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Key Messages 

 This investigation aimed to determine an optimal application time of bagged larval 

therapy treatments to maximise debridement by assessing larval growth and feeding 

over time. 

 The mass of tissue digested by the larvae increased significantly in incremental 24 h 

incubation times up to 72 h, whilst larval mass increased only up to 48 h. Using larval 

growth and development to determine optimal application times could therefore result 

in an underutilisation of the debriding potential of larvae. 

 An incubation time of 72 h was concluded to be the most effective use of bagged 

larvae at the test temperature of 32 °C. Shorter times appeared to underutilise the 

debridement capacity of the larvae and longer times offered little in terms of 

additional consumption. 
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Abstract 

The effective use of larvae of the greenbottle fly, Lucilia sericata, in wound debridement 

requires a working knowledge of how feeding changes over time. Using a laboratory assay 

and bagged larval dressings, the effect of incubation time on larval feeding rates and body-

mass was investigated for up to 120 h at 32 °C. The mass of tissue digested increased 

significantly in incremental 24 h periods up to 72 h, with no significant consumption 

occurring afterwards. Larval mass increased only up to 48 h. A further test comparing the 

efficacy of a single 96 h application of larvae against two consecutive 48 h applications found 

that the mass of tissue digested in the latter was 14.3% higher than the former, a difference 

that was statistically significant. Current clinical guidance suggests a four day application 

period for bagged larvae. Based on these results, an incubation time of 72 h (3 days) for 

bagged larvae would be most effective at the study temperature. However, it is acknowledged 

that wound temperature can vary, whereby feeding rates would likely differ. In view of this, 

we conclude that a period of 3-4 days is optimum for application of larvae, and current 

guidelines should be adhered to. 
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Introduction 

Larval therapy is the therapeutic use of blowfly larvae to treat chronic, non-healing wounds.  

Delays in wound healing can be caused by a variety of factors including chronic disease, 

vascular insufficiencies, advanced age, neurological defects, nutritional deficiencies, or local 

factors such as infection, pressure, and oedema, and chronic wounds are characterised by a 

prolonged and self-perpetuating inflammatory response that can be difficult to manage (1,2). 

The failure to progress past this chronic state of inflammation can cause a cascade of 

abnormal tissue responses which can generate and amplify a hostile microenvironment inside 

the wound, resulting in the accumulation of cellular debris on the surface. Unrestrained 

proteolytic activity and a disturbed oxidant/antioxidant balance can also cause further damage 

to the surrounding tissue leading to infection and necrosis (3). To aid the process of wound 

healing and allow it to progress past the inflammatory stage, it is vital that this necrotic tissue 

is quickly and effectively debrided (4,5). In larval therapy, medicinal maggots are introduced 

into the chronic wound to undertake this process of debridement. Primarily, larvae of the 

greenbottle fly, Lucilia sericata (Diptera: Calliphoridae) are used. 

 

The efficacy of larval therapy in debridement has been proved clinically. A number of 

clinical studies have been conducted to compare the efficacy of larval therapy to conventional 

treatment methods in debriding chronic wounds. A systematic review of the clinical studies 

of larval therapy noted twelve comparative studies, including six randomised controlled 

trials, from the years 2000–2014 (6). Based on the analysis of these twelve studies, the 

authors concluded that larval therapy is both more effective and more efficient in the 

debridement of chronic ulcers when compared with conventional treatments. They also 

associated larval therapy with other benefits, including quicker healing rate of chronic 

wounds, a shortened time to healing in ulcers, a longer antibiotic-free time period, decreased 
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amputation risk, and similar antibiotic usage compared with conventional therapies (6). A 

different meta-analysis of seven clinical studies from 1995–2009, including three randomised 

controlled trials and four non-randomised trials suggested that whilst larvae were effective in 

debridement, there was not enough evidence to show that they were more effective than 

conventional treatments (7). 

 

In addition to debridement, the therapy is also associated with numerous secondary benefits. 

The larvae of L. sericata have been shown to possess significant antibacterial capabilities, not 

only by the removal of necrotic tissue, but also through the antimicrobial action of their 

secretions (8–10). Larval therapy has also been implicated in promoting the growth of and 

appearance of extracellular matrix or granulation tissue which may help to enhance new 

tissue formation (11,12). In addition, other noted benefits of larval therapy have been 

suggested including reperfusion, reduction in inflammation, and antifungal properties 

(13,14). 

