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SUMMARY 
 

Energy harvesting by animals is important because it provides the power 

needed for all metabolic processes. Beyond this, efficient food-finding 

enhances individual fitness [1] and population viability [2], although rates of 

energy accumulation are affected by the environment and food distribution. 

Typically, differences between individuals in the rate of food acquisition are 

attributed to varying competencies [3] even though food encounter rates are 

known to be probabilistic [4]. We used animal-attached technology to quantify 

food intake in four disparate free-living vertebrates (condors, cheetahs, 

penguins and sheep) and found that inter-individual variability depended 

critically on the probability of food encounter. We modelled this to reveal that 

animals taking rarer food, such as apex predators and scavengers, are 

particularly susceptible to breeding failure because this variability results in 

larger proportions of the population failing to accrue the necessary resources 

for their young before they starve, and because even small changes in food 

abundance can affect this variability disproportionately. A test of our model on 

wild animals indicated why Magellanic penguins have a stable population 

while the congeneric African penguin population has declined for decades. We 

suggest that such models predicting probabilistic ruin can help predict the 

fortunes of species operating under globally changing conditions. 

 

 

 

RESULTS AND DISCUSSION 

 

Consumer resource theory recognizes the importance of food-finding and deals with 

broad issues ranging from optimal diet models [5] through behavioural strategies [6] 

to population dynamics and food web structure [7]. However, although some work 

recognizes the importance of variation in rates of energy accumulation [8] and how 

animal condition depends on foraging decisions [9], many models ignore such 

variation and so cannot build appropriate risks of breeding failure or starvation into 

their outputs. In fact, resources are generally considered to be distributed 

probabilistically [10], which does not necessarily equate with linear rates of food 



procurement across a population [4]. Indeed, probabilistic food encounter makes 

foraging animals more analogous to serial gamblers who may, or may not, be 

successful at any given moment, and whose fortunes may vary considerably over 

time depending on whether they are ‘lucky’ or ‘unlucky’ [4]. In animal terms, such 

gambling specifically relates to the probability of finding food, the energetic value of 

that food, and the energetic costs of foraging (with the balance between these 

factors being couched within a risk-reward framework [11]). A serial gambler incurs 

‘ruin’ if money to bet runs out. By analogy, a foraging animal experiences ruin if its 

energy reserves (e.g. those needed for survival [‘individual ruin’] or breeding 

[‘reproductive ruin’]) become exhausted. Indeed, this simple gambit often underlies 

state-dependent models of foraging. Since the time course of such ‘luck’ in foraging 

animals relates to energy gain, with consequences for species reproductive success, 

it is surprising that rates of food intake have only rarely been determined for wild 

animals.  

 

Food ingestion rates and the implications of probabilistic feeding 

 

Our field work using animal-attached technology to determine the details of 

animal feeding revealed very different patterns of food accumulation (defined as food 

actually ingested, with the time between food ingestion events being defined by the 

time spent searching for, and attempting to secure, food – see Star - Methods) 

between the four species examined. The domestic sheep Ovis aries (grazing 

herbivores that feed virtually continuously on low reward plants and which ingest the 

smallest food items -corresponding to single bites of vegetation), were monitored for 

24 h each and had the shortest period between food ingestion events (typically less 

than 5 s (Figure 1) although a tail of longer inter-bite intervals occurred). They had 

an approximately linear cumulative intake of food over hours of foraging, and the 

least inter-individual variation of the species considered (Figure 1). They were 

followed by the Magellanic penguins Spheniscus magellanicus (high power, pursuit 

piscivores that typically ingest dozens of prey items per trip [12]). All penguins were 

monitored over one full foraging trip (the mean deployment period of the devices was 

18 h at sea) and also showed an approximately linear increase in cumulative food 

items ingested over hours of foraging, although inter-individual variation was 

substantially greater than in the sheep. This was presumably due, in part, to 



patchiness in the prey distribution and/or differences in foraging ability between 

individuals. The cheetahs Acinonyx jubatus (high power, pursuit carnivores, that 

usually capture a single food item per foraging trip [13]) and the Andean condors 

Vultur gryphus (low power, scavenging carnivores that also, at best, encounter a 

single, high quality, food item per foraging trip [14]) both had step functions in food-

finding events over periods of hours of foraging (Figure 1). Individuals from both 

species were monitored for several days (means; cheetahs = 5.01 days, condors 7.8 

days) and showed the most inter-individual variability in the time taken to find food, 

with search times varying between 8,561 and 62,259 s and 1,560 s to 128,100 s, for 

the cheetahs and the condors, respectively (Figure 1. See also Figure S1). 

