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Realistic applications in metal detection involve multiple inhomogeneous-
conducting permeable objects, and the aim of this paper is to characterise such
objects by polarizability tensors. We show that, for the eddy current model, the
leading order terms for the perturbation in the magnetic field, due to the pres-
ence of N small conducting permeable homogeneous inclusions, comprises of
a sum of N terms with each containing a complex symmetric rank 2 polariz-
ability tensor. Each tensor contains information about the shape and material
properties of one of the objects and is independent of its position. The asymp-
totic expansion we obtain extends a previously known result for a single isolated
object and applies in situations where the object sizes are small and the objects
are sufficiently well separated. We also obtain a second expansion that describes
the perturbed magnetic field for inhomogeneous and closely spaced objects,
which again characterises the objects by a complex symmetric rank 2 tensor.
The tensor's coefficients can be computed by solving a vector valued transmis-
sion problem, and we include numerical examples to illustrate the agreement
between the asymptotic formula describing the perturbed fields and the numeri-
cal prediction. We also include algorithms for the localisation and identification
of multiple inhomogeneous objects.
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1 INTRODUCTION

There is considerable interest in being able to locate and characterise multiple conducting permeable objects from mea-
surements of mutual inductance between a transmitting and a receiving coil, where the coupling is inductive. An obvious
example is in metal detection where the goal is to identify and locate the multiple objects present in a low conducting
background. Applications include security screening, archaeological digs, ensuring food safety as well as the search for
land mines, and unexploded ordnance and land mines. Other applications include magnetic induction tomography for
medical imaging applications and monitoring of corrosion of steel reinforcement in concrete structures.

In all these practical applications, the need to locate and distinguish between multiple conducting permeable inclusions
is common. This includes benign situations, such as coins and keys accidentally left in a pocket during a security search
or a treasure hunter becoming lucky and discovering a hoard of Roman coins, as well as threat situations, where the
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risks need to be clearly identified from the background clutter. For example, in the case of searching for unexploded land
mines, the ground can be contaminated by ring-pulls, coins, and other metallic shrapnel, which makes the process of
clearing them very slow as each metallic object needs to be dug up with care. Furthermore, conducting objects are also
often inhomogeneous and made up of several different metals. For instance, the barrel of a gun is invariably steel while
the frame could be a lighter alloy, jacketed bullets have a lead shot and a brass jacket, and modern coins often consist of
a cheaper metal encased in nickel or brass alloy. Thus, in practical metal detection applications, it is important to be able
to describe both multiple objects and inhomogeneous objects.

Magnetic polarizability tensors (MPTs) hold considerable promise for the low-cost characterisation in metal detection.
An asymptotic expansion describing the perturbed magnetic field due to the presence of a small conducting permeable
object has been obtained by Ammari, Chen, Chen, Garnier, and Volkov,1 which characterises the object in terms of a rank
4 tensor. Ledger and Lionheart have shown that this asymptotic expansion simplifies for orthonormal coordinates and
allows a conducting permeable object to be characterised by a complex symmetric rank 2 MPT with an explicit expression
for its six coefficients.2 Ledger and Lionheart have also investigated the properties of this tensor,3 and they have written
the article4 to explain these developments to the electrical engineering community as well as to show how it applies in
several realistic situations. In a previous study,5 they have obtained a complete asymptotic expansion of the magnetic
field, which characterises the object in terms of a new class of generalised magnetic polarizability tensors (GMPTs); the
rank 2 MPT being the simplest case. The availability of an explicit formula for the MPT's coefficients, and its improved
understanding, allows new algorithms for object location and identification to be designed, eg, in an existing study.6

Electrical engineers have applied MPTs to a range of practical metal detection applications, including walk through
metal detectors, in line scanners, and demining, eg, previous studies,7-13 see also our article4 for a recent review but without
knowledge of the explicit formula described above. Engineers have made a prediction of the form of the response for
multiple objects, eg, existing study14 but without an explicit criteria on the size or the distance between the objects in order
for the approximation to hold. Grzegorczyk, Barrowes, Shubitidze, Fernández, and O'Neill have applied a time domain
approach to classify multiple unexploded ordinance using descriptions related to MPTs.15 Davidson, Abel-Rehim, Hu,
Marsh, O'Toole, and Peyton have made measurements of MPTs for inhomogeneous US coins16 and Yin, Li, Withers, and
Peyton have also made measurements to characterise inhomogeneous aluminium/carbon-fibre reinforced plastic sheets.17

But, in all cases, without an explicit formula.
Our work has the following novelties: Firstly, we characterise rigidly joined collections of different metals (ie, metals

touching or held in that configuration by a nonconducting material) by MPTs overcoming a deficiency of our previous
work. Secondly, we find that the frequency spectra of the eigenvalues of the real and imaginary parts of the MPT for
an inhomogeneous object exhibit multiple nonstationary inflection points and maxima, respectively, and the number of
these gives an upper bound on the number of materials making up the object. To achieve this, we revisit the asymptotic
formula of Ammari et al1 and our previous work2 and extend it to treat multiple objects by describing the perturbed
magnetic field as a sum of terms involving the MPTs associated with each of the inclusions. We also provide a criteria
based on the distance between the objects, which determines the situations in which the expression will hold. We derive
a second asymptotic expansion that describes the perturbed magnetic field in the case of inhomogeneous objects and, as a
corollary, this also describes the magnetic field perturbation in the case of closely spaced objects. In each case, we provide
new explicit formulae for the MPTs. We also present algorithms for the localisation and characterisation of objects, which
extends those for the isolated object case.1

The paper is organised as follows: In Section 2, the characterisation of a single homogeneous object is briefly reviewed.
Section 3 presents our main results for characterising multiple and inhomogeneous objects by MPTs. Sections 4 and 5
contain the details of the proofs for our main results. In Section 6, we present numerical results to demonstrate the
accuracy of the asymptotic formulae and presents results of algorithms for the localisation and identification of multiple
(inhomogeneous) objects.

2 CHARACTERISATION OF A SINGLE CONDUCTING PERMEABLE OBJECT

We begin by recalling known results for the characterisation of a single homogenous conducting permeable object. Fol-
lowing previous works,1,2 we describe a single inclusion by B𝛼 ∶= 𝛼B + z, which means that it can be thought of a
unit-sized object B located at the origin, scaled by 𝛼 and translated by z. We assume the background is nonconducting
and nonpermeable and introduce the position dependent conductivity and permeability as

𝜎𝛼 =
{

𝜎∗ in B𝛼

0 in Bc
𝛼
, 𝜇𝛼 =

{
𝜇∗ in B𝛼

𝜇0 in Bc
𝛼
,
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where 𝜇0 is the permeability of free space and Bc
𝛼 ∶= R3∖B𝛼 . For metal detection, the relevant mathematical model is the

eddy current approximation of Maxwell's equations since 𝜎∗ is large and the angular frequency 𝜔 = 2𝜋f is small (see
Ammari, Buffa, and Nédélec18 for a detailed justification). Here, the electric and magnetic interaction fields, E𝛼 and H𝛼 ,
respectively, satisfy the curl equations

∇ × H𝛼 = 𝜎𝛼E𝛼 + J0, ∇ × E𝛼 = i𝜔𝜇𝛼H𝛼, (1)

in R3 and decay as O(|x|−1) for |x| → ∞. In the above equation, J0 is an external current source with support in Bc
𝛼 . In

absence of an object, the background fields E0 and H0 satisfy (1) with 𝛼 = 0. The task is to find an economical description
for the perturbed magnetic field (H𝛼 − H0)(x) due to the presence of B𝛼 , which characterises the object's shape and
material parameters by a small number of parameters separately to its location z. For x away from B𝛼 , the leading order
term in an asymptotic expansion for (H𝛼 − H0)(x) as 𝛼 → 0 has been derived by Ammari et al.1 We have shown that this
reduces to the simpler form2,4*

(H𝛼 − H0)(x)i = (D2
xG(x, z))i𝑗([𝛼B])𝑗k(H0(z))k + (R(x))i

= 1
4𝜋r3 (3r̂ ⊗ r̂ − I)i𝑗([𝛼B])𝑗k(H0(z))k + (R(x))i. (2)

In the above, G(x, z) ∶ = 1∕(4𝜋|x−z|) is the free space Laplace Green's function, r ∶= x−z, r = |r| and r̂ = r∕r and I is
the rank 2 identity tensor. The term R(x) quantifies the remainder, and it is known that |R| ⩽ C𝛼4||H0||W2,∞(B𝛼). The result
holds when 𝜈 ∶= 𝜎∗𝜇0𝜔𝛼

2 = O(1) (this includes the case of fixed 𝜎∗, 𝜇∗, 𝜔 as 𝛼 → 0) and requires that the background
field be analytic in the object. Note that (2) involves the evaluation of the background field within the object (usually at
it's centre), ie, H0(z).

The complex symmetric rank 2 tensor [𝛼B] ∶= −[𝛼B] + [𝛼B] in this asymptotic expansion, which depends on 𝜔,
𝜎∗, 𝜇∗∕𝜇0, 𝛼 and the shape of B, but is independent of z, is the MPT, and its coefficients can be computed from

([𝛼B])𝑗k ∶= − i𝜈𝛼3

4
e𝑗 · ∫B

𝝃 × (𝜽k + ek × 𝝃)d𝝃, (3a)

( [𝛼B])𝑗k ∶= 𝛼3
(

1 − 𝜇0

𝜇∗

)
∫B

(
e𝑗 · ek +

1
2

e𝑗 · ∇𝜉 × 𝜽k

)
d𝝃. (3b)

These, in turn, rely on the vectoral solutions 𝜽k, k = 1, 2, 3, to the transmission problem

∇𝜉 × 𝜇−1
∗ ∇𝜉 × 𝜽k − i𝜔𝜎∗𝛼2𝜽k = i𝜔𝜎∗𝛼2ek × 𝝃 in B, (4a)

∇𝜉 · 𝜽k = 0, ∇𝜉 × 𝜇−1
0 ∇𝜉 × 𝜽k = 𝟎 in Bc ∶= R

3∖B̄, (4b)

[n × 𝜽k]Γ = 𝟎, [n × 𝜇−1∇𝜉 × 𝜽k]Γ = −2[𝜇−1]Γn × ek on Γ ∶= 𝜕B, (4c)

𝜽k = O(|𝝃|−1) as |𝝃| → ∞, (4d)

where [·]Γ denotes the jump of the function over Γ and 𝝃 is measured from an origin chosen to be in B. In an existing
study,3 we have presented numerical results for the frequency behaviour of the coefficients of  for a variety of simply
and multiply connected objects. These have been obtained by applying an hp-finite element method to solve (4) for 𝜽k,
k = 1, 2, 3 and then to compute  using (3). Our previously presented results have exhibited excellent agreement with
for MPTs previously presented in the electrical engineering literature. Pratical applications of the asymptotic formula
have been discussed in another study.4

3 MAIN RESULTS

The asymptotic formula given in (2) is for a single isolated homogenous object. But, as described in the introduction, for
realistic metal detection scenarios, measurements of the perturbed magnetic field often relate to field changes caused by
the presence of multiple objects or inhomogeneous objects. The purpose of this work is to extend the description to the

*In order to simplify notation, we drop the double check on  and the single check on , which was used in2 to denote two and one reduction(s) in
rank, respectively. We recall that  = ()𝑗ke𝑗 ⊗ ek by the Einstein summation convention where we use the notation ej to denote the jth unit vector.
We will denote the jth component of a vector u by u · ej = (u)j and the j, kth coefficient of a rank 2 tensor  by 𝑗k.
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FIGURE 1 Illustration of a typical situation of N = 3 objects with B𝜶 = ∪N
n=1(B𝛼)(n) = 𝛼(n)B(n) + z(n) such that they are not closely spaced

where each object (B𝛼)(n) is a sphere, 𝛼(n) is the radius of the nth sphere, z(n) describes the translation of the nth sphere from the origin, and
B = B(1) = B(2) = B(3) is a unit sphere positioned at the origin

cases of well separated multiple homogeneous objects and inhomogeneous objects. As a result of corollary, our second
main result also describes the case of objects that of objects that are closely spaced. Below, we summarise the main results
of our paper.

