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 39 

Abstract 40 

Emerging infectious diseases rarely affect all members of a population equally and 41 

determining how individuals’ susceptibility to infection is related to other components of 42 

their fitness is critical to understanding disease impacts at a population level and for 43 

predicting evolutionary trajectories. We introduce a novel state-space model framework to 44 

investigate survival and fecundity of Tasmanian devils (Sarcophilus harrisii) affected by a 45 

transmissible cancer, devil facial tumour disease. We show that those devils that become host 46 

to tumours have otherwise greater fitness, with higher survival and fecundity rates prior to 47 

disease induced death than non-host individuals that do not become infected, although high 48 
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tumour loads lead to high mortality. Our finding that individuals with the greatest 49 

reproductive value are those most affected by the cancer demonstrates the need to quantify 50 

both survival and fecundity in context of disease progression for understanding the impact of 51 

disease on wildlife populations. 52 

 53 

INTRODUCTION 54 

Infectious diseases rarely affect all individuals in a population equally (Grenfell et al. 2001; 55 

Lloyd-Smith et al. 2005). In many cases, it is the weakest, least fit, members of a population 56 

that are most impacted by pathogens. Low-ranking individuals or those in overcrowded 57 

aggregations have been reported to exhibit lower immune function and higher disease risk 58 

owing to a range of factors that can influence survival and fecundity (Sapolsky 2004). 59 

Conversely, dominant individuals that typically engage in mating and reproduction more 60 

frequently than subordinates, may trade off energetic investment in reproduction at the 61 

expense of immune-competence, ultimately increasing their disease risk (Sheldon & Verhulst 62 

1996; Lee 2006; Sepil et al. 2013). In either case, higher infection risk is frequently reported 63 

in association with stress and immune-suppression, implying that the infection of relatively 64 

weakened individuals is common-place in disease spread and persistence (Beldomenico & 65 

Begon 2010). 66 

Predicting the effects of infectious diseases on populations remains challenging due to 67 

the intricate interplay of demographic and epidemiological dynamics (Merler & Ajelli 2010; 68 

Peel et al. 2014). High disease-induced mortality, for example, does not necessarily imply 69 

decline in population growth if increased fecundity can compensate for the loss at the 70 

population-level (Wells et al. 2015), and/or if surviving individuals benefit from increased 71 

survival or reproductive opportunities due to decreased competition (Gaillard et al. 2000; 72 
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Coulson et al. 2004). Hence, the consequences of disease outbreaks at the population-level 73 

ultimately depend on individual fitness outcomes, that is, the relative reproductive potential 74 

of individuals that become host to the disease and non-host individuals, i.e. those individuals 75 

never affected by the disease. If, for example, a disthease mainly affects individuals that are 76 

unlikely to contribute to recruitment (e.g. post-reproductive individuals), even a highly lethal 77 

disease would have little effect on long-term population growth (see Fig. 1). If, however, the 78 

disease impacts those individuals most likely to contribute to recruitment then disease effects 79 

on population growth may be more substantial. 80 

Here, we examine the fitness consequences of devil facial tumour disease (DFTD) for 81 

Tasmanian devils (Sarcophilus harrisii) using 10 years of mark-recapture data. DFTD is a 82 

recently emerged infectious disease caused by a clonal cancer, transmitted by direct transfer 83 

of live cancer cells when devils bite each other (Hawkins et al. 2006; Pearse & Swift 2006; 84 

Jones et al. 2008; Hamede et al. 2013). DFTD is mostly fatal, with large ulcerating tumours 85 

leading to metabolic starvation, overgrown oral cavities or organ failure resulting from 86 

metastasis. High contact rates among individuals, often resulting in aggressive interactions 87 

including biting, and frequency-dependent disease transmission have been expected to reduce 88 

devil populations to very low levels (Lachish et al. 2007; Hamede et al. 2009; McCallum et 89 

al. 2009). In contrast, precocial reproduction of devils when the cancer reduces population 90 

density and hence intraspecific competition has been suggested as an adaptive host 91 

mechanism (Jones et al. 2008; Lachish et al. 2009). However, the extent to which individuals 92 

that become host to the cancer exhibit different fitness compared to non-host individuals that 93 

never become infected, and the timing and extent of reproduction in relation to individual 94 

disease status has not been examined so far. In order to explore fitness in the context of 95 

individual and population-level disease progression we developed a novel state-space model 96 
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framework that integrates individual-based survival and fecundity in the context of disease 97 

progression and epidemiological dynamics over time. 98 

 99 

METHODS 100 

Study system and field data 101 

We analysed mark-recapture data from individually marked Tasmanian devils collected 102 

between July 2006 and November 2015 from a population in western Tasmania (West Pencil 103 

