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ABSTRACT  

Oily hot rolling mill (HRM) sludge containing a high percentage of iron oxides has been 

treated under microwave irradiation, and the products compared to hexane washed and 

thermal treated sludges. Metals present in the sludge act as a highly microwave-absorbent 

material, creating hot spots that trigger the stripping of the water and oils under air. The 

sludge looses 5 wt.% of water and volatiles under 5 min of microwave irradiation (1000 W at 

2,450 MHz), which represents a similar reduction in weight as 4 h heating at 200 °C, but with 

savings in energy and time. Most importantly, after microwave irradiation, the material also 

shows an improvement in its rheological properties (free flowing and smaller particle size) 

and changes in its chemical composition. Microwaved samples are less oxidized than heated 

ones (lower Fe3+ content), which is an advantage recycling the sludge as a source of iron with 

lower oxidation state necessitates a lower coke:ore ratio for blast furnace operation. 

 

Highlights 

• Oily hot rolling mill (HRM) sludge treated with microwave radiation. 
• Water and hydrocarbon content reduced by microwave treatment. 
• Reduction of the iron oxidation state of the iron oxides after microwave treatment.  
    

*Corresponding author.  

E-mail addresses: a.r.barron@swansea.ac.uk; arb@rice.edu (A. R. Barron) 
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1. Introduction 

The hot rolling mill (HRM) process in steel production results in an oily HRM sludge 

containing high percentage of iron oxides, alloying elements, along with oils and other 

organic residues. The recycling and recovery processes of the sludge are particularly 

challenging due to the presence of hydrocarbons with a low flash point in its composition 

(Park et al., 2002). High amounts of sludges are generated by the steel industry. One estimate 

suggesting that 0.9 ton of oily sludge is produced for every 1000 tons of rolling steel (Qin et 

al., 2015). Mill sludge cannot be recycled via sintering because of its high oil level (5 - 20%) 

and is normally treated as a landfill waste (Çamci et al., 2001; Martín et al., 2009). This waste 

product is creating an adverse impact on the environment due to the content of hazardous 

organic compounds especially if it is landfilled. The reuse of the iron content also is of 

economic necessity in reducing manufacturing costs within the steel industry in the UK, 

which is currently struggling to compete worldwide with cheap imports, cope with increasing 

energy bills, and increased legislated standards. The cost of manufacturing is a major 

contributor to the contraction in UK industry that is currently causing significant job losses 

and likely to impact much further with obvious and catastrophic effects on local communities 

that are heavily reliant on a single industrial employers in the area. By transforming or 

reusing hot rolling mill wastes, metals and mineral resources can be recovered and the 

environmental impact reduced with positive effects on UK manufacturing industry with 

regard to waste re-use and lower raw materials consumption leading to potentially lower 

costs and higher global competition.  

Mill sludges with high oil content could be recycled via sintering, however, due to the 

high volatile organic compounds and dioxin emissions in exhaust fume systems, they are 

normally treated as landfill waste (Martín et al., 2009). Several approaches have been studied 

for the recovery of the metals and the removal of oils from the iron sludges (Park et al., 

2002). Conventional methods for recycling HRM sludge include physiochemical and heating 

treatments. Heating methods are not generally used due to their high prices and low oil 

removal efficiency. Some researchers have proposed using a reduction followed by a 

magnetic separation step to recover the iron in the samples (Wang et al., 2014; Yu, 2014, 

Fard et al., 2016). Vacuum distillation followed by either an oxidizing roasting or a hydrogen 

reduction step have also been employed to obtain high purity ferric oxide powders (Liu et al., 

2013a).  
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Microwaves (MW) irradiation has been shown to be a versatile process that can be used 

on an industrial scale (Lester et al., 2006; Binner et al., 2014; Robinson et al., 2015). 

