
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in:

Computers & Structures

                                      

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa45222

_____________________________________________________________

 
Paper:

Sevilla, R., Giacomini, M. & Huerta, A. (2019).  A locking-free face-centred finite volume (FCFV) method for linear

elastostatics. Computers & Structures, 212, 43-57.

http://dx.doi.org/10.1016/j.compstruc.2018.10.015

 

 

 

 

 

 

 

_____________________________________________________________
  
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

 

Permission for multiple reproductions should be obtained from the original author.

 

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

 

http://www.swansea.ac.uk/library/researchsupport/ris-support/ 

http://cronfa.swan.ac.uk/Record/cronfa45222
http://dx.doi.org/10.1016/j.compstruc.2018.10.015
http://www.swansea.ac.uk/library/researchsupport/ris-support/ 


 

A locking-free face-centred finite volume (FCFV)

method for linear elastostatics

Ruben Sevillaa,1, Matteo Giacominib, Antonio Huertab

aZienkiewicz Centre for Computational Engineering, College of Engineering, Swansea
University, Swansea, SA1 8EN, Wales, UK.
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Abstract

A face-centred finite volume (FCFV) method is proposed for linear elasto-

static problems. The FCFV is a mixed hybrid formulation, featuring a sys-

tem of first-order equations, that defines the unknowns on the faces (edges

in two dimensions) of the mesh cells. The symmetry of the stress tensor is

strongly enforced using the well-known Voigt notation and the displacement

and stress fields inside each cell are obtained by means of explicit formulas.

The resulting FCFV method is robust and locking-free in the nearly incom-

pressible limit. Numerical experiments in two and three dimensions show

optimal convergence of the displacement and the stress fields without any re-

construction. Moreover, the accuracy of the FCFV method is not sensitive to

mesh distortion and stretching. Classical benchmark tests including Kirch’s

plate and Cook’s membrane problems in two dimensions as well as three

dimensional problems involving shear phenomenons, pressurised thin shells

and complex geometries are presented to show the capability and potential
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of the proposed methodology.

Keywords: finite volume, face-centred finite volume, mixed hybrid

formulation, linear elastostatics, locking-free, hybridisable discontinuous

Galerkin

1. Introduction

Despite the finite volume method (FVM) was originally proposed in the

context of hyperbolic systems of conservation laws [1, 2], there has been a

growing interest towards its application to other physical problems, including

the simulation of deformable structures [3, 4]. Several robust and efficient im-

plementations of the FVM are available in both open-source and commercial

libraries, making it an extremely attractive approach for industrialists.

The existing finite volume paradigms discussed in the structural mechan-

ics community can be classified into two families, depending on the locali-

sation of the unknowns in the computational mesh: the cell-centred finite

volume (CCFV) method [5, 6, 7, 8] defines the unknowns at the centroid of

the mesh elements, whereas the vertex-centred finite volume (VCFV) strat-

egy [9, 10, 11] sets the unknowns at the mesh nodes. A major limitation

of the CCFV method is the poor approximation of the gradient of the dis-

placements at the faces using unstructured meshes [12, 13]. To overcome this

issue, Jasak and Weller [14] proposed a correction to match the value of the

gradient of the displacements on the faces to the neighbouring cells. More

recently, Nordbotten and co-workers enriched the classical CCFV formula-

tion with a discrete expression of the stresses on the mesh faces [15, 16] and

the resulting multi-point stress approximation was shown to improve the de-
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scription of the stresses at the interface between two cells. Similar drawbacks

are experienced by the VCFV strategy which also requires a reconstruction

of the gradient of the displacements to guarantee the first-order convergence

of the stresses. Within this context, the accuracy of the reconstruction may

suffer from the non-orthogonality of the mesh and poor approximations may

result from the use of highly deformed grids.

Another critical aspect in the numerical treatment of linear elasticity

problems is represented by the fulfilment of the balance of angular momentum

which implies the symmetry of the stress tensor [17]. Starting from the

pioneering work of Fraejis de Veubeke [18], finite element formulations with

weakly enforced symmetry of the stress tensor have been extensively studied

in the literature [19]. In [20], the weak imposition of the symmetry of the

stress tensor is investigated in the context of a cell-centred finite volume

paradigm.

Recently, a face-centred finite volume (FCFV) method which defines the

unknowns over the faces of the mesh elements has been introduced for Poisson

and Stokes problems [21]. In the present work, the FCFV method is extended

to simulate the behaviour of deformable bodies under the assumption of

small displacements. Starting from the hybridisable discontinuous Galerkin

(HDG) method by Cockburn and co-workers [22, 23, 24, 25], the discrete

finite volume system is derived by setting a constant degree of approximation

in the recently proposed HDG formulation of the linear elasticity equation

based on Voigt notation [26]. The resulting finite volume strategy involves the

solution of a symmetric system of equations to determine the displacements

on the mesh faces (edges in two dimensions). The displacement and the
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stress fields inside each cell are then retrieved via explicit closed expressions

defined element-by-element. The enforcement of the symmetry of the stress

tensor via the Voigt notation allows to strongly fulfil the balance of angular

momentum and to obtain optimal convergence for both the displacement and

stress fields without any reconstruction. Therefore, the solution of the FCFV

method does not deteriorate in presence of highly stretched or distorted cells.

In addition, it is worth emphasising that other HDG methods reported in the

literature (e.g. [24, 25]), without the Voigt notation proposed in this paper,

have shown a sub-optimal rate of convergence in the stress field.

