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Abstract 

In this predominately predictive modelling finite volume/element study, a comparative analysis is 

performed for time-dependent and viscoelastoplastic flow in a circular contraction-expansion 

geometry of aspect-ratio 10:1:10. For this, a hybrid finite volume/element scheme is employed. A new 

and revised micellar model is investigated, under the denomination of BMP+_p, which reflects a 

bounded extensional viscosity response and an N1Shear-upturn at large deformation rates (lost in earlier 

model-variants), a versatile model capable of supporting plasticity, shear-thinning, strain softening-

hardening and shear-banding. Many of these features are common to wormlike micellar and polymer 

solutions. Then, findings are contrasted against a De Souza model. Two flow regimes are addressed: 

plastic flow (low flow-rate Q≤1 units, solvent-fraction <10-2) and viscoelastic flow (larger-Q>1; 

minimised plasticity; =1/9); as quantified via flow-structure, yield-fronts and pressure-drops. Under 

the plastic regime, elasticity-increase causes asymmetry about the contraction-plane, whilst yield-

stress and enhanced strain-hardening promote solid-like features, apparent through augmented 

unyielded-regions and rising pressure-drops. Concerning the viscoelastic regime and vortex-

structures, extensional-deformation experienced correlates with hardening expectation in uniaxial-

extension, whilst streamline activity in vortex-cells correlates with normal-stress response in shear. 

Adjustment in strain-hardening/softening response with Q-rise, provides translation from weaker 

salient-corner vortex centres to stronger elastic corner-vortices; yet, when softening finally prevails, 

asymmetric upstream/downstream salient-corners vortex patterns are recovered. For strong-hardening 

and solvent-dominated ~0.8 fluids (as with Boger fluids), an intermediate lip-vortex-formation phase 

is noted, alongside coexistence of salient-corner vortices. Such a vortex-coexistence phase is 

distinctly absent in solute-concentrated fluids. 

Keywords: viscoelastoplasticity, thixotropy, micellar, Bautista-Manero/De-Souza models, enhanced-oil-

recovery 
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1. Introduction 

The theme of this predictive study is that of thixotropic-viscoelastoplastic flow in complex 

deformation. The constitutive equations employed reflect this and are model variants from 

the classes of Bautista-Manero [1-8] and De Souza [9-11]. The study is conducted under a 

flow-rate (Q)-increase protocol, and hence, under fixed fluid relaxation-time (Maxwellian 

averaged, 1). Such a procedure mimics the experimental set up, for which generally, a test 

fluid is pumped through an apparatus at a fixed steady-state flow-rate (Q), whereupon 

increase in flow-rate is initiated in incremental steps between steady-states. Under such 

prevailing steady-state conditions, and/or during transients between steady-states, relevant 

measurements may be performed to account for - (i) the influence of fluid-characteristics on 

flow-structure (streamlines from particle velocimetry, stress-fields from flow birefringence), 

and (ii) the forces required to maintain these flow conditions (pressure-drops in 

contraction/contraction-expansions; drags in flow past objects). Bearing this in mind, the 

present analysis aims to numerically predict the flow of such fluids through a circular sharp-

cornered contraction-expansion of aspect-ratio =10. This particular choice of geometry and 

contraction-ratio, exhibits many and varied features observed experimentally for some Boger 

fluids [12], that have been reproduced recently by continuum modelling using the 

swanINNFM(q) model [13]. There, complex vortex-phasing was retrieved, in which co-

existence of lip and salient-corner vortices at intermediate flow-rates, evolved into strong 

elastic-corner vortices at high flow-rates. This was accompanied by adjustment in excess 

pressure-drop levels by some ~600%. Accordingly, with the potential of this flow-geometry 

to reveal such strong and complex features of flow-structure and energy exchange, two flow 

regimes are selected here for further analysis: a viscoelastic regime and a plastic regime. The 

viscoelastic flow regime applies at intermediate-to-high flow-rates, in which purely-liquefied 

viscoelastoplastic material flows, where flow-structure is tracked via vortex dynamics and 

first normal-stress difference. The plastic flow regime occurs at low flow-rates, in which 

some solid-like features also arise, and which are evaluated, in flow-structure, through yield-

fronts, and, in energetic aspects, through pressure drops. Then under complex deformation, 

the prevalent rheological properties to study, include shear-thinning, strain-

hardening/softening, thixotropy and plasticity. 

