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matter using techniques borrowed from high-energy physics. A
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broken phases separated by critical lines that meet at a tri-critical
point. We benchmark these predictions using tools from con-
densedmatter and quantum information science, which show that
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1. Introduction

The understanding and classification of all possible phases of matter is one of the most important
challenges of contemporary condensed-matter physics [1], and high-energy physics [2], finding also
important implications in quantum information science [3]. Such a complex quest can benefit enor-
mously from the complementary perspectives and tools developed by these different communities,
calling for a cross-disciplinary dialogue that can lead to a very interesting collaborative approach.
The theory of spontaneous symmetry breaking [4] and critical phenomena [5] are representative
examples, where such an open dialogue has provided fundamental insight to unveil generic and
universal properties in the classification of various phases of matter, and the transitions between
them. However, these examples do not exhaust all possible phenomena [6], encouraging further
efforts to provide a general classification encompassing other exotic orders.

Some of these studies were initially stimulated by the community working on quantum chaos [7],
which looked for a complete classification of various random matrix ensembles depending on the
symmetries, leading to the so-called ten-foldway [8]. The ten-foldway turned out to be a fundamental
tool for the classification of non-interacting phases of matter [9] which, in contrast to symmetry-
broken phases, can exist within the same symmetry class [10–12]. In this case, transitions between
different phases of matter can only occur via gap-closing continuous phase transitions, but there is
neither symmetry-breaking, nor any underlying local order parameter. In contrast, these new phases
are characterized by a topological invariant, the value ofwhich changes abruptly across the symmetry-
preserving critical point. This leads to the notion of symmetry-protected topological (SPT) phases [13],
which includes the fermionic topological insulators and superconductors, but also other SPT phases
of bosons and spins.

Fromaquantum-informationperspective, the recent progress in the so-called tensor networks [14]
has triggered the interest within this community in the general question of classifying topological
phases of matter for generic interacting systems [15], including static and dynamical situations [16].
Note that, despite the considerable progress, a complete classification has so far been accomplished
only for (1+1)-dimensional systems [17]. At such reduced dimensionalities, there is essentially a
single gapped phase, which is trivial (i.e. it can be transformed into an uncorrelated product state
by local unitaries) unless additional discrete symmetries are taken into account. Such symmetries
may protect the phases, such that the states belonging to different symmetry sectors cannot be
transformed into one another using local symmetry-preserving operations. A detailed understanding
and characterization of the properties of these SPT phases, in the presence of interactions and strong
correlations, is an open question of current interest. As argued in this work, these phases are not only
relevant in condensed-matter systems, but also arise in the context of high-energy physics for certain
lattice formulations of quantum field theories (QFTs).

In this paper, we focus on strongly-correlated SPT phases of a paradigmatic model of high energy
physics: the Gross–Neveumodel [18]. This QFT describes Dirac fermionswithN flavors interacting via
quartic interactions in 1 spatial and 1 time dimension, and was originally introduced as a toy model
that shares several fundamental featureswith quantum chromodynamics.We consider aWilson-type
discretization of the QFT [19], and term the lattice version as the Gross–Neveu–Wilsonmodel. Despite
extensive studies of the GN model, a detailed characterization of strongly-correlated SPT phases has
not been discussed in detail, to the best of our knowledge, neither in the large, nor in the finite N
limit. The presentwork has the ambition of filling this gap usingmethods of contemporary theoretical
physics andnumerical simulations.Moreover,we present a scheme for the experimental realization of
this discretized QFT using cold-atom quantum simulators. In this way, we hope that the Gross–Neveu
modelwill get upgraded froma toymodel used to understand some essential features ofmore realistic
high-energy QFTs, into a cornerstone in the classification of correlated topological phases of interest
in condensed matter and quantum information, which can also be explored in a realistic experiment
of atomic, molecular and optical physics.

We now summarize our main results, and how they are organized in this paper: In Section 2,
we discuss generalities of the Gross–Neveu–Wilsonmodel viewed from the complementary perspec-
tives of high-energy, condensed-matter, and cold-atom physics. This section is intended to bridge
the specific knowledge gaps between these different communities, in our effort to provide a self-
contained cross-disciplinary study. In Section 3, we study the occurrence of correlated SPT phases
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in the model using tools common to high-energy physics. We discuss the phase diagram from the
large-N expansion, including both a continuous time approach (i.e. Hamiltonian field theory on the
lattice), and a discretized time approach (leading to Euclidean field theory on the lattice). This detailed
study has allowed us to identify important details of the Euclidean approach, which must be carefully
considered in order to understand the phase diagram of the model. In particular, we provide a neat
picture where trivial gapped phases and correlated SPT phases, well-known in the condensed-matter
and quantum information communities, and parity-breaking Aoki phases, well-known to the lattice
field theory community, coexist in a rich phase diagram. Moreover, the large-N approach is exploited
to indicate the existence of tri-critical points where these three different phases are joined. We
benchmark the large-N predictions using tools common to the condensed-matter and quantum-
information communities, i.e. tensor-network techniques based on matrix-product-state variational
ansatzs. As discussed in the text, these quasi-exact numerics for a N = 1 realization of the Gross–
Neveu–Wilson model confirm the large-N prediction of the phase diagram, and provide additional
information that complements the large-N high-energy-inspired understanding of themodel. Finally,
we present a proposal for a potential experimental realization of the Gross–Neveu–Wilson model
with ultra-cold atoms. In this way, relativistic models of high-energy physics could be explored with
table-top non-relativistic experiments at ultra-low temperatures by focusing on low-energies and
long wavelengths.

2. The Gross–Neveu model: high-energy physics, condensed matter, and cold atoms

2.1. The Gross–Neveu quantum field theory: continuum version and Wilson lattice approach

The Gross–Neveumodel is a relativistic QFT describingN species (flavors) of a massless Dirac field,
which live in a (1+1)-dimensional spacetime and interact via four-fermion terms [18]. This model
originates from its higher-dimensional counterparts, the so-called Nambu–Jona-Lasinio models
[20,21], which were introduced as alternatives to non-Abelian gauge theories [22]. Pre-dating
quantum chromodynamics (QCD) [23], these models offer a simplified framework to study essential
features of the strong interaction, such as dynamical mass generation by chiral symmetry breaking.
In addition to these features, the lower-dimensional Gross–Neveu model was introduced post-QCD
as a tractable QFT displaying asymptotic freedom in a renormalizable framework. In contrast to
some of its higher-dimensional cousins, this feature permits to derive rigorous results concerning
the renormalization group and the convergence of perturbation theory [24].

In the continuum, thismodel is described by the followingnormal-orderedHamiltonianH =
∫
dx :

H : with

H = −

N∑
n=1

ψn(x)iγ
1∂xψn(x) −

g2

2N

(
N∑

n=1

ψn(x)ψn(x)

)2

. (1)

Here,ψn(x), ψn(x) = ψ
†
n (x)γ 0 are two-component spinor field operators for the nth fermionic species,

and γ 0
= σ z , γ 1

= iσ y are the gamma matrices, which can be expressed in terms of Pauli matrices
for a (1+1)-dimensional Minkowski spacetime, leading to the chiral matrix γ 5

= γ 0γ 1
= σ x [25].

Therefore, the Gross–Neveu model describes a collection of N copies of massless Dirac fields coupled
via the quartic interactions.

The first term in Eq. (1) corresponds to the kinetic energy of the massless Dirac fermions, where
we use natural units h̄ = c = 1, whereas the second term describes two-body interactions between
pairs of fermions that scatter off each other with a strength g2/N . This model has a global, discrete
chiral symmetry ψn(x) → γ 5ψn(x), ∀x, as follows directly from the anti-commutation relations of
the Dirac matrices. Additionally, a global U(N) internal symmetry becomes apparent by introducing
Ψ (x) = (ψ1(x), . . . , ψN (x))t, after rewriting the Gross–Neveu Hamiltonian density as

H = −Ψ (x)iγ 1∂xΨ (x) −
g2

2N

(
Ψ (x)Ψ (x)

)2
, (2)
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which is invariant under the transformationΨ (x) → u⊗I2Ψ (x), ∀x, with the unitarymatrix u ∈ U(N).
We note that the fields have classical mass dimension dψ = 1/2, while the interaction couplings are
dimensionless dg = 0.

In the limit where the number of flavors N is very large, D. J. Gross and A. Neveu showed that
this model yields a renormalizable QFT displaying asymptotic freedom, i.e. the interaction strength
g2 is a relevant perturbation in the infra-red (IR), but becomes weaker at high energies in the ultra-
violet (UV) limit [18]. Moreover, even if the discrete chiral symmetry prevents the fermions from
acquiring a mass to all orders in perturbation theory, they showed that a mass can be dynamically
generated through the spontaneous breaking of this chiral symmetry, which can be captured by large-
N methods. In contrast to the Higgs mechanism, where masses can be generated by introducing
additional scalar fields that undergo spontaneous symmetry breaking themselves, here a physical
mass (i.e. gap) is generated dynamically as a non-perturbative consequence of the four-fermion
interactions. These results are exact in the N → ∞ limit, and it is possible to calculate the leading
corrections for a finite, but still large, N .

A different strategy to explore such non-perturbative effects is the so-called lattice field theory
(LFT), which discretizes the fermion fields on a uniform lattice Λs = aZNs = {x : x/a = n ∈ ZNs},
where Ns is the number of lattice sites, and a is the lattice spacing [26]. A naive discretization of the
derivative of theDirac operator yields theHamiltonianHN = a

∑
x∈Λs

: HN:, which describes a system
of interacting fermions hopping between neighboring sites of a one-dimensional lattice

HN =

(
Ψ (x)

−iγ 1

2a
Ψ (x + a)+ H.c.

)
−

g2

2N

(
Ψ (x)Ψ (x)

)2
. (3)

Here, the lattice fields fulfill the desired anti-commutation algebra in the continuum limit
{Ψµ(x),Ψ

†
ν (x

′)} =
1
a δµ,νδx,x′ → δµ,νδ(x − x′) as a → 0, where µ, ν ∈ {1, . . . , 2N}.

Unfortunately, this naive discretization also leads to spurious fermion doublers which, for g2
= 0,

correspond to massless Dirac fields appearing as long-wavelength excitations around the corners of
the Brillouin zone [27]. In the present case, the Brillouin zone is BZs = {k = 2πn/Ns} = (−π/a, π/a]
such that, in addition to the target massless Dirac field around k = 0, a single doubler arises around
the corner k = π/a [28]. Note that, as soon as the interactions are switched on g2 > 0, there will
be scattering processes where the doubler affects the properties of the massless Dirac field, such that
the continuum limit may differ from the desired QFT (1). Among several possible strategies to cope
with the presence of such fermion doublers [26], K. Wilson considered introducing a momentum-
dependentmass term, the so-calledWilsonmass, that sends all the doublers to the cutoff of the lattice
field theory [19]. In this way, one expects that these heavy fermions will not influence the universal
long-wavelength properties of the continuum limit.

For the Hamiltonian QFT of interest (1), this can be accomplished by introducing an additional
Wilson term in the naive discretization (3) leading to HW = a

∑
x∈Λs

: HW:, where

HW = HN +

(
Ψ (x)

r
2a

(
Ψ (x) − Ψ (x + a)

)
+ H.c.

)
, (4)

whichwill be referred to as the Gross–Neveu–Wilson (GNW)model in thiswork. Here, r ∈ [0, 1] is the
so-called Wilson parameter. In the continuum limit, and for g2

= 0, the mass of the doubler around
k = π/a becomes mπ = 2r/a, while the Dirac fermion around k = 0 remains massless m0 = 0. We
will set r = 1 henceforth, such that the doubler mass coincides with the UV energy cutoff of the QFT.
On the other hand, the Dirac field around k = 0 remains massless, and one expects that the IR limit
will be governed by the desired chiral-invariant QFT.

This situation gets more involved when the interactions are switched on g2 > 0, as the additional
Wilson terms (4) break explicitly the discrete chiral symmetry (i.e. rΨ (x)Ψ (x) → −rΨ (x)Ψ (x) under
the discrete chiral transformation since γ 5γ 0γ 5

= −γ 0). Accordingly, the vanishing mass m0 = 0
of the Dirac fermion around k = 0 is no longer protected by the discrete chiral symmetry, and it
can become finite even for perturbative interactions in contrast to the continuum model. Since one
is interested in recovering the QFT (1) for massless Dirac fermions, it is thus necessary to approach
the continuum limit using a different strategy. The idea is to introduce an additional mass term in the
lattice Hamiltonian (4) leading to H̃W = a

∑
x∈Λs

: H̃W:, where we have introduced

H̃W = HW + mΨ (x)Ψ (x), (5)
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and m is a bare mass parameter. By tuning this mass as a function of the interaction strength m(g2),
one must search for a critical line m = mc(g2) where the renormalized mass of the Dirac fermion
around k = 0 vanishes m̃0 = 0, such that the correlation length fulfills ξ ≫ a (i.e. a second-order
quantum phase transition). In this case, the physical quantities of interest become independent of
the underlying lattice, and one expects to recover the desired continuum QFT. The key question is
to analyze if such continuum scale-invariant limit corresponds to the chiral-invariant Gross–Neveu
model (1), or if a QFT of a different nature emerges in the IR limit. The answer to this question
may depend on the possible phases of the lattice field theory (4) and the different critical lines in
between them. Therefore, addressing this question requires a detailed non-perturbative approach
using for instance large-N methods on the lattice, or Monte-Carlo methods from lattice field theory.
In this work, we will present a detailed large-N analysis of the lattice GNW model, applying it to
the prediction of its phase diagram, and benchmarking it with numerical simulations for the N = 1
single-flavor case.