Special attention is given to elastic problems in which classical numerical

methods experience volumetric or shear locking. Locking-free finite volume

formulations for bending plates [27] have been discussed for both cell-centred

and vertex-centred formulations by Wheel [28] and Fallah [29]. Nevertheless,

using solid elements, VCFV approaches experience shear locking and addi-

tional rotational degrees of freedom are required to handle rigid body motions

and accurately predict membrane deformations [30, 31] without requiring the

same level of mesh refinement as other finite volume and finite element for-

mulations without the extra rotational degrees of freedom [32].

The proposed FCFV method has been tested for both compressible and

nearly incompressible materials and in both cases the numerical examples

show that the optimal rate of convergence is attained for both the displace-

ment and the stress fields. In addition, the proposed method is locking-free

in the incompressible limit.

The remaining of this paper is organised as follows. In Section 2, the linear

elasticity equation using Voigt notation is briefly recalled. The proposed
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FCFV scheme is presented in Section 3. Section 4 is devoted to the numerical

validation of the method in two dimensions. In particular, the optimal orders

of convergence are checked for the displacement and stress fields, a sensitivity

analysis to the stabilisation parameter and the mesh distortion is performed

and the locking-free behaviour is verified for nearly incompressible materials

using Kirch’s plate and Cook’s membrane test cases. In Section 5, several

three-dimensional problems involving shear phenomenons, pressurised thin

shells and complex geometries under realistic loads are discussed to show the

capability of the method to handle complex geometries. Finally, Section 6

summarises the conclusions of the work that has been presented.

2. Problem statement

Given an open bounded domain Ω ⊂ Rnsd , where nsd denotes the num-

ber of spatial dimensions, the boundary ∂Ω is partitioned into the non-

overlapping Dirichlet and generalised Neumann boundaries, ΓD and ΓN re-

spectively. The static behaviour of a deformable solid medium Ω is described

by 
−∇ · σ = f in Ω,

u = uD on ΓD,

(1− ξ)Pnu+ (Pt + ξPn)n · σ = ξg, on ΓN ,

(1)

where σ is the Cauchy stress tensor, f is the external force, u is the dis-

placement field vector, n is the outward unit normal vector to ΓN and the

normal and tangent projection matrices are defined as Pn = n ⊗ n and

Pt = Insd − n ⊗ n respectively. The boundary conditions are given by the

imposed displacements on the Dirichlet boundary, uD, and the traction vec-
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tor on the Neumann boundary, g. The parameter ξ can take a value of one

for a pure Neumann boundary or zero for an artificial symmetry boundary,

where the normal displacement and the tangential tractions vanish.

Remark 1. It is worth noting that a more general boundary condition can be

considered to include Dirichlet, Neumann and symmetry boundaries. How-

ever, due to the different treatment of Dirichlet boundary conditions in the

proposed numerical methodology, the form stated in Equation (1) is preferred

in this work.

For a linear elastic material, the well-known Hooke’s law provides the

relation between stress and strain, namely σ = C : ε(u), where C is the

fourth order elasticity tensor and the linearised strain tensor is ε(u) :=(
∇u+ ∇uT

)
/2.

The so-called Voigt notation [33] is common in this context. The main

idea is to exploit the symmetry of the strain and stress tensors. To this

end, the strain and stress tensors are reduced to vectors by storing only the

non-redundant terms.

The relation between the displacement and the strain can be written as

εV := ∇Su, where the matrix operator ∇S ∈ Rmsd×nsd is given by

∇S :=

∂/∂x1 0 ∂/∂x2

0 ∂/∂x2 ∂/∂x1

T

(2)

and

∇S :=


∂/∂x1 0 0 ∂/∂x2 ∂/∂x3 0

0 ∂/∂x2 0 ∂/∂x1 0 ∂/∂x3

0 0 ∂/∂x3 0 ∂/∂x1 ∂/∂x2


T

, (3)
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in two and three dimensions respectively.

The strain-stress relation, given by Hooke’s law, also simplifies and can

be written as σV := DεV, where D ∈ Rmsd×msd is a symmetric and positive

definite matrix that depends upon the material parameters characterising

the medium and, in two dimensions, it also depends upon the model used

(i.e. plane strain or plane stress). The matrix D is given by

D :=
E

(1 + ν)(1− ϑν)


1 + (1− ϑ)ν ν 0

ν 1 + (1− ϑ)ν 0

0 0 (1− ϑν)/2

 (4)

and

D :=
E

(1 + ν)(1− 2ν)


1− ν ν ν

ν 1− ν ν 0nsd

ν ν 1− ν

0nsd (1− 2ν)/2Insd

 , (5)

in two and three dimensions respectively, where E is the Young modulus, ν

the Poisson ratio. In two dimensions, the parameter ϑ = 1 denotes a plane

stress model whereas ϑ = 2 denotes a plane strain model.

The strong form of the linear elastostatic problem can be written using

Voigt notation as
−∇T

SσV = f in Ω,

u = uD on ΓD,

(1− ξ)Pnu+ (Pt + ξPn)NTσV = ξg on ΓN ,

(6)

where

N :=

n1 0 n2

0 n2 n1

T

(7)

7



and

N :=


n1 0 0 n2 n3 0

0 n2 0 n1 0 n3

0 0 n3 0 n1 n2


T

, (8)

in two and three dimensions respectively.

3. Face centered finite volume (FCFV) method

Let us introduce the broken computational domain as a partition of the

domain Ω in nel disjoint cells Ωe with boundaries ∂Ωe. The set of internal

faces (edges in two dimensions) Γ is defined as

Γ :=

[
nel⋃
e=1

∂Ωe

]
\ ∂Ω. (9)

In addition, the boundary of each cell can be written as the union of its

faces

∂Ωe :=

nefa⋃
j=1

Γe,j, (10)

where nefa is the total number of faces of the cell Ωe.