Viscoelastoplastic materials and their application Viscoelastoplastic materials are 

ubiquitous in the man-produced goods (paints, cements, foams, tooth paste, mayonnaise, 

waxy oils, foodstuff) and fluids in nature (blood, sputum, tissues) [14-15]. Particular attention 

has been devoted to oil-extraction, drilling muds and transport of waxy oils in pipe-lines [14-

16]. Recent studies point out the necessity of a viscoelastic contribution in characterising 

previously-considered simple yield-stress materials as Carbopol in particle-settling and other 

complex flows, where a combination of shear and extensional deformations promote 

viscoelastoplastic and thixotropic response [17-20], and for which novel measurements of 

extensionally-active features are of importance [21]. Moreover, plastic-to-liquid like 

transition has been considered as a consequence of a dynamic structure-destruction and 
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reformation, hence, introducing a thixotropic ingredient to explain such a response [15, 22]. 

This recent interest in the time-dependent side of the yielding phenomenon is reflected in an 

increasing number of publications considering thixotropy and viscoelasticity to approximate 

the response of viscoelastoplastic materials in ideal and complex flows [23], fact that stands 

as a motivation from the present and previous works [6-7]. 

On constitutive modelling Typical and representative constitutive equations for these 

thixotropic and viscoelastoplastic fluids are constructed upon coupled stress and fluid-

structure equations. Bautista-Manero model fluids were originally proposed to approximate 

the rheology of wormlike micellar solutions [1-5, 8]. That is, so-called ‘smart fluids - 

viscoelastic surfactants’, given their ability to break and reform their internal structure, 

subject to the changing environmental conditions of deformation they are exposed to. As 

such, they are useful to provide versatility - as injectant fluids in enhanced oil-recovery, drag-

reducing agents, thickeners in personal products (shampoos, body soaps) and household 

products (hard-surface cleaners, drain-openers, liquid dish-washing detergents), and carriers 

in drug-delivery systems [24-25]. In contrast, De Souza model variants were devised to 

represent the rheology of crude-oils and waxes [9-11, 26]. Despite their disparate origin, 

these two models have in common an additional partial differential equation, to describe the 

dynamic evolution of fluid-structure, enacted through mechanisms of construction and 

destruction. Within the oil-rheology-based constitutive models, one may find equations-of-

state that combine a descriptive framework of viscoelasticity, through a fluid-structure 

description, and plasticity, through a Bingham-type yield-stress response. Examples are the 

Isotropic-Kinematic Hardening model (IKH model; [27]) and models that merge the plastic 

Bingham-like and viscoelastic Oldroyd-B-like fluid response [28-29]. There is an alternative 

point of view to model viscoelastoplastic materials based on the description of their 

microstructure; such models aim to describe the physical interactions between constituents of 

these materials at the microscale and, then, retrieve macroscale predictions of rheological 

properties. Illustration of such models are the Soft Glassy Rheology SGR-model [30-31], 

which apart from predicting yield-stress features, it models shear-banding under LAOS [32-

33]; the Kinetic Elasto-Plastic KEP-model [34] and the Shear Transformation Zone STZ-

model [35]. 

With both Bautista-Manero and De Souza models, such a set of constitutive equations 

reflects distinct properties of shear-thinning, strain-softening/hardening, first normal-stress 

difference, yield-stress and shear-banding [36-38]. The first normal-stress difference response 

in shear-deformation N1Shear is highly non-linear, with a second upturn at high shear-rates. 

Nevertheless, some essential differences between the models are apparent: (i) through the 

nature of the structure parameter - the Bautista-Manero structure-parameter represents a 

dimensionless fluidity 
0






p

p

f , whilst the De Souza structure-parameter reflects a 
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dimensionless elastic modulus 
 
0


m

s

G

G
; (ii) this difference in structure-parameter 

interpretation provokes adjustment to the polymeric extra-stress equation - Bautista-Manero 

fluids fit well into an Oldroyd-B-type stress-equation, in which the structure-parameter only 

affects the source stress-term (i.e. pf ); alternatively, De Souza fluids somewhat alter such 

traditional differential-form, with the structure parameter modulating both the source stress-

term and the non-linear upper-convective derivative stress-term (i.e. 