 

The ability of medicinal maggots to debride is primarily attributed to the way in which they 

feed. Being necrophagous by nature, the larvae break down and consume necrotic tissue 

enzymatically by a process of extracorporeal digestion. This is achieved by the release of 

excretions/secretions containing a mixture of proteolytic, glycolytic, lipolytic, and nuclease 

enzymes onto the tissue surface, causing liquefaction and digestion of the necrotic tissue 

which is subsequently ingested (15–19). However, as effective as this feeding mechanism 

may be, the larvae cannot feed indefinitely. Newly hatched larvae will feed through three 

larval instar stages, before reaching a pre-pupal wandering stage (20). This wandering stage 

is characterised by the cessation of feeding and migration away from the feeding site as the 

larva begins to search for a suitable location to begin pupation (21). Due to the ability of the 
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larvae to digest tissue being confined to these stages of development, a single treatment of 

larval therapy will only be effective in debridement for this limited timespan.  

 

The current investigation focussed on the use of bagged larvae. In this method, the larvae are 

sealed inside a porous polymer bag which allows for the flow of larval excretions and 

secretions and the liquefied necrotic tissue and wound exudate out of and into the bag whilst 

keeping the larvae contained (22,23). This facilitates an ease of use in the application and 

removal of the larvae (24). 

 

Recommended application times for bagged larvae are variable. Guidance from medicinal 

larvae producer BioMonde (Bridgend, U.K.) recommends an application period of a 

maximum of four days for their bagged larvae products (25), though Thomas (21) suggests 

that treatment times using bagged larvae can last 2–5 days. Using a wound model, Blake et 

al. (26) found that significantly more tissue was metabolised after four days than after three, 

and therefore recommended a four-day application period. More recently, Čičková et al. (27) 

found that larval growth ceased after 48 h when using a similar model and recommended an 

application period of 48–72 h for bagged larvae (24,27). Controlled trials using bagged larvae 

have also used application times of 2–3 days (24,28) and 3–4 days (29).  Some research has 

also previously been undertaken in the area of larval development duration, though much of it 

relates to their usefulness as a forensic tool. These studies tend to focus on minimum 

development times and give little information about how the larvae feed over time (30–33), 

so attempting to extrapolate useful larval therapy application times from these is only of 

limited value.  
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Debridement is often an imperative of wound treatment and any delay in the time to 

debridement can, in turn, delay the wound healing process (34). A working knowledge of the 

feeding activity of medicinal larvae over time is, therefore, essential for the effective 

application of this treatment. Considering the significance of debridement to the wound 

treatment method and a current lack of consensus regarding a recommended application time 

of bagged larval therapy products, a clearer understanding of feeding and digestion processes 

of medicinal larvae over time is needed.  

 

The aims of this study were, first, to investigate the activity of bagged medicinal grade L. 

sericata larvae over the course of an application period of up to 120 h in a laboratory assay 

and, second, to determine the efficacy of larval feeding processes over this time. 

Additionally, we sought to investigate whether two treatments of bagged larvae applied for 

48 h, one being replaced by the other, would result in greater total consumption than a single 

treatment applied for 96 h. Such information would prove significant in understanding the 

digestive processes of larvae over time and in formulating an optimal application period of 

this larval therapy treatment. 
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Methods 

This study made use of a `larval activity assay' as described previously (35). The assay uses 

an aerated container fitted with sponge, containing a mass of minced pork loin upon which 

the larvae feed. Efficacy in digestion is then indicated by the mass of tissue consumed by the 

larvae over time. Medicinal grade larvae were supplied by BioMonde (Bridgend, U.K.) in 

vials, each containing approximately 200 individuals, along with bagged larval dressings, 

measuring 25 × 40 mm, and foam spacers, measuring 8 × 8 × 10 mm. Upon set-up of the 

tests, the larvae were second instar. 

 

For every test iteration, fifty larvae were counted into each BioBag50, along with a foam 

spacer, before being heat sealed. The assay was constructed as described previously (35), but 

with some modifications. A mass of 15 g of minced pork tissue was used as the feeding 

substrate in this instance as this was found to be enough to ensure that there was feeding 

material available throughout the 120 h. The construction of the assay was also modified to 

include an absorbent cotton pad placed over the BioBag, which acted to absorb excess fluid 

produced by the larval action, reducing the risk of larvae suffocating inside the dressing. 