Microwaves have also been used as a first processing step in the recovery of different 

industrial wastes (Kingman et al., 2004; Kumar et al., 2010; Saito et al., 2011; Bobicki et al, 

2014; Lam et al., 2015). The rheological behavior of different metallic slurries has been 

modified by using microwave energy (Sahoo et al., 2015), in addition microwave pyrolysis 

has been used as a disposal method for waste oil by using a bed of highly microwave-

absorbent material (Lam et al., 2010). Pyrolysis of waste engine oil using a metallic pyrolysis 

char as a microwave-absorbent material has been reported (Lam et al., 2015). Rapid heating, 

decreased sintering temperatures and improved physical and mechanical properties have 

prompted us to investigate microwave energy for the synthesis and processing of a range of 

materials (Gomez et al., 2012; Landry et al., 1995), as well as the use of nanoparticles as 

“nano susceptors” (Gomez et al., 2015; Gomez et al., 2017; Gomez et al., 2016). Of particular 

interest with regard to the present study was the role of residual catalyst particles during the 

microwave purification of carbon nanotubes (Gomez et al., 2016). The potential of these iron 

oxide/iron nanoparticles to promote microwave heating suggested that similar effects could 

occur for HRM sludge.  

In this study, we investigated the use of the microwaves to remove the water and reduce 

the amount of oils in industrial steel hot mill sludge. The goal is to recycle the material in 

order to reduce the environmental impact of landfilling it. Additionally, the cost of energy 

and raw materials is a major contributor to the contraction in UK manufacturing industry that 

is currently causing significant job losses and likely to impact much further with obvious and 

catastrophic effects on local communities that are heavily reliant on a single industrial 

employers in the area. The financial losses of UK industry as exemplified by the steel cannot 

be sustainable and the potential job losses and resulting society impact will be disastrous. 

Thus, the development of chemical processes that lower waste and allow for recycling of 

material must be a priority.  

 

2. Experimental 

2.1. Materials and Characterization 

Hot rolling mill (HRM) sludge was provided by Tata Steel Strip Products UK Port Talbot 

Works (Wales, UK). Hexane (≥95%) was obtained from Sigma Aldrich and was used as 

received. Thermogravimetric/differential thermal analysis (TG/DTA) was performed on a TA 
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Q600 instrument. The samples were heated under flowing air (100 mL/min) from room 

temperature to 600 °C with a heating rate of 20 °C/min. An oil sample as heated under 

flowing nitrogen (100 mL/min) from room temperature to 600 °C with a heating rate of 20 

°C/min. The exhaust gas from the TGA was monitored using a heated sample transfer line 

(350 °C) and a Thermoscientific i510 FTIR. Scans were taken approximately every 36 

seconds for the duration of the TGA heating cycle. Scanning electron microscopy was 

performed using an Ultra-High Resolution FE-SEM S-4800 coupled with an energy 

dispersive X-ray analyzer (Inca X-ray analysis system, Oxford Instruments, Abingdon, 

United Kingdom) was used for the EDX analysis. Some of the samples were sputter coated 

with chromium to prevent charging. Fourier transform infrared (FTIR) measurements were 

carried out by Thermoscientific i510, recording spectra in the 400-4000 cm-1 region with 32 

scans. For size determination 1 g of the samples was sieved at different mesh sizes: 200 µm 

(70 Mesh), 125 µm (120 Mesh) and 50 µm (270 Mesh) using 70/270 (VWR: 510-0708, 510-

0718 and 510-0724) sieves and an automatic shaker (Endecotts: MIN200/23050). X-ray 

photoelectron spectroscopy (XPS) measurements were obtained using a PHI Quantera system 

with an aluminum X-ray source at 1486.7 eV operated at 15 kV. All samples were sputtered 

with Ar+ ions for 1 min at 3 kV prior to recording measurements. A spectrum energy 

calibration was performed with respect to the C1s peak with binding energy set to 284.50 eV 

(NIST XPS database). The speciation and composition variation was obtained by recording 

the multiplex spectra for C1s, O1s, and Fe 2p3 elemental energy levels. A survey spectrum 

was measured at 140 eV pass energy, and individual peak spectra regions recorded at 26 eV. 