p ); (iii) within the 

structure-destruction term of the structure-parameter equation, the factor driving the non-

linear evolution features differs – this being the dissipation-function for Bautista-Manero 

models; whilst correspondingly, De Souza model early variants contain a dimensionless 

stress-tensor second-invariant [9-10] (latterly replaced by unity in a corrected De Souza 

version [11]); (iv) elasticity in the structure equation: whilst some Bautista-Manero model 

variants have an explicit contribution from the fluid relaxation-time 1 in the destruction-term 

[4-8], De Souza forms are devoid of this [9-11]. Naturally, such similarities and differences 

motivate the present investigation. 

Enhancing numerical tractability - ABS-f- and VGR-corrections – Non-ideal yield-stress 

materials, such as heavy oil-fractions, suspensions and pastes, may be represented as 

extremely solute-concentrated (solvent-fractions of ≤10-1) viscoelastic fluids. These high 

levels of polymer-concentration (>90%), together with the high deformation-rates imposed 

by the increase-flow-rate protocol adopted, pose considerable challenge to effective 

predictive modelling in retaining numerical tractability. This is so, even at modest levels of 

viscoelasticity. As such, enhanced numerical stability is afforded through a Velocity-Gradient 

Recovery correction (VGR-correction) and the ABSolute f-functional correction (ABS-f-

correction). In this, VGR-correction imposes shear-free extensional deformation along the 

symmetry-line and a discrete correction for continuity; whilst ABS-f-correction to the 

constitutive-model structure-functional f, guarantees thermodynamic consistency and ensures 

positive viscosity estimation in complex flow (see [5]). These corrections are devised to 

constrain the loss of initial-value-problem (IVP) evolution and its consequent lack of positive 

definiteness in the system, alongside error propagation (see [5, 8] and Section 3 below). Such 

corrections have been implemented successfully in a number of applications, as exemplified 

through the simulation of  - wormlike micellar fluids in complex flow in non-banding [5, 8] 

and banding conditions [38], the flow of viscoelastoplastic fluids in contraction-expansions 

(rounded-corner, =4; [6-7]), and the flow of Boger fluids in contraction-type flows. The 

work on Boger fluids has resulted in the close match of some well-founded experimental 

pressure-drop data (also flow-structure), encompassing contraction-expansion and contraction 

forms, planar/circular configurations [39], rounded/abrupt corners [13, 39-41], hyperbolic 

shape [42-44], and change in contraction-ratio [13]. 
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2. Governing equations, constitutive modelling & theoretical framework  

The relevant field equations for the flow problem in hand are those governing mass 

conservation and momentum transport, coupled to an equation-of-state for stress. Taken in 

non-dimensional form, the mass and momentum equations may be expressed, under 

incompressible and isothermal conditions, as:  

0 u ,          (1) 

Re - Re p
t


    



u
T u u .       (2) 

Here, t represents time, spatial-gradient and divergence differential operators apply over the 

problem domain, with field variables u, p and T of fluid-velocity, hydrodynamic-pressure and 

total viscoelastic-stress contributions, respectively. Then, the total viscoelastic-stress (T) may 

be segregated into two parts: a solvent-component s  (viscous-inelastic 2s  D ), and a 

polymeric nonlinear-component p . Though plasticity may be introduced into either solvent 

or polymeric components, or indeed both, here the theme is to consider only contributions 

arising from those of a polymeric source. Hence, the viscoelastoplastic nature is embedded in 

a unified form through the networked structure of the material in a combined manner.  

Adopting D ( u uT)/2 is the rate-of-deformation tensor, for which superscript ‘T’ 

denotes tensor-transpose operation, then dimensionless variables may be established as: 

*

L


x
x ,   

*

U


u
u ,  

* U
t t

L
 ,   

* L

U
D D ,   

 0

p*

p

p s

U

L
 






 ,   

 0

*

p s

p
p

U

L
 





.        