2.2. Symmetry-protected topological phases for interacting fermions

A wide variety of phases transitions can be understood according to Landau’s theory of sponta-
neous symmetry breaking [4], which exploits the notion of symmetry and local order parameters to
classify various phases of matter. Nowadays, we understand that Landau’s theory does not exhaust all
possibilities, as one can find different phases of matter within the same symmetry class that can only
be connected via phase transitions where the symmetry is not broken. These so-called symmetry-
protected topological (SPT) phases cannot be described by local order parameters, but require instead
the use of certain topological invariants to characterize their groundstate (e.g. topological insulators
and superconductors [29,30]). These topological invariants are in turn related to observables display-
ing quantized values that are robust with respect to perturbations that respect these symmetries
(i.e. the topological numbers can only change via a gap-closing phase transition). Accordingly, these
new phases of matter can be organized within different symmetry classes, as occurs for the fermionic
topological insulators [9,31]. Despite having a gapped bulk, these insulators display a quantized
conductance (e.g. integer quantum Hall effect [32]) related to a topological invariant (e.g. first Chern
number [10]). A bulk-edge correspondence allows to understand this topological robustness by the
appearance of current-carrying edge excitations through a band-inversion process, corresponding
to mid-gap states that are exponentially localized within the boundaries of the material (e.g. one-
dimensional edge modes where fermions cannot back-scatter due to disorder [33]).

The connection between SPT phases and LFTs is very natural for three-dimensional time-reversal-
invariant topological insulators [29]. Here, the band-inversion process yielding the topological phase
leads to an odd number of massless Dirac fermions localized within the boundaries of thematerial. As
emphasized in [34,35], this band inversion can be understood in terms of lower-dimensional versions
of domain-wall fermions [36], whereby an odd number of Wilson doubler masses change their sign,
contributing each with a two-dimensional massless Dirac fermion localized at the boundary. In fact,
we note that the Wilson-like terms in Eq. (4) arise very naturally in the low-energy description of
topological insulating materials in various dimensionalities [30].

Let us now discuss how these topological effects also appear in the non-interacting limits of the
GNW model (3)–(5). Here, the band inversion would occur when tuning the bare mass to lie within
m ∈ (mπ ,m0), where we recall that m0 = 0 and mπ = 2/a correspond to the masses of the Wilson
fermions. To understand the SPT phase in this LFT, we consider periodic boundary conditions, such
that the Hamiltonian in momentum space is H̃W =

∑N
n=1

∑
k∈BZs ψ

†
n (k)hk(m)ψn (k), where we have

introduced the flavor-independent single-particle Hamiltonian

hk(m) =

(
m +

1 − cos ka
a

)
γ 0

−
sin ka

a
γ 5. (6)

By a straightforward diagonalization, one finds

H̃W =

N∑
n=1

∑
k∈BZs

∑
η=±

εη(k)ψ†
n,η(k)ψn,η(k), (7)
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where ψ†
n,η(k), ψn,η(k) are the creation–annihilation operators of a fermionic excitation with flavor n

in the energy band

ε±(k) = ±
1
a

√(
ma + 1 − cos ka

)2
+ sin2 ka. (8)

This band structure has a non-zero gap for m > 0, yielding an insulating phase. In order to
show that this insulator is topological, and an instance of a SPT phase, we note that this band
structure has an associated topological invariant that can be defined through the Berry connection
An(k) = i⟨εn,−(k)|∂k|εn,−(k)⟩, where we have introduced the single-particle negative-energy states
|εn,−(k)⟩ = ψ

†
n,−(k)|0⟩. In our case (6), the Berry connection can be expressed as

An(k) =
1
2

(1 + ma) cos ka − 1
1 + (1 + ma)2 − 2(1 + ma) cos ka

, (9)

which allows to construct a topological invariant, the so-called Zak’s phase [37], as the integral of the
Berry connection over the Brillouin zone. From Eq. (9), the total Zak’s phase ϕZak =

∑
n

∫
BZs

dkAn(k)
can be expressed as

ϕZak = Nπ
(
θ (2 + ma) − θ (ma)

)
, (10)

where θ (x) is Heaviside’s step function. We note that, as occurs with the Chern number and the
transverse conductivity in the quantum Hall effect [10], the topological Zak’s phase can be related
to an observable: the electric polarization [38,39].

Since the groundstate is constructed by filling all negative-energy states |gs⟩ =
∏

k∈ BZs |ε−(k)⟩,
the above integral over the whole Brillouin zone (10) characterizes the topological features of the LFT
groundstate. Accordingly, this LFT hosts a SPT phase in the parameter regimemπ < m < m0 forN odd,
which coincides with the band-inversion regime introduced above. This regime can be interpreted as
the result of amass-inversion process,whereby themass of someof theWilson fermions gets inverted.
This becomes apparent after rewriting the Zak’s phase in terms of the N Wilson masses

m̃0 = m, m̃π = m + 2/a. (11)

Indeed, a non-trivial topological invariant (i.e. ϕZak/2π ̸∈ Z) can only be achieved when an odd
number of fermion doubler pairs display a different mass sign

ϕZak =
1
2Nπ

(
sgn(m̃π ) − sgn(m̃0)

)
. (12)

We note that this SPT phase can be identified with a one-dimensional topological insulator in
the so-called chiral-orthogonal BDI class [9,30,31], which would display zero-energy modes localized
at the edges of the chain for open boundary conditions. Note that this chiral symmetry class is not
related to the standard notion of chirality in QCD, which is indeed broken by the GNWmodel. Instead,
it is related to the ten-fold Cartan’s classification of symmetric spaces, and its connection to single-
particle Hamiltonian via the time-evolution operator [9]. For the non-interacting GNW single-particle
Hamiltonian (6), we find that time-reversal T yields T †h−k(m)∗T = hk(m) where T = −iσ xσ y

= γ 0,
and charge-conjugation C leads to C†h−k(m)∗C = −hk(m) where C = iσ zσ y

= γ 5 [25]. The
combination of these two anti-unitary symmetries is called chiral, or sub-lattice, symmetry S = TC,
and yields S†hk(m)S = −hk(m) with S = γ 0γ 5

= γ 1. To avoid confusion with the chiral symmetry of
high-energy physics, which is a fundamental ingredient in low-energy effective descriptions of QCD,
and pivotal in our previous discussion of the GNW model, we will refer to the S as the sublattice
symmetry. Since T 2

= C2
= S2 = +1, the corresponding GNW topological insulator with an odd

number N of fermion flavors (12) is in the BDI class.
We note that the ten symmetric spaces that classify the topological insulators/superconductors

also correspond to the target spaces of effective non-linear-sigma model describing the long-
wavelength properties of the edge/boundary. When such a non-linear-sigma model includes a
topological term, the edge modes are robust and evade Anderson localization in the presence of
symmetry-preserving disorder [9]. This perspective allows us to understand the difference of N
even/odd in the GNW model. For N even, there can be a symmetry-preserving disorder that couples
the different flavors of the edge states, leading to scattering/localization and destroying the BDI
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topological protection. On the other hand, forN odd, at least one of the edgemodeswill remain robust
against inter-flavor scattering, and thus evade Anderson localization. We note that similar parity
effects can occur also in models with more than one fermion doubler in the regime where an even
number of Wilson masses gets inverted, as occurs for higher-dimensional time-reversal topological
insulators [34].

In contrast to the LFT perspective described in Section 2.1, where one is mainly interested in
searching for the second-order quantum phase transitions to recover a continuum limit described by
the QFT of interest (1); the study of symmetry-protected topological phases focuses on the topological
gapped phases away from criticality. Interestingly, even in the non-interacting regime, the emerging
QFTs governing their response to external fields turns out to be very different from the original
discretized QFT, and can be described in terms of topological quantum field theories (e.g. Chern–
Simons or axion QFTs) [40]. A generic question of current interest in the study of SPT phases is to
explore the interplay of topological features and strong-correlation effects as interactions between
the fermions are switched on [41].

For the GNW lattice model (3)–(5), the interactions do not modify the symmetry class as ΨΨ →

ΨΨ , and Ψ γ 5Ψ → ∓Ψ γ 5Ψ under time-reversal and charge-conjugation transformations, respec-
tively [25]. Accordingly, the quartic terms in Eq. (2), or its chiral extension introduced in Eq. (16) below,
do not modify the aforementioned BDI symmetry class. A question of potential interest for both the
SPT and LFT communities is the precise determination of the critical lines of the lattice modelmc(g2)
for non-perturbative interactions. From this knowledge, the LFT community can explore the nature
of the continuum QFT in the vicinity of the critical line, while the SPT community may study how the
topological phase is modified in presence of interactions. As argued above, a possible tool to study
non-perturbative effects could be large-N methods, or Monte-Carlo methods in Euclidean lattice field
theory.We remark, however, that the standard Euclidean approachwhere time is also discretized [26]
can lead to qualitative differences of the phase diagram in the (m, g2) plane. Discretizing time
introduces additional fermion doublers, whichmay lead to additional critical lines that are not present
in theHamiltonian approach (3)–(5)with continuous time [42]. Although this is not relevantwhenone
is only interested in the nature of the continuum QFT, it will be of relevance for topological insulators
where one is interested in the finite region of phase space with the topological gapped phase. In this
work,wewill show that special care in the Euclidean lattice formulation is required in order to recover
the relevant phase diagram.

For one-dimensional models, the study of lattice field theories in the Hamiltonian approach can be
efficiently accomplished using variational methods based onMatrix Product States (MPS) [43]. In this
work, we shall confront predictions of the large-N approximation with results from MPS numerical
methods for the study of topological insulating phases in the GNWmodel with Wilson fermions.

2.3. Cold-atom quantum simulators of high-energy physics

As an alternative to Monte-Carlo numerical methods in lattice field theory, one may follow R.
P. Feynman’s insight [44], and develop schemes to control a quantum-mechanical device such that
its dynamics reproduces faithfully that of the model of interest (i.e. quantum simulation). From this
perspective, a very appealing application of the future fault-tolerant quantum computers will be their
ability to function as universal quantum simulators [45] that can address complicated quantummany-
body problems relevant for different disciplines of physics and chemistry. Prior to the development
of quantum error correction and large-scale fault-tolerant quantum computers, one may consider
building special-purpose quantumsimulators that are designed to tackle a particular family ofmodels.
This is the case of cold-atom quantum simulators of lattice models [46,47], where neutral atoms are
laser-cooled to very low temperatures in deep optical lattices [48].

In the continuum, neutral-atom systems are typically described by a Hamiltonian QFT, albeit a
non-relativistic one [48], with H =

∫
d3x : (H0 + VI): containing

H0 =

∑
n,σ

Ψ †
n,σ (x)

((
−∇

2

2mn
+ εnσ

)
δσ ,σ ′ + V n

σ ,σ ′ (x)
)
Ψn,σ ′ (x), (13)
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where Ψ †
m,σ (x),Ψm,σ (x) are field operators that create–annihilate an atom of the nth species in the

internal state σ . This Hamiltonian contains (i) the kinetic energy for amulti-species gas of Alkali atoms
of mass mn, where n ∈ {1, . . . ,Nsp} labels the atomic species/isotope; (ii) the internal energy εnσ of
the atomic groundstate manifold, which typically consists of various hyperfine levels characterized
by the quantum numbers associated to the total angular momentum σ ∈ {F ,MF }; and (iii) the single-
particle terms V σ ,σ

′

n (x), which contain the trapping potential that confines the nth atomic species
and, possibly, additional radiation-induced terms that drive transitions between the different atomic
levels σ → σ ′. In particular, we shall be interested in periodic trapping potentials due to the ac-
Stark-shift of pairs of retro-reflected laser beams, whichwill depend on the atomic species, but not on
the particular hyperfine level (i.e. state-independent optical lattices). We also consider laser-induced
Raman transitions via highly off-resonant excited states. Altogether, this leads to

V n
σ ,σ ′ (x) =

∑
ν=x,y,z

(
V n
0,ν sin

2(kL,νxν) +
1
2mnω

2
n,νx

2
ν

)
δσ ,σ ′

+

∑
l

Ω
n,l
σ ,σ ′ cos(∆k l · x −∆ωlt + ϕl),

(14)

where V n
0,ν is the ac-Stark shift for the nth atomic species stemming from the retro-reflected beams

with wave-vector kL,ν along the ν-axis. Additionally, ωn,ν is the frequency of a residual harmonic
trapping due to the intensity profile of the lasers. Finally,Ωn,l

σ ,σ ′ is the two-photon Rabi frequency for
the Raman transition induced by the lth pair of laser beams with wave-vector (frequency) difference
∆k l (∆ωl), and phase ϕl.

In addition, at sufficiently low temperatures, the neutral atoms also interact by contact scattering
processes leading to

VI =
1
2

∑
σ ,σ ′

∑
n,n′

Un,n′

σ ,σ ′Ψ
†
n,σ (x)Ψ

†
n,′σ ′ (x)Ψn′,σ ′ (x)Ψn,σ (x), (15)

where the interaction strengths Un,n′

σ ,σ ′ depends on the s-wave scattering lengths aσσ ′ of the corre-
sponding channels, some of which can be controlled by Feshbach resonances [48]. We also note that
fully-symmetric interactions between all species can be achieved by using alkali-earth atoms [49],
which could be an interesting property for the experimental realization of higher number of flavors
N in the Gross–Neveu–Wilson model.