3.1 Multiple homogeneous objects that are sufficiently well spaced
We consider N homogenous-conducting permeable objects of the form (B𝛼)(n) = 𝛼(n)B(n) +z(n) † with Lipschitz boundaries
where, for the nth object, B(n) denotes a corresponding unit sized object located at the origin, 𝛼(n) denotes the object's
size, and z(n) the object's translation from the origin. The union of all objects is B𝜶 ∶= ∪N

n=1(B𝛼)(n) where we use a bold
subscript 𝜶 to denote the possibility that each object in the collection can have a different size. We also employ the same
notation for the fields E𝜶 and H𝜶 , which satisfy (1). An illustration of a typical configuration is shown in Figure 1. In this
figure, there are N = 3 objects, which are the spheres (B𝛼)(n) = 𝛼(n)B(n) + z(n), n = 1, 2, 3, where, for the nth object, 𝛼(n) is
its size (here its radius), and z(n) is its translation from the origin. In the presented case, B = B(1) = B(2) = B(3) is a unit
sphere located at the origin although, in practice, the objects do not need to have the same shape.

We generalise the definitions of 𝜇𝛼 and 𝜎𝛼 previously stated in Section 2 to

𝜎𝜶 =
{

𝜎
(n)
∗ in (B𝛼)(n)

0 in Bc
𝜶

, 𝜇𝜶 =
{

𝜇
(n)
∗ in (B𝛼)(n)

𝜇0 in Bc
𝜶

,

where Bc
𝜶 ∶= R3∖B𝜶 and set 𝜎min ⩽ 𝜎

(n)
∗ ⩽ 𝜎max and 𝜇min ⩽ 𝜇

(n)
∗ ⩽ 𝜇max for n = 1,… ,N. We introduce 𝜈min ⩽ 𝜈(n) ∶=

𝜔𝜇0𝜎
(n)
∗ (𝛼(n))2 ⩽ 𝜈max and set 𝛼min = min

n=1,… ,N
𝛼(n), 𝛼max = max

n=1,… ,N
𝛼(n) and require that the parameters of the inclusions be

such that
𝜈max = O(1),

which implies that 𝜈(n) = O(1).
The task is then to provide a low-cost description of (H𝜶 − H0)(x) for x away from B𝜶 . This is accomplished through

the following result.

Theorem 3.1. For the arrangement B𝜶 of N homogeneous conducting permeable objects (B𝛼)(n) = 𝛼(n)B(n) + z(n) with
min

n,m=1,… ,N,n≠m
|𝜕(B𝛼)(n)−𝜕(B𝛼)(m)| ⩾ 𝛼max and parameters such that 𝜈(n) = O(1) , the perturbed magnetic field at positions

x away from B𝜶 satisfies

(H𝜶 − H0)(x)i =
N∑

n=1
(D2

xG(x, z(n)))i𝑗([𝛼(n)B(n)])𝑗k(H0(z(n)))k + (R(x))i, (5)

where |R(x)| ⩽ C𝛼4
max||H0||W2,∞(B

𝜶
),

†Note no summation over n is implied.
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uniformly in x in any compact set away from B𝜶 . The coefficients of the complex symmetric MPTs [𝛼(n)B(n)] =
−[𝛼(n)B(n)] +  [𝛼(n)B(n)], n = 1,… ,N, can be computed independently for each of the objects 𝛼(n)B(n) using the
expressions

([𝛼(n)B(n)])𝑗k ∶= − i𝜈(n)(𝛼(n))3

4
e𝑗 · ∫B(n)

𝝃(n) × (𝜽(n)k + ek × 𝝃(n))d𝝃(n), (6a)

( [𝛼(n)B(n)])𝑗k ∶= (𝛼(n))3

(
1 − 𝜇0

𝜇
(n)
∗

)
∫B(n)

(
e𝑗 · ek +

1
2

e𝑗 · ∇𝜉 × 𝜽(n)k

)
d𝝃(n). (6b)

These, in turn, rely on the vectoral solutions 𝜽(n)k , k = 1, 2, 3, to the transmission problem

∇𝜉 × (𝜇(n)
∗ )−1∇𝜉 × 𝜽(n)k − i𝜔𝜎(n)

∗ (𝛼(n))2𝜽
(n)
k = i𝜔𝜎(n)

∗ (𝛼(n))2ek × 𝝃(n) in B(n), (7a)

∇𝜉 · 𝜽(n)k = 0, ∇𝜉 × 𝜇−1
0 ∇𝜉 × 𝜽(n)k = 𝟎 in (B(n))c, (7b)

[n × 𝜽(n)k ]Γ(n) = 𝟎 on Γ(n), (7c)

[n × 𝜇−1∇𝜉 × 𝜽(n)k ]Γ(n) = −2[𝜇−1]Γ(n)n × ek on Γ(n), (7d)

𝜽
(n)
k = O(|𝝃(n)|−1) as |𝝃(n)| → ∞, (7e)

where (B(n))c ∶= R3∖B(n), Γ(n) ∶= 𝜕B(n) and 𝝃(n) is measured from an origin chosen to be in B(n).

Proof. The result follows from by using a tensor representation of the asymptotic formula in Theorem 4.8, which is an
extension of Theorem 3.2 obtained in a previous work1 for N sufficiently well-spaced objects. A tensor representation
of this result leads to each of the N objects being characterised by a rank 4 tensor. Then, by considering each object
in turn and repeating the same arguments as in Theorem 3.1 in another study,2 which exploits the skew symmetries
of the tensor coefficients, the result stated in (5) is obtained. The symmetry of [𝛼(n)B(n)] follows from repeating the
arguments in Lemma 4.4 in the previous study.2

Corollary 3.2. For the case of N = 1 then B𝜶 becomes B𝛼 , H𝜶 becomes H𝛼 , and Theorem 3.1 reduces to the case of a
single homogenous object as obtained in previous works1,2 and described in Section 2.

3.2 Single inhomogeneous object
In this case, B𝛼 ∶=

⋃N
n=1 B(n)

𝛼 = 𝛼
⋃N

n=1 B(n) + z = 𝛼B + z describes a single object comprised of N constitute parts, B(n)
𝛼 ,

such that there is a single common size parameter 𝛼, the configuration B contains the origin, and z is a single translation,
as illustrated in Figure 2. Notice that for the inhomogeneous case, we use B(n)

𝛼 rather than (B𝛼)(n) as 𝛼 is the same for all
n, and we revert to the use of nonbold 𝛼 subscripts for the fields E𝛼 and H𝛼 , which satisfy (1).

FIGURE 2 Illustration of a typical situation of an inhomogeneous object consisting of N = 3 subdomains such that the complete object is
B𝛼 = ∪N

n=1B(n)
𝛼 = 𝛼 ∪N

n=1 B(n) + z = 𝛼B + z
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The material parameters of the constitute parts of the object B𝛼 are

𝜎𝛼 =

{
𝜎
(n)
∗ in B(n)

𝛼

0 in Bc
𝛼

, 𝜇𝛼 =

{
𝜇
(n)
∗ in B(n)

𝛼

𝜇0 in Bc
𝛼

,

where Bc
𝛼 ∶= R3∖B𝛼 , and we drop the subscript 𝛼 on 𝜇 and 𝜎 when considering the object B. We redefine 𝜈min ⩽ 𝜈(n) ∶=

𝜔𝜇𝜎
(n)
∗ 𝛼2 ⩽ 𝜈max with the same requirements on 𝜈max as before.

The task is then to provide a low-cost description of (H𝛼 − H0)(x) for x away from B𝛼 . This is accomplished through
the following result.

Theorem 3.3. For an inhomogeneous object, B𝛼 = 𝛼B + z made up of N constitute parts with parameters such that
𝜈min ⩽ 𝜈(n) ⩽ 𝜈max the perturbed magnetic field at positions x away from B𝛼 satisfies

(H𝛼 − H0)(x)i = (D2
xG(x, z))i𝑗( [𝛼B])𝑗k(H0(z))k + (R(x))i, (8)

where |R(x)| ⩽ C𝛼4||H0||W2,∞(B𝛼),

uniformly in x in any compact set away from B𝛼 . The coefficients of the complex symmetric MPT  [𝛼B] = − [𝛼B] +
 [𝛼B] are given by

( [𝛼B])𝑗k ∶= − i𝛼3

4

N∑
n=1

𝜈(n)e𝑗 · ∫B(n)
𝝃 × (𝜽k + ek × 𝝃)d𝝃, (9a)

( [𝛼B]
)
𝑗k ∶= 𝛼3

N∑
n=1

(
1 − 𝜇0

𝜇
(n)
∗

)
∫B(n)

(
e𝑗 · ek +

1
2

e𝑗 · ∇𝜉 × 𝜽k

)
d𝝃, (9b)

which, in turn, rely on the vectoral solutions 𝜽k, k = 1, 2, 3, to the transmission problem

∇𝜉 × 𝜇−1∇𝜉 × 𝜽k − i𝜔𝜎𝛼2𝜽k = i𝜔𝜎𝛼2ek × 𝝃 in B, (10a)

∇𝜉 · 𝜽k = 0, ∇𝜉 × 𝜇−1
0 ∇𝜉 × 𝜽k = 𝟎 in Bc ∶= R

3∖B, (10b)
[n × 𝜽k]Γ = 𝟎, [n × 𝜇−1∇𝜉 × 𝜽k]Γ = −2[𝜇−1]Γn × ek on Γ, (10c)

𝜽k = O(|𝝃|−1) as |𝝃| → ∞, (10d)

where 𝝃 is measured from the centre of B and, in this case, Γ ∶= 𝜕B ∪ {𝜕B(n) ∩ 𝜕B(n),n,m = 1, … ,N,n ≠ m}.

Proof. The result follows from by using a tensor representation of the asymptotic formula in Theorem 5.3, which is
an extension of Theorem 3.2 obtained in the previous research1 for an homogeneous object to the inhomogeneous
case. Using a tensor representation of this result leads to the object being characterised in terms of a rank 4 tensor.
Then, by repeating the same arguments as in Theorem 3.1 in another study,2 which exploits the skew symmetries
of the tensor coefficients, the result stated in (8) is obtained. The symmetry of [𝛼B] follows from repeating the
arguments in Lemma 4.4 in the previous study.2

Corollary 3.4. For the case of N = 1 then B𝛼 becomes B𝛼 and Theorem 3.3 reduces to the case of a single homogenous
object as obtained in existing works1,2 and described in Section 2.

Corollary 3.5. Theorem 3.3 also immediately applies to objects that are closely spaced and, in this case, B𝛼 = 𝛼B + z
implies a single size parameter 𝛼 and a single translation z for the configuration B. An illustration of a typical configu-
ration is shown in Figure 3. In this figure, there are N = 3 objects consisting of three spheres configured such that they
scale and translate together according to 𝛼 and z, respectively, and, in this case, B is the combined configuration of three
(larger) spheres with different radii and with centres located away from the origin.

Remark 3.6. The applicability of Theorem 3.3 to closely spaced objects is expected to be limited since, in order to
compute the characterisation, prior knowledge of the multiple object configuration (ie, location and orientation with
respect to each other) is required, which, in practice, will not be the case. The formula also requires that the objects be
closely spaced as there is a single scaling parameter and single translation that describes the configuration, but prior
knowledge of the location of the configuration is not required. Instead, this result is expected to be of more practical
value in the description of inhomogeneous objects where the configuration of the different regions of an object will
be known in advance.
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FIGURE 3 Illustration of a typical situation of N = 3 closely spaced objects of the form B𝛼 =
⋃N

n=1 B(n)
𝛼 = 𝛼

⋃N
n=1 B(n) + z = 𝛼B + z where

each object is a sphere, 𝛼 is a single scaling parameter, z describes their translation of the configuration from the origin

Remark 3.7. The translation invariance of the MPT coefficients described by Ammari et al's Proposition 5.2 6 and the
tensor transformation rules described in the proof of Theorem 3.1 in the previous study 2 carry over immediately to
the rank 2 MPTs defined in (6) and (9).

