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Abstract 

Science and society are increasingly interested in predicting the effects of global change and 

socio-economic development on natural systems, to ensure maintenance of both ecosystems and 

human wellbeing. The Intergovernmental Platform on Biodiversity and Ecosystem Services has 

identified the combination of ecological modelling and scenario forecasting as key to improving 

our understanding of those effects, by evaluating the relationships and feedbacks between direct 

and indirect drivers of change, biodiversity and ecosystem services. 

Using as a case study the forests of the Mediterranean basin (complex socio-ecological systems 

of high social and conservation value), we reviewed the literature to assess (1) what are the 

modelling approaches most commonly used to predict the condition and trends of biodiversity 

and ecosystem services under future scenarios of global change? (2) what are the drivers of 

change considered in future scenarios and at what scales? (3) what are the nature and ecosystem 

services indicators most commonly evaluated?  

Our review shows that forecasting studies make relatively little use of modelling approaches 

accounting for actual ecological processes and feedbacks between different socio-ecological 

sectors; predictions are generally made on the basis of a single (mainly climate) or a few drivers 

of change; in general, there is a bias in the set of nature and ecosystem services indicators 

assessed; in particular, cultural services and human wellbeing are greatly underrepresented in 

the literature. We argue that these shortfalls hamper our capacity to make the best use of 

predictive tools to inform decision-making in the context of global change.  

Keywords: Ecological forecasting; Future Scenarios; Global Change; Impact Assessment 

Evaluations; IPBES; Nature Benefits to People; Socio-ecological systems  
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1. Introduction 

Anticipating changes in biodiversity and the services that ecosystems provide to society has been 

a key goal of the environmental research (Clark et al. 2001), especially since the publication of 

the Millennium Ecosystem Assessment reports in 2005 (MEA 2005). With rapidly accelerating 

global changes associated to human activities this task has also become a key challenge for society 

in general (Vihervaara et al. 2010; Cardinale et al. 2012), motivating the recently published 

regional assessments on biodiversity and ecosystem services by the Intergovernmental Platform 

on Biodiversity and Ecosystem Services (IPBES) (https://www.ipbes.net/assessment-reports). 

Despite the growing scientific efforts, some of the knowledge gaps identified back in the 2005 

MEA reports still exist. For example, we still have little understanding of the interactions and 

feedbacks between the drivers of ecosystem and biodiversity change and multiple aspects of 

human well-being, like human health and food security (Pecl and et al 2017; IPBES 2018a). Also, 

the models used to characterize the relationships between biodiversity and ecosystem services 

(ES) mostly rely on linear correlations and do not consider non-linear changes, thresholds and 

tipping points in ecosystems (Ricketts et al. 2016; Lavorel et al. 2017). To address these 

challenges, the IPBES identifies the use of future scenarios and modelling approaches as 

fundamental pillars to advance in the understanding of the relationships and feedbacks between 

direct and indirect drivers of change, biodiversity, ecosystem services (considered through the 

lens of nature benefit´s to people; Díaz et al. 2015) and aspects conditioning good quality of life 

(IPBES 2016). 

A scenario is a coherent, internally consistent and plausible description of a possible future state 

of the world (Nakicenovic et al. 2000). Built upon scientific understanding of past and current 

observed relationships between drivers and environmental trends, scenarios draw upon narratives 

(storylines) of plausible socio-economic developments or particularly desirable future pathways 

(visions) under specific policy options and strategies (Alcamo and Ribeiro 2001; Peterson et al. 

2003; O´Neill et al. 2015; Bai et al. 2016). One of the main challenges of using scenarios for 

predicting future impacts of societal development on ecosystems is the translation of scenario 
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narratives into quantitative model input variables (Kok et al. 2015). In this regard, the rapid 

advances in science and observation of climate change have favored the widespread incorporation 

of climatic variables as direct drivers in regional-scale scenarios and future projections, especially 

in impact assessments (Moss et al. 2010). In contrast, substantial research is still needed about the 

inclusion of other important short-term drivers of biodiversity and ecosystem change such as land 

use, invasive species and pollution (FRB 2013; Titeux et al. 2016; Sirami et al. 2017; but see for 

example Malek et al. 2018). Multiple issues hamper the incorporation of those drivers of change 

in predictive approaches, including mismatching scales between the available data and the 

modelled process, the short temporal coverage of data, or the actual lack of quantitative data for 

some drivers (Hauck et al. 2015). Apart from incorporating multiple drivers of change, ecological 

models should, to the maximum possible extent, represent the complex interdependencies within 

human and environmental systems (e.g. consider the interactions and feedbacks between multiple 

economic sectors, e.g. Harrison et al. 2016); this normally requires the use of multiple interlinked 

models (model coupling or model integration) to account for the various processes operating at 

different spatial scales (Harfoot et al. 2014; Talluto et al. 2016).  

Systems long exposed to human activities are particularly sensitive to this imbalance in the 

methods and approaches used to predict nature responses to global changes. In these systems, 

interactions between past land use changes (i.e. land use legacies) and current pressures, as well 

as the difficulty of untangling multiple causation are likely to require complex, integrated 

approaches (see Figure 1). Mediterranean forests are a good example of such systems, because 

they have been subjected to a long history of use and transformation (Nocentini and Coll 2013). 