 

Time series test 

The assays were incubated at 32 ± 1 °C for five time periods: 24, 48, 72, 96, and 120 h with 

twelve repeats conducted for each experiment, along with three control repeats that contained 

no larvae. This temperature was used as previous research has indicated this to be the 

approximate average wound surface temperature (26,36,37). After the designated time period, 

the assay container was removed and the BioBag opened. The larvae were counted out of the 

bag, the total mass of larvae was recorded, and the mean mass per larva calculated. The dry 
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mass of pork tissue remaining was also recorded, which was obtained by placing it in a 

drying incubator at 70 ± 2 °C for 48 h. Dry mass was recorded to remove inconsistencies in 

tissue mass caused by water loss over the five day test period. An estimated initial dry mass 

was obtained by drying separate 15 g portions of minced pork. Five samples were dried from 

each batch of pork loin used and the mean dry mass calculated from these samples were used 

as the estimated initial dry mass. 

 

Comparison test 

A comparison test was also conducted to assess the feeding efficacies of two separate 

treatments over 96 h. In one treatment, a single BioBag was used for the duration of the 96 h 

test, whilst in the other, the BioBag was replaced with a fresh bag containing a fresh batch of 

larvae after the first 48 h of feeding. Results were then collected at the end of the 96 h, 

recording the same parameters as those in the time series test. Larval mass data was also 

recorded for both instances of the 48 h treatment. A total of 9 repeats were conducted for 

each treatment. The process of replacing the BioBags was carried out by removing the assay 

containers from the incubator after 48 h, opening the lid and then removing the bag with 

thumb forceps. The new BioBag was then placed on top of the pork tissue with the same 

orientation as the previous bag, before being resealed and placed back in the incubator. In 

tests where the same bag was used for the duration of the 96 h, these actions were mimicked, 

but with the same bag being removed and then replaced.  

 

Statistical analysis 

Data analysis in the time series test consisted of separate analysis of variance (ANOVA) tests 

to determine an overall effect of incubation time on both the mass of tissue lost and the mean 

mass per larva. To determine more specifically the effect of each successive 24 h increment, 
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post-hoc Tukey multiple comparison tests were subsequently performed to compare the mean 

of each increment with those of every other. Significant differences between means were 

indicated at the 0.05 level of significance. These were conducted for both the mean mass of 

tissue lost and the mean mass per larva. For the comparison test, data were analysed using 

unpaired t-tests. These were conducted to compare the mean masses of tissue lost in the two 

treatments. Separate t-tests were also conducted comparing the mean mass per larva of both 

the first 48 h application of larvae with the mass per larvae from the 96 h application of 

larvae, and also for the second 48 h application of larvae against the 96 h application. One 

final t-test was conducted comparing the mean mass per larvae of both 48 h applications. 
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Results 

Time series test 

Overall, incubation with larvae over 120 h was found to have a significant impact on the 

mass of tissue lost, F (5, 66) = 331.8, p < 0.001. The mass of tissue removed over time 

increased steadily over the first 72 h (Figure 1A). The multiple comparison tests revealed that 

the differences between these time periods were statistically significant at the 0.05 level of 

significance. After 72 h the increase in the mass of tissue loss was much less pronounced, and 

at 120 h, tissue loss did not change at all (Figure 1A). Of the total mass of tissue removed 

over the five day period, 92.1 % was removed in the first 72 h. No significant differences 

were observed after the 72 h time point (i.e. the masses of tissue lost at the 72, 96, and 120 h 

time periods were not significantly different from each other). Control tests containing no 

larvae saw a relatively small loss of mass over time with (mean ± SEM) 0.31 ± 0.06 g lost 

after 24 h, and rising in 24h increments to 0.57 ± 0.05 g after 120h. 

 

The trend in mean mass per larva saw an increase over time up to 72 h and then gradually 

decreasing afterwards (Figure 1B). Incubation time over the whole 120 h test period was 

found to have a significant impact on the mass per larva, F (5, 66) = 228.4, p < 0.001. Mass 

per larva increased steadily over the first 48 h, with the multiple comparison tests showing 

significant differences between the mean masses at 0, 24, and 48 h. Mean larval mass 

increased again between 48 and 72 h, but to a lesser degree, and the difference was not 

statistically significant. Mean mass then decreased after the 72 h point. Although the 

difference from the 72 h time point was not significantly lower at 96 h, the decrease was 

statistically significant at 120 h. 