4 RESULTS FOR THE PROOF OF THEOREM 3.1

4.1 Elimination of the current source
Recall from the previous research1 that

X𝜶(R3) ∶ =

{
u ∶ u√

1 + |x|2 ∈ L2(R3)3,∇ × u ∈ L2(R3)3,∇ · u = 0 in Bc
𝜶

}
,

X̃𝜶(R3) ∶ =
{

u ∶ u ∈ X𝜶(R3), ∫Γ
𝜶

u · n|+dx = 0
}

,

and the weak solution for the interaction field is: Find E𝜶 ∈ X̃𝜶 such that

a𝛼(E𝜶 , v) = (J0, v)R3 = (J0, v)supp (J0) ∀v ∈ X̃𝜶 ,

where (·, ·)Ω denotes the standard L2 inner product over Ω. In a departure from the previous study,1 we have, for multiple
objects, that

a(u, v) ∶= (𝜇−1
0 ∇ × u,∇ × v)Bc

𝜶

+ (𝜇−1
𝜶 ∇ × u,∇ × v)B

𝜶
− i𝜔(𝜎𝜶u, v)B

𝜶
.

Noting that the weak solution for the background field is: Find E0 ∈ X̃𝜶 such that

(𝜇−1
0 ∇ × E0,∇ × v)R3 = (J0, v)supp (J0) ∀v ∈ X̃𝜶 ,

we can write: Find E𝜶 ∈ X̃𝜶 such that

a(E𝜶 , v) = (𝜇−1
0 ∇ × E0,∇ × v)R3 ∀v ∈ X̃𝜶 ,

which eliminates the current source. We also obtain that

(𝜇−1
0 ∇ × (E𝜶 − E0),∇ × v)Bc

𝜶

+ (𝜇−1
𝜶 ∇ × (E𝜶 − E0),∇ × v)B

𝜶

− i𝜔(𝜎𝜶(E𝜶 − E0), v)B
𝜶
= ((𝜇−1

𝜶 − 𝜇0)∇ × E0,∇ × v)B
𝜶

+ i𝜔(𝜎𝜶E0, v)B
𝜶
. (11)
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4.2 Energy estimates
In the existing work,1 a vector field F(x) was introduced such that its curl is equal to the first two terms of Taylor's series
expansion of ∇ × E0 about z for |x− z| → 0 for the case of a single object B𝛼 . This was possible as the current source J0 is
supported away from the object and so H0(x) = 1

i𝜔𝜇0
∇ × E0(x) is analytic where the expansion is applied. We extend this

to the multiple object case by requiring that J0 be supported away from B𝜶 and introduce the following for n = 1,… ,N

F(n)(x) = 1
2
(∇z × E0(z))(z(n)) × (x − z(n)) + 1

3
Dz(∇z × E0(z))(z(n))(x − z(n)) × (x − z(n)),

∇ × F(n)(x) = (∇z × E0(z))(z(n)) + Dz(∇z × E0(z))(z(n))(x − z(n)),

so that

F(n)(x) = i𝜔𝜇0

2
H0(z(n)) × (x − z(n)) + i𝜔𝜇0

3
Dz(H0(z))(z(n))(x − z(n)) × (x − z(n)),

∇ × F(n)(x) = i𝜔𝜇0
(

H0(z(n)) + Dz(H0(z))(z(n))(x − z(n))
)
.

In other words, ∇ × F(n)(x) is the first two terms in a Taylor series of i𝜔𝜇0H0(x) about z(n) as |x − z(n)| → 0 and so

||i𝜔𝜇0H0(x) − ∇ × F(n)||L∞((B𝛼)(n)) ⩽ C(𝛼(n))2||∇ × E0||W2,∞((B𝛼)(n)),||i𝜔𝜇0H0(x) − ∇ × F(n)||L2((B𝛼)(n)) ⩽ C(𝛼(n))
3
2 ||i𝜔𝜇0H0(x) − ∇ × F(n)||L∞((B𝛼)(n))

⩽ C(𝛼(n))
7
2 ||∇ × E0||W2,∞((B𝛼)(n)), (12)

where here and in the following C denotes a generic constant unless otherwise indicated.

Remark 4.1. Higher order Taylor series could be considered (as previously in another study5 for the case of a sin-
gle object) and lead to a more accurate representation of the field in terms of GMPTs. However, in order for such a
representation to apply, there will be further implications in the allowable distance between the objects.

The introduction of F(n)(x) motivates the introduction of the following problem: Find w(n) ∈ X̃𝜶 such that

(𝜇−1
0 ∇ × w(n),∇ × v)((B𝛼)(n))c + ((𝜇(n)

∗ )−1∇ × w(n),∇ × v)(B𝛼)(n) − i𝜔(𝜎(n)
∗ w(n), v)(B𝛼)(n)

= ((𝜇−1
0 − (𝜇(n)

∗ )−1)∇ × F(n),∇ × v)(B𝛼)(n) + i𝜔(𝜎(n)
∗ F(n), v)(B𝛼)(n) ∀v ∈ X̃𝜶 , (13)

where ((B𝛼)(n))c ∶= R3∖(B𝛼)(n). By the addition of such problems, we have

(
𝜇−1

0 ∇ × w,∇ × v)Bc
𝜶

+ (𝜇−1
𝜶 ∇ × w𝜶 ,∇ × v)B

𝜶
− i𝜔(𝜎𝜶w𝜶 , v)B

𝜶

+
N∑

n,m=1
(𝜇−1

0 ∇ × w(m)(1 − 𝛿mn),∇ × v)(B𝛼)(n) = ((𝜇−1
0 − (𝜇−1

𝜶 ))∇ × F𝜶 ,∇ × v)B
𝜶

+ i𝜔(𝜎𝜶F𝜶 , v)B
𝜶
, (14)

where w ∶=
∑N

n=1 w(n), w𝜶 = w(n) in (B𝛼)(n) and F𝜶 = F(n) in (B𝛼)(n).
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We also remark that associated with (13) is the strong form

∇ × (𝜇(n)
∗ )−1∇ × w(n) − i𝜔𝜎(n)

∗ w(n) = i𝜔𝜎(n)
∗ F(n) in (B𝛼)(n), (15a)

∇ × 𝜇−1
0 ∇ × w(n) = 𝟎 in ((B𝛼)(n))c, (15b)

∇ · w(n) = 0 in ((B𝛼)(n))c, (15c)[
n × w(n)]

(Γ𝛼 )(n)
= 𝟎 on (Γ𝛼)(n) ∶= 𝜕(B𝛼)(n), (15d)[

n × 𝜇−1∇ × w(n)]
(Γ𝛼 )(n)

= −(𝜇−1
0 − (𝜇(n)

∗ )−1)n × ∇ × F(n) on (Γ𝛼)(n), (15e)

w(n) = O(|x|−1) as |x| → ∞, (15f)
which follows from using

(𝜇−1
0 − (𝜇(n)

∗ )−1)(∇ × F(n),∇ × v)(B𝛼)(n) = (𝜇−1
0 − (𝜇(n)

∗ )−1)∫(Γ𝛼)(n)
∇ × F(n) × n · vdx

= ∫(Γ𝛼)(n)

[
𝜇−1∇ × F(n) × n

]
(Γ𝛼 )(n)

· vdx.

Lemma 4.2. For objects (B𝛼)(n) and (B𝛼)(m) with n ≠ m, we have that

||∇ × w(n)||L2((B𝛼)(m)) ⩽ C
𝛼

7
2
max|z(m) − z(n)|2 ||∇ × E0||W2,∞((B𝛼)(n)∪(B𝛼)(m)).

Proof. Introducing 𝝃(n) = x−z(n)

𝛼(n)
, which, without loss of generality, we assume the origin to be in B(n). We set w(n)(x) =

𝛼(n)w(n)
0

(
x−z(n)

𝛼(n)

)
= 𝛼(n)w(n)

0 (𝝃(n)) and so ∇x ×w(n)(x) = ∇𝜉 ×w(n)
0 (𝝃(n)) = ∇𝜉 ×w(n)

0

(
x−z(n)

𝛼(n)

)
. Note that w(n)

0 (𝝃(n)) satisfies

∇𝜉 × (𝜇(n)
∗ )−1∇𝜉 × w(n)

0 − i𝜔𝜎(n)
∗ (𝛼(n))2w(n)

0 = i𝜔𝜎(n)
∗ (𝛼(n))2

[(𝛼(n))−1F(n)(z(n) + 𝛼(n)𝝃(n))] in B(n),
(16a)

∇𝜉 × 𝜇−1
0 ∇𝜉 × w(n)

0 = 𝟎 in (B(n))c, (16b)

∇𝜉 · w(n)
0 = 0 in (B(n))c, (16c)[

n × w(n)
0

]
Γ(n)

= 𝟎 on Γ(n), (16d)[
n × 𝜇−1∇𝜉 × w(n)

0

]
Γ(n)

= − (𝜇−1
0 − (𝜇(n)

∗ )−1)

n × ∇𝜉 × F(n)(z(n) + 𝛼(n)𝝃(n)) on Γ(n),
(16e)

w(n)
0 = O(|𝝃(n)|−1) as |𝝃(n)| → ∞. (16f)

From the above, we have that |w(n)
0 | ⩽ C|𝝃(n)|−1||∇ × E0||W2,∞((B𝛼)(n)) for sufficiently large |𝝃(n)| and so we estimate

that |∇𝜉 × w(n)
0 | ⩽ C|𝝃(n)|−2||∇ × E0||W2,∞((B𝛼)(n)) for the same case. Thus, for m ≠ n,

||∇ × w(n)||L2(B(m)
𝛼 ) =

(
(𝛼(m))3∫B(m)

|||∇x × w(n)(𝛼(m)𝝃(m) + z(m))|||2d𝝃(m)
)1∕2

=

(
(𝛼(m))3∫B(m)

|||||∇𝜉 × w(n)
0

(
𝛼(m)𝝃(m) + z(m) − z(n)

𝛼(n)

)|||||
2

d𝝃(m)

)1∕2

⩽ C(𝛼(m))
3
2
||||z(m) − z(n)

𝛼(n)

||||
−2||∇ × E0||W2,∞((B𝛼)(n))

⩽ C
𝛼

7
2
max||z(m) − z(n)||2 ||∇ × E0||W2,∞((B𝛼)(n)∪(B𝛼)(m)),

where we have used ||∇ × E0||W2,∞((B𝛼)(n)) ⩽ ||∇ × E0||W2,∞((B𝛼)(n)∪(B𝛼)(m)).
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FIGURE 4 Illustration to show how each B(n) can be configured differently provided that the origin lies within the object. Consequently
d(1),(2) = |z(1) − z(2)| will be minimum when the objects B(1) and B(2) are configured such that the origin is a suitable point on the boundaries
of these objects

Corollary 4.3. Given the description (B𝛼)(n) = 𝛼(n)B(n) + z(n), we are free to configure B(n) in different ways provided that
the origin lies at a point in B(n) (similarly with (B𝛼)(m) = 𝛼(m)B(m) + z(m)) . Thus, |z(m) − z(n)| will be smallest when the
origin lies in the boundaries of the objects, as illustrated in Figure 4. Requiring that |z(m) −z(n)| = min

n,m=1,… ,N,n≠m
|𝜕(B𝛼)(n) −

𝜕(B𝛼)(m)| > C > 𝛼max then Lemma 4.2 implies that||∇ × w(n)||L2(B(m)
𝛼 ) ⩽ C𝛼

7
2
max||∇ × E0||W2,∞((B𝛼)(n)∪(B𝛼)(m)).

The following Lemma extends Ammari et al's Lemma 3.2 1 to the case of N multiple objects, when they are sufficiently
well spaced.