As announced above, in the regime of deep optical lattices V n
0,ν ≫ En

R = k2
L/2mn, one can introduce

the basis of so-calledWannier functions, which are localized to theminima of the potential, and show
that this non-relativistic QFT yields a family of Hubbard-typemodelswith tunable parameters [50,51].
Therefore, by doing controlled table-top experiments with cold atoms, it becomes possible to explore
the physics of strongly-correlated electrons in solids, which has opened a fruitful avenue of research
in quantum simulations of condensed-matter models [46,47]. More recently, several works have
explored the possibility of extending this cold-atomHubbard toolbox [52] to the quantum simulation
of high-energy physics, including relativistic QFTs [34,53–57], gauge field theories [58–62], theories
for coupled Higgs and gauge fields [63,64], and also theories of relativistic fermions interacting with
Abelian/non-Abelian gauge fields [65–67].

In this work, we shall be concernedwith a cold-atom realization of the Gross–Neveumodel using a
Wilson-fermion discretization (3)–(5). We note that there are cold-atom proposals to implement this
QFT (1) with optical superlattices lattices by a different discretization [54], via the so-called staggered
fermions [28,42]. Since we are interested in the connection of this model with correlated SPT phases,
we will instead focus on theWilson-fermion approach of Eqs. (3)–(5). Building on previous proposals
for the quantum simulation of Wilson fermions [34,68–70], we present in this work a simplified
scheme to realize the GNW model using a two-component single-species Fermi gas confined in a
one-dimensional optical lattice with laser-assisted tunneling.
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3. Correlated symmetry-protected topological phases in the Gross–Neveu–Wilson model

3.1. Phase diagram from the large-N expansion

As advanced in the previous sections, our goal is to determine the critical lines of the GNW
model (3)–(5) as a function of the coupling strengthm(g2) for non-perturbative interactions. We start
by developing a large-N expansion for the partition function Z = Tr

{
exp

(
−βH̃W

)}
, where β = 1/T

is the inverse temperature for kB = 1. In the continuum, large-N methods were first employed by
Gross and Neveu to prove that the groundstate of their eponymous model (1) displays a non-zero
vacuum expectation value σ0 = ⟨Ψ (x)Ψ (x)⟩ ̸= 0 ∀x, as soon as a non-vanishing interaction g2 > 0 is
switched on [18]. In this way, the discrete chiral symmetry Ψ (x) → IN ⊗ γ 5Ψ (x) gets spontaneously
broken, sinceσ0 = ⟨Ψ †(x)γ 0Ψ (x)⟩ → −⟨Ψ †(x)γ 0Ψ (x)⟩ = −σ0 is no longer fulfilledwhen the vacuum
expectation value is developed.

This non-perturbative result can be obtained using functional techniques to calculate an effective
action for an auxiliary bosonic σ (x) field, which condenses due to the formation of particle–anti-
particle pairs, and acquires a non-zero expectation value ⟨σ (x)⟩ = σ0 ̸= 0 in the chirally-broken
phase. On the lattice (3)–(4), similar results are recovered in the continuum limit [71,72], provided
that the additional bare mass (5) is adjusted to recover the discrete chiral symmetry.

Let us now comment on a generalization of the GNW model, where the above discrete chiral
symmetry is upgraded to a continuous one Ψ (x) → IN ⊗ eiθγ

5
Ψ (x), ∀θ ∈ [0, 2π ) [18]. This requires a

modified four-fermion term

H = −Ψ (x)iγ 1∂xΨ (x) −
g2

2N

((
ΨΨ

)2
−
(
Ψ γ 5Ψ

)2)
. (16)

In this case, in addition to the σ (x) field, it is natural to introduce an additional bosonic field Π (x),
obtaining an effective action for both fields in the large-N limit. In Ref. [73], S. Aoki showed that
the large-N results with lattice Wilson fermions lead to a richer phase diagram displaying new
regions where a discrete parity symmetry Ψ (x) → ηIN ⊗ γ 0Ψ (−x), where |η|2 = 1, can also be
spontaneously broken Π0 = ⟨Ψ (x)iγ 5Ψ (x)⟩ ̸= 0 ∀x. In this case, the particle–anti-particle pairs
lead to the so-called pseudoscalar condensate ⟨Π (x)⟩ = Π0 ̸= 0, which necessarily breaks the
parity transformation of the corresponding fermion bilinear due to the vacuum expectation value
Π0 = ⟨Ψ (x)iγ 5Ψ (x)⟩ → −⟨Ψ (−x)iγ 5Ψ (−x)⟩ = −Π0 . Interestingly, these results on the chiral
GNWmodel were used to conjecture that these so-called Aoki phases would also appear in the phase
diagram of lattice quantum chromodynamics [73]. However, in this context, these Aoki phases are
considered as unphysical lattice artifacts not present in the continuum QFT.

In this section, we discuss the role of such Aoki phases in the GN model (16) with a Wilson-
type discretization (3)–(5), and their interplay with the topological insulating phases discussed in
the previous sections. In the context of symmetry-protected topological phases, such Aoki phases
are not artifacts, but become instead physical phases of matter that shall delimit the region of the
phase diagram that hosts a correlated SPT phase. Moreover, from the perspective of a cold-atom
implementation, these phases might also be observed in future table-top experiments. We also note
that the appearance of Aoki phases is not restricted to the GNW model, but also occurs in strong-
coupling calculations of U(1) Wilson-type lattice gauge theories [35,74], which can be used to model
the strongly-interacting limit of higher-dimensional topological insulators with long-range Coulomb
interactions.

We remark that, in the limit of a single fermion flavor N = 1, which is the relevant case for the
cold-atom implementation, the four-fermion interactions of Eq. (3) can be rewritten as

Vg = −

∑
x∈Λs

a
g2

4N
:

((
Ψ (x)Ψ (x)

)2

−

(
Ψ (x)γ 5Ψ (x)

)2
)

:, (17)

which follows from a so-called Fierz identity in the language of relativistic QFTs. Accordingly, besides
a change in the coupling constant g2

→ g2/2, there is no further distinction between the N = 1 GNW
model with discrete or continuous symmetry, such that the previous Aoki phases could in principle
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also occur in this limiting case. However, since their prediction is based on the N → ∞ results, we
will have to benchmark large-N methods with other non-perturbative approaches valid for N = 1
(e.g. MPS numerical simulations or a potential cold-atom quantum simulation). Regarding the first
approach, and give a detailed comparison of the large-N predictions with theMPS results of the phase
diagram.

3.1.1. Continuous time: Hamiltonian field theory on the lattice
Let us first discuss the large-N phase diagram of the GNW model using a functional-integral

representation of the partition function with a continuum Euclidean (i.e. imaginary) time τ . In-
troducing fermionic coherent states by means of mutually anti-commuting Grassmann variables
Ψk(τ ),Ψ ⋆

k (τ ), which are defined at each point of the Brillouin zone k ∈ BZs and for each imaginary
time τ ∈ (0, β) [75], one can readily express the finite-temperature partition function as Z =∫
[dΨ ⋆dΨ ]e−SW[Ψ ⋆,Ψ ], where the Euclidean action is

SW =

∫ β

0
dτ

(∑
k∈BZs

Ψ ⋆
k (τ ) (∂τ + Hk(m))Ψk(τ ) + Vg (Ψ ⋆,Ψ )

)
. (18)

Here, Hk(m) = IN ⊗ hk(m) is defined in terms of the single-particle Hamiltonian in Eq. (6). Moreover,
Vg (Ψ ⋆,Ψ ) results from substituting the fermion field operators by the Grassmann variables in the
normal-ordered interaction (17), which leads to quartic interactions

Vg = −

∑
x∈Λs

a
g2

4N

((
Ψ ⋆

x (τ )γ
0Ψx(τ )

)2

−

(
Ψ ⋆

x (τ )γ
1Ψx(τ )

)2
)
, (19)

Let us note that the propagator associated to the free part of the action displays two poles at k ∈

{0, π/a} when −ma ∈ {0, 2}, which correspond to the aforementioned Dirac fermions around the
corners of the Brillouin zone.

The first step in the large-N approximation is to introduce two auxiliary real scalar fields
σ (x),Π (x) with classical mass dimension dσ = dΠ = 1, such that the partition function can
be expressed as a new functional integral over both Grassmann and real auxiliary fields Z =∫
[dΨ ⋆dΨ dσdΠ]e−S̃W[Ψ ⋆,Ψ ,σ ,Π]. Therefore, the new Euclidean action must fulfill

∫
[dσdΠ]

e−S̃W[Ψ ⋆,Ψ ,σ ,Π]
= e−SW[Ψ ⋆,Ψ ] up to an irrelevant constant, such that the thermodynamic properties

of the system are not modified by the introduction of the auxiliary fields. The idea is to chose a
particular action where the four-fermion terms can be understood as effective interactions carried by
the auxiliary bosonic fields. Moreover, assuming that these fields are homogeneous, the new action
becomes

S̃W =

∫ β

0
dτ

(∑
k∈BZs

Ψ ⋆
k (τ )

(
∂τ + H̃k

)
Ψk(τ ) + N

Nsa
g2 (σ 2

+Π2)

)
, (20)

where H̃k = IN ⊗ h̃k, and the fermionic single-particle Hamiltonian now depends on the auxiliary
bosonic fields

h̃k =

(
m + σ +

1 − cos ka
a

)
γ 0

−
sin ka

a
γ 5

+ iΠγ 1. (21)

Essentially, the σ field modifies the mass term of the Dirac fermion, and a vacuum expectation value
of the former would thus renormalize the fermion mass, resembling the dynamical mass generation
of the continuummodel.

The second step in the large-N approximation is to integrate over the fermionic Grassmann fields,
obtaining an effective action for the auxiliary bosons Z =

∫
[dσdΠ]e−NSeff[σ ,Π]. This step can be readily

performed since the Grassmann integral is Gaussian, which leads to

Seff = βL
(

1
g2

(
σ 2

+Π2)
−

∫
k,ω

log
(
ω2

+ ε2k (m + σ ,Π )
))
, (22)
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where L = Nsa is the length of the chain, and we have introduced an abbreviation for the integral
over momentum and Matsubara frequencies

∫
k,ω =

∫
BZs

dk
2π

∫
∞

−∞

dω
2π , assuming already the zero-

temperature limit which is the regime of interest of this work. Here, the energies of the new fermionic
single-particle Hamiltonian εk(m + σ ,Π ) have been expressed in terms of the function

εk(x, y) =
1
a

√(
xa + 1 − cos ka

)2
+ sin2 ka + (ya)2. (23)

When the number of fermion flavors is very large N → ∞, the partition function Z =∫
[dσdΠ]e−NSeff[σ ,Π] with the effective action (22) yields a groundstate obtained from the saddle

point equations ∂σ Seff|(σ0,Π0) = ∂ΠSeff|(σ0,Π0) = 0. Non-vanishing values of σ0,Π0 are related to the
breaking of the discrete chiral or parity symmetries discussed above. For instance, the boundary of the
aforementioned Aoki phases can be obtained from the self-consistent solution of these saddle-point
equations imposing Π0 = 0. Using contour techniques for the frequency integrals, and substituting
ka → k in the momentum integrals, we can express the pair of saddle-point equations as follows

1
g2 =

K(θ0)
π (1 + η0)

, ma =
(1 − η0)2

2η0
−

g2

2π
(1 + η0)
η0

E(θ0). (24)

Here, we have used the complete elliptic integrals of the first and second kind

K(x) =

∫ π
2

0

dk√
1 − x sin2 k

, E(x) =

∫ π
2

0
dk
√
1 − x sin2 k, (25)

as well as the following parameters

η0 = 1 + ma + σ0a, θ0 =
4η0

(1 + η0)2
. (26)

In general, the solution of the pair of gap equations (24) must be performed numerically, and
leads to the critical lines that delimit the Aoki phase (i.e. solid green lines in Fig. 1). These lines
can be interpreted as different flows of the bare mass mc(g2) that determine the second-order phase
transitions where a scale-invariant QFT should emerge. Note that this figure displays a clear reflection
symmetry with respect to the axis −ma = 1. In fact, using the expression of the elliptic integrals
in terms of hypergeometric functions [76], it follows that K(x) = (1 − x)−1/2K(x/(x − 1)), and
E(x) = (1 − x)1/2E(x/(x − 1)), which can be exploited to show that the gap equations (24) can be
rewritten as

1
g2 =

K
(

θ0
θ0−1

)
π (1 − η0)

, ma =
(1 − η0)2

2η0
−

g2

2π
(1 − η0)
η0

E

(
θ0

θ0 − 1

)
. (27)

These gap equations can now be related to the original ones in Eq. (24) under the following transfor-
mation

ma → −2 − ma, σ0 → −σ0, (28)

which corresponds to the aforementioned reflection symmetry about −ma = 1, and leads to η0 →

−η0 and θ0 → θ0/(θ0 − 1). Accordingly, there should only be three distinct phases in the regime
−ma ∈ [0, 2], with the Aoki phase being completely absent forma > 0 andma < −2.

To make a connection to the continuum results [18], and interpret this phase diagram in light
of the symmetry-protected topological phases of Section 2.2, we note that a solution to the gap
equations (24) can be found analytically in the regime of small interactions and masses g2, |ma| ≪ 1.
In this case, one can assume that η0 = 1 + δη0 with |δη0| ≪ 1, and perform a Taylor expansion of
Eq. (24) to find that the σ -field acquires the following non-zero vacuum expectation value

σ̃0 =
g2

πa
+

8
a
e−2π/g2 . (29)

The first contribution stems for the perturbative renormalization of the bare mass ma ≈ −g2/2π ,
while the 1/g2 behavior of the second contribution highlights that the large-N expansion captures
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Fig. 1. Symmetry-protected topological phases in the lattice Gross–Neveu model from large-N methods: The two green solid
lines correspond to the critical linesmc(g2) obtained from the numerical solution of the gap equations (24),while the red dashed
lines correspond to the analytical solution obtained from the vanishing of the dynamically-generated (29) Wilson masses (32).
The identification of the different regions as a trivial and topological insulators, or as the Aoki phase, follows our discussion
below Eq. (32) . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

non-perturbative effects, recalling the chiral symmetry breaking by dynamical mass generation of the
continuum case [18]. We also note that, as the UV cutoff is removed a → 0, the interaction strength
must decrease g2

→ 0 to maintain a finite scalar condensate (29), which shows that the continuum
GNWmodel is an asymptotically free QFT.