Data was analyzed with PHI MultiPak program (Version 9.6.1.7), using Gaussian-Lorentzian 

(80%) curves with Shirley background subtraction. Curves were fit using the peak position 

and FWHM values reported in literature (Gomez et al., 2016; Bhargava et al., 2007). X-ray 

diffraction (XRD) patterns were recorded on a Brüker d8 DISCOVER diffractometer with a 

Cu-Kα X-ray source (λ = 0.15418 nm and analyzed using Match 2 software. Phase 

identification was performed using DIFFRAC.EVA software. Rietveld quantitative phase 

analysis was carried out using Topas-Academic v4.1 software.  

 

2.2. Microwave treatment 

A domestic 1000 W microwave oven (Panasonic NN-CT579SBPQ) was used as the 

microwave in all the experiments. In all microwave reactions a sample of the sludge (500 mg) 

was placed in a glass vial and microwaved for 1 min periods at 1000 W power. A 50 mL 
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Pyrex beaker 2/3 full of water was placed in the microwave to prevent overheating. The 

microwaved samples were named as SL-MWn (Table 1), where n indicates the number of 1 

min 1000 Watt microwave treatments 

 

Table 1 

Summary of sample abbreviations. 

Sample name Description 

SL As received sludge 

SL-MWn n x 1 min of microwave irradiation  

SL-200 200 °C for 4 h in air 

SL-500 500 °C for 4 h in air 
SL-HW Washed with hexane and filtered  

 

2.3. Thermal treatment 

A sample of the as received sludge (500 mg) was placed in a crucible inside a tube 

furnace. The sample was then heated to 200 °C for 4 h under air atmosphere (SL-200). A 

similar process was used but heating to or 500 °C (SL-500). 

 

2.4. Hexane extraction 

A sample of the as received sludge (40 g) was stirred with hexane (90 mL) for 2 h. The 

mixture was then filtered and washed with hexane (2 x 10 mL). The dried sludge is retained 

for further analysis, while the hexane is removed from the eluent in a rotary evaporator and 

the remaining organic compounds isolated as an oil (SL-HW).  

 

3. Results and discussion  

3.1 HRM sludge 

Hot mill sludge is a steel industry waste product formed by a concentrated mixture of 

solid and water. It generally contains metallic iron, iron oxides, traces of non-ferrous metals, 

alkaline compounds and oils from the rolling process (Martín et al., 2012). Previous studies 

suggested the composition of the sludge oil produced in a rolling steel process consists of 

55% alkanes and alkenes and 22% carboxylic acids, ketones and aromatic hydrocarbons (Qin 

et al., 2012). Prior to treatment, the sample investigated herein was characterized to provide a 

baseline.  
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The as received material (Fig. 1) is sticky and difficult to manipulate due to the presence 

of both water and oils in its composition. The basic oil component in the HRM sludge 

generally is a result of the lubricants used in the hot rolling process. Specifically, thermal 

control of the rolls as well as the removal of any loose debris from the roll bite area is 

achieved by the addition of the lubricants. Table S1 (see ESI) provides a summary of the 

commercial names of the oils present in the sample and their characteristics. None of the 

components have a flash point below 200 °C; however, thermal degradation results in the 

formation of functional groups and lower flashpoint components, see below.  

 

 

Fig. 1. A photograph of the as received HRM sludge sourced from Tata Steel Strip Products 

UK Port Talbot Works (Wales).  

 

The thermogravimetric/differential thermal analysis (TG/DTA) of the as received HRM 

sludge is shown in Fig. 2. The sludge exhibits two weight loss steps, the first (5.6 wt.%) 

between 50-120 °C is consistent with water and possibly any volatile hydrocarbons, while the 

second (5.0%) occurs between 220-540 °C and is consistent with the characteristics of the 

original component oils. The slight mass increase above 500 °C is associated with oxidation 

of Fe(II) to Fe(III). A summary of the TG/DTA results is given in Table 2 along with those of 

the treated samples. 
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Fig. 2. The thermogravimetric analysis (solid line) and differential thermal analysis (dashed 

line) under N2 atmosphere of the as received HRM sludge.  