Lemma 4.4. Provided that min
n,m=1,… ,N,n≠m

|𝜕(B𝛼)(n) − 𝜕(B𝛼)(m)| ≥ 𝛼max, there exists a constant C such that

||∇ × (E𝜶 − E0 − w(n))||L2((B𝛼)(n)) ⩽ C(𝜈max + |1 − 𝜇−1
r,max|)𝛼 7

2
max||∇ × E0||W2,∞(B

𝜶
),

||(E𝜶 − E0 − (w(n) + Φ(n)))||L2((B𝛼)(n)) ⩽ C(𝜈max + |1 − 𝜇−1
r,max|)𝛼 9

2
max||∇ × E0||W2,∞(B

𝜶
),

for n = 1,… ,N where 𝜇r,max ∶= maxn= 1,… ,N𝜇
(n)
* ∕𝜇0.

Proof. We start by proceeding along the lines presented in1 and introduce Φ(n) =
{

∇𝜙(n)
0 in (B𝛼)(n)

∇𝜙̃(n)
0 in ((B𝛼)(n))c where

−Δ𝜙(n)
0 = −∇ · F(n) in (B𝛼)(n),

−𝜕n𝜙
(n)
0 = (E0(x) − F(n)(x)) · n on (Γ𝛼)(n),

∫(B𝛼)(n)
𝜙𝛼(n)dx = 0,

with 𝜙̃
(n)
0 being the solution of an exterior problem in an analogous way to 𝜙̃0 in the previous study.1 Using (11) and

(14) (and after multiplying by 𝜇0), we can deduce that

A ∶ = (∇ × (E𝜶 − E0 − (w + Φ)),∇ × v)Bc
𝜶

+ (𝜇0𝜇
−1
𝜶 ∇ × (E𝜶 − E0 − (w𝜶 + Φ𝜶)),∇ × v)B

𝜶

− i𝜔𝜇0(𝜎𝜶(E𝜶 − E0 − (w𝜶 + Φ𝜶)), v)B
𝜶

= 𝜇0((𝜇−1
0 − 𝜇−1

𝜶 )∇ × (E0 − F𝜶),∇ × v)B
𝜶

+ i𝜔𝜇0(𝜎𝜶(E0 + Φ𝜶 − F𝜶), v)B
𝜶

+
N∑

n,m=1
(∇ × (w(m) + Φ(m)),∇ × v)(B𝛼)(n) (1 − 𝛿mn) ∀v ∈ X̃𝛼,

(17)
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where Φ =
∑N

n=1 Φ(n) and Φ𝜶 = Φ(n) in (B𝛼)(n). Choosing v = E𝜶 − E0 − (w𝜶 + Φ𝜶) then we have that

||∇ × (E𝜶 − E0 − (w(n) + Φ(n)))||2
L2(B(n)

𝛼 )
⩽ ||∇ × (E𝜶 − E0 − (w𝜶 + Φ𝜶))||2L2(B

𝜶
)

⩽ |A|.
Also, by application of the Cauchy-Schwartz inequality, we can check that|A| ⩽ A1 + A2 + A3, (18)

where
A1 ∶ = |||𝜇0

(
(𝜇−1

0 − 𝜇−1
𝜶 )(∇ × (E0 − F𝜶)),∇ × v

)
B
𝜶

|||
⩽ C max

n=1,… ,N
|1 − (𝜇(n)

r )−1|||∇ × (E0 − F𝜶)||L2(B
𝜶
)||∇ × v||L2(B

𝜶
)

⩽ C|1 − 𝜇−1
r,max|( N∑

n=1
||∇ × (E0 − F(n))||2

L2(B(n)
𝛼 )

)1∕2||∇ × v||L2(B
𝜶
)

⩽ C|1 − 𝜇−1
r,max|𝛼 7

2
max||∇ × E0||W2,∞(B

𝜶
)||∇ × v||L2(B

𝜶
),

(19)

A2 ∶ = ||𝜔𝜇0(𝜎𝜶(E0 + Φ𝜶 − F𝜶), v)B
𝜶

||
⩽ C𝜔𝜇0𝜎max

( N∑
n=1

(
(𝛼(n))||∇ × (E0 − F(n))||L2((B𝛼)(n))

)2
)1∕2

𝛼max||∇ × v||L2(B
𝜶
)

⩽ C𝜈max𝛼
7
2
max

( N∑
n=1

(||∇ × E0||W2,∞((B𝛼)(n))
)2
)1∕2||∇ × v||L2(B

𝜶
)

⩽ C𝜈max𝛼
7
2
max||∇ × E0||W2,∞(B

𝜶
)||∇ × v||L2(B

𝜶
),

(20)

A3 ∶ =
||||||

N∑
n,m=1

(∇ × (w(m) + Φ(m)),∇ × v)B(m)
𝛼
(1 − 𝛿mn)

||||||
⩽ C

( N∑
n,m=1

(1 − 𝛿mn)||∇ × w(m)||L2((B𝛼)(n))

)||∇ × v||L2(B
𝜶
).

(21)

To bound A1 and A2 we have used (12),

||E0 + Φ(n) − F(n)||L2((B𝛼)(n)) ⩽ C𝛼(n)||∇ × (E0 − F(n))||L2((B𝛼)(n)) ⩽ C(𝛼(n))
9
2 ||∇ × E0||W2,∞((B𝛼)(n)), (22)

and applied similar arguments to the previous study.1 The terms A3 does not appear in the single object case and
dictates the minimum spacing for which the bound holds. Requiring that |z(m) − z(n)| = min

n,m=1,… ,N,n≠m
|𝜕B(n) − 𝜕B(m)| >

C > 𝛼max and applying Corollary 4.3 then

A3 ⩽ C𝛼
7
2
max||∇ × E0||W2,∞(B

𝜶
)||∇ × v||L2(B

𝜶
). (23)

Using (19), (20), and (23) in (18) we find that||∇ × (E𝜶 − E0 − (w(n) + Φ(n)))||L2(B(n)
𝛼 ) ⩽ ||∇ × (E𝜶 − E0 − (w𝜶 + Φ𝜶))||L2(B

𝜶
)

⩽ C
(
𝜈max + |1 − 𝜇−1

r,max|) 𝛼 7
2
max||∇ × E0||W2,∞(B

𝜶
),

and by additionally using ||E𝜶 −E0 −(w(n) +Φ(n))||L2(B(n)
𝛼 ) ⩽ 𝛼(n)||∇×(E𝜶 −E0 −(w(n) +Φ(n)))||L2(B(n)

𝛼 ) ⩽ 𝛼max||∇×(E𝜶 −
E0 − (w(n) + Φ(n)))||L2(B(n)

𝛼 ), this completes the proof.

By recalling the definition of w(n)
0 (𝝃) stated in Lemma 4.2, Ammari's et al's Theorem 3.1 1 in the case of multiple

sufficiently well spaced objects becomes
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Theorem 4.5. Provided that min
n,m=1,… ,N,n≠m

|𝜕(B𝛼)(n) − 𝜕(B𝛼)(m)| ⩾ 𝛼max, there exists a constant C such that

‖‖‖‖‖∇ ×
(

E𝜶 − E0 − 𝛼(n)w(n)
0

(
x − z(n)

𝛼(n)

))‖‖‖‖‖L2((B𝛼)(n))
⩽ C(𝜈max + |1 − 𝜇−1

r,max|)
𝛼

7
2
max||∇ × E0||W2,∞(B

𝜶
),‖‖‖‖‖E𝜶 − E0 −

(
𝛼(n)w(n)

0

(
x − z(n)

𝛼(n)

)
+ Φ(n)

)‖‖‖‖‖L2((B𝛼)(n))
⩽ C(𝜈max + |1 − 𝜇−1

r,max|)
𝛼

9
2
max||∇ × E0||W2,∞(B

𝜶
).

Proof. The result immediately follows from Lemma 4.4 and the definition of w(n)
0 .

The expressions for 𝛼(n)F(n)(z(n) + 𝛼(n)𝝃(n)) and w0(𝝃(n)) are obtained by extending in an obvious way the expressions in
given in (3.13) and (3.14) in the previous study1 where the latter is now written in terms of (H0(z(n)))i𝜽

(n)
i (𝝃(n)) as well as

(Dz(H0(z))(z(n)))i𝑗𝝍
(n)
i𝑗 (𝝃(n)) where 𝜽(n)i (𝝃(n)) and 𝝍 (n)

i𝑗 (𝝃(n)) satisfy the transmission problems

∇𝜉 × (𝜇(n)
∗ )−1∇𝜉 × 𝜽(n)i − i𝜔𝜎(n)

∗ (𝛼(n))2𝜽
(n)
i = i𝜔𝜎(n)

∗ (𝛼(n))2ei × 𝝃(n) in B(n), (24a)

∇𝜉 × 𝜇−1
0 ∇𝜉 × 𝜽(n)i = 𝟎 in (B(n))c, (24b)

∇𝜉 · 𝜽(n)i = 0 in (B(n))c, (24c)[
n × 𝜽(n)i

]
Γ(n)

= 𝟎 on Γ(n), (24d)[
n × 𝜇−1∇𝜉 × 𝜽(n)i

]
Γ(n)

= −2[𝜇−1]Γ(n)n × ei on Γ(n), (24e)

𝜽
(n)
i = O(|𝝃(n)|−1) as |𝝃(n)| → ∞, (24f)

and
∇𝜉 × (𝜇(n)

∗ )−1∇𝜉 × 𝝍 (n)
i𝑗 − i𝜔𝜎(n)

∗ (𝛼(n))2𝝍
(n)
i𝑗 = i𝜔𝜎(n)

∗ (𝛼(n))2𝜉
(n)
𝑗

ei × 𝝃(n) in B(n), (25a)

∇𝜉 × 𝜇−1
0 ∇𝜉 × 𝝍 (n)

i𝑗 = 𝟎 in (B(n))c, (25b)

∇𝜉 · 𝝍 (n)
i𝑗 = 0 in (B(n))c, (25c)[

n × 𝝍 (n)
i𝑗

]
Γ(n)

= 𝟎 on Γ(n), (25d)[
n × 𝜇−1∇𝜉 × 𝝍 (n)

i𝑗

]
Γ(n)

= −3[𝜇−1]Γ(n)𝜉
(n)
𝑗

n × ei on Γ(n), (25e)

𝝍
(n)
i𝑗 = O(|𝝃(n)|−1) as |𝝃(n)| → ∞. (25f)

The properties of 𝜽(n)i (𝝃(n)) and 𝝍 (n)
i𝑗 (𝝃(n)) are analogues to the single object case presented in the previous research.1

4.3 Integral representation formulae
Repeating the proof of Lemma 3.3 in the previous study1 for the multiple object case, it extends in an obvious way to

Lemma 4.6. Let D = D(1) ∪ D(2) ∪ … ∪ D(N) be the union of N bounded domains each with Lipschitz boundaries Γ(n)
D

whose outer normal is n. For any E ∈ H−1(curl;R3∖D̄) satisfying ∇ × ∇ × E = 0, ∇ · E = 0 in R3∖D̄, we have, for any
x ∈ R3∖D̄

E(x) =
N∑

n=1

(
−∇x × ∫Γ(n)

D

(E(y) × n)G(x, y)dy − ∫Γ(n)
D

∇𝑦 × (E(y) × n)G(x, y)dy

−∇x∫Γ(n)
D

(E(y) · n)G(x, y)dy

)
.
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In a similar way, repeating the proof of their Lemma 3.4 for multiple objects it extends in an obvious way to

Lemma 4.7. Let H̃𝜶 = H𝜶 − H0. Then for x ∈ Bc
𝜶

(H𝜶 − H0)(x) =
N∑

n=1

(
∫(B𝛼)(n)

∇xG(x, y) × ∇𝑦 × H̃𝜶(y)dy

+

(
1 −

𝜇
(n)
∗

𝜇0

)
∫(B𝛼)(n)

(H𝜶(y) · ∇𝑦)∇xG(x, y)dy

)
.