They are biodiversity-rich, complex socio-ecological systems that have been continuously 

adapting to use and exploitation throughout many centuries, while providing important services 

and goods to society (Myers et al. 2000; Gauquelin et al. 2018). Currently, they cover 

approximately 25 % of the Mediterranean region (Malek and Verburg 2017). Conservation of 

these systems must deal with multiple cultural, ecological and economic values, and complex 
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dynamics of social change are likely to be exacerbated by global change (Doblas-Miranda et al. 

2015). 

In this study, we assess to which extent, the integration of drivers described in Figure 1 is being 

achieved in predictive exercises of Mediterranean forest systems. These represent a prime case 

study to evaluate the state of the art and the remaining gaps in the use of models and scenarios to 

investigate the effects of global change on biodiversity and ecosystem functioning. We review 

studies using ecological models to predict global change environmental impacts in forest systems 

in the Mediterranean basin during the last three decades to answer the following questions: (1) 

What are the modelling approaches most commonly used? We assess whether correlative 

approaches - those based on statistical relationships among drivers and a response variable – are 

superseded by more integrative approaches such as process-based models – those explicitly 

incorporating knowledge of ecological processes – or integrated models – those combining 

multiple systems, modelling approaches and accounting for feedbacks among different parts of 

the modelled system. (2) How are specific drivers being included in modelled scenarios (e.g. are 

models considering multiple drivers and scales)? (3) How holistic is our knowledge about the 

effects of global change on nature and people? Biodiversity and ecosystem services’ indicators 

are used to assess the condition and trends of earth’s systems (through monitoring of species, 

ecosystem functions, etc.), and represent essential tools for managers and politicians to track the 

consequences of decisions as well as to measure progress towards sustainable development (e.g. 

Aichi targets, Sustainable Development Goals; Brooks et al. 2015; Convention on Biological 

Diversity 2015; Geijzendorffer et al. 2017). Here we evaluate the types of indicators used to 

predict future condition of Mediterranean forest ecosystems, and whether these cover a wide 

variety of aspects of forest systems. On the basis of our review, we highlight outstanding 

knowledge gaps and biases, identify priority areas for research in ecological forecasting (the field 

of Ecology dedicated to predict how ecosystems will change in the future in response to 

environmental factors) and discuss a potential way forward. 

2. Materials and methods 
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In June 2016, we conducted a systematic review of studies assessing future changes in forest 

ecosystems in the Mediterranean basin. We searched the Web of Science database for peer-

reviewed articles published between 1990 and 2016 that used modelling or simulation approaches 

to predict future values/change of nature indicators (e.g. species richness, ecosystem functions, 

etc.) or ecosystem services (ES) indicators linked to Mediterranean forests. The list of databases, 

keywords and filters used for the literature selection is detailed in Table 1. This search yielded 

2424 articles. We reviewed the abstracts to remove duplicates and articles clearly outside the 

thematic or spatial scope of this study (2029 articles) (Online Resource 1). Exclusion criteria 

included: articles focusing on the Mediterranean biome but outside the Mediterranean basin (e.g. 

California, Australia); articles that used models to make inference about ecological processes (e.g. 

how does drought affect forest growth?) but did not explicitly use scenarios to make future 

predictions of the indicator; experimental studies (e.g. the study sets vegetation plots where a 

species X is subjected to increases of 1, 2 and 3 degrees of temperature or to drought stress, to 

evaluate the effect of increasing temperatures in species growth, reproduction, etc.); studies 

focused on exotic species located in Mediterranean countries (e.g. Eucalyptus spp.) and articles 

focusing on non-Mediterranean forests within any of the evaluated countries (on the basis of the 

dominant species and the geographic location of the study area; e.g. beech forests in Normandy). 

After reading the full-texts of the remaining 395 articles, we excluded an additional 232 studies 

following the same criteria listed above, leading to a final set of 163 articles that were retained 

for analysis (Online Resources 1, 2). 

For each article, we extracted information about the geographic location of the study area, the 

modelling approach, the scenarios used and their origin, the drivers of change considered in each 

scenario, the spatial scales addressed in each study, and the nature and ES indicators evaluated. 

We generated a unique record for each scenario-indicator combination within each of the articles 

read. This led to a total of 2075 entries in the database. We calculated summary statistics 

(frequencies) regarding the above-mentioned fields in our database. Table 2 provides a complete 

list of the information extracted, together with the criteria used for classification. 
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3. Results 

3.1. Geographic coverage 

The majority of articles selected in our review (133 articles; 82 %) corresponded to national, sub-

national or local studies carried out within the North-Western countries of the Mediterranean 

basin (Portugal, France, Italy and Spain; Figure 2). In addition, our review included twelve global 

or European-wide studies with detailed results for at least one country within the Mediterranean 

zone, 14 regional studies (focused on two or more countries of the Mediterranean basin), one 

study with detailed results for the Afro-Mediterranean domain and three studies based on 

simulated Mediterranean-type landscapes (Online Resource 3). 