 

Comparison test 
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A total (mean ± SEM) 2.44 ± 0.05 g dry mass of tissue lost in the 96 h treatment, compared 

with 2.79 ± 0.07 g of tissue was lost in the two successive 48 h treatments, showing an 

increase of 14.34% (Figure 2A). Using an unpaired t-test, the difference was found to be 

statistically significant, t(16) = 4.097, p < 0.001. The mean mass per larva was 40.38 ± 0.53 

mg after the 96 h treatment. In the separate successive 48 h treatments, the mean larval mass 

was 37.59 ± 1.92 mg after the first 48 h application and the replacement larvae were 38.44 ± 

2.23 mg after the second 48 h application (Figure 2B). The mean larval mass of the 96 h 

treatment was not significantly different from either the first 48 h treatment, t(16) = 1.401, p 

= 0.180; or the second 48 h treatment, t(16) = 0.842, p = 0.412. There was also no statistically 

significant difference between the mean larval masses of the two 48 h applications, t(16) = 

0.291, p = 0.775. 
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Discussion 

Mass of tissue lost 

Debridement is the primary function of larval therapy and it relies on the ability of the larvae 

to consume dead tissue. Maximising the efficacy of larval therapy treatments, therefore, 

requires a good knowledge of the length of time for which the larvae are active. In the present 

study, larval activity was determined, firstly, by the mass of tissue consumed over time. The 

results of this study indicate an active feeding period of up to 72 h at the study temperature of 

32 °C. The primary explanation for the change in consumption rates over time is due to the 

developmental processes of the larvae.  The active feeding period of larval development has 

been described as a “race against time” where, in response to the limited availability of food, 

larvae must obtain resources as quickly possible to gain the critical weight required to 

successfully complete metamorphosis (38–40). It is likely for this reason that the rates of 

consumption are highest in the earlier incubation period. The subsequent slowing in the rate 

of tissue removal indicates the point at which the larvae cease feeding and begin their 

wandering behaviour, a process that is largely dictated by temperature (31,33,41). In the 

present study it appears the cessation of feeding occurred in most individuals between 48–72 

h as the subsequent 24 h period showed no significant increase in tissue removal. Control 

tests containing no larvae saw a relatively small mass of tissue loss over time possibly due to 

bacterial and autolytic degradation. 

      

Larval development has been investigated in a number of ways in past studies. A majority 

looked either at the time taken to develop certain characteristics or at larval size/mass over 

time (31,33,41,42). Few, however, have considered consumption rates, with only one 

previous study noted, which found that significantly more tissue was digested after four days 

than after three (26). Those results differ somewhat to these in the present study. Although in 
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the present study the mean dry mass of tissue lost after 96 h was greater than at 72, the rate of 

loss was far lower than that seen in previous 24 h intervals and the difference in tissue loss 

between 72 and 96 h was found not to be statistically significant. Differences between the 

results may be due to wet mass measurements being recorded by Blake et al. (26) which may 

have caused inconsistencies in the measurements due to desiccation of the feeding material 

over time – a limitation which has been suggested previously (27). The impact of water loss 

was addressed in the present study by the use of dry mass measurements. In this case, there 

appeared to be little benefit of incubating the larvae for 96 h rather than 72 in terms of tissue 

digestion.  

 

Mass per larva 

Larval mass is closely linked to activity as any changes will be correlated with food intake. In 

the present study, larval mass increased significantly up to 48 h, but showed no significant 

growth afterwards, and began to decrease after 72 h. The lack of growth after 48 h was also 

observed in the comparison test where there was no significant difference observed in the 

mass per larva between the larvae that were incubated for 96 h and either of those incubated 

for the 48 h periods. These results are also supported by those from a previous study, which 

found that larval growth ceased after 40–48 h when incubated in simulated wound conditions 

(27). 

 

In the present study it was found that larval growth did not always coincide with feeding. 

Larvae were found to still be effective in consuming tissue up to 24 h after they had stopped 

showing any significant increase in mass. After the significant increases in growth up to 48 h, 

it seems that rates of feeding in the following 24 h were enough only to maintain body mass. 

Increases in body mass may also have been offset by emptying of the larval crop as they 
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began to enter the wandering stage of development. Using only growth data to determine 

larval therapy application times, therefore, could lead to underutilising the larvae as this 

would result in their being removed at a time where they are still feeding and capable of 

debriding tissue. This is significant as previous studies have used larval growth as a 

parameter to justify recommendations of larval therapy application times. For example, 

Čičková et al. (27) noted that larval growth ceased after 40–48 h and went on to recommend 

this time period as that which was most appropriate for larval therapy applications using the 

free-range larvae method. The recommendation given for bagged larvae was longer, at 48–72 

h, but only as it was noted in a previous study that bagged larvae appeared to grow more 

slowly in certain types of wounds (24). As debridement is a key aim of larval therapy it is 

important to consider consumption data also when considering optimal application times. 