3.1. Mixed formulation

In the proposed FCFV method, a mixed formulation of the elastostatic

problem of Equation (6) is considered, namely
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

L+ D̃∇Su = 0 in Ωe, and for e = 1, . . . , nel,

∇T
S D̃L = f in Ωe, and for e = 1, . . . , nel,

u = uD on ΓD,

(1− ξ)Pnu− (Pt + ξPn)NT D̃L = ξg on ΓN ,

Ju⊗ nK = 0 on Γ,

JNT D̃LK = 0 on Γ,

(11)

where the first equation in (11) corresponds to the definition of the mixed

variable L and the jump operator J·K is defined over an internal face shared

by two cells Ωe and Ωl as the sum of the values from the two cells sharing

the face [35], namely

J�K = �e +�l. (12)

The matrix D̃, introduced in Equation (11) to guarantee the symmetry

of the mixed formulation, is defined as D̃ = VΛ1/2VT , after performing

the spectral decomposition of the matrix D = VΛVT , where the matrix V

and the diagonal matrix Λ contain the eigenvectors and eigenvalues of D

respectively and Λ1/2 is the diagonal matrix containing the square root of

the eigenvalues of D.

It is worth noting that the last two equations in (11), called transmission

conditions, impose the continuity of the displacement field and the normal

stress across the internal faces Γ.
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3.2. Local and global problems

As other HDG methods [22, 23, 36, 37, 38, 39, 34, 40], the proposed

FCFV method solves the mixed problem in each cell in two phases. First,

a purely Dirichlet problem is defined on each cell to write the displacement

field ue and the mixed variable Le in terms of a new hybrid variable û, the

displacement field on internal and Neumann faces, namely

Le + D̃∇Sue = 0 in Ωe

∇T
S D̃Le = f in Ωe

ue = uD on ∂Ωe ∩ ΓD,

ue = û on ∂Ωe \ ΓD,

(13)

for e = 1, . . . , nel. This set of problems are usually referred to as local

problems and the solution in one cell is independent on the solution in the

other cells.

Second, the so-called global problem is defined to compute the hybrid

variable û, namely
Ju⊗ nK = 0 on Γ,

JNT D̃LK = 0 on Γ,

(1− ξ)Pnu− (Pt + ξPn)NT D̃L = ξg on ΓN .

(14)

It is worth noting that the first transmission condition in Equation (14) is

automatically satisfied due to the imposed Dirichlet boundary conditions in

the local problems of Equation (13) and the unique definition of the hybrid

variable on each face. Therefore, the global problem is simply JNT D̃LK = 0 on Γ,

(1− ξ)Pnu− (Pt + ξPn)NT D̃L = ξg on ΓN .
(15)
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3.3. FCFV formulation

For each cell Ωe, e = 1, . . . , nel, the integral form of Equation (13) after

applying the divergence theorem is∫
Ωe

Lh
edΩ−

∫
∂Ωe

NT
e D̃uh

edΓ = 0, (16a)∫
∂Ωe

NT
e
̂̃
DLh

edΓ =

∫
Ωe

fdΩ. (16b)

where the numerical normal flux on the boundary is defined as

NT
e
̂̃
DLh

e :=

NT
e D̃Lh

e + τ e(u
h
e − uD) on ∂Ωe ∩ ΓD,

NT
e D̃Lh

e + τ e(u
h
e − û

h) elsewhere.

(17)

Introducing the definition of the numerical normal flux on the boundary

and the Dirichlet boundary conditions of the local problem in Equation (16),

the integral form of the local problem becomes∫
Ωe

Lh
edΩ−

∫
∂Ωe\ΓD

NT
e D̃ûhdΓ−

∫
∂Ωe∩ΓD

NT
e D̃uDdΓ = 0, (18a)∫

∂Ωe

NT
e D̃Lh

edΓ +

∫
∂Ωe

τ eu
h
edΓ−

∫
∂Ωe\ΓD

τ eû
hdΓ−

∫
∂Ωe∩ΓD

τ euDdΓ =

∫
Ωe

fdΩ,

(18b)

for each cell Ωe, e = 1, . . . , nel. Alternatively, after applying the divergence

theorem in Equation (19b), the integral form is∫
Ωe

Lh
edΩ−

∫
∂Ωe\ΓD

NT
e D̃ûhdΓ−

∫
∂Ωe∩ΓD

NT
e D̃uDdΓ = 0, (19a)∫

Ωe

∇T
S D̃Lh

edΩ +

∫
∂Ωe

τ eu
h
edΓ−

∫
∂Ωe\ΓD

τ eû
hdΓ−

∫
∂Ωe∩ΓD

τ euDdΓ =

∫
Ωe

fdΩ.