3.2. Scenarios and drivers 

The majority of studies (74.2%) used two or more scenarios when making future predictions of 

nature and ES indicators, while only 25.8% of studies used a single scenario (93 % of these are 

also based on a single driver only, mostly a climatic driver). More than half of the scenarios 

assessed were based on a single-driver only (56%), with climate the most frequently used driver 

(31.9% of the scenarios were based on climate only; Figure 3a). The second most used driver was 

management (e.g. different thinning regimes, levels of biomass extraction, etc.), with 13 % of the 

scenarios, followed by fire (6.2%) and land-use/land-cover change (LULCC; 4.2%). Less than 

1% of the single-driver scenarios used drivers other than the previously mentioned (e.g. invasive 

species). In total, 62.8% percent of scenarios used climate as a driver (either as solo-driver or in 

combination with other drivers), whereas the other main drivers found (fire, LULCC and 

management) were considered in less than 30 % of the scenarios (Figure 3b). When multi-driver 

scenario combinations were used (Figure 3b), fire was most often combined with either climate 

and/or LULCC, whereas LULCC was most often combined with climate and/or fire, and 

management was mostly combined with climate and, to a lesser extent, with fire.  

We did not find a particular general pattern regarding the spatial extent of the study area 

(global/EU wide, regional –Pan-Mediterranean-, national, subnational or local) and the number 

of drivers considered in the scenarios. The exception was regional (Pan-Mediterranean) studies, 
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in which scenarios were always based on a single driver only (mostly climate). This lack of a clear 

pattern could also be due to the imbalance in representation of scales across the selected articles. 

However, there were differences in the types of drivers used: whereas global/EU wide studies 

mostly focused on climate and land use change as main drivers, sub-national and local scale 

studies mainly incorporated fire and management/disturbance. Moreover, studies carried out at 

large scales (national, regional or global) generally made predictions based on available scenarios 

(e.g. IPCC), whereas user-made scenarios were more common at sub-national or local scales 

(Online Resource 3).  

3.3. Modelling approaches 

Correlative and process-based/integrated approaches were almost equally represented when 

modelling either nature or ecosystem services indicators (Figure 4a); the few studies that evaluate 

nature and ecosystem indicators (3% of the total) used predominantly process-based or integrated 

approaches (Figure 4a, b). Studies based on process-based or integrated approaches accounted for 

two or more drivers of change with higher frequency than studies based on correlative/empirical 

approaches (Figure 4b).  

3.4. Nature and Ecosystem services indicators 

We found an unequal use of ES and nature indicators within the set of selected articles: 57 % of 

the studies evaluated ES indicators only, 40 % evaluated nature indicators-only, whereas the 

remaining 3% evaluated both types of indicators simultaneously (Figures 4a, 5). Of all studies 

assessing ES indicators, 60% focused on regulation & maintenance services, almost evenly split 

between climate change regulation and the maintenance of physical, chemical and biological 

conditions (Figure 5). Almost all the remaining ES studies (38%) focused on provisioning 

services, mostly on indicators of plant materials for direct use and processing (e.g. timber, 82.6%; 

Figure 5). Cultural services, integrative ES indicators and other regulating services were only 

marginally represented (Figure 5). Fire risk, understood here as a regulating & maintenance 

service, was evaluated in 25 articles (approx. 15% of the total selected articles). All ES indicators 

found referred to the supply capacity of forest to provide services and none to the demand side.  
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Almost 80% of the nature indicators evaluated corresponded to measures of species/population 

trends, such as changes in species abundance, geographical range, etc. (Figure 5); 10% focused 

on measures of compositional intactness such as forest cover extent, changes in landscape 

configuration, etc.; whereas only a few studies focused on measures of ecosystem functioning 

(e.g. forest traits, regeneration capacity) or extinction risk (e.g. allele diversity, viability of 

populations). 

4. Discussion 

Future conservation of biodiversity and of the natural capital will require an integrative, broad 

evaluation of all the challenges that nature will face under the current context of societal and 

environmental change. Our review shows that, despite the increasing use of scenarios and models 

as tools to explore those changes (Online Resource 4), the scientific community is still focusing 

efforts on a fraction of the overall challenges the future might bring to ecosystems and nature. 

This is reflected in the relatively low proportion of studies considering multiple-drivers operating 

at different spatio-temporal scales (44%), as well as the very low representation of studies 

assessing nature and ES indicators simultaneously (3%). Moreover, process-based or integrated 

modelling approaches are still far from being the norm (53.7%). In this study we wanted to 

examine what, how and where the current modelling work in the Mediterranean area is taking 

place. Further research should be devoted to the implications of the modelling approaches used 

to inform policy and decision-making, and in particular, to evaluate the trade-offs between model 

complexity and policy relevance (something we could not gather enough information on). 

4.1. Geographic coverage 

We found a strong geographic bias in the use of scenarios and models in Mediterranean forestry 

research, with few studies focusing in southern countries (Figure 2). This may stem in part from 

economic differences between countries of the two sides of the Mediterranean (Online Resource 

5), which reflects in differences in their educational systems (i.e. Southern Mediterranean 

countries present a much lower ratio of post-graduate vs. bachelor students in forestry than 

northern ones), national research budgets (FAO and Plan Bleu 2013) and availability of experts 
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on the study of biodiversity and ecosystem service-related scenarios (IPBES 2018b). Our results 

might also reflect the importance (in terms of total coverage) of forest systems within each country 

(Online Resource 5). This unequal distribution of information across the North-South, West-East 

axes of the Mediterranean makes it difficult for the scientific community to make robust 

predictions at the level of the whole Mediterranean basin, especially for its southern part. 

