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Structured Abstract 

 

Purpose－The paper aims to propose a simple but robust 3-node triangular membrane element with 

rational drilling DOFs for efficiently analyzing plane problems.  

Design/methodology/approach－This new element is developed within the general framework of 

unsymmetric FEM. The element test functions are determined by using a conforming displacement 

field which is slightly different with the classical Allman’s interpolations, while a self-equilibrated 

stress field formulated based on the analytical Airy stress solutions is adopted as the trial functions. 

To ensure the correctness between the drilling DOFs and the true rotations in elasticity, reasonable 

constraints are introduced through the penalty function method. Moreover, the special quadrature 

strategy is employed for operating related integrations for future enrichment of element behavior. 

Findings－Numerical benchmark tests reveal that this new triangular membrane element has 

exceptional prediction capabilities. In particular, this element can correctly reproduce a rigid-body 

rotation motion and correctly undertake the external in-plane twisting moments, thus is a reasonable 

choice for being used to formulate flat shell elements or to be connected with other kind of elements 

with physical rotational DOFs.  

Originality/value－This work provides a new approach for developing high-performance lower-

order elements with simple formulations and good numerical accuracies.  

Keywords unsymmetric FEM; membrane element; drilling DOF; physical rotation; in-plane 

twisting moment  

Paper type Research paper 

 

 

 

 

 



 

 

 

 

 

 

 

1. Introduction 

The finite element method (FEM) is a very powerful numerical tool for engineering and scientific 

simulations. In many practical applications, lower-order 3-node triangular element and 4-node 

quadrilateral element are often preferred due to their computation efficiencies. Moreover, triangular 

elements have more flexibilities than quadrilateral ones in discretization of complex geometries in 

an automatic manner. However, it is commonly known that lower-order elements are easy to exhibit 

poor performances because of some inherent deficiencies, such as the sensitivity to mesh distortion 

and the overestimation of stiffness. Over the past decades, great efforts have been made on 

overcoming these problems and developing high-performance lower-order elements, namely the 

element models which have concise formulations and can provide good numerical accuracies with 

coarse meshes. Nowadays, various new methodologies are still being proposed, such as the hybrid 

stress-function (HSF) element method (Cen et al., 2011a; Cen et al., 2011b), the smoothed FEM 

(Liu et al., 2007; Leonetti et al., 2017), the hybrid-EAS method (Vu-Quoc and Tan, 2013), the 

overlapping element method (Bathe and Zhang, 2017), the elements using the concept of the space 

fiber rotations (Zouari et al., 2016), the new quasi-conforming elements (Wang et al., 2016; Wang 

et al., 2017) and so on.  

The unsymmetric FEM, which belongs to the Petrov-Galerkin variation method, seems as a 

promising approach to develop high-performance element models. The first unsymmetric element 

was an 8-node quadrilateral membrane element named as US-QUAD8 proposed by Rajendran and 

Liew (2003), which was characterized of employing two different displacement interpolations, i.e., 

the isoparametric set and metric set, respectively to be the test functions and trial functions. It was 

reported that this element can maintain good accuracies even in badly distorted mesh, but also found 

to suffer from some defects, such as the interpolation failure under certain conditions (Prathap et al., 



2007). Afterwards, Cen et al. (2012) successfully proposed a new methodology by incorporating 

the novel ideas of the analytical trial function method (Fu et al., 2010) into the original unsymmetric 

FEM, and subsequently constructed several excellent element models for solving linear and 

geometric nonlinear problems, including the 8-node and 4-node quadrilateral membrane elements 

(Cen et al., 2012; Cen et al., 2015; Li et al., 2018) and 8-node hexahedral solid element (Zhou et 

al., 2017). Their main characteristics were that the elements’ trial functions were formulated based 

on the analytical displacement solutions expressed in Cartesian coordinates or quadrilateral 

area/hexahedral volume coordinates, which can a priori satisfy related governing equations. 