As announced above, such a vacuum expectation value (29) then leads to a small renormalization
of the Wilson masses (11), m̃k → m̃k(g2), valid in the regime g2, |m| ≪ 1. We can thus ascertain that
the large mass of the fermion doubler will only be perturbed slightly, remaining thus at the cutoff,
and maintaining sgn(m̃π (g2)) = +1. Conversely, the sign of the light-fermion mass sgn(m̃0(g2)) may
indeed change as the interactions g2 are increased. According to Eq. (12), we canwrite the topological
invariant in this regime as ϕZak =

1
2Nπ

{
1 − sgn

(
m̃0(g2)

)}
, such that the region hosting a correlated

BDI topological-insulating groundstate corresponds to the parameter region with m̃0(g2) < 0.
In order to locate this region, we substitute the saddle-point solution (29) into Eq. (20), and

perform a long-wavelength approximation |k| < Λ ≪ 1/a, yielding the effective free-fermion action

S̃W =

∫ β

0
dτ

∑
|k|<Λ

Ψ ⋆
k (τ )

(
∂τ + H̃k(σ̃0)

)
Ψk(τ ), (30)

up to an irrelevant constant. Here, we have introduced H̃k(σ̃0) = IN ⊗ h̃k(σ̃0), where the single-particle
Hamiltonian for a massive Dirac fermion is

h̃k(σ̃0) ≈ γ 0 (m̃0 + σ̃0
)
− γ 5k, (31)

which allows us to identify the renormalized Wilson mass

m̃0 = m → m̃0(g2) = m + σ̃0. (32)

The leftmost red dashed line of Fig. 1 corresponds to the points where this renormalized mass
vanishes m̃0(g2) = 0. We note that this analytical solution matches the lower critical line obtained
by the numerical solution of the gap equations (24) remarkably well, even considerably beyond the
perturbative regime g2, |ma| ≪ 1. Following Eq. (32), the area below this line fulfills −m > σ̃0, such
that the interactingDirac fermion has a negative renormalizedmass m̃0(g2) < 0, leading toϕZak = Nπ
and to an SPT phase for N odd.

An analogous behavior can be found in the regime g2, |ma + 2| ≪ 1, where the light fermion is
around k = π/a, while the heavy one corresponds to k = 0 (i.e. the Wilson fermions interchange
their roles). Using the previous symmetry (28) to locate the critical line m̃π (g2) = 0 in this parameter
regime, we can readily predict the value of this renormalized mass m̃π = m + 2/a → m̃π (g2) =

m+ 2/a− σ̃0. The vanishing of this mass leads to the rightmost red dashed line of Fig. 1, which again



A. Bermudez et al. / Annals of Physics 399 (2018) 149–180 161

agrees very well with the numerical solution of the gap equations. Since the heavy fermion around
k = 0has a largenegativemass, the topological invariant becomesϕZak =

1
2Nπ

{
sgn
(
m̃π (g2)

)
+1
}
, and

one can identify the symmetry-protected phase displaying ϕZak = Nπ for N odd, with the parameter
region fulfilling m̃π (g2) > 0, and thus −m < 2 − σ̃0 (i.e. shaded yellow area below the dashed line).

At larger couplings and intermediate masses, we must resort to the numerical solution of the gap
equations, and search for a region of phase diagram that can be adiabatically connected to these
two areas hosting a topological phase. This is precisely the shaded yellow lobe of Fig. 1, which is
separated from other phases by a gap-closing line. The area above these lines, given by m̃0(g2) > 0,
and m̃π (g2) < 0, determines a regime where both renormalized Wilson masses have the same
sign, such that the gapped phase has no topological features, corresponding either to a trivial band
insulator (gray area in Fig. 1), or to the aforementioned Aoki phase where the Z2 parity symmetry
Ψ (x) → IN ⊗ γ 0Ψ (x) is spontaneously broken (green area in Fig. 1).

3.1.2. Discretized time: Euclidean field theory on the lattice
We now move on to the discussion of the large-N phase diagram of the GNW lattice model using

a discretized Euclidean time x0 = τ . This is the most common formalism in lattice field theory
computations [26], and can become the starting point to apply other methods such as Monte-Carlo
numerical techniques. As emphasized below, it will be important to understand the connection
between the lattice andHamiltonian approaches, requiring a careful treatment of the continuum-time
limit to understand lattice artifacts that can change qualitatively the shape of the phase diagram.

In Euclidean LFT, both space- and time-like coordinates {xν}ν=0,1 are discretized into an Euclidean
lattice ΛE = {x : x0/a0 = nτ ∈ ZNτ , x1/a1 = ns ∈ ZNs}, where Nτ (Ns) is the number of lattice
sites in the time (space) -like direction, and a0 (a1) is the corresponding lattice spacing. Therefore, a
similar discussion to the one around Eqs. (3)–(5)must also be applied to the Euclidean time derivative
appearing in the action (18), such that nearest-neighbor hoppings along the time-like direction
also appear. Introducing fermionic coherent states on the Euclidean lattice, and their corresponding
Grassmann variables Ψx,Ψ x, the finite-temperature partition function can be expressed as Z =∫
[dΨ dΨ ]e−SEW[Ψ ,Ψ ], where the Euclidean action is

SEW = a0a1
∑
x∈ΛE

(
S E

0 [Ψ ,Ψ ] + V E
g [Ψ ,Ψ ]

)
. (33)

Here, the action is divided into: (i) the free quadratic term

S E
0 = Ψ x

(
m +

∑
ν

1
aν

)
Ψx −

∑
ν

∑
s=±

Ψ x

(
1 −

sγ̂ν
2aν

)
Ψx+saνeν , (34)

which is expressed in terms of the Euclidean gammamatrices γ̂0 = γ 0, γ̂1 = iγ 1, and the unit vectors
{eν} of a rectangular lattice; and (ii) the interacting quartic term

V E
g [Ψ ,Ψ ] = −

g2

4N

((
Ψ xΨx

)2
−
(
Ψ xγ̂5Ψx

)2)
, (35)

which is expressed in terms of the chiral matrix γ̂5 = γ 5.

(i) Lattice approach with dimensionless fields: Let us note that, in the latticeWilson approach [77], it
is customary to work with dimensionless fields ψx =

√
a0 + a1Ψx, and rewrite the action as follows

SEW = SEW,0 + V E
g̃ [ψ,ψ]. The free part

SEW,0 =

∑
x∈ΛE

(
ψx
(
m̃ + 1

)
ψx −

∑
ν,s

κνψx
(
1 − sγ̂ν

)
ψx+seν

)
, (36)

is expressed in term of dimensionless tunnelings κν , and the dimensionless mass m̃. Similarly, the
interacting term is obtained from Eq. (35) by substituting the fieldsΨ → ψ and the coupling constant
g → g̃ by the dimensionless ones.
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Fig. 2. Symmetry-protected topological phases in the Gross–Neveu model on anisotropic Euclidean lattices: Large-N phase
diagram obtained from the self-consistent solution of Eqs. (40)–(41) on: (a) Isotropic Euclidean lattice ξ = 1 with Nτ = Ns =

512 sites (i.e. square lattice). In comparison to the continuum-time phase diagram of Fig. 1, one observes that the region of
the symmetry-protected topological phase (shaded yellow area) is deformed into a pair of lobes, each of which contains an
BDI topological insulator in the space-like dimension. The Aoki phase (green area) adopts a trident-like shape. (b) Sequence of
anisotropic Euclidean lattices withNs = Nτ /ξ = 512 sites, and ξ = 1, 2, 4, 8 (i.e. rectangular lattices). The solid lines represent
how the boundary of the Aoki phase gets distorted as the anisotropy increases. The two BDI topological-insulating lobes shrink
and move in opposite directions, leaving an intermediate lobe hosting a trivial band insulator. (c) Anisotropic Euclidean lattice
with ξ = 128, showing the fate of the topological phases in the continuum limit . (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Since the Grassmann variables must fulfill periodic (anti-periodic) boundary conditions along the
space (time) -like directions, one can move into momentum space ψk,ψk , where the dimensionless
quasi-momenta belong to the Euclidean Brillouin zone BZE = {k : k0 = 2π (nτ + 1/2)/Nτ , k1 =

2πns/Ns} = (0, 2π ]
2. Then, one can rewrite the action as

SEW =

∑
k∈BZE

ψkSk(m̃)ψk +

∑
x∈ΛE

V E
g̃ (ψ,ψ). (37)

where we have introduced Sk(m̃) = IN ⊗ sk(m̃), together with the single-flavor action

sk(m̃) =

(
m̃ + 1 − 2

∑
ν

κν cos kν

)
I2 + 2i

∑
ν

κν sin kν γ̂ν . (38)

Let us note that, in contrast to the continuum-time free action (18), this Euclidean action leads
to a propagator with four poles at k ∈ {(0, 0), (0, π ), (π, 0), (π, π )} when the bare mass equals
−m̃ ∈ {0, 4κ0, 4κ1, 4(κ0 + κ1)}, each of which corresponds to a long-wavelength Dirac fermion.
Accordingly, there is an additional doubling due to the discretization of the Euclidean time direction
(i.e. the extra fermions with k0 = π shall be referred to as time doublers).

At this point, the discussion parallels that of the Hamiltonian formalism of Section 3.1.1 via the
corresponding steps for the large-N approximation. First, the auxiliary dimensionless lattice fields
σ̃x, Π̃x are introduced, such that the action can be rewritten as Z =

∫
[dψdψdσ̃dΠ̃]e−S̃EW[ψ,ψ,σ̃ ,Π̃],

where

S̃EW =

∑
k∈BZE

ψk S̃k(m̃ + σ̃ ,Π )ψk + N
NsNτ
g̃2 (σ̃ 2

+ Π̃2). (39)

Here, we have assumed again that the auxiliary fields are homogeneous, introducing S̃k(σ̃ , Π̃ ) = IN ⊗

s̃k(σ̃ , Π̃ ), such that the new single-flavor action can be obtained from Eq. (38) using s̃k(m̃ + σ̃ ,Π ) =

sk(m̃+ σ̃ )+ iγ̂5Π̃ . The second and third steps are the same, since the action is quadratic in Grassmann
fields, and the saddle-point solutions control the large-N limit. In this case, the gap equations can be
expressed as

NsNτ
g̃2 =

∑
k∈BZE

1(
1 − 2

∑
ν κν cos kν + m̃ + σ̃

)2
+
∑

ν 4κ2
ν sin

2 kν + Π̃2
, (40)
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−
m̃NsNτ

g̃2 =

∑
k∈BZE

1 − 2
∑

ν κν cos kν(
1 − 2

∑
ν κν cos kν + m̃ + σ̃

)2
+
∑

ν 4κ2
ν sin

2 kν + Π̃2
, (41)

which are equivalent to those derived in [71] upon a different definition of themicroscopic couplings.
We have solved this system of non-linear equations for different Euclidean lattices with Nτ = ξNs,

setting Ns = 512 sites in the space-like direction, and using ξ =
a1
a0

∈ {1, 2, 4, . . . , 128} to approach
the time-continuum limit ξ → ∞ (see Fig. 2). Let us note that the dimensionless tunnelings can be
expressed in terms of the anisotropy parameter as κ0 = ξ/2(1+ξ ), and κ1 = 1/2(1+ξ ). At this point,
it is worth mentioning that the number of lattice sites in the time-like direction Nτ is also modified
in the LFT community to explore non-zero temperatures. In that case, however, the κν parameters
remain constant as Nτ is varied (i.e. the Euclidean lattice is rectangular, but the unit vectors remain
the same).

In Fig. 2(a), we represent the solution of the gap equations for the isotropic lattice ξ = 1, such
that κ0 = κ1 =

1
4 . We note that the characteristic trident-shaped phase diagram is in qualitative

agreement with the results of S. Aoki [73]. In order to interpret this phase diagram in terms of the
symmetry-protected topological phases, let us recall the distribution of the poles described below
Eq. (38). At g̃2

= 0, we observe that the critical points separating the different phases correspond to
−m̃ ∈ {0, 1, 2}, which lie exactly at the aforementioned poles signaling the massless Dirac fermions.
For −m̃ ∈ (0, 1), the only Dirac fermion with a negative mass is that around k = (0, 0), while the
other 3 doublers have a positive mass. According to the Euclidean generalization of Eq. (12), namely

ϕZak =
1
2Nπ

(
sgn

(
m̃(0,π )

)
− sgn

(
m̃(0,0)

)
+ sgn

(
m̃(π,0)

)
− sgn

(
m̃(π,π )

) )
,

(42)

we see that ϕZak = Nπ for −m̃ ∈ (0, 1), corresponding to the BDI topological insulator for N odd. For
−m̃ ∈ (1, 2), the Wilson fermions around k = (0, π ) and k = (π, 0) also invert their masses, leading
to ϕZak = −Nπ , and yielding again an BDI topological insulator for N odd. These two areas, extend on
to the neighboring lobes of Fig. 2(a) using a similar reasoning as the one presented around Eq. (30).
Therefore, thewhole region below the trident that delimits the parity-broken Aoki phase corresponds
to the BDI topological insulator. We note, however, that the black dashed lines in this figure, and
subsequent ones, do not follow from the solution of the large-N gap equations, but are included as a
useful guide to the eye to delimit the SPT phases. In Section 3.2 below, we will show that they indeed
correspond to a critical line delimiting the SPT phase of a carefully-defined time-continuum limit.