4.2. Scenarios and drivers 

The literature reviewed showed a strong bias towards the evaluation of impacts of climate change 

on Mediterranean forest systems, especially in studies addressing questions at broad (national to 

global) scales (as recently observed in other studies; IPBES 2016, 2018a; Kok et al. 2017; Rosa 

et al. 2017). This bias might be explained by the fast development and public availability of global 

circulation models and climate scenarios (Moss et al. 2010) and the widespread use of IPCC 

climate projections to predict biodiversity patterns (Titeux et al. 2016; Sirami et al. 2017), and by 

the fact that the Mediterranean basin has been identified as a regional climate change hotspot 

(EEA 2005; Diffenbaugh and Giorgi 2012). We note that, in the literature selected, climate change 

impacts were always assessed through the change in long-term average climate conditions, mainly 

annual mean temperature and total rainfall. However, one of the main climate threats to 

Mediterranean ecosystems is the increase in the frequency and duration of extreme weather events 

(length of droughts, heatwaves, short periods of intensive raingall, etc.; Stocker et al. 2013). 

Extreme conditions can play an important role altering the structure and function of 

Mediterranean forests in the short term, compromising the services they provide (Peñuelas et al. 

2017). For example, prolonged droughts can induce diebacks and favor a shift in species 

composition or the establishment of invasive species (Resco De Dios et al. 2007; Martínez-Vilalta 

and Lloret 2016), while the co-occurrence of heat waves and drought conditions can cause large 

wildfires with devastating consequences for people and the environment (Founda and 

Giannakopoulos 2009; Fernandes et al. 2016; Ruffault et al. 2018). Ignoring those extreme-

weather threats might lead to misleading predictions about the future condition and trends of 
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species and ecosystems (Morán-Ordóñez et al. 2018), and therefore, of their benefits on human-

wellbeing. 

There is still little integration of key drivers of change other than climate in Mediterranean 

systems (Figure 1), such as fire, LULCC and management (Keeley et al. 2012), which impact 

ecosystems locally in the short- and mid-term and might have irreversible consequences in 

ecosystem health before the worst-case climate change scenario could be realized. For example, 

although forest fires are a growing environmental and societal issue in Mediterranean systems, 

integration – in scenarios and models – of fire as a driving force with other mid- and long-term 

drivers such as climate was only found in a few studies focused on local to sub-National scales or 

simulated landscapes (Pausas 2006; Pausas and Lloret 2007; Brotons et al. 2013; Pacheco et al. 

2015; Gil-Tena et al. 2016; Górriz-Mifsud et al. 2016). Local and sub-national scales are ideal for 

an integrated analysis of processes operating at multiple scales (e.g. local fires and climate), which 

in turn is crucial to understand the resilience of ecosystems under global change conditions and 

thus guide sustainable development policies (Seidl et al. 2011). For this reason, local scales have 

been proposed as one of the starting points for the generation of a new set of multi-scale nature 

and ES scenarios frameworks to be developed by the IPBES community (Kok et al. 2017). 

Developing authoritative, integrated future scenarios of forests and associated land use changes, 

management practices and fire risks is becoming an urgent need in regions subjected to multiple 

pressures such as the Mediterranean. 

Moreover, since driving forces of environmental problems can take such a wide range of different 

directions, it is good practice (if possible) to develop and test multiple scenarios that reflect 

different plausible trends, rather than testing a single scenario only as observed in 25.8% of the 

selected articles (Alcamo and Ribeiro 2001). Testing several scenarios improves our 

understanding of how different sources of uncertainty might impact our model/target system 

(Peterson et al. 2003; Mahmoud et al. 2009). This is particularly relevant for the case of 

exploratory or prospective approaches (all approaches used in our selected literature), that 

investigate upcoming changes that might significantly vary from past trends (McCarthy et al. 
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2011; Rieb et al. 2017). Despite the management of Mediterranean forests can contribute 

substantially to the achievement of the sustainability goals to which Mediterranean countries have 

committed (e.g. Aichi targets, Sustainable Development Goals, EU bioeconomy strategy, climate 

mitigation actions), none of the studies evaluated used target-seeking scenarios (scenarios that 

first set a vision of the future and then describe different pathways - e.g. management alternatives, 

policy options- that might lead to achieve the vision of the desired future). This might be because 

target-seeking scenarios for biodiversity have mainly been developed for the global to continental 

scales (e.g. Rio+20 scenarios in the Global Biodiverisity Outlook 4; Convention on Biological 

Diversity 2014). 

4.3. Modelling approaches 

Under the current context of environmental change, models integrating social, economic and 

environmental drivers are more likely to be policy-relevant (Seidl et al. 2011; IPBES 2016). 

Integration of various drivers at multiple spatio-temporal scales (Figure 1) might generally require 

process-based/mechanistic or integrated model approaches (Kelly et al. 2013; Harfoot et al. 2014) 

rather than correlative/empirical ones. Both correlative and process-based/integrated approaches 

were equally represented in our review, suggesting there is still room for a better integration of 

drivers across scales in the approaches currently used to evaluate the future of Mediterranean 

forests. 

In a predictive framework, process-based approaches arguably bring advantages over correlative 

approaches, such as their ability to extrapolate beyond known conditions, which makes them 

particularly useful for making predictions under global change conditions (Cuddington et al. 

2013). Process-based and integrated models also allow better exploration of interactions, 

feedbacks and trade-offs between different components of the modelled systems (e.g. trade-offs 

between conservation of natural values and production of provisioning services; Korzukhin et al. 