(19b)
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Analogously, the integral form of the global problem is found by adding all

the contributions corresponding to internal faces and faces on the Neumann

boundary. It reads,

nel∑
e=1

{∫
∂Ωe\∂Ω

NT
e
̂̃
DLh

edΓ +

∫
∂Ωe∩ΓN

[
(1− ξ)Pnû

h − (Pt + ξPn)NT ̂̃DLh
e

]
dΓ

}
=

nel∑
e=1

ξ

∫
∂Ωe∩ΓN

gdΓ, (20)

By introducing the definition of the numerical normal flux of Equa-

tion (17), the integral form of the global problem becomes

nel∑
e=1

{∫
∂Ωe\∂Ω

NT
e D̃Lh

edΓ +

∫
∂Ωe\∂Ω

τ e u
h
edΓ−

∫
∂Ωe\∂Ω

τ e û
hdΓ

−
∫
∂Ωe∩ΓN

(Pt + ξPn)NT
e D̃Lh

edΓ−
∫
∂Ωe∩ΓN

(Pt + ξPn)τ e u
h
edΓ

+

∫
∂Ωe∩ΓN

[(1− ξ)Pn + (Pt + ξPn)τ e] û
hdΓ

}
=

nel∑
e=1

ξ

∫
∂Ωe∩ΓN

gdΓ. (21)

The proposed FCFV rationale employs a constant degree of approxima-

tion within each cell for the mixed variable Le and the displacement ue and

a constant degree of approximation on each face for the displacement û. The

discrete form of the local problem of Equation (19) is obtained as

− |Ωe|Le =
∑
j∈De

|Γe,j|D̃T
j NjuD,j +

∑
j∈Be

|Γe,j|D̃T
j Njûj, (22a)

∑
j∈Ae

|Γe,j|τ jue = |Ωe|f e +
∑
j∈De

|Γe,j|τ juD,j +
∑
j∈Be

|Γe,j|τ jûj, (22b)
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for e = 1, . . . , nel, where Le and ue denote the constant value of the mixed

variable and the displacement in the cell Ωe, ûj denotes the constant value

of the displacement on the face Γe,j and the following sets of faces have been

introduced for each cell:

Ae := {1, . . . , nefa}, De := {j ∈ Ae | Γe,j ∩ ΓD 6= ∅}, Be := Ae \ De,

(23)

with nefa the total number of faces of Ωe.

It is worth noting that the discrete form of the local problem has been

obtained by utilising a quadrature with one integration point to compute the

integrals of the weak formulation.

An important advantage of using of a constant degree of approximation

for the mixed variable and the displacement is that the two equations of the

local problem decouple and it is possible to obtain a closed form expression

for Le and ue as a function of ûj, namely

Le = −|Ωe|−1ze − |Ωe|−1
∑
j∈Be

|Γe,j|D̃T
j Njûj, (24a)

ue = α−1
e βe +α−1

e

∑
j∈Be

|Γe,j|τ jûj, (24b)

where

αe :=
∑
j∈Ae

|Γe,j|τ j, βe := |Ωe|f e +
∑
j∈De

|Γe,j|τ juD,j,

ze :=
∑
j∈De

|Γe,j|D̃T
j NjuD,j.

(25)

Similarly, employing a constant degree of approximation for Le, ue and

û, the discrete form of the global problem of Equation (21) is
nel∑
e=1

|Γe,i|
{

Ae,iN
T
i D̃iLe + Ae,iτ iue + Be,iûi

}
= ξ

nel∑
e=1

|Γe,i|gi χNe(i), (26)
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for i ∈ Be, where χIe and χNe are the indicator functions of the sets Ie :=

{j ∈ Ae | Γe,j ∩ ∂Ω = ∅} and Ne := {j ∈ Ae | Γe,j ∩ ΓN 6= ∅} respec-

tively. The following matrices have been introduced to shorten the notation

in Equation (26)

Ae,i = InsdχIe(i)− (Pt + ξPn)χNe(i), (27a)

Be,i = −τ iχIe(i) + [(1− ξ)Pn + (Pt + ξPn)τ i]χNe(i). (27b)

Remark 2. Despite a FV rationale has been presented here, the discrete

forms of the local and global problems given by Equations (22) and (26),

respectively, can be seen as a particular case of the formulation presented

in [26] with a constant degree of approximation for the primal, mixed and

hybrid variables and with a quadrature with one integration point in each

element and face/edge.

After introducing the closed form expressions of the mixed and primal

variable of Equation (24) in Equation (26), a linear system of equations is

obtained, where the only unknown is the displacement field defined over the

interior and Neumann faces, Γ ∪ ΓN , namely

K̂û = f̂ . (28)

The matrix K̂ and the vector f̂ are obtained by assembling the elemental

contributions

K̂e
i,j := |Γe,i|

{
|Γe,j|Ae,i

(
τ iα

−1
e τ j − |Ωe|−1NT

i D̃iD̃
T
j Nj

)
+ Be,iδij

}
, (29a)

f̂ ei := |Γe,i|
{
−Ae,i

(
τ iα

−1
e βe − |Ωe|−1NT

i D̃ize

)
+ ξgi χNe(i)

}
, (29b)

for i, j ∈ Be and δij being the classical Kronecker delta, equal to 1 if i = j

and 0 otherwise.
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The maximum number of non-zero entries in the i-th row of the global

matrix K̂ is equal to the number of faces of the two elements sharing this face

minus one (to avoid counting the shared face twice) multiplied by the number

of spatial dimensions. In two dimensions, the number of non-zero entries in

a row is 10 and 14 for triangular and quadrilateral meshes respectively. In

three dimensions, the number of non-zero entries in a row is 21 and 33 for

tetrahedral and hexahedral meshes respectively.

4. Two dimensional examples

This Section presents three numerical examples in two dimensions. The

first example is used in order to validate the optimal rate of convergence,

to illustrate the robustness of the proposed FCFV approach in the incom-

pressible limit, to numerically study the effect of the stabilisation parameter

and to demonstrate the robustness in terms of element distortion. The last

two examples involve classical test cases for linear elastic solvers, namely the

Kirsch’s plate and the Cook’s membrane problems.