Pine, 41°31 S, 145°46 E) (Hamede et al. 2015). Devils were captured at three month intervals 104 

(93 ± SD=18 days between capture sessions). The timing of capture sessions coincided with 105 

key reproductive stages during the annual cycle and were categorized into four seasons: 1) 106 

February/March (mating season), 2) May (small pouch young), 3) July/August (large pouch 107 

young), and 4) November (females are in late lactation with young in den). We further 108 

categorized capture sessions into three 3–4 year time periods: 1) 2006–2008, 2) 2009–2011, 109 

3) 2012–2015. As a compromise between exploring temporal variation and model 110 

complexity, we chose these arbitrary intervals rather than fitting a continuous time function. 111 

Shifts in tumour strain frequency (Hamede et al. 2015) and host genes related to immune 112 

response (Epstein et al. 2016) could cause different DFTD effects on survival rates, but the 113 

exact timing of relevant events are unknown. We classified the reproductive status of females 114 

based on pouch appearance (Hesterman et al. 2008) into 6 categories: 1) immature, 2) 115 

oestrous, 3) postovulatory, 4) pouch young presence, 5) lactating, 6) regressing teats. The 116 

number of pouch young were counted if present. The size of each DFTD tumour detected was 117 

measured with callipers to the nearest 1-5 mm in three dimensions (depth measurements of 118 

tumours inside the skin were least accurate) and the per-capita tumour load (tumour volume 119 

to the nearest cm3) was calculated. Hamede et al. (2015) provides further descriptions of field 120 

methods. See Supplementary Information for sample sizes.  121 
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 122 

Hierarchical model of individual fitness and disease progression 123 

(1) Survival 124 

We used a Bayesian hierarchical mark-recapture model, in which we integrated an 125 

incremental growth model of tumour load to project unknown disease states for all time steps 126 

when diseased individuals were likely to be alive but tumour load was not known. We use 127 

‘tumour load’, the total volume of all tumours on an individual at a particular time, rather 128 

than modelling each individual tumour separately because some tumours merged together 129 

over time and not all tumours were distinguishable. We assume that tumour growth is 130 

governed by an underlying ergodic and irreversible Markov process (once diseased, 131 

individuals remain diseased until death and tumour load is assumed to continuously increase; 132 

the rare events where shrinking tumours have been observed are modelled by the Gamma 133 

process as described below). Our model resembles a continuous-time Markov chain model 134 

for discrete state variables, and we projected all data on a continuous time scale (the first day 135 

of the study set to one) in order to express the time of all events such as individual age, 136 

lifetime and the onset of tumour growth as Euclidean temporal distances.  137 

We used the term ‘host’ for all individuals that were known to harbour tumours at any 138 

stage during their lifetime and the term ‘non-host’ for individuals never observed with 139 

tumours during their lifetime. Host individuals were classified as ‘diseased’ if tumour were 140 

present and as ‘non-diseased’ prior to the onset of tumour growth. 141 

For each individual devil i, we noted the encounter at time t (the total number of 142 

trapping sessions being T) as a binary vector Yi of length T with y(i,t) = 1 if the individual is 143 

encountered and y(i,t) = 0 otherwise. The capture records y(i,t) are assumed to be random 144 

observations of the true presence-absence z(i,t) of individual i at time t based on capture 145 

probability p(i,t) with 146 
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 y(i,t) ~ Bernoulli(z(i,t)p(i,t))   (1). 147 