Recently, Shang and Ouyang (2017) proposed a modified version of Cen’s work by directly 

adopting a stress field, instead of the displacement one, to be the element’s trial functions. This 

stress field was firstly formulated based on the Airy stress solutions and finally determined by using 

the quasi-conforming theory (Tang et al., 1980). Through this way, they successfully introduced the 

drilling DOFs into the unsymmetric FEM and developed a 4-node 12-DOF quadrilateral membrane 

element exhibiting exceptional performance in rigorous tests. 

The idea of employing the rotation or drilling DOFs to effectively improve the performances of 

lower-order membrane elements can be traced back to 1960s. The first remarkable work was devised 

by Allman (1984), in which the element side displacement was interpolated as a quadratic function 

by using the vertex rotations. Since then, a great number of papers on this topic have appeared and 

various elements with Allman-type drilling DOFs were proposed. Some recent attempts include but 

are not limited to (Bucher, 2018; Leonetti et al., 2017; Boutagouga, 2017; Boutagouga and Djeghaba, 

2016; Shin and Lee, 2014; Wisniewski and Turska, 2012). However, it should be noted that, the 

Allman-type drilling degree is not the Cauchy continuum rotation and has no definite physical 

interpretations. Therefore, when membrane element with Allman-type drilling DOFs is used to 

formulate flat shell elements or connected with other kind of elements with physical rotational DOFs, 

such as beam elements, it may fail in correctly undertaking and carrying over the in-plane twisting 

moment, leading to unexpected wrong simulation responses. Huang et al. (2010) has developed a 

triangular element model in which special measures are taken to effectively ensure these correctness. 

However, their element’s performance is not very satisfactory. 

The purpose of this article is to propose a simple but robust 3-node triangular element with 

rational drilling DOFs for analysis of plane problems. This new element, denoted as US-T3, is 



constructed within the modified framework of unsymmetric FEM proposed by Shang and Ouyang 

(2017). Firstly, an elegant displacement field, which is slightly different with the classical Allman’s 

interpolation, is employed to be the element’s test function. Secondly, a self-equilibrated stress field 

expressed in Cartesian coordinates, which is also well designed based on the Airy stress solutions 

and the quasi-conforming theory (Tang et al., 1980), is directly adopted to be the trial function. 

Finally, by the use of the penalty function, reasonable constraints suggested by Huang et al. (2010) 

are introduced for establishing the relationships between the drilling DOFs and the true rotations in 

elasticity. Besides, for further enrichment of the element behavior, the special quadrature strategy is 

employed for operating related integrations. Several well-established validation benchmarks are 

tested and the numerical results verify that this newly formulated element has quite satisfactory 

prediction capabilities, in many cases, superior to other triangular elements found in the literatures. 

In particular, it can correctly reproduce a rigid body rotation motion and correctly undertake the 

external in-plane twisting moments. 

   

2. Finite element formulations 

For the new 3-node triangular membrane element, as shown in Figure 1, the element nodal DOF 

vector is 

  
T

1 1 1 2 2 2 3 3 3

e u v u v u v  =q . (1) 

 

2.1 Variation principle and basic element formulations 

This new unsymmetric triangular element is developed by following the general procedure 

proposed by Shang and Ouyang (2017), in which the derivations begin with the principle of virtual 

work: 

 
T T Tˆ d d d 0t t t  

  
 −  −  =  ε σ u f u R , (2) 

where   is the elastic body with thickness t bounded by  ; u  is a conforming displacement 

field, which acts as the test function, and can be interpolated by nodal DOFs: 
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x

e

y

xy







 
 

= = 
 
 

ε Bq ; (4) 

σ̂  is the independently assumed stress trial field and can be written as: 

 ˆˆ e=σ Sq ; (5) 

R and f respectively are the prescribed surface traction and body load. Then, substitutions of 

Equations (3) to (5) into Equation (2) yield the element stiffness matrix 

 
T ˆ de t


= K B S , (6) 

and the equivalent nodal load vector  

 
T Td de t t

 
=  +  P N f N R . (7) 

 

2.2 The element’s test function 

In this work, the displacement u  in Equation (3), which should meet the requirements of inter-

element compatibilities, will be determined by using the following shape functions: 

 1 2 3
 =  N N N N , (8) 

with 
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in which ( ),x y  are the Cartesian coordinates of an point and ( )1 2 3, ,L L L  are the corresponding 

triangle area coordinates; ( ),i ix y   are the Cartesian coordinates of the node i. Accordingly, the 

matrix B  in Equation (4) is  

 1 2 3
 =  B B B B , (10) 

with 
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It should be pointed out that, if the coefficient 2/3 in Equation (9) is replaced by 1/2, this 

displacement will coincide with the classical Allman’s interpolation along the element boundary. 