4.4 Asymptotic formulae
Ammari et al's Theorem 3.21 presents the leading order term in asymptotic expansion for (H𝛼 − H0)(x) for a single
inclusion B𝛼 as 𝛼 → 0. In the case of multiple objects that are sufficiently well spaced, this extends to

Theorem 4.8. For a collection of N objects such that 𝜈(n) is order one, 𝛼(n) is small and minn,m=1,… ,N,n≠m|𝜕(B𝛼)(n) −
𝜕(B𝛼)(m)| > C > 𝛼max then for x away from B𝜶 we have

(H𝜶 − H0)(x) =
N∑

n=1

(
− i𝜈(n)𝛼(n)

2

3∑
i=1

(H0(z(n)))i∫B(n)
D2

xG(x, z(n))𝝃(n) × (𝜽(n)i + ei × 𝝃(n))d𝝃(n)

+ (𝛼(n))3

(
1 − 𝜇0

𝜇
(n)
∗

) 3∑
i=1

(H0(z(n)))iD2
xG(x, z(n))∫B(n)

(
ei +

1
2
∇ × 𝜽(n)i

)
d𝝃(n)

)
+ R(x),

(26)

where 𝜽(n)i is the solution of (24) and |R(x)| ⩽ C𝛼4
max||H0||W2,∞(B

𝜶
), (27)

uniformly in x in any compact set away from B𝜶 .

Proof. The proof uses as its starting point Lemma 4.7 and considers each object (B𝛼)(n) in turn. It applies very similar
arguments to the proof of Ammari et al's Theorem 3.2 1 except Theorem 4.5 is used in place of their Theorem 3.1, (22)
is used in place of their (3.6) and note that

𝜎
(n)
∗ ∫(B𝛼)(n)

∇xG(x, z(n)) ×
(

F(n)(y) + 𝛼(n)w(n)
0

(
y − z(n)

𝛼(n)

))
dy = 𝟎, (28)

by integration by parts. Furthermore, to recover the negative sign in the first term in (26), we have used

∇xG(x, 𝛼(n)𝝃(n) + z(n)) = ∇xG(x, z(n)) − 𝛼(n)D2
xG(x, z(n))𝝃(n) + O((𝛼(n))2), (29)

as 𝛼(n) → 0. Theorem 3.2 1 mistakingly uses ∇xG(x, 𝛼𝝃 + z) = ∇xG(x, z) + 𝛼D2
xG(x, z)𝝃 + O(𝛼2) as 𝛼 → 0, which leads

to the wrong sign in their first term, as previously reported for the single homogenous object case.2

5 RESULTS FOR THE PROOF OF THEOREM 3.3

Recall that in this case, the object is inhomogeneous and is arranged as B𝛼 ∶= ∪N
n=1B(n)

𝛼 = 𝛼 ∪N
n=1 B(n) + z = 𝛼B + z where

𝛼 is a single small scaling parameter and z a single translation.

5.1 Elimination of the current source
The results presented in Section 4.1 hold also in the case when the object is inhomogeneous except the subscript 𝜶 is
replaced by 𝛼.
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5.2 Energy estimates
For an inhomogeneous object, we proceed along similar lines1 and introduce a single vector field F(x) whose curl is such
that it is equal to the first two terms of a Taylor series of i𝜔𝜇0H0(x) expanded about z as |x − z| → 0

F(x) = i𝜔𝜇0

2
H0(z) × (x − z) + i𝜔𝜇0

3
Dz(H0(z))(x − z) × (x − z),

∇ × F(x) = i𝜔𝜇0 (H0(z) + Dz(H0(z))(z)(x − z)) ,

so that ||i𝜔𝜇0H0(x) − ∇ × F||L∞(B𝛼 ) ⩽ C𝛼2||∇ × E0||W2,∞(B𝛼 ),||i𝜔𝜇0H0(x) − ∇ × F||L2(B𝛼 ) ⩽ C𝛼
3
2 ||i𝜔𝜇0H0(x) − ∇ × F||L∞(B𝛼)

⩽ C𝛼
7
2 ||∇ × E0||W2,∞(B𝛼 ).

(30)

The introduction of F(x) motivates the introduction of the following problem: Find w ∈ X̃𝛼 such that

(𝜇−1
0 ∇ × w,∇ × v)Bc

𝛼
+ (𝜇−1

𝛼 ∇ × w,∇ × v)B𝛼
− i𝜔(𝜎𝛼w, v)B𝛼

= ((𝜇−1
0 − (𝜇(n)

∗ )−1)∇ × F,∇ × v)B𝛼
+ i𝜔(𝜎(n)

∗ F, v)B𝛼
∀v ∈ X̃𝛼.

(31)

The following Lemma extends Ammari et al's Lemma 3.2 1 to the case of an inhomogeneous object.

Lemma 5.1. For an inhomogeneous object B𝛼 , there exists a constant C such that

||∇ × (E𝛼 − E0 − w)||L2(B(m)
𝛼 ) ⩽ C(𝜈max + |1 − 𝜇−1

r,max|)𝛼 7
2 ||∇ × E0||W2,∞(B𝛼) (32)

||(E𝛼 − E0 − (w + Φ))||L2(B(m)
𝛼 ) ⩽ C(𝜈max + |1 − 𝜇−1

r,max|)𝛼 9
2 ||∇ × E0||W2,∞(B𝛼 ), (33)

for m = 1,… ,N.

Proof. Here we introduce Φ =
{

∇𝜙0 in B𝛼

∇𝜙̃(n)
0 in Bc

𝛼

where

−Δ𝜙0 = −∇ · F in B𝛼,

−𝜕n𝜙0 = (E0(x) − F(x)) · n on 𝜕B𝛼,

∫B𝛼

𝜙0dx = 0,

with 𝜙̃0 being the solution of an exterior problem in an analogous way to.1 Then, by writing

(∇ × (E𝛼 − E0 − (w + Φ)),∇ × v)Bc
𝛼
− i𝜔𝜇0(𝜎𝛼(E𝛼 − E0 − (w + Φ)), v)B𝛼

+ (𝜇0𝜇
−1
𝛼 ∇ × (E𝛼 − E0 − (w + Φ)),∇ × v)B𝛼

= 𝜇0((𝜇−1
0 − 𝜇−1

𝛼 )∇ × (E0 − F),∇ × v)B𝛼
+ i𝜔𝜇0(𝜎𝛼(E0 + Φ − F), v)B𝛼

,

and proceeding with similar steps,1 where B𝛼 is replaced by B𝛼 , we have

||E0 + Φ − F||L2(B(m)
𝛼 ) ⩽ ||E0 + Φ − F||L2(B𝛼) ⩽ C𝛼||∇ × (E0 − F)||L2(B𝛼 ) ⩽ C𝛼9∕2||∇ × E0||W2,∞(B𝛼), (34)

for m = 1,… ,N and

||∇ × (E𝛼 − E0 − w)||L2(B𝛼 ) ⩽ C(𝜈max + |1 − 𝜇−1
r,max|)𝛼 7

2 ||∇ × E0||W2,∞(B𝛼 ),||(E𝛼 − E0 − (w + Φ))||L2(B𝛼 ) ⩽ C(𝜈max + |1 − 𝜇−1
r,max|)𝛼 9

2 ||∇ × E0||W2,∞(B𝛼 ).

Finally, we use ||∇× (E𝛼 −E0 −w)||L2(𝐵(n)
𝛼 ) ⩽ ||∇× (E𝛼 −E0 −w)||L2(B𝛼) and ||(E𝛼 −E0 − (w+Φ))||L2(B(n)

𝛼 ) ⩽ ||(E𝛼 −E0 −
(w + Φ))||L2(B𝛼), which holds for n = 1,… ,N.
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Introducing, w(x) = 𝛼w0

(
x−z
𝛼

)
= 𝛼w0(𝝃) so that ∇x × w(x) = ∇𝜉 × w0(𝝃) = ∇𝜉 × w0

(
x−z
𝛼

)
we find that w0(𝝃) satisfies

∇𝜉 × 𝜇−1∇𝜉 × w0 − i𝜔𝜎𝛼2w0 = i𝜔𝜎𝛼2(𝛼−1F(z + 𝛼𝝃)) in B, (35a)

∇𝜉 × 𝜇−1
0 ∇𝜉 × w0 = 𝟎 in Bc, (35b)

∇𝜉 · w0 = 0 in Bc, (35c)

[n × w0]Γ = 𝟎 on Γ, (35d)[
n × 𝜇−1∇𝜉 × w0

]
Γ = −[𝜇−1]Γn × ∇ × F(z + 𝛼𝝃) on Γ, (35e)

w0 = O(|𝝃|−1) as |𝝃| → ∞. (35f)

where, for an inhomogeneous object, Γ ∶= 𝜕B ∪ {𝜕B(n) ∩ 𝜕B(n),n,m = 1, … ,N,n ≠ m}.
In this case, Ammari et al's Theorem 3.1 1 becomes

Theorem 5.2. There exists a constant C such that‖‖‖‖∇ ×
(

E𝛼 − E0 − 𝛼w0

(x − z
𝛼

))‖‖‖‖L2(B(m)
𝛼 )

⩽ C(𝜈max + |1 − 𝜇−1
r,max|)𝛼 7

2 ||∇ × E0||W2,∞(B𝛼),‖‖‖‖E𝛼 − E0 −
(
𝛼w0

(x − z
𝛼

)
+ Φ

)‖‖‖‖L2(B(m)
𝛼 )

⩽ C(𝜈max + |1 − 𝜇−1
r,max|)𝛼 9

2 ||∇ × E0||W2,∞(B𝛼),

for m = 1,… ,N, which holds for an inhomogeneous object B𝛼 .

Proof. The result immediately follows from Lemma 5.1 and the definition of w0.

The expressions for 𝛼F(z + 𝛼𝝃) and w0(𝝃) are identical to Ammari et al's (3.13) and (3.14)1 where 𝜽i(𝝃) and 𝝍 ij(𝝃) now
satisfy the transmission problems

∇𝜉 × 𝜇−1∇𝜉 × 𝜽i − i𝜔𝜎𝛼2𝜽i = i𝜔𝜎𝛼2ei × 𝝃 in B, (36a)

∇𝜉 × 𝜇−1
0 ∇𝜉 × 𝜽i = 𝟎 in Bc, (36b)

∇𝜉 · 𝜽i = 0 in Bc, (36c)

[n × 𝜽i]Γ = 𝟎 on Γ, (36d)[
n × 𝜇−1∇𝜉 × 𝜽i

]
Γ = −2[𝜇−1]Γn × ei on Γ, (36e)

𝜽i = O(|𝝃|−1) as |𝝃| → ∞, (36f)

and
∇𝜉 × 𝜇−1∇𝜉 × 𝝍 i𝑗 − i𝜔𝜎𝛼2𝝍 i𝑗 = i𝜔𝜎𝛼2𝜉𝑗ei × 𝝃 in B, (37a)

∇𝜉 × 𝜇−1
0 ∇𝜉 × 𝝍 i𝑗 = 𝟎 in Bc, (37b)

∇𝜉 · 𝝍 i𝑗 = 0 in Bc, (37c)[
n × 𝝍 i𝑗

]
Γ = 𝟎 on Γ, (37d)[

n × 𝜇−1∇ × 𝝍 i𝑗
]
Γ = −3[𝜇−1]Γ𝜉𝑗n × ei on Γ, (37e)

𝝍 i𝑗 = O(|𝝃|−1) as |𝝃| → ∞. (37f)

The properties of 𝜽i(𝝃) and 𝝍 ij(𝝃) are analogues to the homogeneous object case presented in the previous study.1
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5.3 Integral representation formulae
The integral representation formulae presented in Section 4.3 only require (B𝛼)(n) to be replaced by B(n)

𝛼 and H𝜶 to be
replaced by H𝛼 for an inhomogeneous object.

5.4 Asymptotic formulae
Ammari et al's Theorem 3.21 presents the leading order term in asymptotic expansion for (H𝛼 − H0)(x) for a single
homogenous inclusion B𝛼 = 𝛼B + z as 𝛼 → 0. In the case of an inhomogeneous inclusion, this becomes

Theorem 5.3. For an inhomogeneous object B𝛼 such that 𝜈(n) is order one and 𝛼 is small then for x away from B𝛼 , we
have

(H𝛼 − H0)(x) = − i𝛼
2

3∑
i=1

(H0(z))i

N∑
n=1

𝜈(n)∫B(n)
D2

xG(x, z)𝝃 × (𝜽i + ei × 𝝃)d𝝃

+ 𝛼3
3∑

i=1
(H0(z))iD2

xG(x, z)
N∑

n=1

(
1 − 𝜇0

𝜇
(n)
∗

)
∫B(n)

(
ei +

1
2
∇ × 𝜽i

)
d𝝃

+ R(x),

(38)

where 𝜽i is the solution of (36) and |R(x)| ⩽ C𝛼4||H0||W2,∞(B𝛼 ), (39)

uniformly in x in any compact set away from B𝛼 .