Such data can be modelled to determine the effects of food-finding on overall 

animal energy reserves by breaking down the activities into ‘foraging’ and ‘all other 

activities’ and considering the probability of food-finding (Figure S1). A simple 

mathematical model using a binomial process can represent foraging periods as a 

sequence of discrete time steps of equal length, in which we can record; (i) the 

number of food items accumulated by the animal (cf. Figure 1), (ii) the corresponding 

energy accumulated by the animal, (iii) and the energy reserves of the animal. This 

approach translated our animal feeding data (Figure 1) into a probability of success, 

Ps, of; 0.00004, 0.00004, 0.03 and 0.05/s for the cheetah, condor, Magellanic 

penguin and sheep, respectively. Using these three distinct Ps values as a basis to 

simulate the number of food items accumulated for three hypothetical species 

(Figure S2A – cf. Figure 1), we observed that, as the probability of success 

decreased, both the search time for a success and the variability in overall search 

times increased non-linearly (Figure S2B). 

Critically, we noted that Ps affected inter-individual variation in terms of energy 

accumulated during foraging (even if the mean rate of energy gain was held 

constant), with, again, disproportionately increasing variation for decreasing Ps. This 

means that some individuals in a population of foragers can be successful in terms 

of energy accumulation, and others markedly less so, even without invoking inter-

individual differences in foraging abilities, which is normally suggested as the source 

of such variation [e.g.15]. It is particularly relevant that species taking more 

improbable food (such as apex predators or scavengers) are subject to an increasing 

element of (entirely unselective) detriment to an extent determined by their Ps value.  



This approach also demonstrates how decreasing Ps substantially increases 

the variance in the times taken for species to reach a fixed energy target (Figure 2). 

This is most germane in species seeking to provision their young with a set amount 

of energy within a particular time period, as is the norm. As before, this effect is most 

marked in animals feeding on food with low probabilities of acquisition (Figure 2B), 

such as apex predators. Of particular note, however, is how this effect is 

exacerbated by the additional costs of breeding for a fixed Ps value (Figure 2C). 

Generally, the increased costs of reproduction will force animals to forage for longer, 

further increasing the foraging energy expended. Incorporation of these additional 

costs into our model for our three hypothetical species illustrates the huge variation 

between individuals and species in the accumulation of energy reserves for 

reproduction according to Ps (Figure S3). This variation defines the likelihood of 

‘foraging ruin’, in which an animal uses up all of its energy available for reproduction 

during foraging due to repeated failure. It also highlights why the higher foraging 

costs and low energy reserves of apex-carnivores, such as wild dogs Lycaon pictus 

[16] and cheetahs [17], which have been described as ‘living on an energetic knife 

edge’ should be associated with dramatically increased individual ruin probabilities 

(Figure 3. See also Figure S4), and that animals with lower rates of food acquisition 

taking higher value food items are more vulnerable to a given reduction in prey 

availability (Figure S4). 

Our explicit example of how reproductive ruin is affected by probabilistic food 

encounter capitalizes on our data, together with other information on the ecological 

energetics, of African Spheniscus demersus and Magellanic penguins. Magellanic 

penguins have a large, stable population operating in an area with minimal 

commercial fishing pressure [18] while African penguins have a dramatically 

decreasing population, reportedly due to intense competition with commercial fishing 

fleets [19]. Using our estimated Ps of 0.03 for Magellanic penguins and calculating an 

equivalent value for African penguins to be 0.006, and combining these with data on 

the species-specific energy expenditures together with the energetic values of prey 

and the chick growth requirements, allowed us to illustrate the marked divergence in 

the accumulation of energy by birds from the two species over foraging time (Figure 

4). Specifically, the inter-individual variation in the Magellanic penguin was minimal, 

with all modelled animals acquiring enough food to meet all their energetic needs, 

including those of the brood, within a single day at sea. By contrast, although all 



modelled African penguins could acquire enough energy for the adult needs within a 

day, most could not acquire adequate food for their chicks in this time (Figure 4). 

This means either that the birds return to the nest with inadequate food to sustain 

appropriate chick growth [20] or that they remain at sea during the night, during 

which they cannot forage [18], and incur substantial extra energy costs which have 

to be made good the next day. In this case, the provisioning rate is less than half that 

of the birds that were lucky enough to have acquired enough food within the first day 

(Figure 4). 