Let us start exploring how this phase diagram changes as the time-continuum limit is approached,
and compare the results to those of Fig. 1. In Fig. 2(b), we represent the phase boundaries for an
increasing number of lattice sites Nτ = ξNs with anisotropies ξ ∈ {1, 2, 4, 8}. Here, one can observe
how the central prong of the Aoki phase separating the topological-insulating lobes is split into
two peaks, each of which goes in a different direction as ξ is increased. We note that this behavior
differs markedly from the finite-temperature studies, which show that the lobe structure disappears
completely as Nτ is varied [73]. Therefore, the anisotropy in the lattice constants gives rise to a
different playground, which must be understood in terms of the symmetry-protected topological
phases.

Since κ0 → 1/2, while κ1 → 0, as the anisotropy ξ → ∞, one can identify the left-moving
prong with the pole at k = (0, π ) with mass −ma → 4κ1 → 0, and thus approaching the lower
left corner. Similarly, the right-moving one can be identified with the pole at k = (π, 0) with mass
−ma = 4κ0 → 2 approaching the lower right corner. As a result of this movement, and considering
the signs of the corresponding Wilson masses, one finds that the region between these two poles
correspond to a situationwhere both space- (time-) like doublers have a negative (positive)mass, such
that the topological invariant vanishes ϕZak = 0, and one gets a trivial band insulator. Unfortunately,
as the anisotropy increases, the two BDI topological lobes get smaller and smaller, such that the
symmetry-protected topological phases vanish as we approach the time-continuum limit, and the
central lobe corresponds to a trivial band insulator (see Fig. 2(c)).
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Fig. 3. Phase diagram in the Euclidean lattice Gross–Neveu model with rescaled couplings: The solid lines delimiting the Aoki
phase with rescaled couplings (43) get distorted as the anisotropy parameter increases ξ ∈ {1, 2, 4, 8, 16}, and display a finite
lobe hosting the symmetry-protected topological phase even in the continuum limit. As ξ is increased, the BDI topological
insulator and the Aoki phase display a mirror symmetry with respect to the red dashed line.

This result seems to be in contradiction with our findings for the Hamiltonian formalism in Fig. 1,
which predict that the central lobe should correspond to the correlated SPT phase with ϕZak = Nπ .
Moreover, since each of the two prongs now contain a pair of massless Dirac fermions, the continuum
QFT that should emerge in the long-wavelength limit is no-longer that of the Gross–Neveu model for
N flavors, but rather that of the Gross–Neveu model for 2N flavors, which would indeed modify the
universal features of the phase transition, and not only the non-universal shape of the critical line. As
mentioned at the beginning of this section, the Euclidean approach can lead to lattice artifacts that
canmodify qualitatively the phase diagram, and a detailed and careful account of the time-continuum
limit is required to understand them.We address precisely this issue in the two following subsections.

(ii) Large-N phase diagramswith rescaled couplings:Wehave found that one of the problems leading
to the apparent contradiction between the phase diagrams is the standard use of dimensionless
quantities in the Euclidean lattice approach (36). A detailed derivation of this action, which starts from
the original action (33) rescaling the fields, shows that the dimensionless parameters are related to
the original ones by the following expression

m̃ =
1

1 + ξ
ma1, g̃2

=
ξ

(1 + ξ )2
g2. (43)

Although apparently innocuous, this rescaling changes qualitatively the shape of the phase di-
agram (see Fig. 3). In order to understand the main features of this phase diagram, the location of
the non-interacting poles will be very useful again. For instance, at g2

= 0, we note that the pole
at −m̃ = 4κ0 gets mapped into −ma1 = 4(1 + ξ )κ1. Therefore, as the time-continuum limit is
approached, this pole tends to −ma1 → 2 as ξ → ∞, and no longer to the origin. Likewise, both
time-like doublers at −m̃ ∈ {4κ0, 4(κ0 + κ1)} are mapped into −ma1 → ∞ in the time-continuum
limit. Accordingly, in the region of interest displayed in Fig. 3, these time doublers have a very large
positive mass. Inspecting the sign of the corresponding Wilson masses, we can conclude that the
region −ma1 ∈ (0, 2) will host an BDI topological insulator, while a trivial insulator will set in for
−ma1 > 2.

Following a similar reasoning as in previous subsections, we know that these critical points
surrounding the topological phase will flow as the interactions are switched on and the σ field
acquires an non-zero vacuum expectation value. Accordingly, we identify the lobe of Fig. 3 as the
BDI topological insulator that also appeared in the continuum-time Hamiltonian formalism of Fig. 1.
Moreover, the universal features are now in agreement as the critical lines are controlled by a single
pole, and the long-wavelength limit should nowbe controlled by theGross–Neveumodel forN flavors.

Let us remark that, although the rescaled solution looks somewhat closer to the Hamiltonian re-
sults, there are still qualitative differences in the lattice approach that deserve a deeper understanding.
For instance, the phase diagram does no longer display the mirror symmetry about −ma1 = 1 (28).

(iii) Continuum limit and connection to the Hamiltonian approach: In order to understand these
differences, and the connection to the gap equations continuum limit (24), let us consider the original
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action with dimensional fields (33). Following the same steps as before, one can integrate the fermion
fields, Z =

∫
[dσdΠ]e−NSeff[σ ,Π], finding the following effective action

Seff =
LsLτ
g2

(
σ 2

+Π2)
−

∑
k∈BZE

log
(
sin2 k0a0

a20
+ s2k(m + σ ,Π )

)
, (44)

which is the Euclidean lattice version of Eq. (22). Here, we have introduced the corresponding lengths
Lτ = Nτa0, Ls = Nsa1, together with the following function

s2k(x, y) =

(
x +

∑
ν

1 − cos kνaν
aν

)2

+
sin2 k1a1

a21
+ y2. (45)

If we now take the limit of N → ∞, the saddle point conditions ∂σ Seff|(σ0,Π0) = ∂ΠSeff|(σ0,Π0) =

0 lead to the following pair of gap equations, which are equivalent to Eqs. (40)–(41) but using
dimensional couplings and dimensional fields,

LsLτ
g2 =

∑
k∈BZE

1
sin2(k0a0)/a20 + s2k(m + σ ,Π )

,

−
mLsLτ
g2 =

∑
k∈BZE

∑
ν(1 − cos kνaν)/aν

sin2(k0a0)/a20 + s2k(m + σ ,Π )
.

(46)

In order to make a connection to the gap equations obtained with the Hamiltonian formalism (24),
we should take the continuum limit in the imaginary time direction Nτ → ∞, and a0 → 0, such
that Lτ = Ls remains constant imposing ξ = a1/a0 → ∞. To deal with the additional time
doublers mentioned above, let us introduce a UV cutoff Λτ ≪ 1/a0, and make a long-wavelength
approximation around k0 ∈ {0, π/a0}. We find that the gap equation (40) becomes

LsLτ
g2 ≈

∑
|k0|<Λτ

∑
k1∈BZs

1
(k0)2 + ε2k1 (m + σ ,Π )

+

∑
|k0|<Λτ

∑
k1∈BZs

1
(k0)2 + ε2k1 (m + 2/a0 + σ ,Π )

,

(47)

where we have used the single-particle energies of Eq. (23) and the spatial Brillouin zone, after
identifying a = a1. We note that the first line of this expression comes from the contribution around
k0 = 0, while the second line stems from the time doublers around k0 = π/a0.

We observe that the effectiveWilson mass of these doublers becomes very large in the continuum
limit m + 2/a0 → ∞ if one keeps the bare mass m non-zero. Hence, these doublers become very
massive, and their contribution to above gap equation should become vanishingly small as described
belowEq. (43). To prove that, let us get rid of the cutoffΛτ → ∞, and use

∑
|k0|<Λτ

→ Lτ
∫

∞

−∞
dk0/2π .

After performing the integral using contour techniques, we directly obtain
1
g2 =

∫ π

−π

dk1
4π

1√
(ma + σa + (1 − cos k1a))2 + sin2 k1a

+

∫ π

−π

dk1
4π

1√
(ma + σa + (1 + 2ξ − cos k1a))2 + sin2 k1a

,

(48)

where we have also taken the continuum limit in the space-like direction. Using the definition of the
complete elliptic integrals (25), this equation can be expressed

1
g2 =

K(θ0)
π (1 + η0)

+
K(θ̃0)

π (1 + η̃0)
. (49)

Here, we have used the parameters of Eq. (26), together with

η̃0 = 1 + ma + 2ξ + σ0a, θ̃0 =
4ξ̃0

(1 + ξ̃0)2
, (50)
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Fig. 4. Phase diagram in the Euclidean lattice Gross–Neveumodel with renormalizedmass: The solid lines delimiting the Aoki
phase as a function of the renormalized mass for ξ ∈ {2, 4, 16, 64, 128} show the tendency towards the mirror-symmetric
behavior about −mra = 1. The Hamiltonian prediction is also displayed, wheremra = ma, which is labeled by ‘‘ξ = ∞’’.

which determine the contribution of the time doublers to the gap equation (i.e. second term of
Eq. (48)). In the continuum limit, we take ξ → ∞, such that η̃0 → ∞, and θ̃0 → 0. This makes
K(θ̃0) → π/2, such that the time-doubler contribution vanishes, and we recover exactly the gap
equation of the Hamiltonian approach (24).

The continuum limit of the remaining gap equation (41) follows the same lines: we perform a
long-wavelength approximation around the time doublers, let the cutoff Λτ → ∞, and use contour
integration to find

−
ma
g2 =

∫ π

−π

dk1
4π

1 − cos k1a√
(ma + σa + (1 − cos k1a))2 + sin2 k1a

+

∫ π

−π

dk1
4π

1 + 2ξ − cos k1a√
(ma + σa + (1 + 2ξ − cos k1a))2 + sin2 k1a

.

(51)

Using the definition of the complete elliptic integrals (25), this equation becomes

−ma
g2 =

(1 − η0)2K(θ0)
2π (1 + η0)

+
(1 + η0)2E(θ0)
2πη0(1 + η0)

+
2ξK(θ̃0)
π (1 + η̃0)

+
(1 + η̃0)2E(θ̃0) − (1 − η̃0)2K(θ̃0)

2πη̃0(1 + η̃0)
,

(52)

where the contribution of the time doublers is expressed in the second line. In this case, taking the
time-continuum limit ξ → ∞, such that E(θ̃0) → π/2, leads to

ma =
(1 − η0)2

2η0
−

g2

2π
(1 + η0)
η0

E(θ0) −
g2

2
, (53)

which contains an additional −g2/2 term with respect to the gap equation of the Hamiltonian
formalism (24).

We thus find that, in contrast to the first gap equation (49), the contribution of the time doublers
is no longer vanishing in this case, but can instead be understood as a finite renormalization of the
bare mass

ma → mra = ma + g2/2. (54)

It is precisely this renormalization which is responsible for the lack of the mirror symmetry (28) in
Fig. 3, and its qualitative difference with respect to the Hamiltonian prediction of Fig. 1. These results
can thus help us to identify the correspondingmirror symmetry, which is no longer about the vertical
line−ma = 1, but instead about−mra = 1,which corresponds to the red dashed line−ma = 1+g2/2
of Fig. 3.

To study in more detail the onset of this symmetry in the continuum limit, and the quantitative
agreement with the Hamiltonian prediction, we plot the phase diagram with the corresponding
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renormalized mass in Fig. 4, and superimpose the continuum-time prediction of Fig. 1. This figure
shows the clear agreement between both approaches, and highlights the importance of performing
a careful analysis of the continuum limit in order to avoid Euclidean lattice artifacts that can lead
to qualitatively different predictions, even questioning the universal aspects of the emerging QFTs
(see Fig. 2). It also highlights the fact that the time doublers, despite becoming infinitely heavy in
the continuum limit, can leave an imprint in the non-universal properties of the low-energy phase
diagram, such as the particular value of the critical points (see the tilted phase diagram of Fig. 4).
From the perspective of the renormalization group, this effect does not come as a surprise, since
the time doublers lie at the cutoff of the continuum-time limit of the lattice field theory, and their
integration can thus renormalize the parameters of the long-wavelength light-fermionmodes. In this
case, a careful analysis of the gap equations has allowed us to extract an additive renormalization
δm = g2/2a which, as usual in discretized QFTs, depends on the remaining UV cutoff and shows
that the bare mass must be fine tuned to a cutoff-dependent value to yield the physical mass of the
low-energy excitations.

3.1.3. Extent of the Aoki phase and tri-critical points
Let us now focus on a question of interest that has not been discussed in detail in the previous

sections, namely the extent of the Aoki phase. As already noted above, the solution of the gap
equations, either in the Hamiltonian theory (24) or in the time-continuum limit of the Euclidean
approach (40)–(41), can only determine the critical lines that delimit the Aoki phase with Π ̸= 0.
The question we consider in this section is whether the Aoki phase extends all the way down to
(ma, g2) = (0, 0), and (ma, g2) = (−2, 0) or, instead, it terminates at a non-zero value of the coupling
strength. In this later case, there would be a direct transition between the BDI symmetry-protected
phase and the trivial band insulator, not separated by an intermediate parity-broken Aoki phase.