Proof. The proof uses as its starting point Lemma 4.7 and considers each region B(n)
𝛼 in turn. It applies similar argu-

ments to the proof of Ammari et al's Theorem 3.21 except that our Theorem 5.2 is used in place of their Theorem 3.1
and our (34) instead of their (3.6). Furthermore, note that by summing contributions, we have that

N∑
n=1

𝜎
(n)
∗ ∫B(n)

𝛼

∇xG(x, z) ×
(

F(y) + 𝛼w0

(y − z
𝛼

))
dy = 𝟎, (40)

by application of integration by parts and, in a similar manner to the proof of Theorem 4.8, we use

∇xG(x, 𝛼𝝃 + z) = ∇xG(x, z) − 𝛼D2
xG(x, z)𝝃 + O(𝛼2), (41)

to give the correct negative sign in the first term of (38).

6 NUMERICAL EXAMPLES AND ALGORITHMS FOR OBJECT
LOCALISATION AND IDENTIFICATION

In this section, we consider an illustrative numerical application of the asymptotic formulae (5) and (8), numerical
examples of the frequency spectra of the MPT coefficients, and propose algorithms for multiple object localisation and
inhomogeneous object identification as extensions of those in another study.6

6.1 Numerical illustration of asymptotic formulae for (H𝛼 − H0)(x)
To illustrate the results in Theorems 3.1 and 3.3, comparisons of (H𝛼 − H0)(x) ‡ will be undertaken with a finite element
method (FEM) solver19 for multiple objects and for inhomogeneous objects. We first show comparisons for two spheres,
then comparisons for two tetrahedra followed by comparisons for an inhomogeneous parallelepiped.

‡We use (H𝛼 − H0)(x) instead of (H𝜶 − H0)(x) (i.e. remove bold on the subscript 𝛼) for Theorem 3.1 throughout this section as the examples with
multiple objects presented have the same object size.
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6.1.1 Two spheres
We first consider the situation of two spheres (B𝛼)(1) and (B𝛼)(2). These objects are defined as

(B𝛼)(1) ∶ =

{
x ∶

(
x1 −

d𝛼(1)

2
− 𝛼(1)

)2

+ x2
2 + x2

3 = (𝛼(1))2

}
,

(B𝛼)(2) ∶ =

{
x ∶

(
x1 +

d𝛼(2)

2
+ 𝛼(2)

)2

+ x2
2 + x2

3 = (𝛼(2))2

}
,

which means that the radii of the objects are 𝛼(1) and 𝛼(2), respectively. Setting B = B(1) = B(2) to be a sphere of unit
radius placed at the origin then

z(1) =
(
−d𝛼(1)

2
− 𝛼(1)

)
e1 + 0e2 + 0e3, z(2) =

(
d𝛼(2)

2
+ 𝛼(2)

)
e1 + 0e2 + 0e3,

are the location of the centroids of the physical objects B(1)
𝛼 and B(2)

𝛼 , respectively. Thus, the objects (B𝛼)(n), n = 1, 2, are
centered about the origin with min |𝜕(B𝛼)(1) − 𝜕(B𝛼)(2)| = 𝛼d. The material properties of the spheres are 𝜎

(1)
∗ = 𝜎

(2)
∗ =

5.66 × 107S/m, 𝜇(1)
∗ = 𝜇

(2)
∗ = 𝜇0, we use 𝜔 = 133.5rad/s and the object sizes are chosen as 𝛼 = 𝛼(1) = 𝛼(2) = 0.01m and

hence [𝛼(1)B(1)] = [𝛼(2)B(2)], independent of their separation, which will be used in Theorem 3.1. For closely spaced
objects, we expect Theorem 3.3 to be applicable, and in this case,we set

B =
2⋃

n=1
B(n) =

{
x ∶

(
x1 −

d
2
− 1

)2

+ x2
2 + x2

3 = 1

}
∪

{
x ∶

(
x1 +

d
2
+ 1

)2

+ x2
2 + x2

3 = 1

}
,

and z = 0. Note that in this case,  [𝛼B] must be recomputed for each new d.
Comparisons of (H𝛼 − H0)(x) obtained from the asymptotic formulae (5) and (8) in Theorems 3.1 and 3.3 as well as

a full FEM solution are made in Figure 5 for d = 0.2 and d = 2 along three different coordinates axes. To ensure the
tensor coefficients were calculated accurately, a p = 3 edge element discretisation and an unstructured mesh of 6581
tetrahedra are used for computing [𝛼(1)B(1)] = [𝛼(2)B(2)] and meshes of 8950, and 11940 unstructured tetrahedral
elements are used for computing  [𝛼B] for d = 0.2 and d = 2, respectively. In addition, curved elements with a
quadratic geometry resolution are used for representing the curved surfaces of the spheres. For these, and all subsequent
examples, the artificial truncation boundary was set to be 100|B|. To ensure an accurate representation of (H𝛼 − H0)(x)
for the FEM solver, the same discretisation, suitably scaled, as used for  [𝛼B] is employed.

For the closely spaced objects, with d = 0.2, we observe good agreement between Theorem 3.3 and the FEM solution
in Figure 5, with all three results tending to the same result for sufficiently large |x|. The improvement for larger |x| is
expected as the asymptotic formulae (5) and (8) are valid for x away from B𝜶 ≡ B𝛼 . For objects positioned further apart,
with d = 2, we observe that the agreement between Theorem 3.1 and the FEM solution is best. This agrees with what
our theory predicts, since, for d = 2, min |𝜕(B𝛼)(1) − 𝜕(B𝛼)(2)| = 2𝛼 > 𝛼max and so this theorem applies.

6.1.2 Two tetrahedra
Next, we consider the case of two tetrahedra where the physical objects (B𝛼)(1) and (B𝛼)(2) are chosen as the tetrahedra with
vertices (−1− d

2
,− 3

8
,− 1

4
), (− d

2
,− 3

8
,− 1

4
), (− d

2
,

5
8
,− 1

4
), (− d

2
,

1
8
,

3
4
), and ( d

2
,− 3

8
,− 1

4
), (1+ d

2
,− 3

8
,− 1

4
), ( d

2
,

5
8
,− 1

4
), ( d

2
,

1
8
,

3
4
), scaled by

𝛼(1) and 𝛼(2) respectively. Thus, the objects (B𝛼)(n), n = 1, 2, are centered about the origin with min |𝜕(B𝛼)(1)−𝜕(B𝛼)(2)| = 𝛼d
and we determine B(n) from (B𝛼)(n) = 𝛼(n)B(n) + z(n) by setting

z(1) = −𝛼(1)
(

1
4
+ d

2

)
e1, z(2) = 𝛼(2)

(
1
4
+ d

2

)
e1,

such that the centroid of B(n) lies at the origin. A typical illustration of the two tetrahedra is shown in Figure 6. The sizes
and materials of (B𝛼)(1) and (B𝛼)(2) are both the same, as in the previous section, but [𝛼(1)B(1)] ≠ [𝛼(2)B(2)] due to
their different shapes, although the MPTs are independent of d. However, note that (B𝛼)(2) = 𝛼(2)Rx((B𝛼)(1))∕𝛼(1) and
B(2) = Mx(B(1)), where
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FIGURE 5 Comparison of (H𝛼 − H0)(x) using the asymptotic expansions (5) and (8) in Theorems 3.1 and 3.1 as well as a FEM solution:
along the three coordinate axes for two spheres with different separations 𝛼d [Colour figure can be viewed at wileyonlinelibrary.com]

Mx =

(−1 0 0
0 1 0
0 0 1

)
,

and since 𝛼 = 𝛼(1) = 𝛼(2) the tensor coefficients transform as

([𝛼(2)B(2)])i𝑗 = (Mx)ip(Mx)𝑗q([𝛼(1)B(1)])pq. (42)

For B = B(1) ∪ B(2), we instead choose B(1) = (B𝛼)(1)∕𝛼(1), B(2) = (B𝛼)(2)∕𝛼(2) and set z = 0.

http://wileyonlinelibrary.com


848 LEDGER ET AL.

FIGURE 6 Two tetrahedra (B𝛼)(1) and (B𝛼)(2) with min |𝜕(B𝛼)(1) − 𝜕(B𝛼)(2)| = 𝛼d [Colour figure can be viewed at wileyonlinelibrary.com]

Comparisons of (H𝛼 − H0)(x) for this case are made in Figure 7 for d = 0.2 and d = 2 along three different coordinates
axes. To ensure the tensor coefficients are calculated accurately, a p = 3 edge element discretisation and unstructured
meshes of 15617 and 15488 tetrahedra are used for computing [𝛼(1)B(1)] and [𝛼(2)B(2)],§ respectively, and meshes of
15837 and 22045 unstructured tetrahedral elements are used for computing  [𝛼B] for d = 0.2 and d = 2, respectively.
To ensure an accurate representation of (H𝛼 − H0)(x) for the FEM solver, the same mesh, suitably scaled, as used for
 [𝛼B] is employed with p = 6.

As in Section 6.1.1, we observe good agreement between Theorem 3.3 and the FEM solution for the closely spaced
objects in Figure 7, with all three results tending to the same result for sufficiently large |x|. For objects positioned further
apart, with d = 2, we observe that the agreement between Theorem 3.1 and the FEM solution is again best, which again
agrees with what our theory predicts, since, for d = 2, min |𝜕(B𝛼)(1) − 𝜕(B𝛼)(2)| = 2𝛼 > 𝛼max, and so this theorem applies.

6.1.3 Inhomogeneous parallelepiped
In this section, an inhomogeneous parallelepiped B𝛼 = B(1)

𝛼 ∪ B(2)
𝛼 = 𝛼(B(1) ∪ B(2)) = 𝛼B with

B(1) = [−1, 0] × [0, 1] × [0, 1], B(2) = [0, 1] × [0, 1] × [0, 1],

is considered. The material parameters of (B𝛼)(1) and (B𝛼)(2) are 𝜇
(1)
∗ = 𝜇0, 𝜎(1)

∗ = 7.37 × 106S/m, and 𝜇
(2)
∗ = 5.5𝜇0, 𝜎(1)

∗ =
1 × 106S/m, respectively.

Comparisons of (H𝛼 − H0)(x) obtained from using the asymptotic expansion (8) in Theorem 3.3 and a full FEM solution
are made in Figure 8 along three different coordinates axes. To ensure the tensor coefficients are calculated accurately,
a p = 3 edge element discretisation and an unstructured mesh of 13121 tetrahedra are used for computing  [𝛼B]. To
ensure an accurate representation of (H𝛼 − H0)(x) for the FEM solver, the same mesh, suitably scaled, as used for  [𝛼B]
is employed with p = 5. We observe a good agreement between Theorem 3.3 and the FEM solution for sufficiently large|x|.
6.2 Frequency spectra
The frequency response of the coefficients of[𝛼B] for a range of single homogeneous objects has been presented in exist-
ing studies3,4 where the real part was observed to be sigmoid with respect to log𝜔 and the imaginary part had a distinctive
single maxima. Rather than consider the coefficients, it is in fact better to split [𝛼B] in to the real part Re([𝛼B]) and
an imaginary part Im([𝛼B]), which are both real symmetric rank 2 tensors, and to compute the eigenvalues of these.
Indeed, many of the objects previously considered had rotational and/or reflection symmetries such that the eigenvalues
coincide with the real and imaginary parts of the diagonal coefficients.

A theoretical investigation of [𝛼B] = Re([𝛼B] − 0[𝛼B]) and [𝛼B] = Im([𝛼B] − 0[𝛼B]) = Im([𝛼B]), where
 0[𝛼B] corresponds to the real symmetric rank 2 tensor describing the limiting response in the case of 𝜔 → 0, and agrees
with the Póyla-Szegö tensor for a homogenous permeable object, has been undertaken.20 In this, we prove results on the
eigenvalues of these tensors.