 

Animal lifestyle and Ps values 

 

Giving food acquisition a probabilistic Ps value within a gambler’s context for animals 

is important because it indicates how the energy of food items must relate to their 

abundance if animals are to breed successfully, or even survive. Generally, we 

expect Ps values to reflect both food abundance and food quality: A low Ps 

necessitates a high energetic gain from the foodstuff because all energy demands 

must be met by few food encounters. Conversely, a higher Ps means that food must 

be abundant [21]. This latter condition is met by lower trophic level foodstuffs, most 

notably plants [22], that are typically the domain of herbivores, with low energetic 

gain per unit time [23]. Such animals are anticipated to have foraging success most 

affected by the energetic value in their foods [24]; reason enough though, for 

herbivores to be selective in what they eat [25], provided they balance returns with 

probabilities of encounter as they move to lower Ps values [26]. The nutritional or 

energetic value of different foodstuffs [22] will tend to lead to carnivores generally 

having lower Ps values than herbivores. However, this will be affected by prey size: 

Strategies will range from species that have multiple encounters with high quality, 

but small, prey (e.g. insectivores [27]) which need to be abundant (with high Ps 

values), to species with the lowest Ps values (e.g. large cats and scavengers) that 

feed on large prey items [14, 28]. Omnivorous animals, such as bears, may have 

variable Ps values, consuming food items of highly variable energetic value [29]. This 

may make them less susceptible to probabilistic failure than the more specialized 

apex predators due to the diversity of their diet. Indeed, a specific benefit of 

omnivory, which is poorly dealt with by traditional models of diet choice [1], is that it 



partially deals with variance in food encounter rates due to the differential occurrence 

of the assorted components of the diet. 

The implication is that animals operating with a low probability of food 

acquisition per unit time, such as many apex predators and scavengers, are subject 

to selection pressure to minimize the metabolic costs of all activities [30]. For non-

foraging behaviours, this may explain why large carnivores spend so much time 

‘resting’ [31] while many herbivores can engage in energetically taxing behaviour, 

such as males rutting and engaging in high speed chases to demonstrate fitness to 

females [32]. During foraging, it may explain why many mega-carnivores rely on low-

cost sneak attacks on prey [28], and why cursorial predators, which rely on high 

power pursuit tactics, such as cheetahs [17] and wild dogs [16], should incur severe 

energetic penalties when subject to probabilistic failure [16]. Some mitigation of 

these effects may be achieved by species with lower Ps having greater capacity for 

surviving longer periods without food, something enhanced by greater body size [33], 

but this brings with it complications in prey-catching during active pursuits [34] and 

still leaves small-bodied young susceptible to starvation.  

 

Previous work has shown the complexities of the factors affecting population 

processes [35] and, within these, the fundamental role of food acquisition in breeding 

success has been repeatedly emphasized [36], although the precise mechanistic link 

between energy gain and population success with respect to food has been unclear. 

As such, the biological relevance of gambler’s ruin for reproduction within and 

between similar species is likely to be profound, most particularly where food is rare 

because this detrimentally affects a greater proportion of the population based on 

‘luck’ alone. This point is aptly illustrated by our two study Spheniscus penguins, one 

of which has a stable population [18]  while the other is in serious decline [19], with 

all the evidence pointing to the consequences of excessive fishing as the prime 

cause [19]. Critically, we note how inter-individual variation in food encounter rates, 

presumably a direct consequence of food abundance, affects the rate at which food 

can be bought back to the nest (Figure 4).  

 

Conclusions 

 



This work illustrates how a systematic, non-selective proportion of populations can 

incur detriment with increasingly rare food, and provides a framework to consider 

how the reproductive success of apex predators and scavengers is likely to be 

dramatically different to that of species taking common food. It also highlights how 

even small changes in ecosystem functioning stemming from anthropogenic 

activities [37] may affect animals differentially according to the encounter 

probabilities of finding food. This might explain, for example, why Carbone et al. [38] 

found that larger carnivores show the most dramatic declines in numbers to 

decreasing prey abundance. Whilst there is no doubt that changes to animal 

populations in the Anthropocene are the result of complex processes, we suggest 

that the use of probabilistic frameworks relating reproductive ruin to foraging have an 

important role to play in our understating of population processes. Indeed, this may 

prove pivotal for assessing and predicting population well-being as well as in helping 

formulate conservation plans as environmental conditions change [39]. 
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Figure captions 

 

Figure 1. Feeding patterns of disparate vertebrates. 

 

Coloured line graphs show the accumulation of food over time spent foraging by four 

different vertebrates; domestic sheep in two localities (yellow traces are from 

Argentine Patagonia; green from Northern Ireland), while Magellanic penguins, 

cheetahs and Andean condors have different colours showing different individuals. 

The grey histograms show frequency plots of the time between food items for each 

species showing the major modes for sheep and penguins (the sheep, in particular, 

had a number of much longer intervals between bites, which were assumed due to 

processes other than foraging). See also Figure S1. 

 

 

Figure 2. The success time (Ts) required to accumulate a target energy. 