In order to address this point, we apply large-N techniques away from half filling via the in-
troduction of a chemical potential µ̃ in the GNW model. Following the orthodox prescription for
Euclidean LFTs [78], the hopping term κν

(
1 − sγ̂ν

)
of the Euclidean action SEW (36) is modified to

esµ̃δν0κν
(
1 − sγ̂ν

)
, such that time-like hopping is promoted in the forwards direction by a factor eµ̃,

and suppressed by e−µ̃ when hopping backwards. As a consequence, one can study the phase diagram
of the GNW model at finite densities by solving the gap equations (40)–(41) with the sum over the
time-like momenta now given by k0 = 2π (nτ + 1/2)/Nτ − iµ̃.

Moreover, using the Euclidean partition function, one finds that the conserved fermion charge
density nq = −

∂ ln Z
∂µ̃

is

nq =
κ0

Z

∑
x,s

∫
[dΨ dΨ ]Ψ x(γ̂0 − s)esµ̃Ψx+se0e

−SEW[Ψ ,Ψ ]. (55)

Setting µ̃ → 0, this quantity becomes proportional to the expectation value of the time-like
component of the vector current JEµ(x) = Ψ x(1 + γ̂µ)Ψx−eµ − Ψ x(1 − γ̂µ)Ψx+eµ [77], which is the
discretized version of the continuum vector current JEµ(x) =: Ψ (x)γ̂µΨ (x): for Wilson fermions.
Therefore, the time-like component is simply related to the fermion density in the continuum
limit, and we can readily explore situations away from half-filling nq ̸= 0. Interestingly, while the
gap equations (40)–(41) remain symmetrical under the transformation (28) using the renormalized
mass (54), the charge density nq(m̃, g̃2, µ̃) has only an approximate symmetry.

We now solve the gap equations (40)–(41) with a dimensional chemical potential µ ≡ ξµ̃ ̸= 0,
which yield the phase diagram of Fig. 5(a), where the axes have been rescaled tomatch those of Fig. 4.
We see that, as a consequence of the non-zero-chemical potential, the leftmost and rightmost cusps
of the half-filled phase diagram of Fig. 4 split into a couple of cusps each, such that the region hosting
the Aoki phase becomes smaller. The decrease of the Aoki phase can be qualitatively understood as
follows. For µ > 0, one expects that the charge density nq will eventually rise from the value nq = 0
characterizing the half-filled regime. As a consequence, a Fermi surface will be formed in a certain
parameter regime, which consists of two disconnected Fermi points in 1+1d. This has the effect of
disfavoring the particle–anti-particle pairing required for the pseudoscalar condensate ⟨Π (x)⟩ ̸= 0,
since the excitation energy for such a zero-momentum pair would be on the order of ∆ε ∼ 2µ.
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Fig. 5. Large-N phase diagram for a non-zero chemical potential: (a) Solid lines delimit the Aoki phase as determined on a
512 × 512ξ lattice with ξ = 128, for chemical potential µa = 0, 0.2, 0.4. As the chemical potential increases, the region
hosting a parity-breaking groundstate diminishes, leaving behind a droplet-shaped region between the trivial and topological
phases of the half-filled case, which we conjecture corresponds to a new metallic phase. (b) The solid lines show the charge
density nq(mr) at the phase boundary of each chemical potential, obtained by fixing the interaction strength g2

= g2
c (mr) to

the corresponding critical line. We observe that the charge density becomes non-zero only in the new line connecting the two
cusps for a finite chemical potential.

Fig. 6. Location of the onset and tri-critical point of the phase diagram: the leftmost cusp of the phase boundary yields
an estimate for the onset chemical potential µo(g2). Results are obtained from solution of the gap equations (40)–(41) on
512× 512ξ , except for the dashed lines corresponding to 512× 1024ξ lattices. The limiting value of g2 as µoa → 0 marks the
tri-critical point separating the half-filled Aoki phase, from the trivial and topological insulators.

Accordingly, the Aoki phase should shrink as the chemical potential is increased. This is corroborated
by the curves for nq(mr) in Fig. 5(b), which rise above zero only around the borders of the droplet-
shaped region between the two newly-formed cusps for µ > 0 (see the gray regions in Fig. 5(a)).
These are precisely the regions where the half-filled Aoki phase has been expelled from.We also note
that Fig. 5(b) shows an approximate symmetry about −mra = 1 which we expect to become exact
for ξ → ∞.

Let us now describe how these results can be used to determine, in a controlled way, the extent
of the Aoki phase at half-filling. The empty circles of Fig. 5(a) mark the so-called onset, beyond which
the ground state has a non-zero charge density (i.e. nq > 0 for µ > µo(g2)). By numerically obtaining
such onsets for a variety of parameters and time discretizations, we obtain Fig. 6. We note that the
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variation for finite ξ is probably due to non-universal effects since in the sums over the Brillouin zone
of Eqs. (40)–(40), as the chemical potential enters as e.g. sinh(ξµa). One observes from this figure that
all curves come closer in the limitµ → 0, and seem to approach a limit as ξ → ∞. This limiting value
corresponds to the point where half-filled Aoki phase terminates, proving that these phase does not
extend all the way down to the weak coupling limit, but only survives down to g2(µo = 0) ≈ 0.8
according to the results of Fig. 6.

Let us note that extracting this limiting value is numerically hard; for instance, the curvature
appears slightly sensitive to temperature, as revealed by calculations on 512 × 1024ξ lattices.
However, our approximate prediction g2(µo = 0) ≈ 0.8 is consistent with the cusps of Fig. 4, where
the Aoki phase terminates. Fig. 6 therefore strengthens our belief in the existence of a tricritical point
at non-zero g2(µo = 0); for couplings below this value there is a direct transition between trivial and
topological insulating phases as m is varied, and no parity breaking Aoki phase is encountered in the
middle.

So far, we have used the large-N results for a non-zero chemical potential to extract features of the
half-filled phase diagram by taking the limit µ → 0 in a controlled manner. However, we note that
another interesting questionwould be to study the fate of the symmetry-protected topological phases,
and the appearance of other new phases of matter, in the GNW model away from half filling. In that
respect, we note that our large-N results point towards the appearance of a new phase (i.e. droplet-
shape region of Fig. 5). Since we have argued that the finite charge densities appear due to the
formation of a Fermi surface, it is reasonable to expect that such densities will not drop abruptly
to zero as we move away from the critical line. In that sense, the droplet-shaped region may either
correspond to ametallic phase where the Fermi points occur at different momenta as themicroscopic
parameters are modified, or maybe to a kind of charge-density-wave where the fermionic density
forms a regular periodic pattern. Understanding the nature of this phase lies outside of the scope of
the present work, and will be the subject of a future work. We advance at this point that the density-
matrix renormalization group methods discussed in the following section could be adapted to study
situations away from half filling, and are a potential tool to address the nature of this new phase.
Moreover, we also note that the sign problem for µ ̸= 0 can be safely avoided for any discretized
Gross–Neveu or Nambu–Jona-Lasinio models, such that Monte Carlo techniques [79] could also be
applied to the present problem, and extensions thereof.

3.2. Large-N benchmark via matrix product states

In this section, we test the above large-N prediction for the single-favor GNW lattice model using
numerical routines based on matrix product states (MPS) [14] (i.e. a variational version of real-space
density-matrix renormalization group method [80]). On the one hand, this can be considered as the
most stringent test of the validity of the large-N approach, as we are indeed very far from the large-N
limit. On the other hand, the choice of N = 1 is also motivated by the fact that the single-flavor
GNWmodel can be realized in cold-atom experiments following the scheme of Section 2.3 described
below. Note that the N = 1 flavor of the continuum Gross–Neveu QFT (2) with an additional mass
term corresponds to the so-called massive Thirring model [81]. The discretization of this QFT using
the Wilson approach allows us to discuss the occurrence of symmetry-protected topological phases
in this LFT, and use it to benchmark the large-N predictions for the phase diagram of the GNWmodel
with a finite number of flavors.

3.2.1. High-energy physics to condensed matter mapping
We consider the GNW lattice Hamiltonian (3)–(5) for a single fermion flavor N = 1. By performing

a U(1) gauge transformation to the spinors Ψ (x) → e−i π2a xΨ (x), which can be understood as an
instance of a Kawamoto–Smit phase rotation in LFTs [82], and using the algebraic properties of the
gamma matrices, we can rewrite H̃W → H̃W = a

∑
x∈Λℓ

: H̃W:, where

H̃W =Ψ †(x)
(

−
γ 5

2a
+ i

rγ 0

2a

)
Ψ (x + a)+ H.c.

+Ψ †(x)
(
m +

r
a

)
γ 0Ψ (x) −

g2

2N

(
Ψ †(x)γ 0Ψ (x)

)2
.

(56)
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Fig. 7. Scheme for the Wilson-fermion kinetic energy: (a) The spinor index of the fermionic field can be pictured as the legs
of a virtual ladder ℓ ∈ {u, d}, which connects the GNW model to the imbalanced Creutz–Hubbard ladder (57) after a gauge
transformation. Fermions can hop diagonally between the legs of the ladder with a tunneling strength −t× = −1/2a (black
crossed lines), and horizontally along the legs of the ladder with a tunneling strength −th = ±i/2a that is complex due to
an external magnetic π-flux −th = −ei

∫
dlAext(x)/2a (green horizontal lines). The yellow circles stand for an energy imbalance

±∆ε/2 = ±(m + 1/a) between the upper and lower legs. (b) In the cold-atom implementation, the legs of the synthetic
ladder correspond to a couple of hyperfine states σ ∈ {↑,↓}, such that the original GNWmodel (3)–(5) is similar to the Creutz–
Hubbard ladder (a) but with different tunneling strengths −t× = i/2a (black crossed lines), and −th = ±1/2a (green lines),
which preserves the overall π-flux around square plaquettes. (c) Using a different choice for the gamma matrices γ 0

= σ x ,
γ 5

= σ y , the discretization yields a much simpler tunneling for r = 1. The kinetic energy consists only of diagonal td = 1/a
(black lines) and vertical tv = (m + 1/a) (yellow lines) hoppings . (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

In this notation, the Hamiltonian looks similar to the Hubbard model [83], a paradigm of strongly-
correlated electrons in condensed matter [84], with an additional spin–orbit coupling. Note that this
formulation only differs from Eqs. (3)–(5) on the particular distribution of the complex tunnelings,
which can be understood as a gauge transformation on a background magnetic field maintaining an
overall π-flux. Indeed, the defining property of the above Kawamoto–Smit phases is that they yield a
π-flux through an elementary plaquette.

In order to understand the origin of this magnetic flux, let us introduce the following notation for
the Dirac spinor Ψ (x) = (cu(x), cd(x))t → (ci,u, ci,d)t/

√
a for N = 1. Here, the dimensionless fermion

operators ci,ℓ depend on a spinor index ℓ ∈ {u, d} that can be interpreted in terms of the upper (ℓ = u)
and lower (ℓ ∈ d) legs of a synthetic ladder, and i ∈ {1, . . . ,Ns} labels the positions of the rungs of
the ladder (see Fig. 7(a)). Considering our particular choice of gammamatrices γ 5

= σ x, γ 0
= σ z , the

corresponding Hamiltonian H̃W for the chosen Wilson parameter r = 1 can be rewritten as

HW =
−1
2a

∑
i,ℓ

(
c†
i,ℓci+1,ℓ̄

− isℓc
†
i,ℓci+1,ℓ + H.c.

)
+

∑
i,ℓ

((
m +

1
a

)
sℓc

†
i,ℓci,ℓ +

g2

2a
c†
i,ℓc

†
i,ℓ̄
c
i,ℓ̄
ci,ℓ

)
,

(57)

where we have introduced sℓ = +1 (sℓ = −1) for the upper ℓ = u (lower ℓ = d) leg of the ladder,
and ℓ̄ = d, u for ℓ = u, d. As can be seen in Fig. 7(a), there is a net π-flux due to an Aharonov–Bohm
phase that the fermion would pick when tunneling around an elementary plaquette.

In particular, Eq. (57) can be understood as a generalizedHubbardmodel on a ladder corresponding
to the imbalanced Creutz–Hubbardmodel [68], which is an interacting version of the so-called Creutz
ladder [85,86]. The first line in Eq. (57) describes the horizontal and diagonal tunneling of fermions
with strength t̃ = 1/2a, which are subjected to an external magnetic π-flux threading the ladder (see
Fig. 7(a)). One thus finds that the UV cutoff of the GNWmodelΛ = 1/a is provided by the maximum
energy within the band structure Λ = 2t̃ of the Creutz–Hubbard model. Likewise, one understands
that the first term in the second line of Eq. (57) corresponds to an energy imbalance between both
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Fig. 8. Finite-size scaling for the quantum phase transitions of the Gross–Neveu–Wilson model: (a) (Main panel) Rescaling of
the pseudoscalar condensateΠ0a = ⟨Ψ̄ iγ 5Ψ ⟩awith a power of the number of lattice sites Nβ/νs as a function of the bare mass
ma. Assuming Ising critical exponents β = 1/8 and ν = 1, we find a crossing for different lengths, signaling the critical point
mca between the trivial band insulator and the Aoki phase. (Inset) Collapse of the data around the critical point, showing that
the choice of Ising critical exponents leads to the correct universality. (b) Same as (a), but studying the finite-size scaling of
the pseudoscalar condensate as a function of the interactions g2 . The corresponding critical point g2

c describes the transition
between the SPT phase and the Aoki phase with Ising exponents β = 1/8 and ν = 1. (c) The transition between the trivial
band insulator and the SPT phase is captured by the divergence of the susceptibility.

legs of the ladder ∆ε/2 = (m + 1/a), and yields a single-particle Hamiltonian in momentum space
that is similar to Eq. (6), namely

hCH
k =

(
∆ε

2
+ 2t̃ sin k

)
γ 0

− 2t̃ cos kγ 5. (58)

Finally, the last term of Eq. (57) amounts to a Hubbard-type density–density interaction Vvnn,unn,d
between fermions residing on the same rung of the ladder, which repel themselves with a strength
Vv = g2/a.