The incompletely known individual states z(i,t) were estimated based on the survival 148 

probability (i,t) conditioned that individuals were alive at the previous time step t-1 such 149 

that: 150 

 z(i,t) ~ Bernoulli[(i,t) (t) z(i,t-1) Iborn(i,t) (1 - Idied(i,t))]     (2). 151 

The exponential scaling factor (t) accounts for unequal time intervals between capture 152 

sessions and was calculated as the ratio of the time interval between capture sessions to the 153 

average interval (93 days). The binary Boolean indicators Iborn(i,t) and Idied(i,t) indicate 154 

whether individuals are born or have died at time step t (i.e. Iborn(i,t) = 1 if already born and 0 155 

otherwise, Idied(i,t) = 1 if already dead and 0 otherwise), derived from the Markov chains of 156 

individual states. For most individuals the year of birth was known and uncertainty of the 157 

exact birth date fell into a 20-day window around the 1st April; for the few individuals with 158 

unknown birthdates (8 out of 518), uncertainty in birthdates was assumed to cover the time 159 

window of 6 years before first capture according to assumed maximum devil lifespan. For 160 

analysis, we drew individual birthdates(i) as random variables from a uniform distribution 161 

across individual uncertainty intervals; given (i) and z(i,t), for any time the individual age 162 

can be calculated given the underlying Markov process. 163 

We modelled survival probability (i,t) based on logit-link functions as  164 

 logit[(i,t)] = μ [agecat(i,t), period(t)] + sex[sex(i)] + host[Ihost(i)Iage425d(i,t)] + 165 

tumour[cat(i,t), period(t)] + BT XT(t)       (3). 166 

Here, μ is the intercept, which we allowed to vary among different age classes and time 167 

periods. We considered individual age as a categorical variable agecat(i,t) with six levels: 1) 1 168 

– 365 days, 2) 1 – 2 years, 3) 2 – 3 years, 4) 3 – 4 years, 4) 4 – 5 years, 5) > 5 years. The 169 

coefficient estimate sex captures variation in survival probability due to devil’s sex. The 170 

coefficient host allows for variation in survival of mature host versus non-host individuals  171 



8 
 

425 days old; we chose this threshold as this is the earliest age when individuals are expected 172 

to engage in reproduction and biting behaviour relevant for disease transmission (Jones et al. 173 

2008). The coefficient tumour captures variation in survival according to individual tumour 174 

load category cat(i,t), based on categorizing tumour load (i, t) (see below) into four 175 

different levels: 1) 0.0001 – 50 cm3, 2)  50 – 100 cm3, 3)  100 – 200 cm3, 4)  200 cm3. XT 176 

is a matrix of time steps (t = 1,…,T) of 4th orthogonal polynomial order (for modelling non-177 

linear relationships), BT is a vector of coefficient estimates for the polynomial model of the 178 

time covariate.  179 

Capture probability p(i,t) was modelled with a logit-link functions as 180 

 logit[p(i,t)] = μp(s) + infect[Iinfect(i,t)] + GTXT(t)      (4), 181 

allowing the intercept to vary over season s, depending on whether individuals were diseased 182 

or not with DFTD at time t (as given by the Boolean indicator Iinfect(i,t)), and as a polynomial 183 

function of time t of 4th order with coefficients GT. 184 

 185 

 (2) Reproduction 186 

We estimated the reproductive state of female f at time t as Repro(f, t), which was 187 

unknown when individuals were not captured and pouch appearance could not be classified 188 

(note that the double-index notation i[f] is used to match individuals i from the overall model 189 

framework to female f). Transition probabilities between the different reproductive states r 190 

can be summarized into an R × R matrix (R=6 for the six different reproductive stages) with 191 

marginal sums of one. We accounted for a directional transition between reproductive stages, 192 

i.e. the probability to be in any reproductive stage is conditioned on the previous states such 193 

that individuals once oestrous cannot become immature again but individuals can repeatedly 194 

reproduce once matured. We modelled reproductive states for each individual and time step 195 

based on the matrix of transition probabilities (rcurrent, rfuture, s, j);  was allowed to vary 196 
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among seasons s and for host versus non-host individuals as indexed by j and was conditional 197 

on the individuals’ previous reproductive state (using the sum to unity constraint of the 198 

multinomial distribution): 199 

Repro(f,t) ~ Multinomial[(Repro(f,t-1), R, s,j) z(i[f],t-1) + 0
Repro(R) (1 - z(i[f],t)) (1 200 

- Idied(i[f],t))]       (5). 201 

We used indicator variables to distinguish transition probabilities when individuals are alive 202 