 

(A) Distribution of Ts to accumulate 3000 units of energy using the probability of food 

encounter per second search (Ps) from our study species. The mean rate of energy 

accumulation is kept constant across species by varying the energy return in a single 

food item (G); G = 3 for the sheep, G = 5 for the penguin, and G = 3750 for the 

condor. (B) The mean success time (blue line) and variation around it (orange and 

green lines; σ denotes the standard deviation) required to accumulate 3000 units of 

energy for a range of Ps values. Here, G is scaled to keep the mean rate of energy 

accumulation constant. (C) Standard deviations in Ts, for a range of target energies 

(which may represent non-foraging costs such as breeding) plotted over a range of 

Ps. The size of energy reward, G, is scaled to keep the mean rate of energy 

accumulation constant. 

 

 

Figure 3. Probability of foraging ruin, PR, for apex predators. 

 

PR is given for a range of initial energy values and probabilities of food encounter, Ps, 

in a scenario where one food encounter represents foraging success and the cost of 

foraging C = 1. See also Figure S4. 

 

 

Figure 4. Likelihood of reproductive ruin due to variation in time taken to acquire food 

in two penguin species. 

 

Modelled rates of energy gain for 20 African penguins (red lines) and 20 Magellanic 

penguins (blue lines) using data on the metabolic rates for different activities and 

time budgets of breeding adults, amounts of food needed by chicks according to age 

(for 35 day-old chicks), and probabilities of prey encounter. We assume adults 



persist with neutral energy balance, here indicated by the 0 line (adult penguin 

threshold), which is crossed during foraging. Energy is assumed to be acquired 

probabilistically. Both species easily recoup their lost body energy (where they cross 

the adult threshold/green line) within the first foraging day. The Magellanic penguins 

also easily gain all the energy needed for their chicks (blue horizontal line) (cf. blue 

frequency histogram) but 16 of the 20 individual African penguins fail to do so (black 

lines). If these birds remain at sea to make up the difference, they pay the elevated 

metabolic cost of this, have to pay the consequent extended stay once at the nest, 

but cannot even acquire a time-corrected amount of food for the chicks due to 

limitations in stomach size. All this decreases the provisioning rate substantially (red 

histogram) cf. Figure S4. 
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EXPERIMENTAL MODEL AND SUBJECT DETAILS 

 

Determination of food ingestion 

 

‘Foraging’ is a general term used within a variety of contexts. We consider foraging 

to be all time consecrated to the process of searching for, and securing (but 

generally not handling unless it is virtually instantaneous), food. Thus, animals such 

as penguins and cheetahs may be able to see potential food, but these potential 

food items only become relevant to this study once they were secured. Seven 

Magellanic penguins at Cabo Virgenes, Argentina, during 2002 were equipped with 

Daily Diary loggers (DDs [40]) recording, at 6 Hz, dive depth and swim heading as 

well as Hall sensor-based jaw angle loggers which recorded, at 20 Hz, all prey items 

swallowed [41] during a single foraging trip for these birds at sea. These birds were 

considered to be foraging after they had ingested their first prey item and engaged in 

dives in excess of 5 m. Equivalent data were derived for the African penguin. Six 

domestic sheep were studied, each for a full day, three in Patagonia, Argentina in 

2014 and three in Northern Ireland during 2016, with bites of food being evident as a 

clear signal recorded by tri-axial accelerometers and/or magnetometers (in DDs), 

logging data at 40 Hz, attached to their heads [42]. As with the penguins, the sheep 



were considered to be foraging from the first bite of food. Seven condors, caught in 

Argentina during 2010-2014, were studied using DDs recording pressure, tri-axial 

acceleration and tri-axial magnetic field intensity at 20 or 40 Hz for periods up to 10 

days. These tags showed flight and feeding via characteristic changes in recorded 

pressure, acceleration and magnetic field intensity (cf. 40). They were assumed to 

be foraging in all flights except those immediately following feeding during which the 

birds were considered to be returning to roosting sites. Six cheetahs in the Kgalagadi 

Transfrontier Park, South Africa, were caught and fitted with tri-axial accelerometers 

recording at 30 Hz [43]. These animals were followed continuously during the day 

and occasionally at night for 4-6 days each, to document all hunting behaviours. The 

acceleration data were used for periods when the animals could not be observed, 

benefitting from matched acceleration signatures with activity gained during the 

observations. Animals were assumed to be foraging during all walking, stalking and 

chasing behaviours [42] except when walking occurred immediately after prey 

capture. 