Here, the usage of 2/3 instead of 1/2, as suggested by Huang et al. (2010), is to make it possible for 

the element’s drilling DOFs to correctly present the true rotations in elasticity.  

 

2.3 The element’s trial function 

As discussed above, in the approach proposed by Shang and Ouyang (2017), the element’s trial 

functions are formulated based on the analytical Airy stress solutions. In this work, the stress trial 

field of this new nsymmetric triangular element will be obtained in the same manner. 

Firstly, the stress field σ̂  in Equation (5) is assumed as 

 ˆ =σ Hα , (12) 

with 
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  
T

1 2 7  =α . (14) 

Note that each column of above matrix H is one set of analytical stress solutions of the plane 

problem which are derived by using the concept of Airy stress function. Therefore, the stress field 

in Equation (12) can a prior satisfy related governing equations. 

  Next, to get the relationship between the unknown coefficients α  and the element nodal DOFs 

e
q  , the quasi-conforming technique will be applied to this stress field σ̂   and the strain ε  

obtained in Section 2.2:  

 ( )T 1 ˆ dt−


−  = H ε D σ 0 , (15) 

with 
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where ,E E   = =   for the plane stress problem and ( ) ( )21 , 1E E     = − = −   for the 

plane strain problem, in which E and  respectively are Young’s modulus and Poisson’s ratio. Then, 



by substituting Equation (4) and Equation (12) into Equation (15), we obtain 

 1 e−=α M Vq , (17) 

in which 

 
T 1 dt−


= M H D H , (18) 

 
T dt


= V H B . (19) 

Finally, the matrix Ŝ  in Equation (5) can be derived by substituting Equation (17) back into 

Equation (12):  

 1ˆ −=S HM V . (20) 

  

2.4 One-point quadrature for stiffness matrix 

Since the element’s test function and trial function have already been determined in previous 

sections, the element stiffness matrix and the equivalent nodal load vector can be easily calculated 

by substituting related equations into Equation (6) and Equation (7). Note that, in order to further 

improve element’s behavior, the one-point quadrature strategy is employed for calculating Equation 

(6), while other integrations are still operated by using the full quadrature scheme. 

 

2.5 The constraints between drilling DOFs and true rotations 

As discussed in Section 2.2, to make the new triangular element able to reproduce a rigid rotation 

motion and correctly undertake the external in-plane twisting moments, the coefficient 2/3 has been 

used instead of 1/2 in Equation (9). In addition, as suggested by Huang et al. (2010), the following 

constraints should also be applied to the element: 

 ( ) 0 0

1 2 3

1 1
0

3 2

ev u

x y
  

   
+ + − − = = 

  
Aq , (21) 

with 

 
0 1 1 2 2 3 3 0 1 1 2 2 3 3,u L u L u L u v L v L v L v= + + = + + . (22) 

From above two equations, the detailed expression of the matrix A can be obtained: 

 
3 31 1 2 21 1 1

4 4 3 4 4 3 4 4 3

c bc b c b −− − 
=        

A . (23) 

in which   is the area of the triangular element, and  



 
1 2 3 2 3 1 3 1 2, ,b y y b y y b y y= − = − = − , (24) 

 
1 3 2 2 1 3 3 2 1, ,c x x c x x c x x= − = − = − . (25) 

  In this work, the influences of constraints in Equation (21) are considered by using the penalty 

function method. As a consequence, a penalty stiffness matrix 
C

e
K  is deduced, which will be added 

to the stiffness matrix e
K  obtained by Equation (6) to get the final element stiffness matrix 

final

e
K : 

 
final C

e e e= +K K K , (26) 

with  

 
T

C de G t


= K A A , (27) 

G is the shear elastic modulus. 

