by
Σ=H ¼ 2.97549 × 10−10 and is thus consistent with obser-
vations [18,19]. In addition, w is positive and real. We can
compare this solution with the nonderivative case of [22]
with a slight change in the parameters. In that case, a stable
anisotropic solution can be found for λ ¼ 0.01, ρ ¼ 500
(and, of course, n ¼ 0), so it is of the same order of
magnitude as the present case. For that solution, the
anisotropy turns out to be Σ=H ¼ 4 × 10−6 and thus in
tension with current data. Again, we see that a derivative
coupling helps to bring apparently excluded solutions back
into agreement with observations.

IV. MORE GENERAL SOLUTIONS

In the previous section we explored a suitable generali-
zation of the nonderivative anisotropic power-law inflation
studied in [22] where the gauge kinetic function has a
monomial dependence on the inflaton’s velocity. Our
general equations, however, allow for an easy exploration
of other interesting possibilities. One such possibility is the
case of DBI inflation [26], where the inflaton can be
identified with a D-brane position or a Wilson line. In any
case, the vector field featuring on the inflationary D-brane
may give rise to anisotropic solutions. In this model, the
scalar action and gauge kinetic function are given by [12]

Pðϕ;XÞ¼ 2Xγ
γþ1

þVðϕÞ; fðϕ;XÞ¼ γ1=2; γ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2hX

p ;

ð61Þ

where hðϕÞ is a function of the scalar field only (the
warp factor associated with the 10-dimensional geometry
where the brane is moving). We see that in the non-
relativistic case, when γ → 1, the scalar field is canonically
normalized and the vector field decouples from the
inflaton. It is not difficult to check that power-law
solutions with h0=h ¼ const V 0=V ¼ λ ¼ const cannot
be found since the constraints ϵ ≪ 1, ζ ≫ 1, and w > 0
(27) cannot be simultaneously satisfied. The same happens
when considering a canonically normalized inflaton (15)
coupled disformally to the vector via (61). This is con-
sistent with the results of [27] where a detailed analysis
is shown.
However, motivated by the DBI anisotropic solutions

found in [20], we can slightly modify this Ansatz. Consider
a DBI inflaton, with P given as in (61), and a monomial,

7For example, for ðϕ0; f0Þ ¼ ð−1; 1Þ, we find pA ¼ �4.4×
10−7M2

Pl. Inverting (40), we can also find the value of _v in terms
of all the parameters of the model, _v ∼ ðRV2f−2e2α−4σÞ1=2.
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derivative coupling, f, as in (18). This could correspond to
a model where the inflaton and the vector live in different
D-branes. In [20] the authors found power-law anisotropic
solutions with h0=h ¼ const which implies that γ ¼ γ0 ¼
const. Let us see this in some detail.

A. DBI inflation with monomial, derivative
coupling solutions

Considering h0=h ¼ const implies an exponential form
for h, which we take as

hðϕÞ ¼ h0
M4

Pl

e
Λ

MPl
ϕ: ð62Þ

Taking also an exponential form for the inflaton potential as
before, (19), and power-law solutions for the scale factors
and inflaton as in the canonically normalized case (20), we
obtain the conditions

λξ¼ −2; ρξþ 2ζþ 2ηþ 2n¼ 1; Λ¼ −λ: ð63Þ
The requirement that Λ ¼ −λ is akin to setting γ ¼ γ0 ¼
const. In terms of h0, λ, and ϕ0; γ0 becomes

γ0 ¼
�
1 − 4

h0
λ2

e−λϕ0

�
−1
2

: ð64Þ

By applying the exact same procedure of balancing the
amplitudes as we used for the canonically normalized case
(22)–(29), we obtain two analogous solutions that satisfy
all of the system’s equations:

ζþ ¼ Dþ ffiffiffiffi
E

p

72nλ
; ζ− ¼ D −

ffiffiffiffi
E

p

72nλ
; ð65Þ

where

D ¼ 6λþ 18nλ − 36n2λþ 12ρþ 36nρ; ð66Þ

and

E ¼ D2 − 144nλ

�
8

γ0λ
þ λ − 2nλþ 8ρ − 12nρþ 12

ρ2

λ

�
:

ð67Þ

Anisotropic inflationary solutions can now be found for
suitable choices of the parameters, as long as they satisfy
the constraints that u, w [defined as before (23)] must be
real and positive, and, of course, ϵ ¼ 1=ζ ≪ 1. As a
concrete example, a stable solution can be found for
λ ¼ 0.01; ρ ¼ 300; n ¼ −2; γ0 ¼ 1.5. It has anisotropy
Σ=H ¼ 1.32254 × 10−10 and slow-roll parameter ϵ ¼
3.33306 × 10−5, making it compatible with data. We
present in Appendix the stability analysis of this
solution. Comparing to the canonically normalized case
(γ0 ¼ 1) discussed above, we can see the effect of the DBI

kinetic term, which reduces very slightly the anisotropy
and slow-roll parameter: ðΣ=HÞcn ¼ 2.97549 × 10−10;
ϵcn ¼ 4.99938 × 10−5.