 

The FTIR spectrum (Fig. 3a) presents a broad band centered at 3300 cm-1 that 

corresponds to physisorbed water, peaks at 2920 and 2854 cm-1 due to aliphatic C-H, a large 

peak at 1630 cm-1 characteristic of the asymmetric stretching of carboxyl C=O groups, and 

1450 cm-1 and 1372 cm-1 signals related to aliphatic C-H. A similar FTIR spectrum was 

obtained in a previous study on the recycling process of a rolling mill sludge based on a 

distillation step followed by either an oxidation or a reduction treatment (Liu et al., 2013a). 

This suggests that the sludge is representative of those from other steel works.  

 

Table 2 

Thermogravimetric analysis of as received HRM sludge before and after different treatments 

listed in Table 1. 

Sample Mass loss temp. (°C) Wt% loss  
<200 °C (%) 

Wt% loss  
200-500 °C (%) 

Residue @  
500 °C (%) 

SL 81.5, 287.5, 395.2 5.6 5.0 89.4 

SL-MW1 296.5, 394.5 0.3 5.4 94.3 

SL-MW5 287.4, 396.8 0.3 4.0 95.6 

SL-200 290.6, 376.8 0.2 5.5 94.3 
SL-500 - 0.1 0.1 99.7 
SL-HW 298 0.4 0.5 99.2 
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Fig. 3. FTIR spectrum of (a) the as received HRM sludge, (b) the solid residue after hexane 

extraction (SL-HW) and (c) the recovered organic compounds. 

 

The chemical composition of the surface of the HRM sludge has been analyzed by XPS 

(Fig. S2). It should be noted that as a high vacuum technique, the sample had to be partially 

“dried” under vacuum before it could be placed in the chamber, thus the analysis of O (from 

H2O) and C (from volatile organics) are lower than actually present; however, the objective 

was the determination of the Fe oxidation state. The high resolution XPS of the Fe 2p3/2 peak 

(Fig. 4a) suggest that Fe(III) represents the dominant oxidation state.  

 

3.2 Treatment of HRM sludge 

As previously noted, the oils in the sludge are composed mostly of hydrocarbons (Qin et 

al., 2015), which are non-polarizable molecules and therefore should not absorb microwaves. 

In order to determine both the effects of thermal and microwave treatment on the iron oxide 

component, the hydrocarbon material was extracted using hexane. As may be seen from the 

FTIR spectrum (Fig. 3b) of the solid residue after hexane washing (SL-HW), there is a 

significant decrease in the C-H and C-C stretches. The C=O band appears to be retained 

(along with the H2O peak), suggesting that hexane washing does not remove functionalized 

organics. As expected, the FTIR of the organics extracted (see Fig. 3c) shows the converse 

signals, i.e., bands at 2923 and 2845 cm-1 (C-H), and also at 1460 and 1374 cm-1 (C-C).  

TG/DTA of SL-HW shows small mass losses in both temperature ranges (Fig. 5a) due to 

incomplete extraction of the oils; however the mass increase due to Fe(II) oxidation (c.f. Fig. 

1) is unchanged, confirming that the solvent extraction has no effect on the iron oxide 
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component. A further analysis of the extracted oils (after removal of hexane) was performed 

by TG/DTA under nitrogen where the exhaust gas was monitored using a FTIR. Fig. 5b 

shows that, in an inert atmosphere, most oils are volatilized between 300 and 450 °C as 

expected by comparison of Fig. 2. The exhaust gas shows alkyl groups in the FTIR spectra 

(Fig. 5c). 

 

  

  

 

Fig. 4. High resolution Fe 2p XPS peaks of (a) the as received HRM sludge (SL), (b) SL-200, 

(c) SL-500, (d) SL-MW1, and (e) SL-MW5 samples. 
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Fig. 4. (a) Thermogravimetric analysis and differential thermal analysis of (a) SL-HW and 

(b) the oils extracted by the hexane washing. Both experiments are performed under N2 

atmosphere. The FTIR spectra of exhaust gas (c).  

 

Sludge samples have been treated by microwave irradiation with different times (SL-

MWn), and the resulting products characterized by TG/DTA, FTIR, SEM, EDS, XPS, and 

XRD. The position of the two steps in the TGA of the as received HRM sludge (Fig. 2) 

defined the choice of 200 °C and 500 °C for the thermal treatment (SL-200 and SL-500, 

respectively) as comparison with the microwave treatments.  