This provides for a reference zero shear-rate total viscosity, ( 0 p s ), in the viscoelastic 

regime, with zero-rate polymeric-viscosity 0 p , and s  the constant solvent-viscosity. Based 

upon these definitions, a solvent-fraction  0    s p s/  may be adopted, extracting the 

non-dimensional group Reynolds number  0   p sRe UL / . Parameters are then: 

material density  , and characteristic scales of U  on velocity (mean velocity, based on 

volume flow-rate) and L  on spatial-dimension (based on minimum contraction-gap 

dimension). Hence, a natural rate-scale to adopt emerges as (U / L ).  

The degree of elasticity is interpreted through the non-dimensional group Weissenberg 

number, 1Wi U / L , defined on the product of a characteristic material relaxation-time 

(
0

1

0


 

p

G
, where G0 is the elastic modulus at zero shear-rate), and a characteristic rate-scale 

(U / L ). The non-dimensional group Weissenberg number may be recast, by using the 
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commonplace definition of flow-rate, i.e. 2Q AU L U  , as 1 3

Q
Wi

L



 . With this Wi-

definition one is able to increase elasticity and non-linearity by a couple of ways when the 

characteristic geometry length-scale L is defined; i.e. one may increase viscoelasticity by 

increasing the characteristic-time of the fluid 1 at fixed Q, or via a Q-increase protocol at 

fixed 1. In this work, we opt for fixing the characteristic-time of the fluid as 1=1 s, and 

promote flow, and hence viscoelastoplastic response, through an incremental-Q steady-state 

solution-acquisition procedure. Consequently, such definitions render the possibility of 

analysing flow-response in terms of either Wi or Q interchangeably. Armed with such 

definitions, a general space-time differential statement for the stress equation-of-state may be 

expressed as: 

 2 1 


  Dp pWi f  ,        (3) 

where, the upper-convected derivative of extra-stress, 
 
     


u u u

p T
p p p p

t


     , 

appears on the lhs of Eq.3, modulated by the elastic-response of the material through Wi, and 

material structure is incorporated through the structural pre-functional (f) producting the 

polymeric stress itself, p . 

BMP+_p model approximation 

Under derivation through the Bautista-Manero-Puig BMP-family of thixotropic constitutive 

models, the non-linear structure f-functional is related explicitly to the viscosity of the fluid. 

Indeed, the f-functional represents a dimensionless fluidity (
0




p

p

f , inverse viscosity); see 

[4-8]. In the present study, a novel and revised model-variant is proposed, via the so-called 

BMP+_p model [38]; an advance on the previous BMP model [1-2]. This new BMP+_p 

model enjoys the benefits of the inclusion of a relaxation-time 1 (elasticity) in the fluid-

structure construction-destruction dynamics [4-8], whilst retaining a modified non-linear 

destruction-term. These BMP+_p features provide simultaneously two key experimental-

manifestations in wormlike micellar and concentrated polymer solution rheology: first, a 

bounded extensional-viscosity Ext-response; and secondly, a first normal-stress in shear 

N1Shear with upturn at high deformation rates (the former is the advance upon the original 

BMP model).  

For the thixotropic BMP+_p micellar model, evolution of the structure dynamic f-

functional follows the partial differential equation: 
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   
0

1
1  



 
      

 
u DG pf f Wi f :

t
 .     (4) 

In the above, the dimensionless micellar-structure coefficients appear in Eq.4. These 

account for structural construction (  s

U

L
, a time constant) and structural destruction (via 

 
0

0 0
0  

 

 


G p s

k G
 and  0 0   p s

U
k

L
; two stress constants). Here, s represents the 

characteristic time of structure-construction, k0 is the inverse of the structure-destruction 

stress and (∞+) is the viscosity of the polymer at high deformation-rates. One notes in 

addition, that ABS-f-correction is enforced (see [5-8] for detail), to ensure both physically 

consistent viscosity estimation and at the same time enhanced numerical tractability. 