 

We note that there was appreciable difference in the handling time of food between 

the different species studied. For the condors and cheetahs, we did not include any 

handling within the foraging (food searching) time. For the penguins, the time taken 

to ingest a single prey item was typically <2 s [cf. 41], which is a small fraction of the 

inter-fish duration, implying that food acquisition (searching and then capturing) was 

the primary factor affecting inter-prey durations. However, for the sheep, the most 

likely explanation for most of the inter-bite durations (see frequency distribution in 

Figure 1) was actually food processing [44] so the Ps-values should be seen within 

this context. It is an oversimplification to preclude handling times and food gathering 

success for our modelling process (see below). For example, if a large carnivore 

makes a large kill, it may not resume hunting for several days. In contrast, if it fails, it 

will continue to hunt, so that this process will affect the inter-individual variance in kill 

rates. We attempted to mitigate for some of this by identifying, as far as possible, 

proper foraging behaviour (see above) but the approach is undoubtedly imperfect. In 

addition though, lack of hunting success may also reduce body condition, which 

could, in turn, promote lack of foraging success, effectively changing the Ps-value of 

the animal in question. 

 



METHOD DETAILS 

 

 

A simple probabilistic model for foraging 

 

Consider an animal foraging for food, whereby foraging is defined as periods of time 

during which animals are actually searching for food rather than, for example, 

commuting to a foraging site or handling food.  

 

Making these assumptions, we divide time into discrete steps of equal length which 

we number as step n=1, 2, 3, …, N.  Nominally, these would be e.g. seconds. At 

each time step, the animal is either successful at finding food or it finds nothing. 

Suppose the reward for successfully acquiring a food item is a gain in energy of 

value G and that the cost of foraging per time step is given by C. We let;  

a) 𝐹(𝑛) denote the number of food items collected up to, and including, time step 

n,  

b) 𝐸(𝑛) denote the amount of energy gained up to, and including, time step n, 

c) 𝑆(𝑛) denote the total energy reserves of the animal at time step n. 

We suppose that the probability of success at each time step is given by Ps and the 

probability of failure at each time step is given by 1- Ps. If, at time n, the animal is 

successful, we set 𝑋(𝑛) = 1 and if it is unsuccessful we set 𝑋(𝑛) = 0. Our model is 

then given by the equations; 

 

𝐹(𝑛) = ∑ 𝑋(𝑗)

𝑛

𝑗=1

,      𝐸(𝑛) = 𝐺 ∑ 𝑋(𝑗)

𝑛

𝑗=1

,      𝑆(𝑛) = 𝑢 − 𝑛𝐶 + 𝐺 ∑ 𝑋(𝑗)

𝑛

𝑗=1

 

 

where 𝑢 denotes the initial energy reserves of the animal.  These types of models 

are known as “Binomial Processes” and full details of their study can be found in 

[45]. (An extensive mathematical theory for models generalising 𝑆(𝑛) also already 

exists, having been developed to study the mathematics of random storage 

problems and the theory of insurance [46]). 

 



For given values of Ps, u, G, C and N, our model can be simulated for the first N time 

steps as follows; 

 𝐹(0) = 0; 𝐸(0) = 0; 𝑆(0) = 𝑢 

FOR 𝑛 = 1 TO 𝑁 

  𝑋(𝑛) = 1 with probability 𝑃𝑆   OR 𝑋(𝑛) = 0 with probability  1 − 𝑃𝑆 

  𝐹(𝑛) = 𝐹(𝑛 − 1) + 𝑋(𝑛) 

  𝐸(𝑛) = 𝐸(𝑛 − 1) + 𝐺 × 𝑋(𝑛) 

  𝑆(𝑛) = 𝑆(𝑛 − 1) − 𝐶 + 𝐺 × 𝑋(𝑛) 

 END FOR 

  

This approach has been used to generate the data in Figures 4, S2A, and S3 

 

Exact formulae are known for many properties of this model1. The mean rate of 

energy accumulation is 𝑃𝑠𝐺, and the mean net rate of energy accumulation is (𝑃𝑠𝐺 −

𝐶). If we let 𝑇𝑆𝑒𝑎𝑟𝑐ℎ denote the search time the animal spends between consecutive 

successes, then the mean search time is given by 
1

𝑃𝑠
  and the variance in the search 

times is 
(1−𝑃𝑠)

𝑃𝑠
2 . Therefore, in our model, as 𝑃𝑠 decreases, both the average and 

variance in the search time will increase, with disproportionate changes when 𝑃𝑠 is 

already small (see Figure S2B.).   

Suppose that the animal has an energy accumulation target of M units of energy. 

Given that a successful forage results in a reward of G units of energy, the animal 

will reach its target when it has accumulated k successes, where k is the smallest 

integer greater than 
𝑀

G
. If we let 𝑇𝑠 denote the success time required for an animal to 

achieve k successes, then the probability that 𝑇𝑠 = 𝑛 is given by; 

 

 (
𝑛 − 1

𝑛 − 𝑘
) 𝑃𝑠

𝑘(1 − 𝑃𝑠)𝑛−𝑘 

 

(see Figure 2B), the mean success time is 
𝑘

𝑃𝑠
  and the variance in the success time is  

(1−𝑃𝑠)𝑘

𝑃𝑠
2  (see Figure 2C). 