 

3. Numerical validations 

Six benchmark examples have been carefully chosen to assess this new unsymmetric triangular 

element’s performance. The obtained responses will be compared with several well-known 3-node 

9-DOF elements and 6-node 12-DOF element listed in Table 1. 

 

3.1 The patch test 

As shown in Figure 2, the small patch is modeled by four elements. The displacements at the 

boundary nodes 1~4, which are calculated by using the following equations, are imposed to this 

patch as the boundary conditions: 

 ( ) ( )3 310 2 , 10 2u x y v y x− −= + = + . (28) 

Correspondingly, the constant stress states are 

 1333.3333, 400.0x y xy  = = = . (29) 

In Table 2, the numerical results obtained by using the mesh shown in Figure 2 are listed. Moreover, 

some meshes which contain severely distorted elements are also tested and the contour plots of 

displacement u are presented in Figure 3. It is obvious that this new element can always exactly pass 

this constant stress patch test. Thus the computation convergence can be guaranteed. 

 

3.2 The rigid body rotation test  



This test was proposed by Huang et al. (2010) to verify whether a membrane element with drilling 

DOFs can correctly reproduce a rigid rotation motion and present the true rotations in elasticity. As 

shown in Figure 4, a square plate is divided into four elements. Two cases with different boundary 

conditions are considered: (A) make u1=v1=0 and 1=0.1 at node 1; (B) make u1=v1=0 at node 1 and 

v2=0.1 at node 2. Within the scope of small deformation problems, both two cases will produce a 

rigid body rotation with constant rotational angle 0.1. As indicated in (Huang et al., 2010), the 

original Allman’s triangular element or other models in the same category cannot pass this test. It 

can be observed in Table 3 that the exact solutions can be obtained at all nodes by using this new 

element US-T3. 

 

3.3 The torque test 

In this test, the square plate shown in previous one is analyzed once again. As illustrated in Figure 

5, two different cases are considered. In the first one, the center of this plate is completely fixed 

with u1=v1=1=0, and a pair of opposite forces are respectively imposed at the left and right vertexes. 

Then, the reaction moment acting on the DOF 1 is measured. In the second case, the plate is 

supported with u1=v1=v4=0 and a twisting moment is imposed at the central node 1. Then the 

reaction force acting on the DOF v4 is monitored. The numerical results listed in Table 4 verify that 

this new element can deliver exact solutions, proving its abilities for correctly undertaking the 

external in-plane twisting moments. 

  

3.4 The short cantilever beam 

Figure 6 depicts a short cantilever beam subjected to a parabolic shear force at the free end, with 

modulus E=30000, Poisson’s ratio =0.25 and thickness t=1. This beam will be firstly divided into 

N2 rectangles and each rectangle will be further modeled by two triangular elements, in which N 

indicates the subdivision number along the x-direction. In Figure 7, the convergence plots of the tip 

vertical deflections, which have been normalized by the reference solution 0.35601 (Felippa, 2003), 

are presented. It can be seen that the new element US-T3 performs comparably well in this test. 

 

3.5 The Cook’s skew panel 

In this test, the new triangular element is applied to the classical benchmark of Cook’s skew panel 



(Cook et al., 1974), in that the structure behavior is dominated by shear deformation. This panel 

will also be modeled by NN rectangles in which each rectangle is divided into two triangular 

elements. To study the element’s sensitivities to mesh distortions, two different meshes will be 

considered here, i.e., the regular mesh and the irregular mesh, respectively as shown in Figure 8 (a) 

and (b). In Figure 9, the convergence curves of the tip vertical direction at point C, whose reference 

value is set as 23.965 (Cen et al., 2015), are plotted. One can see that the results of the new element 

converge very rapidly. 

 

3.6 The thin curved beam 

As shown in Figure 10, the thin curved cantilever beam is subjected to a transverse shear force at 

its free tip. This beam will be successively modeled by using 61, 122 and 244 rectangle units, 

in which each rectangle contains two triangular elements. The convergence plots of the normalized 

tip vertical directions are given in Figure 11, in which the reference value is 0.08734 (Choo et al., 

2006). It is obvious that this new element exhibits much better performances than other triangular 

models in this test. 