§[𝛼(2)B(2)] could be alternatively obtained from [𝛼(1)B(1)] by applying (42).
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FIGURE 7 Comparison of (H𝛼 − H0)(x) using the asymptotic expansions (5) and (8) in Theorems 3.1 and 3.3 as well as a FEM solution:
along the three coordinate axes for two tetrahedra with different separations 𝛼d [Colour figure can be viewed at wileyonlinelibrary.com]

Now, considering [𝛼B] for an inhomogeneous object B𝛼 , the coefficients of  0[𝛼B] are given by

 0
i𝑗[𝛼B] ∶= 𝛼3

2

N∑
n=1

(
1 − 𝜇0

𝜇
(n)
∗

)
∫B(n)

(
ei · ∇ × 𝜽(0)

𝑗

)
d𝝃, (43)

where
∇ × 𝜇−1∇ × 𝜽(0)i = 𝟎 in R

3, (44a)

∇ · 𝜽(0)i = 0 in R
3, (44b)[

𝜽
(0)
i × n

]
Γ
= 𝟎 on Γ, (44c)
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FIGURE 8 Comparison of (H𝛼 − H0)(x) using the asymptotic expansion (8) in Theorem 3.3 and a FEM solution: along the three
coordinate axes for an inhomogeneous parallelepiped [Colour figure can be viewed at wileyonlinelibrary.com][

𝜇−1∇ × 𝜽(0)i × n
]
Γ
= 𝟎 on Γ, (44d)

𝜽
(0)
i (𝝃) − ei × 𝝃 = O(|𝝃|−1) as |𝝃| → ∞, (44e)

and we have shown that for 0 ⩽ 𝜔 < ∞, the eigenvalues of [𝛼B] = Re([𝛼B] −  0[𝛼B]) and [𝛼B] = Im([𝛼B] −
 0[𝛼B]) = Im([𝛼B]) have the properties 𝜆([𝛼B]) ⩽ 0 and 𝜆([𝛼B]) ≥ 0 (this also applies to a homogenous objects
where B𝛼 reduces to B𝛼).20

To illustrate how the behaviour of 𝜆([𝛼B]) and 𝜆([𝛼B]) changes for an inhomogeneous object, we consider the geom-
etry of the parallelepiped described in Section 6.1.3 placed at the origin so that B𝛼 = B(1)

𝛼 ∪ B(2)
𝛼 = 𝛼(B(1) ∪ B(2)) = 𝛼B

with 𝛼 = 0.01m. Note that, although B(1)
𝛼 and B(2)

𝛼 have different properties, the object B still reflectional symmetries
in the e1 and e3 axes and a 𝜋∕2 rotational symmetry about e1 so that the independent coefficients of [𝛼B] are 11
and 22 = 33 (and hence 11, 22 = 33 are the independent coefficients of [𝛼B] and 11, 22 = 33 are the
independent coefficients of [𝛼B]). In Figure 9, we show the computed results for 𝜆([𝛼B]) and 𝜆([𝛼B]) for the case
where 𝜎

(2)
∗ = 100𝜎(1)

∗ = 1 × 108S/m and 𝜇
(1)
∗ = 𝜇

(2)
∗ = 𝜇0, and in Figure 10, we show the corresponding result for

𝜎
(1)
∗ = 𝜎

(2)
∗ = 1 × 106S/m and 𝜇

(2)
∗ = 10𝜇(1)

∗ = 10𝜇0. For this, we use similar discretisations to those stated previously. In
the former case,  0[𝛼B] vanishes but not in the latter case.

We observe, in Figure 9, that although 𝜆i([𝛼B]), i = 1,… , 3 are still monotonically decreasing with log𝑓 , it is no
longer sigmoid for an inhomogeneous object with varying 𝜎 and constant 𝜇 and has multiple nonstationary inflection
points. Furthermore, rather than a single maxima, 𝜆i([𝛼B]), i = 1,… , 3 has two distinct local maxima. However, the
results shown in Figure 10 illustrate for an inhomogeneous object with varying 𝜇 and constant 𝜎, 𝜆i([𝛼B]), i = 1,… , 3,
that the behaviour is quite different, and in this case, 𝜆i([𝛼B]), i = 1,… , 3 is still sigmoid and the curves for 𝜆i([𝛼B]),
i = 1,… , 3 still have a single maxima. In the limiting case of 𝜔 → 0, 𝜆i(Re([𝛼B])) → 𝜆i(Re( 0[𝛼B])), i = 1,… , 3 and,
for the latter case with a contrast in 𝜇, the behaviour is as shown in Figure 11, which is quite different to a homogenous
object of the same size.
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FIGURE 9 Frequency dependence of the eigenvalues of [𝛼B] and [𝛼B]: inhomogeneous object parallelepiped up of two cubes with
𝜎
(2)
∗ = 100𝜎(1)

∗ = 1 × 108S/m and 𝜇
(1)
∗ = 𝜇

(2)
∗ = 𝜇0 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 10 Frequency dependence of the eigenvalues of [𝛼B] and [𝛼B]: inhomogeneous parallelepiped made up of two cubes with
𝜎
(2)
∗ = 𝜎

(1)
∗ = 1 × 106S/m and 𝜇

(2)
∗ = 100𝜇(1)

∗ = 100𝜇0 [Colour figure can be viewed at wileyonlinelibrary.com]

To investigate the behaviour of inhomogeneous objects still further, we next consider the inhomogeneous parallelepiped
B𝛼 = B(1)

𝛼 ∪ B(2)
𝛼 ∪ B(3)

𝛼 = 𝛼(B(1) ∪ B(2) ∪ B(3)) = 𝛼B with

B(1) = [−3∕2,−1∕2] × [0, 1] × [0, 1], B(2) = [−1∕2, 1∕2] × [0, 1] × [0, 1],
B(3) = [1∕2, 3∕2] × [0, 1] × [0, 1],

and 𝛼 = 0.01m. To compute [𝛼B], an unstructured mesh of 15 109 tetrahedral elements is generated and p = 4
elements employed. The independent coefficients of [𝛼B] are again 11 and 22 = 33.

In Figure 12, we show 𝜆([𝛼B]) and 𝜆([𝛼B]) for the case where 𝜎(3)
∗ = 100𝜎(2)

∗ = 104𝜎
(1)
∗ = 1×108S/m and 𝜇

(1)
∗ = 𝜇

(2)
∗ =

𝜇
(3)
∗ = 𝜇0, and in Figure 13, we show the corresponding result for 𝜎(1)

∗ = 𝜎
(2)
∗ = 𝜎

(1)
∗ = 1 × 106S/m and 𝜇

(3)
∗ = 10𝜇(2)

∗ =
100𝜇(3)

∗ = 100𝜇0. In the former case,  0[𝛼B] vanishes, but not in the latter case.
We observe, in Figure 12, that 𝜆i([𝛼B]), i = 1,… , 3 is still monotonically decreasing with multiple nonstationary

points of inflection, and 𝜆i([𝛼B]), i = 1,… , 3 now has three distinct local maxima. In Figure 13, we see that 𝜆i([𝛼B]),
i = 1,… , 3 is sigmoid, and 𝜆i([𝛼B]), i = 1,… , 3 has only a single maxima. Unlike Figure 11, we see in Figure 14 that
the low frequency response of 𝜆i(Re(M[𝛼B])), i = 1,… , 3 are different. This is probably due to the fact that the chosen
contrasts in 𝜇 imply that one of the three cubes no longer has a dominant effect over the other two.
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FIGURE 11 Frequency dependence of the eigenvalues of Re([𝛼B]) : inhomogeneous parallelepiped made up of two cubes with
𝜎
(2)
∗ = 𝜎

(1)
∗ = 1 × 106S/m and 𝜇

(2)
∗ = 100𝜇(1)

∗ = 100𝜇0 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 12 Frequency dependence of the eigenvalues of [𝛼B] and [𝛼B]: inhomogeneous parallelepiped made up of three cubes with
𝜎
(3)
∗ = 100𝜎(2)

∗ = 104𝜎
(1)
∗ = 1 × 108S/m and 𝜇

(1)
∗ = 𝜇

(2)
∗ = 𝜇

(3)
∗ = 𝜇0 [Colour figure can be viewed at wileyonlinelibrary.com]

Remark 6.1. The results shown in Figures 9 and 12 indicate that the number of points of nonstationary inflection in
𝜆i([𝛼B]) and the number of local maxima in 𝜆i([𝛼B]) can potentially be used to determine an upper bound on the
number of regions with varying 𝜎 that make up an inhomogeneous object B𝛼 . Note, that contrasts in 𝜎 between the
regions making up the inhomogeneous object have deliberately chosen as large in these examples and we acknowledge
that, for small contrasts, detecting such peaks would be more challenging.

6.3 Object localisation
The approach described by Ammari, Chen, Chen, Volkov, and Wang6 for a single object localisation using multistatic
measurements simplifies given our object characterisation in terms of rank 2 MPT for a single homogenous object and
also easily extends to inhomogeneous and multiple objects. Following their study,6 we assume that there are K receivers
at locations r(k), k = 1,… ,K, which are associated with small measurement coils with dipole moment q, and L sources at
locations s(𝓁), 𝓁 = 1,… ,L, which are associated with small exciting coils each with dipole moment p. Then, by measuring
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FIGURE 13 Frequency dependence of the eigenvalues of [𝛼B] and [𝛼B]: inhomogeneous parallelepiped made up of three cubes with
𝜎
(1)
∗ = 𝜎

(2)
∗ = 𝜎

(1)
∗ = 1 × 106S/m and 𝜇

(3)
∗ = 10𝜇(2)

∗ = 100𝜇(3)
∗ = 100𝜇0 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 14 Frequency dependence of the eigenvalues of Re([𝛼B]) : inhomogeneous parallelepiped made up of three cubes with
𝜎
(1)
∗ = 𝜎

(2)
∗ = 𝜎

(1)
∗ = 1 × 106S/m and 𝜇

(3)
∗ = 10𝜇(2)

∗ = 100𝜇(3)
∗ = 100𝜇0 [Colour figure can be viewed at wileyonlinelibrary.com]

the field perturbation described by Theorem 3.1 for Ntarget = N objects in the direction q, this gives rise to the k, 𝓁th entry
of the multistatic response matrix as

Ak𝓁 =
Ntarget∑
n=1

(D2G(r(k), z(n))q) · ([𝛼(n)B(n)](D2G(z(n), s(𝓁))p)) + Rk𝓁 ,

where, for the purpose of the following, we arrange the coefficients of the rank 2 tensors [𝛼(n)B(n)] as 3 × 3 matrices.¶
Assuming that the data is corrupted by measurement noise and is sampled using Hadamard's technique, as in the previous
study,6 then the MSR matrix can be written in the form

¶For (multiple) inhomogeneous objects we replace [𝛼(n)B(n)] here and in the following by [𝛼(n)B(n)] where 𝛼(n) becomes the size of the nth
inhomogeneous object with configuration B(n)
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A =
Ntarget∑
n=1

U (n)([𝛼(n)B(n)]V (n)) + R + Snoise√
M

W̃

= U𝔐V + R + Snoise√
M

W̃ ,

where W̃ = 1√
2
(W + iW) and W is a K × L matrix with independent and identical Gaussian entries with zero mean and

unit variance, and Snoise is a positive constant. In addition, U is a matrix of size K × 3Ntarget

U =
(

U (1) … U (N) ) ,
and U(n) is an K × 3 matrix

U (n) =
⎛⎜⎜⎝
(D2G(r(1), z(n))q)1 … (D2G(r(1), z(n))q)3

⋮ ⋮ ⋮
(D2G(r(K), z(n))q)1 … (D2G(r(K), z(n))q)3

⎞⎟⎟⎠ ,
The matrix 𝔐 is of size 3Ntarget × 3Ntarget and is block diagonal in the form

𝔐 = diag([𝛼(1)B(1)],…,[𝛼(n)B(n)]),

and the matrix V is of dimension 3Ntarget × L with

V =
(

V (1) ,… ,V (N) ) ,
where V(n) is the 3 × L matrix

V (n) =
(

D2G(z(n), s(1))p ,… , D2G(z(n), s(L))p
)
. (45)

Proceeding in a similar manner to the previous research,6 and defining the linear operator L ∶ C
3Ntarget×3Ntarget → CK×L as

L(𝔐) = U𝔐V , (46)

then, by dropping the higher order term, the MSR matrix can be approximated as

A ≈ A0 +
Snoise√

M
W = L(𝔐) + Snoise√

M
W .