First, one may reflect on current advances in constitutive model development for the 

micellar BMP-family of fluids, and their ever-improving rheological properties accorded 

thereby. The original BMP model lacked finite extensibility (infinite-Ext at finite strain-

rates), whilst attractively, N1Shear rose at high shear-rates [1-2]. Subsequent BMP model 

modifications of Boek et al. [3] led to MBM models, corrected for Ext-unboundedness, by 

simplifying the destruction-term in Eq.4, yet inheriting as a consequence, a retrograde 

flattening in N1Shear to a terminating plateau at high shear-rates. Shifting attention to pressure-

drops and model predictions under complex flows, the MBM model was subsequently found 

inadequate in producing consistent epd-predictions towards the theoretic Stokesian limit (see 

findings for 4:1:4 contraction-expansion flow [4]). This position was then resolved through 

NM_p and NM_T model-variants [4-8], by including viscoelastic description (via the 

relaxation-time 1) within the fluid-structure dynamics (Eq.4). Finally, on this basis, the 

undesirable flattening in N1Shear was addressed and corrected for under the present BMP+_p 

form. This implies that sustained viscoelastic influence is anticipated to apply, as one 

explores mid to large deformation-rates. 

De Souza model approximation 

The original De Souza model was presented in dimensional total-stress form, coupled with an 

evolutionary partial differential-equation for material-structure  to govern the dynamics [9-

11]. In the current study, as in [7], the De Souza stress equation is re-cast into a split form 

 
s p

   , in which the solvent-contribution s  is of constant viscosity Newtonian-type. 

The polymeric-stress component may then be rearranged to obtain: 

 1
2





 
 Dp pm

Wi f  ,        (5) 
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where the f-functional is defined as  0

1
 




p pm
f , the polymeric viscosity is 

  0
1




 


 
  
 

p

p

s

, and a structural modulus is 
 

0

1




s

m

G

G
. Note, and unique to this 

model, the structural-parameter () dictates response in both viscosity and elastic modulus. It 

appears as an inverse factor in the dissipation-term in Eq.5, but also within the f-functional 

and the shear-modulus definitions. This suggests a more complex De Souza fluid-

structure/material-property dependency. That is, as opposed to the BMP-class of fluids, 

whose structural f-functional defines a much simpler dimensionless fluidity, appearing only 

as a multiplying factor on stress in Eq.3. The interpretation is that the powered-form of the 

De Souza structure-parameter, products and amends the viscoelastic contributions in Eq.5, 

via the term 
mWi . 

Accordingly, the De Souza structure-parameter evolution equation for is: 

   
1

1 1


  
 

   
        

     

u

b

a a

ss

DS ss
t

,     (6) 

where, DS=teqU/L is a dimensionless time-parameter for  and, teq is a characteristic-time 

for structure-equilibrium. As such, Eq.6 states a new and corrected form of De Souza 

structure-equation, following [11] whilst correcting for destruction term inconsistency. In 

brief, Eq.6 omits a second-invariant multiplicative factor on the destruction term (i.e. 

 


 

p

p D

II

II
, which is replaced here by unity). This correction was performed by De Souza for 

consistent structure-parameter prediction under shear-flow conditions, as reported. 

Although in complex flow omission of this dimensionless-stress factor can trigger instability 

(unboundedness in extension), such a factor becomes unity under ideal steady-state flow, and 

hence should not greatly affect predictions in the vicinity of such state (see on to results and 

earlier tractability issues arising with this De Souza model over the BMP_p model). The 

exponents a, b and m are dimensionless positive constants; all taken here as unity in the 

present implementation. Then, the steady-state structure-parameter 
ss

 is defined as: 

 
 

0

 


 






D

D

ss s

ss

p s

ln II ln
II

ln ln
,        (7) 

and the steady-state viscosity 
ss

 is: 

  10 0 0

0 0

1
  

 
 


      

            
      

D D

D D

D D

nd d

ss

d

II II
II exp exp KII

II II
.  (8) 
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In Eq.8 above, the dynamic and static yield-stress parameters are 
0
  and 

0


d
, respectively; 

0


d
 

is the shear-rate that denotes the transition between 
0
  to 

0


d
. Then, K and n are consistency 

and power-law index, respectively. In complex flow and according to common convention, 

the generalised second invariant of rate-of-deformation is taken as 21

2
 D Dtr . Presently, 

0
  and 

0


d
 are equated, simplifying the expression for  

Dss
II . One notes the physics here, 

that 
0


d
-variation influences steady-state conditions through  

Dss
II , and hence  

Dss
II . 

This has impact on the structure-parameter , which influences viscosity through its index 

power of the polymeric viscosity   0
1




 


 
  
 

p

p

s

. 

Material functions 

Fig.1 Benchmark highly-polymeric =1/9; BMP+_p model - hardening comparison. 