 



Suppose we consider two different species of foraging animals with the same mean 

rate of accumulation of energy 𝜇 = 𝑃𝑠𝐺, the same energy accumulation target M but 

differing values of 𝑃𝑠. Then, the variance in the energy accumulated in n time steps 

by each species is 𝜇2𝑛 (
1

𝑃𝑠
− 1) while the mean success time is 

𝑀

𝜇
 and variance in the 

success time is 
(1−𝑃𝑠)𝑀

𝑃𝑠𝜇
  where, for mathematical simplicity, we assume that 

𝑀

G
 is an 

integer. Thus, as the probability of success 𝑃𝑠 decreases towards 0, the average 

length of time taken to forage, and the variance in both the energy gain and time 

taken to forage will increase disproportionately (see Figure 2B).  

 

We can also use 𝑆(𝑛) to consider two different ruin scenarios: 

1. The animal could forage indefinitely until it has either reached a given success 

target or run out of energy (i.e. until 𝑆(𝑛) ≤ 0), with the latter considered as 

individual ruin. 

2. The animal could be required to accumulate enough energy in a fixed time 

period to sustain its offspring. That is, it is restricted to forage for, at most, a 

fixed period of time of length N, stopping once the required success target is 

reached, with failure to reach the target before reaching the end time 

considered as reproductive ruin. 

As an example, calculating the probability of individual ruin is straightforward in the 

case where only one success is sufficient to reach the success target. Such a 

situation corresponds to most apex predators. In this scenario, given that the animal 

begins foraging with some initial energy u and loses C units of energy for each 

unsuccessful attempt, the only way for individual ruin to occur is if the animal 

experiences exactly 𝑧 successive losses where z is the smallest integer greater than 

𝑢/𝐶. Therefore, the ruin probability 𝑃𝑅 (see Figure 3) here is; 

𝑃𝑅 = (1 − 𝑃𝑠)𝑧 

Estimating 𝑃𝑠 

 

The value of 𝑃𝑠 for a given species can be estimated using data accumulated from 

the animal-attached tags collating the time between the acquisition of food items. If 

our model for food accumulation as described above holds with the discrete time 

steps taken as 1 second long, then an estimator 𝑃𝑠̂ for the parameter 𝑃𝑠 is given by; 



 

𝑃𝑠̂ =  
1

𝑇𝑆𝑒𝑎𝑟𝑐ℎ
̅̅ ̅̅ ̅̅ ̅̅ ̅ 

 

where 𝑇𝑆𝑒𝑎𝑟𝑐ℎ
̅̅ ̅̅ ̅̅ ̅̅ ̅ denotes the sample mean of the search time in the collected data for 

each individual species. For the data collected we have the following results (𝑃𝑠̂ 

given to 1 significant figure): 

 

Animal 𝑻𝑺𝒆𝒂𝒓𝒄𝒉
̅̅ ̅̅ ̅̅ ̅̅ ̅ (seconds) 𝑷𝒔̂ 

Sheep 22 0.05 

Penguin 33 0.03 

Cheetah 27,055 0.00004 

Condor 24,903 0.00004 

 

The sheep Ps values are notably close to those of the penguin because the mean 

search times are similar, even though the inter-bite/prey frequency distributions are 

very different (Figure 1). This is because the sheep occasionally had much longer 

periods between bites (which are not shown in Figure 1 for scaling reasons). We 

have no a priori reason to preclude these long periods from our analysis although it 

is possible (even likely) that the animals were engaging in activities other than 

searching for food. The effect of precluding long intervals is appreciable: By simply 

excluding all inter-bite durations greater than 100 s for sheep, for example, the mean 

search time decreases to 10 s and raises the Ps-value to around 0.1. Similarly, 

excluding all inter-bite intervals greater than 50 s and 10 s produces Ps-values of 0.1 

and 0.5, respectively (with mean inter-bite durations of 7.1 s and 2 s, respectively). 

This demonstrates the importance of determining when an animal is actually 

searching for food but also highlights the particular case of herbivores within this 

context. Importantly though, changes in Ps-values change the variation in outcomes 

less for higher values than for low ones (cf. Figure 2). 