 

4. Conclusions 

In this paper, a new simple but robust 3-node triangular membrane element with rational drilling 

DOFs is developed by the use of unsymmetric FEM. This unsymmetric element respectively adopts 

a conforming displacement field expressed in an elegant form to be the test functions, and a self-

equilibrated stress field formulated based on the Airy stress solutions to be the trial functions. 

Besides, to make the element’s drilling DOFs able to correctly present the true rotation in elasticity, 

certain constraint relations between theses drilling DOFs and the true rotations are introduced, 

generating a penalty stiffness which should be added to the normal stiffness. Moreover, special 

quadrature strategy is employed for future improvement of element performance. Numerical 

benchmarks reveal that this new element US-T3 exhibits better capacities comparing with other 

triangular models. In particular, this element can correctly undertake the external in-plane twisting 

moments, thus is reasonable for formulating flat shell elements or being connected with other kind 

of elements with physical rotational DOFs. 
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Table 1. Some 3-node and 6-node triangular element models for comparison 

Symbol Description Reference 

GT9 the generalized conforming element (Long and Xu, 1994) 

Allman the classical Allman’s triangular element (Allman, 1984) 

OPT 
optimally fabricated assumed natural 

strain element 
(Felippa, 2003) 

SST 
element based on strain states 

formulation 
(Rezaiee-Pajand and Yaghoobi, 2014) 

SM3 
element with tuned higher-order 

stiffness parameter 
(Eom et al., 2009) 

LST-Ret retrofitted LST (Felippa, 2003) 

Huang 
triangular element with reasonable 

drilling DOFs 
(Huang et al., 2010) 

MNS-FEM mixed node‑based smoothed element (Leonetti et al., 2017) 

HTD hybrid Trefftz plane elements (Choo et al., 2006) 

T6 the standard 6-node triangular isoparametric element 

 

  



 

Table 2. Results of the patch test  

Node x y  u (10-4) v (10-4)   x y xy 

1 0.00 0.00  0.00 0.00 0.00  1333.333 1333.333 400.0 

2 0.24 0.00  2.40 1.20 0.00  1333.333 1333.333 400.0 

3 0.24 0.12  3.00 2.40 0.00  1333.333 1333.333 400.0 

4 0.00 0.12  0.60 1.20 0.00  1333.333 1333.333 400.0 

5 0.16 0.08  2.00 1.60 0.00  1333.333 1333.333 400.0 

 

 

  



 

 

Table 3. Results of the test for rigid body rotation  

Node 1 2    

Case A      

u 0.0 0.0 -0.1 0.0 0.1 

v 0.0 0.1 0.0 -0.1 0.0 

 0.1 0.1 0.1 0.1 0.1 

Case B      

u 0.0 0.0 -0.1 0.0 0.1 

v 0.0 0.1 0.0 -0.1 0.0 

 0.1 0.1 0.1 0.1 0.1 

 

 

  



 

Table 4. Results of the torque test  

Case A Numerical result Reference solution 

the reaction moment acting on the DOF 1 10.00 10.0 

Case B   

the reaction force acting on the DOF v4 5.00 5.0 

 

 

 

 

 

  



 

 

 

 

 

 

  

Figure 1. Unsymmetric 3-node 9-DOF triangular membrane element 
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Figure 2. The patch test  
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Figure 3. The contour plots of displacement u for the patch test  



 

 

 

 

 

 

 

 

 

 

 

  

Figure 4. The test for rigid body rotation  
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Figure 5. The torque test 
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Figure 6. The short cantilever beam and the typical mesh 22 



 

 

 

 

 

 

 

 

 

 

 

  

Figure 7. The tip deflection of the short beam 



 

 

 

 

 

 

 

 

 

  

Figure 8. Cook’s skew panel 
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Figure 9. The tip deflection vc of Cook’s skew panel 
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Figure 10. The thin curved beam and the typical mesh 61  
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Figure 11. The tip deflection of thin curved beam 