Comparison across extensional-viscosity Ext-hardening response; No-Hardening (NH), 

Moderate-Hardening (MH) and Strong-Hardening (SH) fluids. Note that strain-hardening 

(Fig.1a) is accompanied by increase in shear-stress-Trz levels (Fig.1b), and through first 

normal-stress difference (Fig.1c), in N1shear-plateaux at moderate-to-high shear-rates. Such 

rheological response adjustment is driven via the variation of thixotropic internal-structure 

parameters (see Fig.1-4). This is also patent on comparison across models (see on), when 

matching N1Shear-plateaux and extensional viscosity peaks. 

Fig.2 Polymer-concentration (1-)-variation; BMP+_p model; SH matching Ext-peak 

across solvent-fractions. Effects of polymer-concentration (1-)-variation in second-

Newtonian plateaux are exposed, in both shear and extensional deformation (Fig.2a). Across 

-change, Trz only departs from its linear-trend at shear-rates 1  ~3 units (Fig.2b). In 

contrast and interpreted through polymer-concentration (1-)-increase, the low shear-rate 

quadratic-N1shear response, slightly shifts to the left elevating early N1shear-response (Fig.2c); 

whilst at higher shear-rates, (1-)-rise provokes a shift to the right delaying later N1shear-

response. At intermediate rates, fixed SH-features across polymer-concentrations provide a 

common N1shear-plateau at ~102 units. 

Fig.3a-b Comparison across BMP+_p and De Souza models; highly-polymeric solvent-

fraction =1/9; NH, matching N1shear-inflection-points at intermediate shear-rates across 

models. Here in Fig.3a, Ext-hardening is suppressed and N1shear differences are exposed from 

1  ~1 units onwards (Fig.3b), from the viewpoint of a matching inflection-point at 

N1shear~0.5 units. From such a station and with rate-rise, BMP+_p provides for an extended 

N1shear-plateau response; whilst the De Souza-form is more responsive, with immediate rise in 
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N1shear. Fig.3c-d data introduces strain-hardening/softening features through the MH Ext-

setting (preserving model comparison and polymer-concentration). In this case, a match to 

and consequence of an increased N1shear-inflection-point (~4.5 units) is sought (Fig.3d). 

Notably in this instance, the De Souza approximation provides unbounded Ext-response 

(Fig.3c) – hence, large extensional response would be anticipated in extensional deformation. 

Fig.3e-f Comparison across BMP+_p and De Souza models; intermediate solvent-

fraction =0.7; SH, matching Ext-peak across models (Fig.3e). Here, significant N1shear 

differences are highlighted, in terms of the level at which the inflection-point departs from 

the initial quadratic-trend (Fig.3f).  Comparing and contrasting response in N1shear plateaux, 

BMP+_p N1shear plateaus over an extended rate-range (30≤ 1  ≤3x105); whilst De Souza 

N1shear possesses a short plateau-window only, due to its relatively early rise at 1  ~1 units. 

Fig.4 BMP+_p and De Souza models in the plastic regime To expose plastic features, 

characteristic scaling on viscosity (and on stress, consequently) is chosen based on the 

second-Newtonian plateau for both models. Recall in this work, yield-stress solid-like 

features are promoted - for De Souza models, via the dynamic yield-stress parameter 
0


d
; 

whilst BMP+_p modulates solidification through solute-concentration (1-)-increase. Here, 

BMP+_p yield- stress features appear marked at extremely-high polymer content (≤1/9; as 

common yield-stress fluids appear experimentally). This lies in distinct contrast to data in 

Fig.1-3, for which the solvent-fraction change covers more dilute-fluids (1/9≤≤0.9), 

representative of conditions for typical viscoelastic response at larger flow-rates. In Fig.4, 

contrasting viscosity-response is observed with yield-stress elevation across models. 

Considering shear and extensional viscosities (Fig.4a and 4b), one notes that both BMP+_p 

and De Souza models display plastic features in the form of an apparent yield-stress, in which 

a relatively large but finite first Newtonian viscosity-plateau is predicted [45-46]. Here, the 

level-separation between the first and the second Newtonian plateaux for both models is over 

an order-of-magnitude difference. For De Souza, 
0


d
-increase shifts the drop from their first 

Newtonian-plateaux to larger deformation-rates (Fig.4a). In contrast, BMP+_p response is 

witnessed through a significant rise in the first Newtonian-plateau (Fig.4d). These 

conspicuous differences are reflected in shear-stress Trz patterns observed at low rates. 