According to this discussion, the high-energy-physics GNW lattice model is gauge equivalent
to the condensed-matter imbalanced Creutz–Hubbard model. Similarly to the high-energy physics
convention of working with dimensionless parameters m/Λ = ma and g2, the condensed-matter
community normalizes the couplings to the tunneling strength t̃ , such that the exact relation between
the microscopic parameters of these two models is

ma =
∆ε

4t̃
− 1, g2

=
Vv

2t̃
. (59)

Let us also note that, in the condensed-matter context, the lattice constant d of the model (57) is fixed
by the underlying Bravais lattice of the solid, which is typically set to d = 1 in the calculations (58)
(i.e. lattice units). Note, however, that this does not preclude us from taking the continuum limit. In
this case, the continuum limit corresponds to the low-energy limit, where t̃ = 1/2a (i.e. UV cutoff)
is much larger than the energy scales of interest. By setting the model parameters in the vicinity of
a second-order quantum phase transition, the relevant length scales fulfill ξl ≫ d, and one recovers
universal features that are independent of the microscopic lattice details, and can be described by a
continuum QFT.

3.2.2. Phase diagram of the N = 1 Gross–Neveu–Wilson model
In this section, we exploit the above mapping (59) to explore the phase diagram of the N = 1

latticeGNWmodel by importing someof the condensed-matter andquantum-information techniques
described in [68]. In particular, we will use the numerical matrix-product-state results to benchmark
the large-N predictions. We remark that this mapping also becomes very useful in the reverse
direction, as certain aspects of the Creutz–Hubbard model become clarified from the high-energy
perspective of the GNWmodel.

In the parameter regime ∆ε/4t̃ < 1, which corresponds to a bare mass −ma ∈ [0, 1], we found
that the imbalanced Creutz–Hubbard model displays three distinct phases: an orbital paramagnet, an
orbital ferromagnet, and an SPT phase [68]. The orbital paramagnet corresponds to a gapped phase of
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matter that is characterized by the absence of long-range order and any topological feature. Therefore,
this phase should correspond to the trivial band insulator of the GNWmodel in Fig. 1.

The orbital ferromagnet, on the other hand, is a phase displaying an Ising-type long-range order
due to the spontaneous breaking of a discrete orbital symmetry. Accordingly, it should correspond
to the parity-broken Aoki phase of the Gross–Neveu model in Fig. 1. To show this correspondence
in more detail, let us comment on the orbital magnetization introduced for the Creutz–Hubbard
ladder T0 = ⟨T y

i ⟩ =
1
2 ⟨ic

†
i,uci,d⟩ + c.c. ̸= 0 ∀i, and show that it is related to an order parameter of

the GNW model. The parity symmetry of the GNW model that is broken in the Aoki phase, namely
Ψ (x) → ηIN ⊗ γ 0Ψ (−x) with |η|2 = 1, corresponds to ci,u → ηcNs−i,u, and ci,d → −ηcNs−i,d in
the Creutz–Hubbard ladder. Hence, one finds that T0 = ⟨T y

i ⟩ → −⟨T y
Ns−i⟩ = −T0 is spontaneously

broken by the orbital ferromagnet. We thus see that, in the language of the synthetic Creutz–Hubbard
ladder, the pseudoscalar condensate corresponds to an Ising-type ferromagnetwith a non-zero orbital
magnetization T0 = −Π0a/2 = −⟨Ψ iγ 5Ψ ⟩a/2. This connection also teaches us that one can perform
a rigorous finite-size scaling of the pseudoscalar condensate to obtain accurate predictions of the
critical lines enclosing the whole Aoki phase, instead of using the various mappings discussed in [68].

Finally, as shown explicitly in [68], the Creutz–Hubbard ladder also hosts a correlated SPT phase,
which displays a double-degenerate entanglement spectrum [87] due to a couple of zero-energy edge
modes. This phase should thus corresponds to the BDI symmetry-protected topological phase of the
GNWmodel discussed throughout this work (see Fig. 1). Let us remark, however, that the topological
insulator of the Creutz–Hubbard model lies in the symmetry class AIII, breaking explicitly the time-
reversal T and charge-conjugation C symmetries, yet maintaining the sublattice symmetry. According
to our discussion below Eq. (12), we see that the Creutz–Hubbard single-particle Hamiltonian breaks
T: γ 0(hCH

−k)
∗γ 0

̸= hCH
k , and C: γ 5(hCH

−k)
∗γ 5

̸= −hCH
k , explicitly. On the other hand, the combination

S = TC yields (γ 1)†hCH
k γ

1
= −hCH

k , such that the topological insulator of the Creutz–Hubbard ladder is
in theAIII symmetry class. Therefore, the last element of our high-energy physics to condensed-matter
dictionary is themapping between the symmetry classes BDI ↔ AIII, which is a direct consequence of
the above local gauge transformation/Kawamoto–Smit phase rotation. Although differences will arise
regarding perturbations that explicitly break/preserve the corresponding symmetries (e.g. disorder),
the phase diagram of the translationally-invariant GNW model should coincide exactly with that of
the Creutz–Hubbard ladder provided that one uses the relation between microscopic parameters in
Eq. (59).

With this interesting dictionary for the correspondence of phases, and the microscopic parameter
mapping in Eq. (59),we canuse numericalmatrix-product-state simulations, extending the parameter
regime studied in [68] from ∆ε/4t̃ < 1 to −1 < ∆ε/4t̃ < 1. In this way, we can explore the
full phase diagram of the N = 1 GNW model, and compare it to our previous large-N predictions
for −ma ∈ [0, 2]. Let us recall that the large-N approach fulfills (28), such that the obtained phase
diagrams have a mirror symmetry about −ma = 1. However, it is not clear a priori if this symmetry
is a property of the model, or if it is instead rooted in the approximations of the large-N prediction.
We will be able to address this question with our new matrix-product-state simulations.

In Fig. 8(a)–(b), we discuss a representative example of the finite-size scaling of the pseudoscalar
condensateΠ0 = ⟨Ψ iγ 5Ψ ⟩ for the transition between the trivial, or topological, band insulators and
the Aoki phase. One clearly sees that the matrix-product-state numerical simulations for different
lengths display a crossing that gives access to the critical point (main panel of Fig. 8(a)–(b)), and
that the data collapse of (inset of Fig. 8(a)–(b)) corroborates that this critical point lies in the Ising
universality class. Note that the pseudoscalar condensate gives no information about the phase
transition between the trivial and topological insulators. In order to access this information, the
mapping to the Creutz–Hubbard ladder becomes very useful, as it points to the possibility of using
a generalized susceptibility associated to the variation of the scalar condensate σ0 = ⟨ΨΨ ⟩ with the
bare mass χσ0 = ∂σ0/∂m. As shown in the main panel of Fig. 8(c), this susceptibility diverges at the
critical point of the thermodynamic limit, and can be used to perform a finite-size scaling.

Repeating this procedure for various critical points, we obtain the red empty circles displayed
in Fig. 9, which are compared with the large-N results of Fig. 1 represented as solid lines. We can
thus conclude that the large-N predictions are qualitatively correct, as they predict the same three
possible phases, and the shape of the critical lines is qualitatively similar to the matrix-product-state
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Fig. 9. Phase diagram from matrix-product-state methods: The red circles represent the critical points of the N = 1 Gross–
Neveu lattice model obtained with matrix product states. The semi-transparent green lines joining these points delimit
the trivial band insulator, Aoki phase, and the BDI symmetry-protected topological phase. Note again that this SPT phase
corresponds to the AIII topological insulator of the Creutz–Hubbard model. These lines are labeled by N = 1, and by the central
charge c ∈ {1/2, 1}of the conformal field theory that controls the continuumQFT at criticality. These results serve to benchmark
the large-N predictions for the critical lines, which are represented by dark solid lines, and labeled with ‘‘N = ∞’’. We also
include the exact critical point at (−ma, g2) = (1, 4), which is depicted by an orange star, and the strong-coupling critical lines
that become exact in the limit of g2

→ ∞, which are depicted by dashed orange lines. The matrix-product-states predictions
match remarkably well these exact results. . (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

prediction. Moreover, the agreement between the critical lines becomes quantitatively correct in the
weak-coupling limit g2, |ma| ≪ 1, which is the regime where the asymptotically-free Gross–Neveu
QFT (1) is expected to emerge from the latticemodel. Since both themass and the interaction strengths
are relevant perturbations growingwith the renormalization-group transformations, one expects that
a continuum limit with physical parameters well below the UV cutoff can be recovered provided that
g2, |ma| ≪ 1. Let us also remark that the matrix-product-state simulations are consistent with the
mirror symmetry about−ma = 1 of the large-N gap equations. Therefore, it seems that this symmetry
is an intrinsic property of the GNW model, which is easy to understand in the non-interacting limit,
but not so obvious in the interacting case. On general grounds, Fig. 9 shows that the large-N prediction
tends to overestimate the extent of the Aoki phase, predicting that the spontaneous breaking of the
parity symmetry occurs for weaker interactions and smaller masses. This trend could be improved
by considering next-to-leading-order (NLO) corrections to the saddle-point solution, and will be the
subject of a future study. In this sense, our results suggest that large-N methods from a high-energy
context can be a useful and systematic tool to study problems of correlated symmetry-protected
topological phases in condensed matter.

We now comment on further interesting features that can be learned from this dictionary, and
imported from condensed matter into the high-energy physics context. In Fig. 9, we have highlighted
with a semi-transparent orange star the critical point separating the topological and Aoki phases at
(−ma, g2) = (1, 4). This point corresponds to a Creutz–Hubbard model with vanishing imbalance
∆ε = 0, and strong repulsion Vv = 8t̃ . Interestingly, it is precisely at this point that an exact quantum
phase transition is found by mapping the Creutz–Hubbard ladder onto an exactly-solvable quantum
impurity Ising-type model via the so-called maximally-localized Wannier functions [68]. In this way,
one learns that the lattice GNWmodel can be solved exactly for a particular limitwith relatively strong
couplings, and that the corresponding quantum phase transition must lie in the Ising class. From a
high-energy perspective, the whole critical line separating the topological and Aoki phases should be
controlled by the continuum QFT of a Majorana fermion, and not by the standard Dirac-fermion QFT
expected atweak couplings (i.e. along the critical line separating the topological and trivial insulators).
We have proved this rigorously using the numerical scaling of the entanglement entropy [88], which
shows that this critical line is characterized by a central charge c ≈ 1/2 in agreement with the
conformal field theory of a massless Majorana fermion. Conversely, at weak couplings, the scaling
of the entanglement entropy yields a central charge c ≈ 1 in agreement with the massless Dirac
fermion (see Fig. 10).

Let us now discuss the orange dashed line of Fig. 9, which describes an exact solution that becomes
valid in the strong-coupling limit g2

≫ 1. From the parameter correspondence (59), this regime
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Fig. 10. Scaling of the block entanglement entropy : Entanglement entropy Sℓ = −Tr{ρℓ log ρℓ} for a ℓ-sites block reduced
densitymatrixρℓ = TrNs−ℓ{|gs⟩⟨gs|} obtained froma chain ofNs = 128 sites. The blue, red, and yellow crosses correspond to the
data for the critical points (−ma, g2) = (1.5787, 1.5), (−ma, g2) = (1.1182, 5), and (−ma, g2) = (1.125, 3.775), respectively.
The solid lines correspond to the fittings with the conformal field theory predictions Sℓ =

c
6 log(Dℓ) + a, where c is the central

charge, a a non-universal constant, and Dℓ = 2Ns sin(πℓ/Ns)/π is the chord distance. The fitted central charges are c = 1.02,
c = 0.503, and c = 0.49.

corresponds to the strongly-interacting Hubbard model, where one expects to find super-exchange
interactions between the fermions [89]. In this case, these super-exchange can be described in terms
of an orbital Ising model with ferromagnetic coupling J = −2/g2a, and subjected to a transverse
magnetic field B = 2(m + 1/a). According to the exact solution of the transverse Ising model [90],
the strong-coupling critical line J = 2B corresponds to g2

= 1/2(ma + 1). This line, and its mirror
image, have been depicted by the orange dashed lines of Fig. 9, and shows a very good agreement
with the numerical critical points of the GNW model at strong-couplings g2

≫ 1. Since the strong-
coupling mapping yields a transverse Ising model, we learn again that the corresponding continuum
QFT at criticality is that of a Majorana fermion, which is corroborated again by the matrix-product-
state scaling of the entanglement entropy yielding a central charge of central charge c ≈ 1/2 (see
Fig. 10). Therefore, the condensed-matter mapping teaches us that the GNW lattice model has an
exact solution in the strong-coupling limit, and both critical lines delimiting the Aoki phase lead to
a continuum limit controlled by a Majorana-fermion QFT. These results show that condensed-matter
methods can offer a useful and systematic tool to benchmark large-N methods applied to problems of
asymptotically-free LFTs in a high-energy context. In future works, we will study leading order 1/N
corrections to the present large-N approach, and see how fast they approach the exact and quasi-exact
results for the phase diagram discussed in this section.

3.3. Cold-atom Gross–Neveu–Wilson model

In this section, we describe possible routes for the cold-atom realization of the lattice GNWmodel
starting from Eqs. (13)–(15). At this stage, we could simply build on the mapping to the Creutz–
Hubbard ladder (57) to adopt the quantum simulation scheme recently proposed in [68]. However,
this would lead to an SPT phase in a different symmetry class, so we will now focus on the cold-
atom quantum simulation of the original GNW Hamiltonian (3)–(5). Moreover, as discussed below,
the original arrangement of tunnelings can simplify the experimental requirements.