4.1. Optimal order of convergence

The first example considers a mesh convergence study to verify the op-

timal approximation properties of the proposed FCFV method in two di-

mensions. The model problem of Equation (1), defined in Ω = [0, 1]2, is

considered. The external force and boundary conditions are selected so that

the exact solution [24] is given by

u1(x1, x2) = −x2
1x2(x1 − 1)2(x2 − 1)(2x2 − 1), (30a)

u2(x1, x2) = x2
2x1(x2 − 1)2(x1 − 1)(2x1 − 1). (30b)
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(a) Mesh 3 (b) Mesh 5 (c) Mesh 7

Figure 1: Von Misses stress on three quadrilateral meshes.

The traction corresponding to the analytical solution is imposed on ΓN =

{(x1, x2) ∈ R2 | x2 = 0}, whereas homogeneous Dirichlet boundary condi-

tions are imposed on the rest of the boundary.

Structured uniform quadrilateral meshes with characteristic element size

h = 2−r are generated, where r denotes the level of mesh refinement. Tri-

angular uniform meshes are obtained by subdivision of each quadrilateral in

four triangles using the two diagonals of the quadrilateral.

The computed Von Misses stress on three quadrilateral meshes is repre-

sented in Figure 1, illustrating the increasing accuracy offered by the pro-

posed FCFV as the mesh is refined.

Figure 2 displays the error of the computed displacement and the stress

fields in the L2(Ω) norm as a function of the characteristic element size for

both quadrilateral and triangular meshes on a medium with E = 1 and

ν = 1/3.

The L2(Ω) norm of the error is defined as

‖Eϑ‖L2(Ω) =

{∫
Ω

(
ϑh − ϑ

)
·
(
ϑh − ϑ

)
dΩ∫

Ω
ϑ · ϑdΩ

}1/2

, (31)
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Figure 2: Mesh convergence of the L2(Ω) error of the (a) displacement and (b) the stress,

for quadrilateral and triangular elements in a medium with ν = 1/3.

where ϑ and ϑh denote the exact solution and the FCFV approximation

respectively.

The results in Figure 2 shows that the error converges with the expected

rate of convergence for both the displacement and the stress. It is impor-

tant to emphasise that the proposed FCFV produces a stress field with an

error that converges linearly to the exact solution without performing a re-

construction of the displacement field. In addition, the proposed approach

provides similar accuracy for both the displacement and the stress field due

to the use of a mixed formulation.

Figure 3 displays the error of the computed displacement and the stress

fields in the L∞(Ω) norm as a function of the characteristic element size

for both quadrilateral and triangular meshes on a medium with E = 1 and

ν = 1/3. The results show the linear convergence of the error in the L∞(Ω)

norm for both the displacement and stress fields. As expected, the error
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Figure 3: Mesh convergence of the L∞(Ω) error of the (a) displacement and (b) the stress,

for quadrilateral and triangular elements in a medium with ν = 1/3.

in the L∞(Ω) norm is higher than the error in the L2(Ω) norm for coarse

meshes, whereas finer meshes the two measures of the error are similar.

To further analyse the accuracy of the proposed FCFV method, Figure 4

shows the error of the displacement field across the one-dimensional section

of the domain corresponding to x = 0.2. For the coarsest mesh the maximum

error is 15% whereas for the finest mesh the error is below 1.2%.

4.2. Locking-free behaviour for nearly incompressible materials

To demonstrate the robustness of the proposed approach for nearly in-

compressible materials, the problem considered in Section 4.1 is studied for

a material with E = 1 and ν = 0.49999. Figure 5 displays the error of the

computed displacement and the stress fields in the L2(Ω) norm as a func-

tion of the characteristic element size for both quadrilateral and triangular

meshes. The results exhibit the optimal order of convergence for both the

displacement and the stress. In addition, by comparing Figures 5 and 2 it

18



y

0 0.2 0.4 0.6 0.8 1

D
is
p
la
ce
m
en
t
er
ro
r
[%

]

0

2

4

6

8

10

12

14

16
Mesh 6

Mesh 8

Mesh 10

Figure 4: Percentage error on the displacement field measured across the one-dimensional

section x = 0.2, for three different levels of mesh refinement.
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Figure 5: Mesh convergence of the L2(Ω) error of the (a) displacement and (b) the stress,

for quadrilateral and triangular elements in a medium with ν = 0.49999.

can be observed that almost identical results are obtained irrespectively of

the value of the Poisson ratio, illustrating the robustness and suitability of

the proposed approach for nearly incompressible materials.
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Figure 6: Error of the displacement and the stress in the L2(Ω) norm as a function of the

stabilisation parameter τ .

4.3. Optimal value of the stabilisation parameter

The proposed methodology requires the choice of the stabilisation tensor

τ . Previous works by Cockburn and co-workers [22, 23, 24] have shown that

the stabilisation can have a sizeable effect on the accuracy, convergence and

stability of the HDG method. To illustrate the effect of this parameter, the

stabilisation tensor is selected as τ = τ(E/`)Insd , where ` is a characteristic

length. The evolution of the error of the displacement and the stress in the

L2(Ω) norm as a function of the stabilisation parameter τ is represented in

Figure 6 for two different computational meshes and for both quadrilateral

and triangular elements. It can be observed that there is an optimum value of

the stabilisation parameter, approximately τ = 3. It is worth noting that the

optimum value is independent on the discretisation considered as the same

value provides the most accurate results for all levels of mesh refinement and

for all types of element. In addition, the value obtained here for the linear

elastic problem also coincides with the optimal value reported in [21] for the
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Figure 7: Distorted quadrilateral and triangular meshes of the domain Ω = [0, 1]2.

solution of heat transfer problems.