(z(i[f],t)=1) from those prior to individual birth (z(i[f],t)=0, Idied(i[f],t)=0) in order to enforce 203 

the constraint that unborn individuals (Iborn(i[f],t)=0) are in the immature state (0
Repro(R) is a 204 

vector of length R with the first value set to 1 and all others to 0).  205 

For each year y a female was alive (z(i[f],t)=1), we calculated individual litter size l(f,y) as 206 

the number of pouch young. Random state values of l(f,y) were estimated based on the 207 

expected population-level probability (l,j) of the different litter sizes (with l  L indexing 1-208 

4 young and ∑ (𝑙)𝐿=5
𝑙=1  = 1) and conditional that an individual is expected to reproduce. We 209 

estimated (l,j) separately for host versus non-host individuals as indexed by j. The random 210 

variable l(f,y) allowed us also to summarize the expected yearly population-level number of 211 

young. As part of preliminary analysis, we also allowed (rcurrent, rfuture, s, j) and (l,j) to vary 212 

for diseased versus non-diseased host individuals (i.e. the index j included an additional 213 

category conditioned on infection status); since results were similar we ignored this aspect in 214 

the final model to increase computational efficiency. 215 

 216 

(3) Tumour incremental growth and projection 217 

We fitted an incremental growth model to tumour load measurements m(i,t) based on a 218 

logistic growth model which has been found to provide accurate fit to the growth of 219 

individual tumours (R.H. unpublished manuscript), and a Gamma process to account for 220 

random variation in each incremental growth step independent of the population-level mean 221 
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growth (Russo et al. 2009; Eaton & Link 2011). For this, we assumed field measures of 222 

tumour load m(i,t) to be random draws from the underlying growth process over the time 223 

interval t1 and t2 between consecutive measurements such that  224 

m(i,t2) = (i,t1) + (i,t2) dt(t2) +        (6).  225 

Here, (i, t1) is the tumour load at time step t1, (i, t2)dt(t2) is the product of the daily 226 

increment (i, t2) and the length of the time interval dt between t1 and t2, and  is random 227 

Gaussian noise. The increment (i, t2) = ((i, t2) - (i, t1))/ dt(t2) is assumed to be a Gamma 228 

random variable (i, t2) ~ Gamma(P(i, t2), ) with shape parameter P(i, t2) and scale 229 

parameter   0. The shape parameter P(i, t2) is based on the expected mean daily tumour 230 

growth according to the underlying logistic growth with  231 

 P(i, t2) = [m(i, t2) - (i, t1)]/ dt      (7) 232 

and 233 

 m(i, t2) = (i, t1)Mmax / [(i, t1 + [Mmax - (i, t1)]𝑒−𝑑𝑡]   (8) 234 

where Mmax is the asymptotic tumour load and  is the scale parameter of the logistic curve. 235 

Parameter estimates from the incremental growth model (, , Mmax) enabled forward 236 

and backward projection of individual disease burden, which is a Markov process governed 237 

by the disease burden (i, t-1) at the previous time step and the probability density function 238 

over all possible increment values given the growth model (eqn. 6).  239 

We used backward projection to estimate the date tumour load was at an assumed minimum 240 

mass of min = 0.0001, which we assumed to correspond to an arbitrary initial volume at the 241 

onset of tumour growth (note that we cannot further account for the true underlying 242 

biological process of latent and incubation period and the emergence of first lesions 243 

associated with tumour growth from the given data). We then projected individual tumour 244 

loads P(i, tP) according to equations 6-8. Note that the superscript ‘P’ is used to indicate 245 
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projected values rather than likelihood-based estimates from the data. We were not able to 246 

account for individual heterogeneity in growth parameters (, , Mmax) due to a lack of more 247 

detailed data; in order to realistically project individual disease burdens despite this 248 

shortcoming, we constrained logistic growth of individual tumours such that any projected 249 

value P(i, tP) was smaller than any previous data-derived estimate of disease burden and not 250 

larger than any future, data-driven estimate, i.e. (i, t < tP)  P(i, tP)  (i, t > tP).  251 

 252 

(4) Force of infection 253 

The individual disease state d(i,t) of whether individual i is diseased at time t is another 254 

partially known binary state variable, which is known for all times individuals were captured 255 

and for projected tumour loads but unknown after the last capture for non-diseased 256 

individuals. We modelled d(i,t) based on the infection probability (i,t), that is the probability 257 

that uninfected individual become infected, conditional they are alive.  258 

(i,t) was modelled with a logit-link function as 259 

 logit[(i,t)] = μ [agecat(i,t), period(t)] + sex[sex(i)] + AT XT(t)  (9). 260 

Equivalent to the model for (i,t), we modelled (i,t) with variation over age classes, sex and 261 

time and used the scaling factor (t) to take unequal time intervals into account; see 262 