BMP+_p Trz patterns branch out at low deformation rates and rise with (1-)-increase 

(Fig.4e). In contrast in Fig.4b, De Souza forms reflect unified closed-patterns at low rates 

(still lower 
0


d
would not substantially alter this position). With 

0


d
-rise and at larger shear-

rates, such an unified initial linear response gradually weakens; so, for example, departure 

occurs at a relatively earlier { 1  ~0.30 units, 
0


d
=0.02}, whilst non-linearity is observed at 

the shear-rates of { 1  ~1 units, 
0


d
=1} (Fig.4b), thus sustaining tougher fluids (with 

relatively larger stresses) at larger deformation-rates with dynamic yield-stress 
0


d
-rise. 
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Response in first normal-stress difference in shear N1Shear follows likewise, with branching-

patterns at low rates for BMP+_p, but not De Souza. Yet, worthy of note at intermediate 

shear-rates, is the exaggerated De Souza N1Shear non-linearity and strength promoted via 
0


d
-

increase (Fig.4f). In contrast, BMP+_p (1-)-increase at these same intermediate shear-rates 

provokes constant plateaux, with ever rising-levels (Fig.4c). 

 

3. Flow domain, boundary conditions, VGR-correction and fe-fv scheme 

The flow domain is a circular contraction-expansion of aspect-ratio =10, with sharp-

corners. This geometry has been selected due to its strong potential to promote interesting 

and varied vortex structures at larger flow-rates, and to detect the impact that the present 

rheological difference across models has on these structures. Details in mesh characteristics 

can be found in [13]. In order to attain predictive solutions in such highly non-linear 

situations (recall the extremely low solvent-fractions of ≤10-2 and high flow-rate Q-

requirements), the stability-enhancing ABSolute f-functional (ABS-f) correction and the 

Velocity-Gradient Recovery (VGR) correction are found necessary. Here, ABS-f correction 

enhances numerical tractability through regularisation, by enforcing consistent material 

property estimation (following the Second Law of Thermodynamics; [5-8]). The ABS-f-

correction acts within the constitutive equations, adopting the absolute value of the network-

structure f-functional (often used to define macroscopic properties; as in non-Newtonian 

viscosity and non-Hookean elastic modulus [27]). This correction procedure finds general 

applicability, for example - through the dissipation-function in Bautista-Manero fluids, or in 

other models through the trace of polymeric-stress, as in PTT and FENE models [5]. There, 

use of ABS-f-correction gave an increase of three orders-of-magnitude in critical Weissenberg 

number solution attainment. Then, VGR-correction imposes shear-free inhomogeneous 

uniaxial-extensional deformation along the centreline through its velocity-gradient 

components, in addition to a generalised continuity-conservation condition that is satisfied 

exactly throughout the flow domain (see also [47-50] more generally for velocity-gradient 

recovery implementation and procedures). Such a VGR-correction strategy prevents 

proliferation of numerical discretisation error, originating from the evolving symmetry-line 

solution, and its amplification with the strengthening of non-linearity (in this case, promoted 

by flow-rate, polymer-concentration and yields-stress increase; [5-8]).  

The increasing-Q protocol itself demands some care with respect to accurate boundary 

condition implementation between subsequent flow-rates, which is affected by the strong 

shear-thinning features of highly-polymeric fluids in the moderate-to-high flow-rate regime. 

Hence, to ensure consistency between the outlet (also inlet) boundary and its corresponding 

internal-field neighbourhood, a regional-solution outlet-feedback (also inlet-feedforward) 

procedure is performed per time-step. This is implemented on polymeric-stress 
p

  and 

velocity-gradient u  solution-components [8], extracting overwrite nodal-values from fully-
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developed locations downstream (or upstream) of the obstruction, as appropriate. During the 

continuation incrementation-procedure through steady-state Q-solutions, the streamwise 

velocity 
zu  boundary condition is handled by an initial feedback-feedforward step at the 

outset of each new Q-solution stage [8]. In this, an internal-domain fully-developed 
zu -

profile is taken from a previous (but close) steady-state Q-solution, subsequently rescaled 

accordingly, and then set at inlet-outlet locations for the present flow-rate solution. This 

procedure is equivalent to setting steady-simple shear flow boundary conditions at each flow-

rate. Moreover, such uz-profile rescaling implies a change in the characteristic velocity U per 

flow-rate Q, and accordingly, via 1 1 3

Q
Wi U / L

L
 


   , a different associated Wi-level. 