TG/DTA results of the thermal and microwave treated samples (Fig. 6 and Table 2) show 

that none of the samples exhibit significant weight loss below 200 °C, consistent with the 

removal of water. This is confirmed from the FTIR spectra (Fig. 7), where SL-200 and SL-

500 show no O-H band, while that observed for SL-MW1 is significantly reduced as 

compared to SL. The O-H band is further reduced in SL-MW5 as compared to SL-MW1.  
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Fig. 6. The thermogravimetric analysis (upper lines) and differential thermal analysis (lower 

lines) in air of HRM sludge after microwave and thermal treatments. 

 

 

Fig. 7. FTIR spectra of HRM sludge after microwave and thermal treatments. 

 

As expected, the SL-500 sample showed no mass loss due to either H2O or hydrocarbon 

oils (Fig. 6), and is confirmed by the FTIR. In addition, no mass increase is observed, 

suggesting minimal oxidation of Fe(II) containing oxides in the TGA, i.e., the sample is pre-

oxidized. While SL-200 shows no mass loss associated with H2O, there is a mass loss 200-

500 °C associated with the presence of the oils (c.f. the FTIR in Fig. 7), and the mass increase 

above 450 °C is also observed. The FTIR spectra of SL-MW1 and SL-MW5 show decreasing 

bands due to the hydrocarbon (Fig. 7), consistent with the TGA results. It is interesting that 

SL-MW5 shows residual C-H and C-C bands, but no C=O band. The latter is also decreased 

in SL-MW1 relative to the C-C bands.  

EDX analysis results (Table 3) show a similar carbon atomic % for SL-200, SL-MW5 and 

SL-MW1 while SL-500 shows a significant reduction. These values are consistent with the 
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TGA and FTIR data (Fig. 6 and 7). In addition, SL-500 shows an increase in the oxygen 

content. 

The structural composition of the sludge and the changes that occur upon each treatment 

were investigated by X-ray diffraction. As seen in Fig 8, the HRM sludge (SL) diffractogram 

shows peaks that correspond to three types of iron oxides: wüstite (FeO, COD 9006636), 

hematite (α-Fe2O3, COD 9000139) and magnetite (Fe3O4, COD1526955). Generally, the 

chemical composition of the mill scale varies according to the type of steel produced and the 

process used. Maghemite (Fe2O3) and pure iron (Fe) were identified to be the most abundant 

iron phases from a cold rolling mill sludge (Liu et al., 2013b), while others have reported a 

rolling mill scale comprised mainly of metallic iron and a mixture of the iron oxides wüstite 

(FeO), hematite (α-Fe2O3) and magnetite (Fe3O4) (Martín et al., 2012). Our material appears 

closer to this latter composition. 

 

Table 3 

EDX analysis (atomic %) of HRM sludge samples after microwave and thermal treatments 

listed in Table 1. Each sample result is the average of three areas in the sample.  

Sample C Fe O  Si Al Ca 

SL-MW1 48.8 ± 0.5  22.2 ± 0.3 22.0 ± 0.3  4.8 ± 0.1  1.1 ± 0.1  0.6 ±0.1 

SL-MW5 37.4 ± 0.4  33.5 ± 0.3 24.2 ± 0.3 3.5 ± 0.1 0.7 ± 0.1  0.7 ±0.1 

SL-200 40.6 ± 0.4  35.5 ± 0.3 21.8 ± 0.3 0.5 ± 0.1  0.6 ± 0.1  0.6 ±0.1 

SL-500 34.8 ± 0.3  38.9 ± 0.3 23.8 ± 0.3  0.6 ± 0.1  0.9 ± 0.1  0.8 ±0.1 
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Fig. 8. XRD patterns of (a) SL, (b) SL-200, (c) SL-500, (d) SL-MW1, and (e) SL-MW5. 

Peaks are references for hematite (#, Fe2O3, COD 9000139), magnetite (*, Fe3O4, COD 

1526955), and wüstite (+, FeO, COD 9006636). 