Supplementary Information. 263 

 264 

The model was fitted in a Bayesian framework with Markov Chain Monte Carlo (MCMC) 265 

sampling and the Gibbs Sampler in OpenBUGS 3.2.2 (Lunn et al. 2009). Parameter estimates 266 

were calculated as posterior modes and 95% highest posterior density credible intervals (CI) 267 

from 5,000 MCMC samples. Details of model fit and the model code are presented as 268 

Supplementary Information. 269 
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We calculated the force of infection FoI(t), that is, the rate at which susceptible individuals 270 

acquire DFTD at each time t, as the population average from the infection probability (i,t). 271 

We used the various state and indicator variables described above to calculate 272 

summary statistics at the individual (i.e. lifespan, the time until death after the onset of 273 

tumour growth or lifetime reproductive output of females) and population level (i.e. disease 274 

prevalence, proportion of individuals in different age classes in each capture session). 275 

We explored trends and seasonal effects of transmission rates (derived from prevalence 276 

estimated from all individuals and, alternatively, mature individuals only) with linear 277 

regression models in R (R Development Core Team 2016), running models for each set of 278 

MCMC samples to obtain posterior distribution of coefficient estimates.  279 

 280 

RESULTS 281 

Strikingly, we found that the overall fitness of host individuals was significantly 282 

higher in terms of both survival and reproduction than those of non-host individuals (devils 283 

never hosting tumours during their lifetime). The average survival rates of mature ( 425 284 

days old) non-diseased host individuals was estimated to be 0.7 – 4 times higher than those of 285 

mature non-host individuals (odds ratio of 4.7 – 4.9 and CIs 3.3 – 9.0 for host for the time 286 

periods 2006 – 2008 and 2009 – 2011; odds ratio of 1.7 and CI 1.4 – 4.9 for the time period 287 

2012 – 2015; temporal differences are only tendencies but not significant because of 288 

overlapping credible intervals; Fig. 2). Increased tumour loads of diseased host individuals 289 

did indeed lead to decreased survival rates, reducing survival of individuals with tumour 290 

burdens > 100 cm3 to only 9 – 20% of that of non-diseased host individuals with similar 291 

effects over time (Fig. 2; tumour, odds ratios of 0.09 – 0.12, CIs: 0.07 – 0.21). Nevertheless, 292 

devils with tumours in the smallest size class had higher survival rates than those that never 293 

became infected. A larger proportion of host individuals had lifespans between 3 – 4 years 294 
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compared to non-host individuals, with 56% (CI: 53 – 59%) of hosts surviving to this age 295 

compared to only 38% (CI: 34 – 40%) of non-hosts (Fig. 3), most having died or dispersed as 296 

young before they could get infected. 297 

Mature female host individuals reproduced on average 1.3 times (CI: 1.2 – 1.4) in 298 

their lifetime, while mature non-host females reproduced on average only 0.7 times (CI: 0.6 – 299 

0.9). Moreover, host individuals tended to have larger litter sizes with a 63% (CI: 62 – 64%) 300 

chance of a litter sizes of four young opposed to only 47% (CI: 46 – 48%) chance for non-301 

host individuals, which more often had litter sizes of two or three young only. 302 

According to our incremental growth model, the average half-life time of tumours 303 

(i.e. the progression of individual tumour loads towards half the size of the asymptotic 304 

tumour load Mmax) was 148 days (CI: 114 – 181 days); Mmax was estimated as 202 cm3 (CI: 305 

198 – 223 cm3) and the scale parameter of the logistic growth curve as  = 0.03 (CI: 0.028 – 306 

0.043, Fig. S1). The scale parameter of the Gamma process of incremental growth was  = 307 

0.8 (CI: 0.6 – 1. 4), suggesting that growth of tumour loads was skewed towards relatively 308 

small incremental growth, and only occasionally, relatively large increments. Tracking the 309 

individual time until death of host individuals after the onset of tumour growth (i.e. a 310 

modelled time point prior to the time of first observation), we found that only 11% (CI: 7 – 311 