 

Based on the results of this investigation, the application of bagged larvae for 48 h would 

result in an underutilisation of the larvae as they are capable of consuming significantly more 

tissue for a further 24 h. This is also somewhat exemplified by data from the comparison test. 

In this test, the two consecutive 48 h treatments resulted in an increase in the mass of tissue 

removed over a single 96 h application of 14.3%, which was statistically significant. From a 

statistical point of view, one can conclude that the use of consecutive 48 h applications was 

more efficacious than a single 96 h application as it resulted in a greater mass of tissue 

removal. From a practical perspective, however, one could question whether the relatively 

modest increase in tissue removal justifies the costs that would be associated with applying 

two rounds of the treatment as opposed to one. Considering the consumption data both here 

and in the full 120 h test, it seems that a 72 h application would be a more effective use of the 

larvae at this temperature. 
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Impact of temperature 

Temperature is a primary factor determining larval development rates with higher 

temperatures resulting in faster development times regardless of food availability 

(30,31,33,40,41). The temperature that the larvae experience determines for how long they 

will be actively feeding. Therefore, in a larval therapy context, wound temperature plays a 

key role in determining for how long the debridement process will likely be effective.  

 

A temperature of 32 °C was chosen in this study as previous research has indicated this to be 

around the average wound surface temperature (26,36,37). However, it is acknowledged that 

the wound bed can exhibit a range of temperatures that can vary depending on body location, 

coverings or dressings used, and levels of inflammation or vascularity, with one study 

measuring wound surface temperature of 266 wounds finding a range of 25.3–37.3 °C (37).  

 

Whilst this investigation gives an insight into the duration of larval feeding at average wound 

temperatures, further investigation into the effect of the range of temperatures that can be 

exhibited by chronic wounds on larval consumption rates would also be useful for better 

determining the optimal application times of larval therapy treatments. These differences in 

temperature could significantly impact for how long the larvae will be effective. 

 

Although the present investigation found an active feeding period of up to 72 h at the study 

temperature of 32 °C, the current clinical recommendation of up to 4 days (25) can still be 

considered sensible, since wounds that present a lower temperatures may cause slower larval 

development and a longer period of active feeding.  
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Future studies 

Efforts were made for the assay to mimic aspects of a chronic wound so that results were as 

representative as possible to the clinical situation. However, the assay is not a substitute for 

clinical trials and the limitations of this in-vitro study should be acknowledged. There is no 

guarantee of a direct link between results found using this assay and those in the clinical 

situation, and although the findings of this study can aid in influencing future protocols for 

clinical application, further clinical investigation would be necessary to confirm optimal 

application times of medicinal larvae. Additional work may also look to consider secondary 

benefits of larval therapy, such as antimicrobial action, in-vitro by the inoculation of the meat 

substrate with pathogenic bacteria and then examining the performance of the larvae in the 

presence of these bacteria. 

 

This study investigated only the use of bagged larvae. Recommended application times vary 

depending on the larval therapy product, with loose larvae products generally being 

recommended shorter application times than bagged larvae (21,27). A similar future study 

considering the optimal application times of loose larvae would, therefore, also be useful. 
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Figures 

 

Figure 1. Mean ± SEM (A) total dry mass of pork tissue lost, and (B) mass per larva from 

artificial assay tests incubated for different time periods at 32 ± 1 °C. Test experiments using 

BioBags containing 5 larvae/cm2 (n = 12 per time period) are shown in circles, and control 

experiments using BioBags containing no larvae (n = 3 per time period) are shown as 

triangles. 
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Figure 2. (A) Mean ± SEM dry mass of pork tissue lost in artificial assay tests after 96 h 

feeding, comparing a treatment where the BioBag was replaced with a fresh bag after 48 h (‘2 

× 48 h’ treatment) and a treatment where the same BioBag was used for the full 96 h duration 

(‘96 h’ treatment). (B) Mean ± SEM mass per larva from assay tests after different periods of 

feeding, including larvae from the initially applied bag in the ‘2 × 48 h’ treatment (‘1st 48 h’), 

larvae from the bag applied second in the ‘2 × 48 h’ treatment (‘2nd 48 h’), and larvae from 

the from the bag applied in the ‘96 h’ treatment. All tests were incubated at 32 ± 1 °C with 

BioBags containing 5.0 larvae/cm2. n = 9 per treatment. 

 