The MUSIC algorithm can then be used to localise the location of the multiple arbitrary shaped targets by using the same
imaging functional as proposed in the previous study6

IMU(zs) =

(
1∑3

i=1 ||P(D2G(zs, s(1))p · ei,…,D2G(zs, s(L))p · ei)||2
)1∕2

, (47)

where P is the orthogonal projection onto the right null space of L(𝔐).

Proposition 6.2. Suppose that U𝔐 has full rank. Then L(𝔐) has 3Ntarget non-zero singular values. Furthermore, IMU
will have Ntarget peaks at the object locations z = zs.

The ability to recover the Ntarget objects will depend on a number of factors:

1. The number and locations of the measurement and excitor pairs. In practice, the number of each will be limited to
powers of 4 for practical reasons.1

2. The noise level, which we define as the reciprocal of the signal to noise ratio in terms of the n + 3(n − 1)th singular
value of A0 (ordered as S1(A0) > S2(A0) …

noise level = SNR−1 =
(Sn+3(n−1)(A0)

Snoise

)−1

. (48)

In other studies,1,6 the SNR was based instead on the largest singular value S1(A0).
3. The frequency of excitation.



LEDGER ET AL. 855

FIGURE 15 Singular values Sn(A): Evaluated for different levels of noise for identifying a coin and tetrahedron at f = 1 × 105Hz [Colour
figure can be viewed at wileyonlinelibrary.com]

Remark 6.3. From the examination of the frequency dependence of the coefficients of [𝛼(n)B(n)] we have seen that
the real and imaginary parts for different objects (B𝛼)(n) = 𝛼(n)B(n) +z(n) are different. Moreover, in general, their imag-
inary components exhibit resonance behaviour at different (possibly multiple) frequencies. Consequently, different
objects, in general, correspond to different singular values of A0. The presence of multiple objects with the same shape
and size, but with different locations, will result in multiplicities of the singular values (in the absence of noise). If
only a single frequency is considered and Snoise is chosen based on the largest singular value S1(A0), then it will gen-
erate a W with Gaussian statistics that are associated with only one of the objects possibly present. If the singular
values associated with the other objects are much smaller than S1(A0), it may be difficult to detect the other objects
present. In particular, to locate those objects with smaller MPT coefficients (and hence smaller singular values) at that
frequency under consideration.

We explore this through the following experiment. We simulate excitations and measurements taken at regular intervals
on the plane [ − 1, 1] × [ − 1, 1] × {0} such that L = K = 256. The dipole moments are chosen as p = q = e3 so
that the plane of all measurement, and excitation coils are parallel to this horizontal surface. With these measurements,
the location identification of a coin B(1)

𝛼 of radius 0.01125m and thickness 3.15 × 10−3m with 𝜎
(1)
∗ = 15.9 × 106S/m and

𝜇
(1)
∗ = 𝜇0 and a tetrahedron B(2)

𝛼 with vertices (5.77 × 10−3, 0, 0)m, ( − 2.88, 5, 0) × 10−3m, ( − 2.88, − 5, 0) × 10− 3m and
(0, 0, − 8.16 × 10−3)m and material properties 𝜎(2)

∗ = 4.5× 106S/m and 𝜇
(2)
∗ = 1.5𝜇0 will be considered. The true locations

of these objects are assumed to be z(1) = 0.1e1 +0.1e2 −0.5e3 and z(2) = −0.3e1 +0.3e2 −0.5e3, respectively. To perform the
imaging, noise is added to the simulated A0 to create A, and the image functional IMU is evaluated for different positions
zs. To do this, we compute P = IM − WSW∗

S where WS are the first 3N singular vectors of A, which are chosen based on
the magnitudes of the singular values and thereby allows us to also predict the number of objects N present.
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We first consider location identification at a frequency f = 1 × 105Hz, which is close to the resonance peaks for the
two objects, and consider the singular values of A0 and A in Figure 15. At this frequency, Sn(A0), n = 1, 2, 3 are associated
with the coin and Sn(A0), n = 4, 5, 6 with the tetrahedron. Without noise, A = A0 and the six physical singular values
are clearly distinguished, but, by considering a noise level of 1% so that Snoise = 0.01S1(A0), it is no longer possible to
distinguish Sn(A), n = 4, 5, 6 from the noisy singular values. On the other hand, by setting Snoise = 0.01S4(A0), or even
Snoise = 0.1S4(A0), we can distinguish all 6 singular values from the noise. This means that with Snoise = 0.01S1(A0) we
expect to only locate the coin, but with Snoise = 0.01S4(A0), 0.1S4(A0) we expect to find both objects. This is confirmed in
Figure 16 where we plot IMU on the plane −0.5e3. We observe that for Snoise = 0.01S1(A0), we can only locate the coin,
for Snoise = 0.01S4(A0) we can locate both the coin and the tetrahedron and even by increasing the noise level to 10% and
setting Snoise = 0.1S4(A0) both objects can still be identified. On the other hand, choosing the frequency f = 132Hz, such
that Sn(A0), n = 1, 2, 3 are associated with the tetrahedron and Sn(A0), n = 4, 5, 6 with the coin, Figure 17 shows that
the phenomena is reversed, and with a 10% noise level and Snoise = 0.1S4(A0), only the tetrahedron can be identified at
this frequency.

6.4 Object identification
A dictionary-based classification technique for individual object identification has been proposed by Ammari et al6 and
this easily extends to the identification of multiple inhomogeneous objects. We propose a slight variation on that proposed
by Ammari et al, which uses the eigenvalues of the real and imaginary parts of the MPT as a classifier as opposed to its
singular values at a range of frequencies. The motivation for this is the richness of the frequency spectra of the eigenvalues,
as shown in Section 6.2 and that it provides an increased number of values to classify each object. We also propose a
strategy in which objects are put in to canonical form before forming the dictionary. The algorithm comprises of two
stages as described below.

FIGURE 16 The imaging function IMU : Evaluated on the plane −0.5e3 for different levels of noise for identifying a coin and tetrahedron at
f = 1 × 105 Hz [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 17 The imaging function IMU : Evaluated on the plane −0.5e3 for different levels of noise for identifying a coin and tetrahedron at
f = 132 Hz [Colour figure can be viewed at wileyonlinelibrary.com]

6.4.1 Offline stage
In the offline stage, given a set of Ncandidate candidate objects (which can include both homogenous and inhomogeneous
objects), we put them in canonical form (B𝛼)(i) = 𝛼(i)B(i) + z(i), i = 1,… ,Ncandidate by ensuring that the origin for 𝝃(i)

in B(i) coincides with the centre of mass of B(i) and the object's size 𝛼(i) is chosen such that | 0[𝛼(i)B(i)]| = 1 # where
 0[𝛼(i)B(i)] =  [𝛼(i)B(i)] in the case of a homogenous object and corresponds to the Póyla-Szegö tensor as well as being
the characterisation for 𝜎∗ = 0 for this object.‖ In the case of an object with homogenous materials, the coefficients of
[𝛼(i)B(i)] are computed by solving the transmission problem (7) using FEM and then applying (6), and in the case of an
inhomogeneous object, (10) and (9) are used. In each case, the eigenvalues 𝜆(𝛼(i)B(i), 𝜔𝑗) and 𝜆(𝛼(i)B(i), 𝜔𝑗) are obtained
for a range of frequencies 𝜔j and

Di = {𝜆(𝛼(i)B(i), 𝜔𝑗), 𝜆(𝛼(i)B(i), 𝜔𝑗), 𝑗 = 1, … ,N𝜔}∕ max
k=1,… ,N𝜔

(|𝜆(𝛼(i)B(i), 𝜔k)|, |𝜆(𝛼(i)B(i), 𝜔k)|),
forms the ith element of the dictionary

 = {D1,D2,… ,DNcandidate}.

6.4.2 Online stage
In an extension to the previous research,6 the MPT coefficients for each of the targets (T𝛼)(i), i = 1,… ,Ntarget can be
recovered from the same data used to identify the number and locations of objects. Although, to do so, it is important to
ensure that the dipole moments of the coils are chosen such that all the 6Ntarget coefficients can be recovered from the

# For inhomogeneous objects we require | 0[𝛼(i)B(i)]| = 1 and we replace (B𝛼)(i) by B(i)
𝛼 = 𝛼(i)B(i) + z(i), B(i) by B(i) as well as ensuring the centre of mass

coincides with the centre of mass of B(i) = ∪N
n=1B(i,n).

‖If 𝜇∗ = 𝜇0 we choose the object size by requiring the high conductivity limit to have unit determinant.
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FIGURE 18 Dictionary classification showing log || − D̂i||2 : Top row show classification with 5% noise, bottom row with 10% noise, red
indicates the predicted object, which is correct in all cases [Colour figure can be viewed at wileyonlinelibrary.com]

measured data.4 The coefficients are then the solution of the least squares problem

([(T𝛼)(1), 𝜔𝑗],…,[(T𝛼)(Nobjects), 𝜔𝑗]) = argmin
𝔐

||A(𝜔𝑗) − L(𝔐)||,
which is repeated for j = 1,… ,N𝜔.

Then, for each target (T𝛼)(i), we determine

D̂i = {𝜆((T𝛼)(i), 𝜔𝑗), 𝜆((T𝛼)(i), 𝜔𝑗)𝑗 = 1,… ,N𝜔}∕ max
k=1,… ,N𝜔

(|𝜆((T𝛼)(i), 𝜔k)|, |𝜆((T𝛼)(i), 𝜔k)|),
and find the closest match to D̂i within the dictionary .6 Notice the target could also be inhomogeneous in which case
(T𝛼)(i) is replaced by T(i)

𝛼 .

6.4.3 Numerical example
As a challenging object identification example, we consider a dictionary consisting of parallelepipeds described in Section
6.2, which consist of either two regions P1 ∶= B = B(1) ∪ B(2) with B𝛼 = 𝛼B = 𝛼(B(1) ∪ B(2)) or three regions P2 ∶= B =
B(1)∪B(2)∪B(3) with B𝛼 = 𝛼B = 𝛼(B(1)∪B(2)∪B(3)), and vary the material properties according to the descriptions previously
described. We also consider the limiting case where the two (three) regions have the same parameters. The dictionary for
these objects is generated according to the off-line stage with 𝜔 ∈ 2𝜋(2, 300, 4 × 103, 5 × 104, 2 × 105)rad/s, arbitrarily
chosen over the frequency spectrum.

For the online stage, take [T(i)
𝛼 , 𝜔𝑗], i = 1, 2, j = 1,… ,N𝜔 = 5 to be given by considering targets T(i)

𝛼 = 𝛼R(Pi) where
R is an arbitrary rotation and adding noise. In Figure 18, we illustrate the algorithms ability to differentiate between these
similar objects. The red bars indicate the predicated classification, which is correct for the examples presented (it was
also found to be correct for the cases of the other parallelepipeds). We can observe that greatest similarity in terms of the
classification is between the two homogeneous parallelepipeds and between the two parallelepipeds with contrasting 𝜎,
and in each case, the classification becomes more challenging as the noise level is increased.

By increasing the number of frequencies considered so that N𝜔 = 7 with 𝜔 ∈ 2𝜋(2, 300, 4 × 103, 5 × 104, 2 × 105, 3 ×
106, 4 × 107)rad/s, we see in Figure 19 that the certainty of the classification is improved for both noise levels.
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FIGURE 19 Dictionary classification showing log || − D̂i||2 : Top row show classification with 5% noise, bottom row with 10% noise, red
indicates the predicted object, which is correct in all cases [Colour figure can be viewed at wileyonlinelibrary.com]
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