15%) of individuals died within 90 days after the back-projected onset of tumour growth; at 312 

least 21% (CI: 13– 29%) of host individuals were likely to survive > 2 years with tumours 313 

(Fig. S2).  314 

Population-level disease prevalence increased from the beginning until mid-term of 315 

the study (2006 – 2012), but we found no consistent trend in disease prevalence in the last 316 

time period (2013 – 2015) (Fig. 4). Disease prevalence and the proportion of non-host 317 

individuals did not vary across seasons but exhibited some long-term trends. The proportion 318 
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of non-host individuals decreased considerably during the first years of the study (2006 –319 

2011) and subsequently increased from 2011 to 2014 (Fig. 4).  320 

Force of infection was highest in 2012 (posterior mode of 67%, CI 51 – 80%). Despite 321 

considerable uncertainty in these estimates as shown by large CIs (Fig. 5) we found a 322 

significant decrease in the force of infection after 2012 as shown by the odds ratio of the 323 

temporal effect (Fig. S7). At population level, the number of newly diseased individuals in 324 

different capture sessions was positively correlated with the number of diseased individuals 325 

in previous capture sessions (Spearmans’ r = 0.51, CI: 0.34 – 0.65) and disease prevalence in 326 

previous capture sessions (Spearmans’ r = 0.45, CI: 0.31 – 0.57). Changes in disease 327 

prevalence over time were positively correlated with the number of diseased individuals 328 

(Spearmans’ r = 0.92, CI: 0.88 – 0.94) and the estimated total mass of all tumour loads at 329 

population level (Spearmans’ r = 0.72, CI: 0.28 – 0.89). The force of infection divided by 330 

prevalence would estimate the transmission rate β if transmission was frequency-dependent 331 

(as previously suggested; McCallum et al 2009). There was inconclusive evidence that 332 

transmission rate estimates from August 2012 (peak in force of infection) until November 333 

2015 declined by approximately 24% (CI: -13 – -29%) during the 3 years of the study with 334 

prevalence calculated for all individuals regardless of age, but this trend was not confirmed 335 

with prevalence estimates for mature individuals only. There were no clear seasonal 336 

differences in transmission rate estimates, which included much uncertainty according to 337 

large credible intervals (Fig. S8).  338 

Declines in the finite population size estimates over time (Fig. S3) coincided with 339 

declines in the population-level total number of pouch young per year after 2010 (Fig. S4). 340 

Survival rates differed markedly for different age classes and over time (Fig. S5), as did the 341 

demographic structure of the populations (Fig. S6). Capture rates varied over season with 33 342 

– 35% (both CIs: 31 – 39%) capture probability in February/March and November and 27% 343 
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(both CIs: 24 – 30%) capture probability in May and July/August. Capture probability 344 

dropped slightly during the course of the study (Fig. S7) and more than doubled for diseased 345 

host individuals (infect) compared to uninfected individuals.  346 

Overall model fit was reasonably good with a Bayesian p-value of 0.52. Model fit of 347 

the incremental growth models was less precise with a Bayesian p-value of 0.30; we attribute 348 

the lack of better fit largely to the limited data on disease progression and also large 349 

individual heterogeneity in tumour growth, for which we could not account in this study with 350 

a lack of more detailed field data. Results on the variation in survival rates for different age 351 

classes, population size estimates, and the age composition in each capture session are 352 

presented as Supplementary Information. 353 

 354 

DISCUSSION 355 

We found an unexpected and novel result - devil facial tumour disease (DFTD), a 356 

transmissible and devastating cancer, selectively impacts the otherwise most fit individuals in 357 

the population. Despite being affected by disease, host individuals (those that eventually 358 

become infected) had both higher survival and greater reproductive output than non-host 359 

individuals, in terms of both more annual breeding attempts and larger litter sizes. This 360 

challenges the conventional wisdom that infectious disease differentially affects less fit 361 

individuals in a population (de Castro & Bolker 2005). We emphasize that the novel insights 362 

in terms of individual fitness in relation to disease status gained in this study were only 363 

possible by analysing disease progression, survival and reproduction in an integrative model 364 

framework that accounts for the most likely disease states of individuals throughout their 365 

lifetimes.  366 

Our finding that devils with relatively high fitness are also those most likely to 367 

become infected suggests that it is the socially dominant animals that are at highest risk of 368 
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infection and death from DFTD. These are the individuals that are likely to survive longer 369 

than the less fit mature individuals in the population, which most likely die from other causes 370 

before they are able to reproduce. This result is consistent with the finding of a previous 371 

study showing the most frequent biters (i.e., socially dominant animals) are most likely to 372 

become infected (Hamede et al. 2013). If infection selectively removes dominant individuals 373 

from a population, there may be important long-term consequences for the social structure 374 

and viability of the population, as well as for disease transmission. For example, culling of 375 