 

Fig. 8 shows, upon thermal treatment to 200 °C, there is an expected reduction of the 

intensity of the wüstite (FeO) peaks occurring with a concomitant increase of the hematite (α-

Fe2O3) peaks. This oxidation appears essentially complete at 500 °C, and given the kinetics 

for a magnetite to haematite transition (Monazam et al., 2014), explains why there is no 

appreciable mass gain above 550 °C in the TGA of SL-500. In contrast, microwave treatment 

of SL results in a similar phase composition as the original sludge. Using the Rietveld 

quantitative phase analysis (of the crystalline component) of the HRM sludge before and after 

various treatments is shown in Fig. 9 and Table 4, confirming the oxidation and reduction 

behavior.  

 

Table 4 

XRD Rietveld quantitative % phase analysis (HRM sludge samples after microwave and 

thermal treatments listed in Table 1.  

Sample Hematite Magnetite Wüstite Iron Goethite 
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α-Fe2O3 Fe3O4 FeO Fe 

SL 11 39 48 1 1 

SL-MW5 14 44 41 3 - 

SL-500 58 37 2 3 - 

 

 

Fig. 9. Plot of crystalline phase composition of HRM sludge (SL) and compared to the 

various microwave and thermal treatments. Hematite (Fe2O3, COD 9000139), magnetite 

(Fe3O4, COD 1526955), wüstite (FeO, COD 9006636), goethite (α-FeO(OH), COD 9002158) 

and iron (Fe, COD 9000657) are observed. 

 

The samples were studied by XPS in order to assess the iron state after heating and 

microwaving process (Table 5). XPS analysis showed spectral bands attributed to Fe 2p3/2, O 

1s and C 1s (Fig S1). The analysis of the high-resolution Fe 2p signal on the samples by XPS 

(Fig 4) is in general agreement with the XRD data. In particular, the high resolution Fe 2p 

XPS spectrum of SL-500 shows no Fe0 contribution (Fig. 4c), i.e., the average oxidation state 

of the iron oxides in the samples is increased by heating. It is also worth noting the relative 

ratio of Fe(II):Fe(III), see Table 4 and 5. Fig. 8 shows the dramatic reduction of the intensity 

of the wüstite (FeO) related peak while increasing the hematite (Fe2O3) ones after heating the 

sludge at 200 and 500 °C. According to the XRD and XPS results, microwave irradiation 
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leads to less extensive oxidation than heating the sample, which is an advantage in case a 

reduction step is added to recover the iron in the samples. 

The transportation of sludge in industry depends largely on the rheological behavior of 

the solid–liquid suspension. The removal of water and/or the oils should have an effect on the 

agglomeration. As Fig. 1 shows, the particles in the as received sample are highly 

agglomerated. By comparison, after 5 min microwave treatment (SL-MW5), the material kept 

a similar color and its particles are smaller in size (Fig. 11). Samples heated at 500 °C for 4 h 

under air show a color change from black-brownish to reddish related to increased oxidation 

of the iron in the sample (see below).  

 

Table 5 

Relative Fe(0), Fe(II) and Fe(III) content in HRM sludge samples after microwave and 

thermal treatment (listed in Table 1) as determined by XPS.  

Sample Fe(0) Fe(II) Fe(III) 

SL 22.7 47.8 29.5 

SL-MW1 9.5 63.6 26.9 

SL-MW5 11.7 45.2 43.1 

SL-200 23.1 38.8 38.0 

SL-500 0 14.4 85.6 

 

 

   

Fig. 10. Photographic images of HRM sludge after microwave and thermal treatment: (a) SL-

MW5 and (b) SL-500.  
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Sieving results show that 99.9 % of the as-received sample has particle sizes over 212 μm 

(Table 6). Heating to 200 °C (SL-200) appears to have little effect, which is not unexpected 

given that the majority of the oils should still be present (see below). As expected, heating 

above the vaporization point of the oils (SL-500) dramatically changes the particle size 

distribution and, in particular, creates significant fines. Changes in rheological properties of 

iron ore have been observed previously; for example, it was found that microwave-treated 

iron ore have a lower density than that of untreated ore after grinding (Sahoo et al, 2015). In 

the present case, while SL-MW1 samples reduce the hydrocarbon and H2O content and make 

a free flowing solid, there is no significant decrease in the particle size, which would make 

subsequent processing simpler due to the problems of processing fine powders. 