 

Modelling foraging energetics in penguins 

 

In brief, we used 5 key parameters to determine the percentage of breeding 

penguins (African or Magellanic) that manage to raise one, or two, chicks 

successfully to fledging. These are; 



(1) The probability of encountering prey (taken to be 0.006/s and 0.03/s for 

African and Magellanic Penguins, respectively) 

(2) The energy value of individual food items (taken to be 23290 J and 6104 J for 

African and Magellanic Penguins, respectively) 

(3) The power costs of foraging (taken to be 44 W and 62 W for African and 

Magellanic Penguins, respectively) 

(4) The power costs of not foraging (taken to be 14.5 W and 15.2 W for African 

and Magellanic Penguins, respectively) 

(5) The total minimum mass of food that should be allocated to each chick to 

keep them alive varied between 206 g/d  and 2191 g/d for African Penguins, 

for the smallest and largest chicks, respectively, and 275 g/d and 2921 g/d for 

Magellanic Penguins, for the smallest and largest chicks, respectively 

(because chick food requirements vary with chick size).  

 

Details on the five key parameters used to inform the model are; 

 

(1) The probability of encountering prey was taken to be 0.03/s for Magellanic 

Penguins using data presented in this work. The equivalent figure for African 

Penguins (Ps = 0.006) was derived from data collected in 1981, equating 

distance swum underwater with mass of food ingested [47, 48] from 15 birds. 

The distance swum during foraging was converted to time spent foraging by 

using a swim speed of 2.02 m/s [49] and mean dive and pause durations of 

43 s and 18 s, respectively [49]. The mass of food ingested by each individual 

was converted to number of prey by dividing the total mass ingested by the 

mean prey mass (see below). 

(2) The energy value of food items used data on the primary prey of Magellanic 

Penguins, which was Sprattus sprattus at the study site [12] which had a 

metabolizable energy of 2.18 kJ/g (wet mass) from Ciancio et al. [50] with a 

mean size of 2.8 g, giving a metabolizable energy of 6100 J per mean prey. 

The primary prey of African Penguins at the time (and location) that the prey 

ingestion versus distance swum data were collected, was Cape Anchovy 

Engraulis japonicus/capensis with a modal length of 85 mm [51], which 

equates to a prey mass of 4.54 g. Since these anchovies have a 



metabolizable energy content of 5.13 kJ/g [52], a single prey item yields 

23290 J of energy. 

(3) The power costs for foraging were split into two basic activities; underwater 

swimming and surface resting. Estimations for power to swim underwater as a 

function of speed (v) were taken from Luna-Jorquera & Culik [53], derived 

from the congeneric Humboldt Penguin Spheniscus humboldti, where mass-

specific power = 2.954v3-6.354v2+5.818v+ RMR, using a mass-specific RMR 

in water for African Penguins of 11.3 W [52] and that of Magellanics to be 5.9 

W  [53, 54]. Correcting these to normal swim speeds of 2.02 m/s for the 

African Penguins [49] and 2.1 m/s for Magellanic Penguins [54], and 

accounting for dive versus surface pause durations (of 43:18 s for African 

Penguins [49] and 74:15 s for Magellanic Penguins [54, 55]), results in total 

bird power requirements for foraging African Penguins of about 44 W, while 

those for Magellanic Penguins are estimated to be ca. 62 W. 

(4) The power costs for not foraging are the costs of the birds on land, for which 

the costs were taken to be 14.5 W for the African Penguin [52] and 15.2 W for 

the Magellanic Penguin [53, 56].  

(5) The total energy allocated to all activities that are not foraging is primarily 

composed of (i) the total energy spent on land by multiplying the power costs 

for being on land (see above) by the time spent on land per chick-provisioning 

period considered and (ii) any energy that is gathered for the brood. With 

respect to (i), we assumed that adults only foraged during daylight [18, 57]. 

With respect to (ii), Cooper [20] gives data for the mass of food ingested by 

wild African Penguin chicks growing notably slowly. These data were fitted 

with an inverse logistic equation by Wilson [47] to give; Mass ingested/day = 

235/(1+6e-0.08A), where A is the age in days. We adopted this, and multiplied it 

by 4/3 for Magellanic Penguin chicks (because the adult birds weigh 4 kg and 

adult African Penguins weigh 3 kg [18] and we expect food requirements of 

chicks to scale approximately) to describe food requirements of individual 

chicks in the brood, which nominally contains two chicks in both species [18]. 

We assumed a metabolizable energy content of 5130 J/g wet weight for Cape 

Anchovy [52] and 2180 J/g wet weight for sprat [50] which was added to the 

total energy allocated to non-foraging activities. Both African and Magellanic 



Penguins have brood-rearing periods that last about 60 days [18] and the 

susceptibility of chicks to death via starvation varies with age [47]. 