4.4. Influence of the mesh distortion

Traditional finite volume methods (e.g. cell-centred and vertex-centred)

are well known to suffer an important loss of accuracy when the mesh contains

highly distorted elements [41, 42, 43, 44]. The accuracy of the reconstruction

of the displacement field, required to produce an accurate stress field, is

severely compromised by the presence of low quality elements.

To illustrate the robustness of the FCFV method in highly distorted

meshes, a new set of meshes is produced by introducing a perturbation of

the interior nodes of the uniform meshes employed in the previous example.

The new position of an interior node is computed as x̃i = xi + ri, where xi

denotes the position in the original uniform mesh and ri ∈ Rnsd is a vector

containing random numbers generated within the interval [−hmin/3, hmin/3],

with hmin being the minimum edge length of the uniform mesh. Two of the

meshes with highly distorted elements produced with this strategy are shown

in Figure 7, for both quadrilateral and triangular elements.

The numerical experiment of Section 4.2 (i.e. for a nearly incompressible
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Figure 8: Mesh convergence of the L2(Ω) error of the (a) displacement and (b) the stress,

for highly distorted quadrilateral and triangular elements in a medium with ν = 0.49999.

medium) is repeated using the distorted quadrilateral and triangular meshes.

Figure 8 shows the error of the computed displacement and stress fields in

the L2(Ω) norm as a function of the characteristic element size, computed as

the maximum of the element diameters in the mesh. The results show the ex-

pected optimal rate of convergence for both the displacement and the stress,

suggesting that the convergence properties of the proposed approach do not

depend upon the quality of the mesh. In addition, by comparing the results

of Figures 8 and 5, it can be concluded that the large distortion introduced

in the mesh does not result in a sizeable loss of accuracy. For instance, the

L2(Ω) error of the displacement on the uniform mesh of triangular elements

in the three finest meshes is 0.037, 0.019 and 0.010 respectively, whereas

the error on the corresponding distorted meshes is 0.042, 0.022 and 0.011

respectively.
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4.5. Kirch’s plate problem

The next example considers the computation of the stress field in an

infinite plate with a circular hole subject to a uniform tension of magnitude

σ0 in the horizontal direction, a classical test case for solid mechanics solvers

in two dimensions [45, 46]. The exact solution of the problem is given in

polar coordinates by

u1(r, θ) =
σ0a

8µ

{
(k + 1)

r

a

(
1 +

2a2

r2

)
cos(θ) +

2a

r

(
1− a2

r2

)
cos(3θ)

}
(32a)

u2(r, θ) =
σ0a

8µ

{
r

a

(
(k − 3)− (k − 1)

2a2

r2

)
sin(θ) +

2a

r

(
1− a2

r2

)
sin(3θ)

}
(32b)

where µ is the shear modulus and the Kolosov’s constant is defined as k =

(3− ν)/(1 + ν) for plane stress and k = 3− 4ν for plane strain.

The finite computational domain is selected as [−L,L]2 \D0,a, where D0,a

denotes the disk of radius a centred at the origin. Using the symmetry of

the problem, only a quarter of the domain is considered, as illustrated in

Figure 9.

For the numerical examples, L = 4m, a = 1m, E = 105Pa, ν = 0.3

and σ0 = 10Pa are considered. To avoid any effect from the truncation

of the infinite domain, the exact traction is imposed on the right and top

boundaries, zero traction is imposed on the circular boundary and symmetry

boundary conditions are imposed on the bottom and left boundaries.

The convergence of the displacement and stress error measured in the

L2(Ω) norm as a function of the characteristic element size is shown in Fig-

ure 10, showing the expected rate for both quantities.
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Figure 9: Computational domain for the Kirch’s plate problem.
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Figure 10: Kirch’s plate problem: mesh convergence of the L2(Ω) error of the displacement

and the stress for a (a) plane stress and (b) plane strain two dimensional models.

The stress field computed on the seventh mesh used for the mesh conver-

gence study, with 573,123 triangular elements, is shown in Figure 11. The

computation with the proposed FCFV method required the solution of a lin-

ear system of 1,719,826 equations, taking 6 seconds to compute all elemental
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(a) σ11 (b) σ22 (c) τ12

Figure 11: Kirch’s plate problem: computed components of the stress field.

matrices, 3 seconds to perform the assembly of the global system and 46 sec-

onds to solve using a direct method. The developed code is written in Matlab

and the computation was performed in an IntelR© XeonR© CPU @ 3.70GHz

and 32GB main memory available.

4.6. Cook’s membrane problem

The last two dimensional example considers a classical bending dominated

test case employed to validate the susceptibility of linear elastic solvers to vol-

umetric locking, the so-called Cook’s membrane problem [27]. The problem

consists of a tapered plate clamped on one end and subject to a shear load,

taken as g = (0, 1/16) here, on the opposite end, as illustrated in Figure 12.

Two cases, reported in [47], are considered to validate the performance of

the recently proposed FCFV methodology. The first case involves a material

with Young modulus E = 1 and Poisson ratio ν = 1/3 and the second case a

nearly incompressible material with Young modulus E = 1.12499998125 and

Poisson ratio ν = 0.499999975. As there is no analytical solution available,
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Figure 12: Cook’s membrane problem.

the vertical displacement at the mid point of the right end of the plate,

Q = (48, 52), is compared against the reference values reported in [47], given

by 21.520 and 16.442 respectively.