SEM results (Fig. S2 and S3, see ESI) show that the morphology of the mill scale powder 

is preferentially lamellar with heterogeneous surfaces formed basically by several micron size 

particles in agreement with sieving results. Interestingly, smoother surfaces have been found 

after microwave treatment of the samples. 

 

Table 6 

Sieving test results (%) for HRM sludge before and after different treatments listed in Table 

1.a  

Mesh 

size 

Particle size 

(µm) 
SL SL-200  SL-500  SL-MW1 SL-MW5 

70 212 99.9 98.0 60.0 99 88.4 

120 125 - 2.0 16.5 1.0 7.1 

270 53 - - 18.4 - 3.1 

Fines - - 5.2 - 1.4 
a Some of the material can be lost in the sieving process due it´s stickiness. 

 

If the consequence of the microwave irradiation was to simply heat the water, then the 

temperature would be limited ca. 100 °C. While this would explain the stripping of the more 

volatile hydrocarbon species, there are a series of changes consistent with higher 

temperatures. For example, steam stripping would not be responsible for changes in oxidation 

state, which suggest higher localized temperatures in the presence of a reducing species such 

as carbon. Microwave absorbing metals create hot points in the samples that explain this 

behavior. These hot points can reach high temperatures in a short time and generate sparks 
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that trigger the burning of the organic compounds present in the sample. A similar 

phenomenon was found when microwaving waste engine oil using metallic pyrolysis char 

(Lam et al., 2015).  

 

4. Conclusions 

Hot mill sludge is an iron oxide steel industry by-product with the ca. 10% content in 

water and oils resulting in a sticky solid that is difficult to manipulate. Furthermore, recycling 

becomes an issue because of the flammability of some of the components. Sludge samples 

have been treated by microwave irradiation, thermolysis, and washing with hexane in order to 

reduce their content in oils and improve their properties. Under microwaves, the rheological 

properties of the original sludge are improved. After just 5 min of microwaving, samples 

loose 5 wt.% of water and organic volatiles, a similar reduction to 4 h of conventional heating 

at 200 °C. FTIR results showed a reduction in the intensity of the O-H stretch and the alkyl 

groups, aromatic rings and carbonyl groups C=O signals related with the loss of water and 

organic material, respectively, in the microwaved samples. In addition, 10% of the particles 

have smaller sizes after being microwaved, related to an improvement of the rheological and 

transport properties of the sample.  

Potentially, microwave energy is a faster and more efficient way for “drying” sludge than 

conventional heating, saving both energy and time. For potential scale-up of this process, 

there are, however, additional issues to be addressed, such as the cost of the microwave 

equipment versus traditional heating using natural gas or waste heat. The cost of any 

treatment versus the cost of storage and landfill must also be taken into account. A particular 

drawback is that the cost of the microwave equipment for scale treatment may result in a 

marginal economic case for implementation. Nevertheless, the most important observation is 

that microwaving the samples leads to less oxidation of the samples than heating them, which 

is an advantage in case a reduction step is added to recover the iron in the samples. The use of 

less coke per unit mass of raw material would benefit both production costs but also 

emissions.  

Alternatively, microwaves can be used to trigger the oils pyrolysis. Sludge samples 

treated under air frequently catch fire, producing smoke (30 s under 1000 Watts). This 

behavior can be explained by the creation of hot points in the sample caused by microwave 

absorbing metals in the sludge. These hot points can reach high temperatures in a short time 

and generate sparks that can burn part of the organic compounds present in the sample. 
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Sludge samples washed with hexane heat up but do not burn under microwaves, and organic 

material extracted from it does not heat up under microwaves (1 min 1000 Watt). Therefore, 

both hot points and oil need to be present under microwaves to trigger the pyrolysis of the 

sludge. 
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