European badgers (Meles meles) disrupts social organisation and leads to increased 376 

movement of badgers and disease transmission to cattle (Donnelly et al. 2006). Likewise, 377 

selective animal removal through harvesting can change the demographic structure and 378 

population growth of many species (Milner et al. 2007). 379 

Our results also have implications for understanding how disease-induced 380 

evolution in Tasmanian devil populations may be occurring. In particular, our model 381 

framework provides the opportunity to explore whether devils may evolve resistance to 382 

infection or rather tolerance to the impacts of infection, both being important host adaptation 383 

strategies (Råberg et al. 2009). Several lines of evidence provide robust support for the 384 

assertion that infected devils are under strong selective pressure. First, high mortality of 385 

adults from DFTD leads to rapid population declines (McCallum et al. 2009). A recent study 386 

provided evidence of substantial changes in the frequency of genes associated with immune 387 

function in devil populations that have been infected for as little as eight years (Epstein et al. 388 

2016). Third, a small number of individuals are able to mount an immune response and, in 389 

some, tumours regress (Pye et al. 2016). In this context, the implications of our novel results, 390 

that it is that the otherwise most fit devils become infected, are intriguing. If adult devils with 391 

high fitness are those that become infected, the potential for selection for resistant animals 392 

would be limited. However, our results also demonstrate a recent decline in the force of 393 
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infection and transmission rate. This leads to the question of whether devils in this population 394 

may have developed resistance to infection. The initial increase in the force of infection from 395 

2006 to 2012 (see Figure 5) is to be expected as the tumour increased in prevalence within 396 

the host population after disease emergence. It may also be a result of the replacement of a 397 

tetraploid tumour karyotype with a diploid karyotype which took effect from 2011 onwards 398 

(Hamede et al. 2015).The recent decline in the force of infection and transmission rate 399 

warrants further investigation, and could be due to a number of factors. There is evidence of 400 

selection at West Pencil Pine in chromosomal regions containing genes related to immune 401 

and cancer function (Epstein et al. 2016), possibly indicating evolution of resistance, as well 402 

as evidence of immune responses to DFTD resulting in tumour regressions and recovery after 403 

infection (Pye et al. 2016). Individual heterogeneity in devil behaviour such as physical 404 

interaction and biting is another possibility. The recent decline of the force of infection could 405 

have resulted from a reduction in the number of socially dominant devils from the population, 406 

if these are responsible for most transmission events. Group living and mating strategies can 407 

shape social contact networks among individuals that mediate parasite exchange (Liljeros et 408 

al. 2003; Cauchemez et al. 2011) and disease risk (Altizer et al. 2003; Drewe 2010; Kappeler 409 

et al. 2015). The possibility of synergistic effects between co-evolutionary dynamics of host-410 

pathogen interactions and disease-driven changes in social structure over time necessitates 411 

caution when interpreting changes in disease transmission in context of host defence 412 

mechanisms. For future studies, it will be desirable to refine estimates of disease transmission 413 

rates that are currently blurred by large uncertainty and cannot account for individual 414 

heterogeneity in social status and behaviour due to the lack of data.  415 

Disease tolerance might manifest in a number of ways, but one would be longer 416 

survival when carrying a tumour burden of a given size. Figure 2 shows no evidence that this 417 

has occurred, with the relationship between tumour size and mortality rate being 418 
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indistinguishable in the three time periods. A confounding factor, however, is the change in 419 

the dominant tumour karyotype in the population from tetraploid in the early stages of the 420 

epidemic to diploid karyotype during the course of the study (Hamede et al. 2015). 421 

Unfortunately, distinguishing diploid from tetraploid karyotypes was not possible for most of 422 

the individuals analyzed herein, and this information was therefore not included in our study. 423 