Figure 13 shows the convergence of the vertical displacement at point Q

for both cases and using both quadrilateral and triangular elements. The

results indicate convergence of the vertical displacement in the ninth mesh,

with 262,144 elements, for the first case with ν = 1/3. The computed dis-

placement at the mid point of the right end of the plate is within a 1%

difference with respect to the results reported in [47]. The FCFV computa-

tion required the solution of a linear system of 1,049,600 equations, taking 4

seconds to compute all elemental matrices, 2 seconds to perform the assem-

bly of the global system and 1 minute to solve using a direct method. The

displacement field and Von Mises stress for this computation are represented

in Figure 14.

For the second case, with a nearly incompressible material, the results
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Figure 13: Cook’s membrane problem: evolution of the vertical displacement at the mid

point of the right end of the plate as a function of the total number of degrees of freedom.

(a) u1 (b) u2 (c) σVM

Figure 14: Cook’s membrane problem: displacement and Von Mises stress.

in the eight mesh, with 65,536 elements, show convergence to the reference

value, illustrating the robustness and accuracy of the proposed approach in

the incompressible limit. The computed displacement at the mid point of

the right end of the plate is within a 0.5% difference with respect to the

results reported in [47]. The FCFV computation required the solution of a
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linear system of 262,656 equations, taking 1 second to compute all elemental

matrices, 0.5 seconds to perform the assembly of the global system and 10

seconds to solve using a direct method.

5. Three dimensional examples

This Section presents three numerical examples in three dimensions to

show the potential of the proposed FCFV approach in more complicated sce-

narios, including a more realistic application involving a complex geometry.

5.1. Cantilever beam under shear

The first three-dimensional example involves the analysis of a beam under

shear and it is used here to verify the optimal convergence properties of

the FCFV method in three dimensions for both hexahedral and tetrahedral

elements.

The analytical solution of the problem is given by [48]

u1(x1, x2, x3) =
3Pν

4E
x1x2x3, (33a)

u2(x1, x2, x3) =
P

8E

[
3νx3

(
x2

1 − x2
2

)
− x3

3

]
, (33b)

u3(x1, x2, x3) =
Px2

8E

[
ν(3x2

1 − x2
2 + 4) + 3x2

3 − 2x2
2 + 6

]
− 3Pν

π3E

∞∑
n=1

(−1)n

n3 cosh(nπ)
cos(nπx) sinh(nπy).

(33c)

The domain is Ω = [−1, 1]×[−1, 1]×[0, L] and the material properties are

taken as E = 25 and ν = 0.3. Following [49], the boundary conditions corre-

spond to the exact displacement imposed on ΓD = {(x1, x2, x3) ∈ R3 | x3 =

L} whereas the exact tractions are imposed at ΓN = ∂Ω \ΓD. The length of

beam is L = 10 and the shear load is taken as P = 0.1.
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Figure 15: Cantilever beam under shear: mesh convergence of the L2(Ω) error of the (a)

displacement and (b) the stress, for hexahedral and tetrahedral elements.

Five tetrahedral and six hexahedral meshes are considered to perform the

mesh convergence analysis. The tetrahedral meshes contain 120, 960, 7,680,

61,440 and 491,520 elements respectively, whereas the hexahedral meshes

contain 5, 40, 320, 2,560, 20,480 and 163,840 elements respectively. Figure 15

displays the error of the computed displacement and the stress fields in the

L2(Ω) norm as a function of the characteristic element size, showing the

optimal approximation properties of the proposed FCFV method in three

dimensions for both hexahedral and tetrahedral elements.

The three components of the displacement and the Von Mises stress are

represented in Figure 16. The results, corresponding to the finer tetrahe-

dral mesh are displayed over the deformed configuration. The computation

with the proposed FCFV method required the solution of a linear system

of 2,915,328 equations, taking 10 seconds to compute all elemental matrices,

5 seconds to perform the assembly of the global system and 10 minutes to
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(a) u1 (b) u2 (c) u3 (d) σVM

Figure 16: Cantilever beam under shear: displacement and Von Mises stress.

solve using a direct method. The developed code is written in Matlab and

the computation was performed in an IntelR© XeonR© CPU @ 3.70GHz and

32GB main memory available.

5.2. Thin cylindrical shell

The next example involves the analysis of a thin cylindrical shell subject

to a uniform internal pressure and with fixed ends. This is a particularly chal-

lenging problem for low order methods due to the localised bending occurring

near the ends of the shell, leading to a radial displacement that exhibits a

boundary layer behaviour.

The analytical solution of the problem is given by [50]

u1(x1, x2, x3) = ur(x3), cos(θ) (34a)

u2(x1, x2, x3) = ur(x3), sin(θ) (34b)

u3(x1, x2, x3) = 0, (34c)
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where ur denotes the radial displacement, given by

ur(x3) = −Pa
2

Et
(1− C1 sin(βx3) sinh(βx3)− C2 cos(βx3) cosh(βx3)) , (35)

with

C1 =
2 sin(α) sinh(α)

cos(2α) + cosh(2α)
, C2 =

2 cos(α) cosh(α)

cos(2α) + cosh(2α)
. (36)

In the above expressions, P is the magnitude of the internal pressure, a is

the midplane radius of the shell, t is the thickness,

α =
βL

2
, β =

(
Et

4a2D

)1/4

, D =
Et3

12(1− ν3)
(37)

and L is the height of the shell.