We ran a model that incorporated all the above parameters which started with a 

foraging penguin having, as a target, to acquire enough energy to pay for the total 

energy allocated to all non-foraging activities (including acquiring food for its chicks) 

as well as the energetic costs of its own foraging within a certain time period. During 

foraging, the model allowed the parent bird to find prey based on probabilities per 

unit time as described above and gained energy appropriately. For our example, we 

used adults feeding chicks that were 35 days old (approximately half-way through 

the chick-rearing period). Penguins do not forage at night [57] so any adult that does 

not acquire enough food to feed the brood appropriately within one day foraging may 

spend the night at sea, incurring higher metabolic costs, before resuming foraging 

the next day. This process decreases the frequency of provisioning greatly and is 

incorporated within the model. 

 

  



Model flow and key parameters used to inform the model predicting breeding 
ruin in penguins 
 
The model was based on the following coding; 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Each animal in the run set 

with an energy deficit for 

not foraging 

Random probability 

value < foraging catch 

probability? 

Animal energy: 

Add prey food energy 

End time point 

reached? 

Animal energy: 

Subtract foraging energy 

costs 

Yes 

No 

No 

Yes 

End routine 



DATA AND SOFTWARE AVAILABILITY 

 

The software used in the work follows the protocols indicated above. 

The data on feeding rates have been deposited in the Dryad repository and can be 
accessed via; link xxxxxxx. doi:10.5061/dryad.g7k8j6v 
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Figure S1. Schematic diagram illustrating changes in overall body energy 

reserves over time for a foraging animal, Related to Figure 1.

During the non-foraging cycle (grey line), there is only energy expenditure with 

no energy acquisition. Subsequently, during foraging, although energy is lost 

during searching, the energy acquired by feeding normally more than 

compensates for this. Typically, an animal will search for a period and then ingest 

food before searching again. The variability in the search durations, represented 

by their frequency distributions is a measure of the time-based probability of 

success. The energy contained within each food item is a measure of the reward 

while the energy expended to acquire it is the cost, with the ratio of these two 

latter terms representing the net energy gain over time.



  

Figure S2. Accumulation of food items and time taken to forage for animals with 

different probabilities of finding food, Related to STAR Methods. 

A.  Predicted accumulation of food items over time by 10 individuals of three different 

animals foraging with varying probabilities of food encounter per unit time (Ps). The right 

hand panel has a low probability, like the condor or cheetah, the middle panel a 

medium probability, like the penguin, while the left hand panel has a high probability, 

like the sheep. 

B.  Mean of the search times TSearch for each success in finding a food item for a range 

of values of the probability of success.  denotes the standard deviation of the 

distribution of TSearch.
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Figure S3. Simulations of energy reserves (Sn) over time showing intra- and 

interspecific variation, Related to STAR Methods.

Simulations were run for 10 individuals of three different animals foraging with varying 

probabilities of food encounter per unit time (Ps), gains per success (G) and costs per 

unit time (C). Each example has the same mean net rate of energy gain (0.55), energy 

target (4,000 units) and initial energy allocation (2,000 units). ‘Ruin’ has occurred when 

the energy reserves reach 0.
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Supplemental figure S4. Simulations of energy reserves (Sn) over time for 

two populations as Ps  is reduced.

Simulations were run for 500 individuals (10 are shown) of two different 

animals to illustrate the effect on population of a reduction in Ps

The top row shows an animal with G = 100, C =1 and initial Ps=0.03 which 

is then reduced by 10% and 20%. The bottom row shows an animal with 

G = 500, C =1 and initial Ps=0.006 then reduced by 10% and 20%. Each 

initial example has the same mean net rate of energy gain (2), energy 

target (30,000 units) and initial energy allocation (20,000 units). The 

percentage of individuals in the simulation failing to reach the energy 

target within 8000 secs is recorded. Both populations appear stable 

initially but a reduction in the Ps value in the second scenario leads to a 

greater proportion failing to reach the target due to the increased variance. 

Figure S4. Simulations of energy reserves (Sn) over time for two populations as 

Ps is reduced, Related to Figure 3 

Simulations were run for 500 individuals (10 are shown) of two different animals to 

illustrate the effect on populations subject to a reduction in Ps. The top row shows an 

animal with G = 100, C = 1 and initial Ps = 0.03, which is then reduced by 10% and 

20%. The bottom row shows an animal with G = 500, C = 1 and initial Ps = 0.006, then 

reduced by 10% and 20%. Each initial example has the same mean net rate of energy 

gain (2), energy target (30,000 units) and initial energy allocation (20,000 units). The 

percentage of individuals in the simulation failing to reach the energy target within 

8,000 s is recorded. Both populations appear stable initially but a reduction in the Ps

value in the second scenario leads to a greater proportion failing to reach the target 

due to increased variance.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