Moreover, recent molecular evidence of a protective immune response of devils against 424 

DFTD recorded from our study site (Pye et al. 2016) suggests that immune responses might 425 

impact disease tolerance through regression of tumours. Reconciling these facts with our 426 

findings of how population-level disease dynamics may change over time requires further 427 

analysis of how individual-level heterogeneity in host and tumour genotypes and the 428 

behaviour of adult ’hosts’ and ’non-hosts’ drive variation in demographic rates and infection 429 

risk and how this translates into population-level pattern in disease dynamics. 430 

Our estimates of the time until death following infection are longer than the 6 431 

months previously reported (McCallum et al. 2009; Ujvari et al. 2016). These previous 432 

estimates were for time until death after first detection of tumours. Estimation of the 433 

incubation period and its frequency distribution is a challenging problem for DFTD 434 

(McCallum et al. 2009). Our new, model-based estimation of survival time includes back-435 

projection of growth to a very small initial tumour volume. This may not estimate the actual 436 

incubation period fully, but is a substantial improvement over previous approaches, which 437 

have relied on anecdotal information on the appearance of tumours in captive animals which 438 

had not been exposed to infection for extended periods (Pyecroft et al. 2007). 439 

To determine whether and how disease-induced evolution within the devil 440 

population and reciprocal evolution within the tumour population is occurring requires 441 

further data and modelling. The modelling and analytical framework, we have presented in 442 
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this paper provides a template for performing such analysis, which should be also applicable 443 

to a wide range of other emerging infectious diseases in natural populations. 444 

 445 
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 592 

Figure 1. Illustration of possible synergistic effects of host survival and fecundity on long-593 

term population growth in context of disease onset and progression such as increasing tumour 594 

load on Tasmanian devils. Horizontal thick lines indicate individual devil survival over time, 595 

small devils reproduction and red dots infestation with tumours. Devils may not reproduce 596 

because of their physical condition or social status independent of the disease (A), or, because 597 

of a highly fatal disease with rapid progression and death (B), promoting population decline. 598 

However, host individuals can contribute to the reproductive pool and population growth if 599 

they are diseased late in life (C), or, if slow disease progression allows reproduction of 600 

diseased host individuals (D). Healthy non-host individuals may reproduce several times in 601 

their life (E). The outcome of these strongly coupled demographic and epidemiological 602 

interactions can only be understood if analysed in a consistent framework. 603 
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 605 

 606 

Figure 2. Estimated decrease in survival rates for mature non-host individuals (i.e. those that 607 

never become infected; grey triangles) and host individuals with certain tumour loads (red 608 

squares) compared to non-diseased host individuals (i.e. prospective host individuals prior to 609 

the onset of tumour growth). Triangles and squares are posterior modes of the odds ratios of 610 

the survival rates compared to those of non-diseased host individuals (baseline value at 1, 611 

shown in orange), vertical bars are 95% credible intervals. 612 
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 618 

Figure 3. Proportion of Tasmanian devil individuals with different lifespan estimates based 619 

on their classifications into host (harbour tumours at any stage during their lifetime) and non-620 

host (no tumours observed) individuals. Symbols represent the posterior mode estimates of 621 

the proportion of individuals in each class of expected lifespans (1–2, 2–3, 3–4, 4–5, 5–6, > 6 622 

years). Vertical bars represent 95% credible intervals based on the uncertainty in individual 623 

lifespan estimates from the state-space model.  624 
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 631 

Figure 4. Changes in the proportion of individuals with different health status for devil facial 632 

tumour disease over 10 years. Disease prevalence, that is the proportion of individuals that 633 

are hosts and are diseased are plotted with pink circles/bars. Individuals without tumours are 634 

denoted as ‘host – non-diseased’ (orange circles/bars) if they were expected to acquire 635 

tumours later in their life and as ‘non-host’ (grey triangles/bars) if they never hosted tumours. 636 

Symbols are posterior mode estimates, bars present 95% credible intervals. For each time 637 

step, the proportions of individuals in the three different states sum to one.  638 
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 644 

Figure 5. Estimated force of infection (rate at which susceptible individuals become diseased 645 

per year) for devil facial tumour disease over 10 years. Black dots are posterior mode 646 

estimates, bars present 95% credible intervals from sampling possible disease progression at 647 

individual level.  648 