Therefore, in this section, we describe in detail the scheme based on a two-component σ = {↑,↓}

single-species Nsp = 1 Fermi gas in a state-independent optical lattice (13)–(15). The internal states
can be interpreted as a synthetic dimension [91], such that the target GNW Hamiltonian density

H̃W =Ψ †(x)
(

−i
γ 5

2a
−

rγ 0

2a

)
Ψ (x + a)+ H.c.

+Ψ †(x)
(
m +

r
a

)
γ 0Ψ (x) −

g2

2N

(
Ψ †(x)γ 0Ψ (x)

)2
.

(60)

can be depicted using the scheme of Fig. 7(b).
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As usual [48], one makes use of the Wannier functions localized around x0i =
∑

ν(π/kL,ν)iνeν ,
where i is a vector of integers labeling the optical lattice minima, to transform the Fermi fields as
Ψσ (x) =

∑
iw(x − x0i )fi,σ , where we have eliminated the species index from the lattice annihilation

operators fi,σ . Assuming that the optical lattice is much deeper along two axes V0,y, V0,z ≫ V0,x ≫ ER,
the dynamics for the time-scale of interest occurs along the x-axis, and can be described by aHubbard-
type model

H = −t
∑
i,σ

(
f †
i,σ fi+1,σ + H.c.

)
+

U
2

∑
i

∑
σ ,σ ′

f †
i,σ f

†
i,σ ′ fi,σ ′ fi,σ

+

∑
i,σ

(εσ +∆i)f †
i,σ fi,σ +

∑
i,j

∑
σ ,σ ′

v
i,j
σ ,σ ′ (t)f

†
j,σ ′ fi,σ .

(61)

Here, the terms of the first line corresponds to the standard tunneling with t = 4ER(V0,x/ER)3/4

e−2(V0,x/ER)1/2 , and on-site interactions U =
√
8/πkL,xa↑↓ER(V0,xV0,yV0,z/E3

R)
1/4 of the cold-atom

Hubbard model [48]. In addition to these terms, the second line contains the internal energies εσ ,
and a static gradient∆ that comes from the so-called lattice acceleration [92], i.e. the detuning of the
optical-lattice beams is modified linearly in time, yielding a linear gradient (i.e. constant force) in the
lattice reference frame. The remaining terms vi,j

σ ,σ ′ (t) in Eq. (61) stem from the pairs of laser beams
in a Raman configuration (14), which need to be exploited such that the tunneling dynamics of the
atoms corresponds to Fig. 7(b).

First of all, the bare tunneling must be inhibited by the gradient t ≪ ∆. Then, the inter-leg
tunnelings of Fig. 7(b) (crossed black lines) can be laser-assisted by a Raman pair [93], which also
leads to the energy imbalance terms (yellow loops). We set (i) the Raman frequencies to ∆ω1 =

(ε↑ − ε↓) + ∆ + ∆ε/2, and ∆ω2 = (ε↓ − ε↑) + ∆ − ∆ε/2, where ∆ε is small detuning, (ii) the
two-photon Rabi frequencies (phases) toΩ1 = Ω2 =: Ω (ϕ1 = ϕ2 =: ϕ), and (iii) the corresponding
Raman wave-vectors to ∆k1 · ex = ∆k2 · ex = 0. In a rotating frame, the Raman-assisted tunneling
arising from the corresponding vi,j

σ ,σ ′ (t) term contributes with

HR,1 =
∆ε

2

∑
i

(
f †
i,↑fi,↑ − f †

i,↓fi,↓
)

+

∑
i

Ωe
−

√
V0,x
ER
(
eiϕ f †

i,↑fi+1,↓ + eiϕ f †
i,↓fi+1,↑ + H.c.

)
,

(62)

which contains precisely the desired crossed tunnelings for ϕ = π/2, and the energy imbalance of
Fig. 7(b).

In order to engineer the horizontal tunneling of Fig. 7(b) (green lines), we shall make use of a
third Raman pair, but this time far detuned from the atomic transition ∆ω3 ≪ (ε↑ − ε↓). In this
situation, when the corresponding laser intensities areweak, the Raman term leads to a crossed-beam
ac-Stark shift that can be interpreted as slowly-moving shallow optical lattice that acts as a periodic
modulation of the on-site energies

Hm(t) =

∑
i

Ωσ cos(∆k3 · x0i −∆ω3t + ϕ3)f
†
i,σ fi,σ , (63)

whereΩσ is the two-photon ac-Stark shift for each of the hyperfine levels, which can be controlled by
tuning the intensity and polarization of the lasers. We set (i) the Raman frequency in resonance with
the gradient ∆ω3 = ∆ ≪ (ε↑ − ε↓); (ii) the Raman wave-vector to ∆k3 · ex = kL,x with respect to
the static optical lattice; and (iii) the Raman phase ϕ3 = 0. In a rotating frame, the atoms can absorb
energy from this shallow moving lattice, such that the horizontal tunneling gets reactivated [94,95],
according to

HR,2 = H = −t
∑
i,σ

J1

(
Ωσ

∆

)(
f †
i,σ fi+1,σ + H.c.

)
, (64)
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where we have introduced the nth order Bessel function of the first class Jn(x). According to this
expression, we can laser-assist the horizontal hopping with the desired signs of Fig. 7(b) by exploiting
the state-dependence of the dressed tunneling rates, and setting

J1

(
Ω↑

∆

)
= −J1

(
Ω↓

∆

)
. (65)

This can be achieved, while simultaneouslymaximizing the dressed tunneling, by settingΩ↑ = 3∆ ≈

0.6Ω↓.
Let us note that the cross-tunneling (62) will also get a multiplicative renormalization due to this

periodic modulation (63), which will be proportional to J0((Ω↑ +Ω↓)/∆). This dressing is similar to
the effect exploited for the so-called coherent destruction of tunneling [96]. To achieve the relation of
the tunnelings of Fig. 7(b), one should modify the Rabi frequency of the Raman beamsΩ , such that

Ωe
−

√
V0,x
ER J0

(
Ω↑ +Ω↓

∆

)
= tJ1(Ω↑), (66)

although we note that there might be other strategies to fulfill both constraints (65)–(66) simultane-
ously. Altogether, considering also Hubbard interactions, the correspondence between the cold-atom
and the Gross–Neveu parameters is

1
a

= 2tJ1

(
Ω↑

∆

)
, m = ∆ε − 2tJ1

(
Ω↑

∆

)
,

g2

a
= U↑↓. (67)

As announced at the beginning of this section, this scheme provides a slight simplification over
the proposal for the Creutz–Hubbard model [68], which required the use of an intensity-modulated
superlattice, instead of the shallow moving lattice (63) already implemented in experiments [95].
At this point, we comment on an interesting alternative that would simplify considerably the cold-
atom scheme. As realized recently [70], a different choice of the gamma matrices γ 0

= σ x, γ 5
= σ y,

simplifies considerably the tunneling of Eq. (60), since iγ 5
+ rγ 0

= 2σ+ for a Wilson parameter
r = 1, where we have introduced the raising operator σ+

= |↑⟩⟨↓|. Accordingly, the kinetic energy
of the Wilson fermions can be depicted by the scheme of Fig. 7(c). Let us note that the BDI symmetry
class can be readily understood by realizing that the synthetic ladder of this figure can be deformed
into a single chain with dimerized tunnelings, and thus corresponds to the Su–Schrieffer–Hegger BDI
topological insulator [97].

This representation was exploited in [70] to propose a cold-atom realization of quantum electro-
dynamics withWilson fermions in (1+1) dimensions (i.e. Schwinger model). In that case, one should
introduce a bosonic species to simulate the gauge field, and exploit the spin-changing boson–fermion
atomic scattering to obtain the gauge-invariant tunneling of the lattice gauge theory. In our case, the
required experimental tools are already contained in our previous description and, more importantly,
can be considerably simplifiedwith respect to the above discussion. The vertical tunnelings of Fig. 7(c)
can be obtained from a Raman pair with ∆ω1 = (ε↑ − ε↓), whereas the diagonal tunnelings require
another pair of Raman beams with ∆ω2 = (ε↓ − ε↑) + ∆, but no additional periodic modulations
would be required. Therefore, if no additional disorder is to be considered, which could depend on the
particular symmetry class and choice of gamma matrices, this later approach should be followed for
the cold-atom experiment, as it simplifies the experimental requirements for the quantum simulation
of the GNWmodel.

Let us finally comment on another interesting alternative. The non-interacting Creutz ladder
has been recently realized in multi-orbital optical-lattice experiments [98] that exploit two orbital
states of the optical lattice to encode the legs of the ladder, and orbital-changing Raman transitions
to implement the inter-leg tunnelings. It would be interesting to study the type of multi-orbital
interactions [99] that can be generated in this setup, and the possibility of simulating directly the
GNWmodel studied in this work.
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4. Conclusions and outlook

In thiswork,we have described the existence of correlated symmetry-protected topological phases
in a discretized version of the Gross–Neveu model. We have applied large-N techniques borrowed
from high-energy physics, complemented with the study of topological invariants from condensed
matter, to unveil a rich phase diagram that contains a wide region hosting a BDI topological insulator.
This region extends to considerably strong interactions, and must thus correspond to a strongly-
correlated symmetry-protected topological phase.Wehave shown that this phase, and the underlying
topological invariant, can be understood in terms of the renormalization of Wilson masses due to
interactions (i.e. dynamicmass generation due to a scalar fermionic condensate). This renormalization
has been used to find a critical line at weak couplings that separates the topological insulator from a
gapped phase that can be adiabatically deformed into a trivial product state (i.e. trivial band insulator).
Moreover, we have shown that for sufficiently-strong interactions, a gapped phase where parity
symmetry is spontaneously broken (i.e. Aoki phase) is formed due to the appearance of a pseudoscalar
fermion condensate. The large-N prediction has allowed us to find the critical line separating the
topological insulator from the Aoki phase by studying the onset of the pseudoscalar condensate, and
show that it terminates at a tri-critical point where all these three phases of matter coexist.

By using both Hamiltonian and Euclidean lattice approaches, we have been able to pinpoint
important details that must be carefully considered when taking the time-continuum limit of the
lattice approaches, such that standard methods of lattice field theories can be used to describe
quantitatively the phase diagram of the Gross–Neveu–Wilson Hamiltonian. In particular, we have
described how lattice artifacts can appear in the standard dimensionless formulation of the Euclidean
field theory, and how the spurious time doublers, even when residing at the cutoff of the theory,
can renormalize the bare parameters and introduce qualitative modifications to the layout of the
phases. The results hereby presented will serve as the starting point for the application of other well-
established Euclidean lattice techniques to explore the phenomenology of leading-order corrections
that appear for finite N .

Motivated by the possibility of implementing a cold-atom quantum simulator of the Gross–
Neveu–Wilson model for a single flavor N = 1, which has also been described in this work, we
have benchmarked these large-N predictions by means of quasi-exact numerical methods based
on matrix product states. In particular, we have shown that the single-flavor model, corresponding
to a discretized version of the massive Thirring model, can also be mapped into a condensed-
matter Hamiltonian of spinless fermions hopping on a two-leg ladder, and interacting via Hubbard-
type couplings. This connection has allowed us to identify the phases of the Gross–Neveu–Wilson
model, discussed above, with condensed-matter counterparts that include orbital paramagnets and
ferromagnets, as well as a chiral-unitary topological phase. In this way, the matrix-product-state
simulations can readily access a variety of observables to determine the position of the critical lines,
which show a remarkable qualitative agreement with the large-N predictions that becomes even
quantitative in the region where the continuum Gross–Neveu QFT is expected to emerge (i.e. weak
couplings). These numerical simulations also prove that the symmetry of the large-N phase diagram
holds for N = 1, and should then be maintained at all orders O(1/Nα). Beyond the matrix-product-
state simulations, the aforementioned mapping has allowed us to import exact results for the Gross–
Neveu–Wilson model in the regime of intermediate and strong couplings, which originate from
quantum-impurity and quantum magnetism techniques in condensed matter.

Therefore, we believe that our work constitutes an example of the useful dialogue and exchange
of ideas between the high-energy physics, condensed-matter, quantum-information, and quantum
optics communities, stimulating further cross-disciplinary efforts in the future. As an outlook, one
can easily foresee that lattice field-theory techniques to study leading-order corrections to the
large-N behavior will be very useful to elucidate the mechanism that induces strong correlations in
the symmetry-protected topological phase of the Gross–Neveu–Wilson model. Likewise, quantum-
information approaches might be useful to understand the entanglement content of those phases,
making a connection to the lattice field-theory techniques. As already pointed out by the Euclidean
lattice results, new phases of the Gross–Neveu–Wilson model can arise as one moves away from
half-filling. It will be very interesting to explore the nature of these phases using some of the high-
energy and condensed-matter techniques hereby discussed. We also note that the techniques hereby
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presented can be generalized to other lattice Hubbard-type models, not necessarily connected to
well-known relativistic QFTs. In particular, it will be very interesting to apply them to the study of
higher-dimensional models hosting topological phases of matter. In this context, Aoki phases have
been identified in the limit of very-strong Coulomb interactions via strong-coupling techniques of
lattice gauge theories [35,74]. These results have been used to conjecture the qualitative shape of the
phase diagram in the regime of weak to intermediate interactions [74], which is expected to be more
relevant for the understanding of correlation effects in topological insulating materials.
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