1996), which are key for making well-informed decision making. However, the use of advanced 

integrative modelling approaches that explicitly combine multiple model types with an unique 

framework over different spatial scales is still rare (but see some examples at EU and global 
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scales: e.g. Böttcher et al. 2012; Kraxner et al. 2013). This is due to the inherent higher complexity 

of the former: generally, these are parameter- and data-intensive models, that require disciplinary 

expertise and prolonged time series of data for calibration and validation (Seidl et al. 2011; 

Harfoot et al. 2014; Rieb et al. 2017). Wider use of these complex approaches would require 

stronger collaborations between actors of different disciplines (from social sciences to 

climatology, agriculture and forestry) and knowledge holders (scientists, policy-makers, 

managers, citizens), and at different scales (e.g. from plant physiologists to macro-ecologists).  

Nevertheless, the selection of modelling framework (decisions regarding the choice of model 

type, the complexity allowed, the spatio-temporal scales included, variables/drivers considered, 

etc.) should be ultimately determined by the ecological question addressed and the decision-

context (with modelling stategies changing across the policy cycle; IPBES 2016). In most cases, 

this model selection will be limited by knowledge and data availability. As all models have 

strengths and weaknesses, a minimum requirement is that they are validated and uncertainty is 

evaluated (e.g. sensitivity analysis, multi-model ensembles) and communicated.  

4.4. Nature and ecosystem services indicators 

Most of the studies reviewed evaluated regulating and provisioning services. In the particular case 

of forests in the Mediterranean basin, this observed trend might respond to its recognized 

multifunctional character (Palahi et al. 2008): on the one hand, forests are (and have traditionally 

been) an important source of products for consumption and trade such as timber, fuelwood, 

truffles, pine nuts and cork for Mediterranean societies (FAO and Plan Bleu 2013). This might 

explain the interest in knowing what the future provision of these products will be in the coming 

decades. On the other hand, Mediterranean forests fulfill multiple regulation services of great 

interest for society, because of their direct influence in either the health of the system itself 

(through the maintenance of physical, chemical and/or biological conditions) and the wellbeing 

and socio-economic development of Mediterranean societies (e.g. soil erosion is one of the main 

environmental problems in European Mediterranean agro-forestry systems; García-Ruiz 2010). 

One of the regulating services most commonly evaluated in the selected literature was fire and 



13 
 

fire risk, a disturbance of increasing concern in fire-prone ecosystems (e.g. Mediterranean 

ecosystems) since it interferes with the continuous and sustainable provisioning of other ES (e.g. 

carbon storage; Seidl et al. 2014) and threats human safety (e.g. the dead toll in 2017 Portugal 

wildfires was of 66 people). The role of Mediterranean forests in global change mitigation through 

carbon sequestration and storage is also increasingly evaluated, and especially the dependence of 

this service on forest management practices (Koniak et al. 2011; Pardos et al. 2015; Bottalico et 

al. 2016). 

We only found one study making future predictions of cultural services (Koniak et al. 2011). The 

small representation of studies evaluating the future of cultural services is a general pattern 

observed in other ES impact evaluations, with independence of the ecosystem/thematic scope 

(Martinez-Harms et al. 2015; Boerema et al. 2016; IPBES 2018a). This might be because the 

change of social values over time is very hard to quantify, model and predict (cultural services 

are most commonly evaluated through proxies Egoh et al. 2012; IPBES 2016), and it is generally 

easier to make predictions of indicators that depend on already observed environmental 

relationships (i.e. mathematical equations) such as forest growth and timber production. Given 

the difficulty of predicting social values and individual choices, future evaluations of cultural 

services might need to be indirectly inferred from changes in nature-based indicators. For 

example, the leisure use of Mediterranean pine forests (for walking, mountain biking, hunting, 

etc.) will probably be negatively affected by the increasing incidence of pest outbreaks of the 

processionary pine moth (Thaumetopoea pityocampa) favored by warmer winters (Battisti et al. 

2005), as this species is responsible of strong allergic reactions in humans (Battisti et al. 2017). 

Although it is difficult to predict when, where and how these allergic symptoms will occur and 

how this will impact the leisure value of forest, it is possible to predict the vulnerability of forest 

to pest outbreaks given some knowledge about the ecology of the moth species and its relationship 

with environmental conditions, and indirectly infer where there could be potential conflicts with 

humans (e.g. peri-urban parks, national parks and other popular recreational areas). Therefore, the 
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future prediction of cultural services will require the integration of nature/biodiversity and 

ecosystem services models and indicators, currently poorly linked (IPBES 2016).  

None of the studies selected modelled the demand side of the ecosystem services indicators. This 

might be explained by the fact that estimating and modelling services demands and flows is harder 

than estimating services production, since in today´s globalized word, the supply and demand of 

services often occur across different spatial and temporal scales (Burkhard et al. 2012). Despite 

some modelling tools already allow to quantify ecosystem services flows (e.g. the Artificial 

Intelligence for Ecosystem Services modelling tool-ARIES; Bagstad et al. 2013), the challenge 

remains to predict what the future demands will be using integrated socio-ecological approaches. 