V. DISCUSSION

We have studied anisotropic inflationary solutions where
the inflaton couples to a vector field derivatively. That is,
the gauge kinetic function depends on both the inflaton and
its derivative, fðϕ; XÞ, with 2X ¼ ð∂ϕÞ2. This coupling
is motivated by D-brane inflationary models, where the
D-brane features a vector on its world volume, and couples
derivatively to the brane’s position (or a Wilson line), the
inflaton. Moreover, such couplings parametrize generic
inflaton-matter couplings, which may be relevant in studies
of the inflationary universe as a cosmological collider [15].
On the other hand, they also appear in the EFT of
anisotropic inflation [16,17].
We started by presenting a general setup, which allows

for the study of a wide range of models. We studied first an
immediate generalization of the power-law anisotropic
model studied in [22], where the gauge kinetic function
is a monomial in X, (18), while exponential in the inflaton.
We found that there are no stable inflationary solutions for a
purely shift symmetric coupling (that is fϕ ¼ 0). However,
stable derivative anisotropic solutions arise for a large range
of parameters. Interestingly, compared to the nonderivative
case, the derivative anisotropic solutions have a lower level
of anisotropy. We presented two illustrative examples. In
the most relevant from the observational point of view, the
anisotropy goes down by 3 orders of magnitude with
respect to the nonderivative case, Σ=H ¼ 4 × 10−6 →
1 × 10−9. We also found that the value of the anisotropy
depends mildly on the power n in (18), which needs to be
negative. We also found that the DBI generalization of the
power-law solutions in [22] can also be extended to the
derivative case. That is, derivative anisotropic DBI sol-
utions exist, where the gauge kinetic function is a mono-
mial in X [see (18)]. This example could correspond to a
DBI inflationary model where the inflaton and the vector
field live in different D-branes. On the other hand, in the
case where the inflaton and vector live on the same brane,
the gauge kinetic function is dictated by the model and
given by (61). In this case, however, the requirements of
inflation, small anisotropy, and a positive vector energy
density (w > 0) are not compatible, and thus there are no
solutions.
As we discussed in Sec. III, it is easy to understand the

decrease in the anisotropy by looking at the final value of
the anisotropy, which is given by the ratio of energy density
of the vector field to that of the scalar field and given by
(42), thus decreasing the level of anisotropy. A clear
follow-up is to look at how the derivative coupling affects
a potential anisotropy in the power spectra. We leave this
for a future publication.
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APPENDIX: STABILITY OF THE ANISOTROPIC
DBI SOLUTIONS WITH DERIVATIVE

COUPLINGS

In this appendix we look at the stability of the anisotropic
DBI solution discussed in the main text. We define

dimensionless variables analogous to the canonically nor-
malized case:

W ¼ _σ

_α
; Y ¼ γ0

MPl

ϕ̇

_α
; Z ¼ fðϕ;XÞe−αþ2σ

MPl

_v
_α
: ðA1Þ

The Hamiltonian constraint (13) for this system becomes

−
V

M2
Pl _α

2
¼ 3ðW2 − 1Þ þ Y2

1þ γ0
þ Z2

2
ð1 − 4nÞ; ðA2Þ

and the slow-roll parameter

ϵ ¼ 3W2 þ Y2

2γ0
þ Z2

3
ð1 − 3nÞ: ðA3Þ

The equations of motion in terms of (A1) become

dW
dα

¼ 1

3
Z2ðW þ 1 − 3nWÞ þW

�
3ðW2 − 1Þ þ Y2

2γ0

�
; ðA4Þ

dY
dα

¼ FðY; ZÞYf3γ0Y4 þ 4γ0nZ2½−3Wð3Wð4n − 1Þ þ 4Þ þ Z2ðnð12n − 7Þ þ 1Þ − 3� þ 2Y2½Z2ðγ20 − 3nðγ20 þ 4n − 1ÞÞ
þ 9γ20W

2 − 9� þ 3λYð−4nZ2 þ 6W2 þ Z2 − 6Þ þ 6ρYZ2ð1 − 4nÞ þ 3γ0λY3g; ðA5Þ

dZ
dα

¼ FðY; ZÞZf48γ0n3Z4 þ 2n½2Z2γ0ð−6 − 6W þ 9W2 þ Z2Þ þ 3Y2ð−6þ Z2 − γ20Z
2Þ

þ 3λYð−6þ 6W2 þ Z2Þ þ 3λγ0Y3� − 4n2Z2½γ0ð−18þ 36W2 þ 7Z2Þ þ 6YðY þ λÞ�
þ γ0Y2½2γ0ð−6 − 6W þ 9W2 þ Z2Þ þ 3YðY − 2ρÞ�g; ðA6Þ

where

FðY; ZÞ ¼ 1

6γ0ð2nZ2ð1 − 4nÞ þ γ0Y2Þ : ðA7Þ

This system reduces to the canonically normalized case
(47)–(49) when γ0 → 1. This system permits stable, aniso-
tropic solutions. As an example, a stable solution can be
found by taking λ ¼ 0.01; ρ ¼ 300; n ¼ −2; γ0 ¼ 1.5.
With these parameters, we find a fixed point at ðW; Y; ZÞ ¼
ð1.32254 × 10−10; −9.99917 × 10−3;�3.45004 × 10−5Þ.
Linearization of Eqs. (A4)–(A6) around this fixed point
yields

dδW
dα

¼ −2.99997δW − 8.81622 × 10−13δY

� 2.30003 × 10−5δZ; ðA8Þ

dδY
dα

¼ −1.2701 × 10−6δW − 1.33371δY

� 6.44229 × 10−2δZ; ðA9Þ

dδZ
dα

¼ ∓6.90183 × 10−5δW ∓ 2.53082 × 10−2δY

þ 8.89147 × 10−4δZ: ðA10Þ

This fixed point has eigenvalues ð−2.99997;−1.33249;
−3.33631 × 10−4Þ and is therefore stable. It has anisotropy
Σ=H ¼ 1.32254 × 10−10 and slow-roll parameter ϵ ¼
3.33306 × 10−5, making it compatible with data.
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