The numerical results presented here consider L = 5, a = 1, t = 0.02, E =

1 and ν = 0.3. Hexahedral meshes with element stretching are considered to

capture the localised variation of the displacement near the ends of the shell.

Figure 17 shows one hexahedral mesh with 3,200 elements and a detail of the

mesh near the end, illustrating the stretching used and showing that only

two elements are considered across the thickness. It is worth emphasising

that the problem is solved using solid elements despite the shell theory is

applicable in this problem [50].

The three components of the displacement field and the radial displace-

ment are depicted in Figure 18 on a fine mesh with 819,200 elements. The

results are in excellent agreement with the shell theory, with an L2(Ω) error

of 9.1× 10−4 and 4.1× 10−3 in the displacement and stress respectively.

Figure 19 shows a detailed view of the radial displacement computed with

five subsequently refined meshes and compared to the analytical solution.

The results show the ability of the proposed FCFV methodology to capture
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(a) (b)

Figure 17: Thin cylindrical shell: (a) hexahedral mesh with element stretching near the

ends of the shell and (b) detail of the mesh showing the two elements across the thickness.

(a) u1 (b) u2 (c) u3 (d) ur

Figure 18: Thin cylindrical shell: components of the displacement field and radial dis-

placement.

the boundary layer behaviour of the radial displacement with a mesh with

only two elements across the thickness.
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Figure 19: Thin cylindrical shell: mesh convergence of the radial displacement.

A more quantitative analysis is presented in Table 1, where the number of

elements the number of degrees of freedom and the error of the displacement

field, the stress field and the radial displacement is given for the five meshes

utilised. The error of the radial displacement is measured over a section,

Mesh Elements ndof Eu Eσ Er

1 80× 10× 2 33,480 0.0055 0.0764 0.0285

2 160× 20× 2 134,160 0.0035 0.0409 0.0191

3 320× 40× 2 997,440 0.0021 0.0224 0.0124

4 640× 80× 2 3,991,680 0.0011 0.0116 0.0070

5 1280× 160× 2 8,599,680 0.0005 0.0055 0.0031

Table 1: Thin cylindrical shell: details of the mesh convergence analysis. For each mesh,

the number of elements, the number of degrees of freedom and the error of the displacement

field, the stress field and the radial displacement are given.
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corresponding to x1 = x∗1 and x2 = x∗2, as

Er =


∫ L/2

−L/2

[
uhr (x∗1, x

∗
2, x3)− ur(x3)

]2
dx3∫ L/2

−L/2
ur(x3)2dx3


1/2

, (38)

where uhr and ur are the computed and exact radial displacement respectively.

The results in Table 1 show, once more, the optimal first-order conver-

gence of the error of the displacement and stress fields under mesh refinement.

For the three measures of the error reported in Table 1, a rate of convergence

of 1.1 is observed between the two computations employing the finer meshes.

5.3. Bearing cap

The last example considers the application of the proposed FCFV ap-

proach in a realistic setting involving the stress analysis of a bearing cap used

in the automotive industry. Figure 20 shows the geometry of the component,

where the different colours represent the different boundary conditions. A

homogeneous Dirichlet boundary condition is applied to the surfaces in blue,

where the bearing cap is fixed. Neumann boundary conditions, enforcing

a prescribed pressure of P = 130N/mm2, are imposed on the surfaces in

red and yellow, corresponding to the pressure exerted by the screws and the

crankshaft respectively. Homogeneous Neumann boundary conditions are

imposed on the rest of the boundary surfaces in green. The bearing cap is

made of cast iron with E = 130GPa and ν = 0.25.

The three components of the computed displacement field and the axial

components of the computed stress field are represented in Figures 21 and

22 respectively. The computation has been performed on an unstructured

mesh with 2,398,627 tetrahedral elements. The mesh has 4,256,488 internal
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Figure 20: Bearing cap: geometric model with the colours representing the different bound-

ary conditions.

(a) u1 (b) u2 (c) u3

Figure 21: Bearing cap: components of the displacement field in mm.

faces and 1,081,532 external faces, leading to a global system with 15,854,985

degrees of freedom. The computation with the proposed FCFV method

required 50 seconds to compute all elemental matrices, 23 seconds to perform
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(a) σ11 (b) σ22 (c) σ33

Figure 22: Bearing cap: three components of the stress field in N/mm2.

the assembly of the global system and 41 hours to solve the system using a

conjugate gradient method with no pre-conditioner. The developed code is

written in Matlab and the computation was performed in an IntelR© XeonR©

CPU @ 3.70GHz and 32GB main memory available.

6. Concluding remarks

A new finite volume paradigm, based on the hybridisable discontinuous

Galerkin (HDG) method with constant degree of approximation, has been

presented for the solution of linear elastic problems. Similar to other HDG

methods, the proposed face-centred finite volume (FCFV) method provides

a volumetric locking-free approach. Contrary to other HDG methods with

a constant degree of approximation (e.g. [24, 25]), the symmetry of the

stress tensor is strongly enforced using the Voigt notation, leading to optimal

convergence of the stress field components.
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The proposed FCFV method defines the displacement unknowns on the

faces (edges in two dimensions) of the mesh elements. The displacement and

stress fields on each element are then recovered using closed form expressions,

leading to an efficient methodology that does not require a reconstruction of

the gradient of the displacement and, therefore, it is insensitive to mesh

distortion.

Numerical examples in two and three dimensions have been used to

demonstrate the optimal convergence of the proposed method, its robust-

ness when distorted meshes are considered and the absence of locking in the

incompressible limit. The examples include classical benchmark test cases as

well as a realistic application in three dimensions.
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