 Regarding nature indicators, the strong bias observed towards the evaluation of 

species/populations distribution patterns might respond to the fast development of species 

distribution and population modelling techniques in the last two decades (Brotons 2014). Our 

results show that there is still considerable scope for research on other types of indicators that 

might be more informative about ecosystem function and dynamics (e.g. genetic composition, 

traits diversity; Pereira et al. 2013) and therefore, of the vulnerability of ecosystems to global 

change and their capacity to adapt and continue providing multiple ES and contributing to human 

wellbeing. Despite the increasing debate around the link between nature (biodiversity) indicators 

and the capacity of ecosystems to provide services (Cardinale et al. 2012; Ricketts et al. 2016), 

the presence of studies evaluating such relationship in the selected literature was negligible (as 

also found at the IPBES assessment on models and scenarios; IPBES 2016). This hampers our 

capacity to identify relationships between ecosystem thresholds and tipping points and their 

consequences for human well-being. Moreover, we show that the proportion of studies evaluating 

multiple indicators simultaneously is very low, making it difficult to assess trade-offs between 

biodiversity and ES indicators or among ES types (see also Boerema et al. 2016). 

Further work regarding predictions of biodiversity and ecosystem services indicators should focus 

on assessing indicator trends as a function of the scenario assessed (drivers included, spatio-
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temporal scales considered, etc.), as recently presented in the IPBES regional assessments (IPBES 

2018b, a). Generally, this remains a challenge due to the lack of consensus on the use of indicators, 

the way the data is reported in studies (e.g. absolute value vs. % increments) and the difficulty of 

comparing indicators modelled under different global change assumptions (e.g. at different spatio-

temporal scales).  

5. Conclusions 

Our literature review highlights several gaps in the way we conduct assessments of future changes 

in nature and ES provision in Mediterranean forests. There are various potential avenues to 

achieve higher levels of integration and realism when making future predictions of the state and 

dynamics of Mediterranean ecosystems under global change scenarios. In particular, future nature 

and ES research should focus future work on: (i) integrating multiple processes and driving forces 

operating at different spatio-temporal scales; (ii) considering the uncertainty around how these 

drivers will change in the future (by comparison of multiple scenarios), as well as any potential 

feedbacks between them; (iii) advancing on integrative approaches that consider the 

interdependencies between the different components of the socio-ecological systems (iv) 

developing models to assess a wider set of nature and ES indicators, so that trade-offs could be 

evaluated. There is no doubt of the important role that ecological models and scenarios play in 

achieving these goals. However, the art of predicting future condition of ecosystems is of little 

use if this information cannot be adequately incorporated into the decision-making policy cycle 

to contribute to sustainability goals. Therefore, and in parallel to the improvements in ecological 

models proposed above, future efforts should focus on strengthening the science-policy interface 

(one of the main goals of the IPBES) to allow the end-users of the tools and indicators (decision 

makers) into the framing of the questions tested by scientists/experts. Although we focused our 

review on Mediterranean forest systems, our results may be of wider implication for other similar 

regions and systems, keeping in mind that biases and constraints might be larger in many regions 

(e.g. regarding data and knowledge availability), and not easily solved by downscaling global 

change assessments to the region of interest. 
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Query Field Parameters Motivation 

1 Year 1990-2016 Restricts the time period of the results to 

the last 25 years. It captures the 

increasing use of scenarios in Ecology 

since the publication of the first IPCC 

assessment report in 1990 (Moss et al. 

2010) 

2 Topic (((model* OR project* OR 

predict* OR simulat*) AND 

future) OR (scenari* OR 

forecast* OR foresight* OR 

storyline*)) 

Captures modelling studies addressing 

predictions into the future 

3 Topic  (Mediterranean OR Gibraltar OR 

Portugal OR Spain OR France 

OR Monaco OR Italy OR Malta 

OR Slovenia OR Croatia OR 

Bosnia OR 

Montenegro OR Albania OR 

Greece OR Turkey OR Cyprus 

OR Syria OR Lebanon OR Israel 

OR Palestine OR Egypt OR 

Libya OR 

Tunisia OR Algeria OR Morocco 

OR Iberia* OR Balkan* OR 

Anatolia) 

Sets the geographic context: the 

Mediterranean basin and all the countries 

within it 

4 Topic (forest* OR woodland*) Identifies studies focusing on forest or 

woodlands as their subject study system 

We use the boolean operator ‘AND’ to combine the different queries. We refined the results 

using “Articles’ as Document type, ‘English’ as Language’ and ‘Forestry’, ‘Plant Sciences’, 

‘Environmental Sciences Ecology’ or ‘Biodiversity Conservation’ as Web of Science Subject 

categories. The databases accessible to us in the Web of Science were CABI, SCIELO, WOS 

(Web of Science Core Collection) and CCC (Current Contents Connect). We selected the set 

of queries and keywords shown here after an initial scoping literature search phase in which 

we also included an additional query (5#) accounting for terms related to biodiversity, 

ecosystems and ES indicators (e.g. ‘biodiversity OR ecosystem* OR "ecosystem* function*" 

OR "biological diversity" OR species OR "ecosystem service*" OR habitat* OR trait* OR 

vegetation* OR gene* OR landscape* OR biomass OR timber OR wood OR carbon OR 

erosion OR *water* OR recreat* OR regulat* OR game* OR 'non-wood forest products' OR 

'Mushroom*' OR 'nutrient*' OR '*fire*); however, we observed that by adding this query we 

were leaving out many articles that were relevant for this review (because of terminological 

issues, eg many studies evaluate forest productivity using net primary production as indicator 

instead of wood biomass or timber production) and therefore, we chose to retain only the 

queries 1-4 that are more general. 

 

Table 1. Search terms used for the literature review. The search was made on June 2016 on 

the complete range of references available at the Web of Science at that time.  
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Study area location and 

original extent of the 

article 

 Global/EU wide: studies using models and scenario predictions for 

the global or Pan-European scales, from which we could extract 

results for the Mediterranean basin systems. 

 Regional (Pan-Mediterranean): predictions specifically designed for 

the Mediterranean region including case studies in two or more 

countries in the Mediterranean basin.  

 National (e.g. France) 

 Subnational (extent equivalent to level 2 of the NUTS 2013 

classification of European regions available from the Eurostats web: 
http://ec.europa.eu/eurostat/web/nuts/; e.g. Provence-Alpes-Côte 

d'Azur) 

 Local (e.g. catchment A, municipality B) 

Modelling approach used  Correlative/regression: models assessing statistical relationships, 

whether causal or not, between two or more variables 

 Mechanistic/Process-based or integrated approaches: mechanistic 

models are based on a theoretical understanding of relevant 

ecological processes that are explicitly incorporated in the model. On 

the other hand, integrated approaches combine multiple model types, 

processes and/or components of the system modelled in a unique 

framework (Kelly et al. 2013)  

Scenario type  Already published (e.g. the latest greenhouse concentration 

scenarios adopted by the fifth IPCC Assessment Report: the 

representative concentration pathways; van Vuuren et al. 2011) 

 User made: scenarios made in the context of the article (e.g. through 

stakeholder/expert consultation or as a way of hypothesis testing) 

 Mixed: approaches combining already published scenarios with user 

made assumptions. 

Scenario drivers  Number of drivers (understood as values of environmental/social 

conditions that change over the time horizon of the projection and 

that are used to make predictions of models) 

 Driver type: climate, forest management, fire, land-use, water-use, 

pollution, grazing levels, etc. 

Nature and/or ecosystem 

service indicator 

 Nature indicators include measures of species/ecosystem 

distribution extent, species abundances or ecosystem 

structure/function. 

 Ecosystem services indicators (ES) were classified into 

‘provisioning’, ‘regulating & maintenance’ or ‘cultural’ services 

following the Common International Classification of Ecosystem 

Services (CICES V4.3; www.cices.eu). We also evaluated fire risk 

as an ES indicator due to its importance in Mediterranean forests to 

regulate and maintain other ecosystem functions and processes 

(therefore included within the category ‘regulating and 

maintenance’). 

 

Table 2. Information extracted from the selected articles. The right-hand column lists in detail 

the different categories into which we classified each study within each information field. 
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 1 

Figure 1. Diagram of potential levels of integration in biodiversity/nature and ecosystem services future impact assessments. Within a given socio-ecological 2 
system (e.g. Mediterranean forests, SE system 1 box on the left side of the figure), scenarios and models should, to the maximum possible extent, account for 3 
both indirect and direct drivers of global change operating at multiple spatio-temporal scales, as well as for the interactions and feedbacks among them (orange 4 
arrows). Ideally, SE systems should not be evaluated in isolation, but rather considering their interactions with other socio-ecological systems (e.g. it could 5 
also be interpreted as interactions between multiple sectors, such as forestry, agriculture, water management, conservation and urban development; here 6 
represented with the interaction between SE systems 1, 2 and 3). In the example of the SE system 1 box, the distribution of the different drivers on X-axis 7 
reflects the temporal scale at which they are expected to exert a stronger impact on ecological processes operating in Mediterranean forest (e.g. whereas 8 
implementation of environmental policies generally have an impact in the system at the mid-, long- term, changes in land use have an effect in the impacted 9 
system in the short-term). On the other hand, the Y-dimension of the rectangles reflects the spatial scale at which drivers operate (e.g. whereas climate exerts 10 
an influence from global to local environmental conditions, fires or forest management have a more localized impact). 11 

12 
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 13 

Figure 2. Geographical distribution of 133 national, sub-national and local studies assessed in this review. Note: the circles indicate the country of the study, 14 
not the exact location where the study was carried out. The extent of the Mediterranean domain (shaded in dark grey in the map) was sourced from the 15 
European Environmental Agency (layer of biogeographical regions: https://www.eea.europa.eu/data-and-maps/data/biogeographical-regions-europe-3) and 16 
WWF (layer of Terrestial Ecoregions of the World: https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world). See Online Resource 5 17 
for correlations between the number of studies in each country and different socio-economic indicators.  18 

  19 
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 20 

Figure 3. Driver types and driver combinations used in the scenarios found in the literature review. a) Each bar represents the number of scenarios that use a 21 

single driver (X-axis: climate [CLIM], fire, land use land cover change [LULCC], management practices [MANAGE.], other drivers (OTHER; e.g. invasive 22 

species) or two drivers or more jointly (≥ 2 DRvs). The prevalence of the use of each of these drivers within the selected articles is indicated as percentage at 23 

the top of each bar (e.g. climate bar: 31.9 % of the scenarios used climate as the only driver of system change); b) Prevalence of multi-driver combinations in 24 

scenarios found in the selected literature. The most frequent combination of drivers is represented by darker gray tones (e.g. CLIM with FIRE, LULCC or 25 

MANAG), whereas lighter squares indicate less frequent driver combinations (e.g. LULCC with MANAGE.). Values within each square of the heatmap 26 

indicate percentages over the total number of scenarios in our database. Values in the diagonal of the heat map represent prevalence of single-driver scenarios 27 

(same values than in panel a). Values at the bottom of the heat map represent total use of a given driver (read from the top axis of the plot) in combination with 28 

other drivers (read from the left axis) in the scenarios of the selected articles (e.g. CLIM is considered as a driver of forest system change in 62.8% of the 29 

scenarios – 31.9% as solo-driver and 20.9% of the times in combination with other drivers-, whereas FIRE is used only in 24.5% of the scenarios). Note that 30 

the values are symmetrical at both sides of the diagonal. 31 
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 32 

 33 

Figure 4. a) Prevalence in the selected literature of studies assessing ecosystem services indicators (ES), nature indicators (NATURE) or both types of 34 

indicators in the same study (NATURE & ES). Different grey tones indicate different modelling approaches: dark grey for studies using correlative 35 

approaches (COR), light grey for articles using process-based or integrated modelling approaches (PB/IM) and white for articles combining COR, PB and/or 36 

IM in the same study (COR & PB/IM). b) For each of the dominant indicator-modelling approach combinations in plot a  i)NATURE- PB/IM, ii) ES -37 

PB/IM, iii) NATURE-COR and iv) ES-COR we detail the frequency (from column ‘count’) of use of single-driver vs multi-driver approaches, as well as the 38 

frequency of single-indicator vs multiple-indicator evaluations.39 
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 40 
 41 

Figure 5. Types of indicators found in the literature search and their prevalence in the data set. Orange sections of the tree chart correspond to ecosystem 42 

service indicators: provisioning, regulating, cultural services or integrative (multi-service indicators). Blue shaded sections of the chart refer to nature 43 
indicators that we classified in four main groups: measures of extinction risk (e.g. viability of populations), indicators of species/population trends (e.g. niche 44 
expansion/contraction), measures of ecosystem functioning (e.g. trait diversity) and measures of compositional intactness (e.g. forest cover, forest patchiness). 45 
The size of each box indicates the prevalence of each indicator type in the selected literature (ecosystem service classes follow the Common International 46 
Classification of Ecosystem Services - CICES V4.3; www.cices.eu). 47 
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Frequency of journals in the selection of 163 papers 

Journal name 

Number of 

papers 

Ecological Modelling 9 

Climatic Change 7 

Biogeosciences 6 

Forest Systems 6 

Global Change Biology 6 

Journal of Biogeography 5 

Regional Environmental change 5 

Annals of Forest Science 4 

Forest Ecology and Management 4 

iForest-Biogeosciences  4 

Landscape and Urban Planning 4 

Landscape Ecology 4 

Plant Ecology 4 

Plos One 4 

Agricultural and Forest Meteorology 3 

Applied Vegetation Science 3 

Can J Forest Res 3 

Global Ecol Biogeogr 3 

Journal for Nature Conservation 3 

Science of the Total Environment 3 

Agriculture, Ecosystems & Environment 2 

Catena 2 

Climate Research 2 

Diversity and Distributions 2 

Ecosystem Services 2 

Environmental Pollution 2 

European Journal of Forest Research 2 

Geomorphology 2 

International Journal of Wildland Fire 2 

Natural Hazards and Earth System Sciences 2 

Agricultural Systems 1 

Agroforestry systems 1 

Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 1 

Aspects of Applied Ecology 1 

Atmospheric Environment 1 

Biodiversity and Conservation 1 

Biological Invasions 1 

Biomass and Bioenergy 1 

Canadian Journal of Plant Pathology 1 

Comptes Rendus Biologies 1 

Conservation Biology 1 

Croatian Journal of Forest Engineering: Journal for Theory and 

Application of Forestry Engineering 1 
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Journal name 

Number of 

papers 

Cuadernos de la Sociedad Española de Ciencias Forestales 1 
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Ecological Indicators 1 

Ecoscience 1 

Environmental Modelling & Assessment 1 

Environmental Modelling & Software 1 
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Forest Policy and Economics 1 
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Hydrology and Earth System Sciences 1 

International Journal of Applied Earth Observation and 
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Journal of Forest Economics 1 

Journal of Hydrology 1 

Journal of Land Use Science 1 

Journal of Mountain Science 1 
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Journal of the Faculty of Forestry Istanbul University 1 
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Online resource 3: spatial scales addressed 

Number of studies found in the literature review, classified by the original spatial 

extent/focus of the article and the number of drivers included in the scenarios. 

 

 Number of  drivers 

Original extent of the article 1 2 3 4 

Global 9 3  1 

Regional (Pan-Mediterranean) 14    

National 26 10   

SubNational 30 9 1  

Local 37 16 4  

Simulated landscapes (local) 2 1   

Total 163 
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Online resource 4: temporal trend of published literature  

Number of published articles that used models and scenarios to forecast nature and/or 

ecosystem services indicators linked to Mediterranean forests during the period 1990-2016. 
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Online resource 5: correlations between number of studies and socio-economic 

indicators. 

Number of studies by country in relation to their total forest extent (FAO 2010), Gross 

Domestic Product (GDP; source: https://data.worldbank.org), population (source: 

https://data.worldbank.org), and their level of social well-being as measured by the 

Human Development Index (UNEP 2016). R values indicate Spearman’s correlations 

between each variable and the number of studies by country. 
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