Hybrid finite element/finite volume scheme This hybrid space-time algorithmic scheme has 

time-stepping and fractional-staged equation structure, see [47-50]. Finite-element (fe) 

discretisation is invoked on the momentum-continuity equation doublet of incremental 

pressure-correction form, whilst finite-volume (fv) discretisation is instigated on the 

constitutive stress-equation. This choice respects equation-type specification. Hence, 

Galerkin-type (fe) specification is selected for momentum-continuity on triangular 

tesselations, with subtended subcell/cell-vertex finite-volume (fv) discretisation for stress. 

This leads to a space-efficient element-by-element iterative solution procedure for all but the 

pressure-equation, which itself is resolved with a direct Choleski-reduction method. The (fv) 

component for stress, then collapses into a direct single-iteration implementation. The 

temporal conservation-form equation for stress is non-linear with inhomogeneous source 

terms, and as such requires both fluctuation-distribution for fluxes (upwinding) and median-

dual-cell treatment for source terms. On the parent fe triangular-cell grid, velocity 

interpolation is quadratic, alongside linear interpolation for pressure. Then, the subtended 

sub-cell fv-triangular-tessellation is constructed by connecting the mid-side nodes of the 

parent cells (four subcells per parent cell). In such a structured tessellation, stress variables 

are located at the vertices of fv-sub-cells and hence solution interpolation between various 

equation stages is avoided. This provides for a subcell-vertex fv-method, equivalent to linear 

interpolation on trial-solutions, but at the child subcell-level. The corresponding schema 

developed is second-order accurate and consistent in time [48, 49]. 

 

4. Results 

As depicted in Fig.5 and for illustrative purposes, the findings of this research work have 

been sectioned into two flow-regimes, a viscoelastic regime and a plastic regime. Section 4.1 

Viscoelastic Regime is focused on the fluidised response with relatively diluted fluids 

(1/9≤≤0.9) and high flow-rates (Q≥1). As a main finding, representation of the viscoelastic 

response is provided in Fig.5a, where rich flow-structural streamlines (portraying coexistence 
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of salient-corner and lip vortices) intimately correlate with its counterpart normal-stress field, 

and whose intensity appears correlated to rotational vortex-intensity (see on). 

Section 4.2 Plastic Regime deals with the solid-like features of the viscoelastoplastic fluids 

studied. In contrast to the viscoelastic regime, the plastic regime explores the plastic response 

of De Souza and BMP+_p models under extremely solute-concentrated fluids (≤1/9) and 

relatively low flow-rates (Q≤10). Here in Fig.5b, illustration of such response appears on 

yield-fronts, made asymmetric due to fluidisation and viscoelasticity. 

 

4.1 Viscoelastic Regime – variation in moderate-to-high flow-rates Q and polymer-

concentration (1-) 

4.1.1 BMP+_p Predictions; flow-structure and stress-response  

Comparison across hardening levels –NH, MH and SH; highly-polymeric (=1/9) under 

Q-increase 

Here, a main observation has been that vortex-phasing is found to be dictated through trends 

in extensional viscosity. In particular, this lies in agreement with previous findings for Boger 

fluids [12-13]. In this manner, and by adopting Q-increase as the continuation mode between 

steady-states, the gradual evolution from a salient-corner (sc) vortex-pattern is seen to 

develop into one of an elastic-corner (ec) vortex-pattern (see [13, 51]). Such an elastic-corner 

vortex is commonly observed at high flow-rates, where elastic features dominate and this 

strong kinematic flow-structure occupies the whole of the corner-recess (see vortex-intensity 

sal-plots and streamlines in Fig. 6 and 7, respectively). Counterpart fields of the first 

normal-stress difference in complex flow N1 (Fig. 8) overall reflect the vortex-phasing and 

internal vortex-structures formed. Moreover, internal vortex-structure development and 

spatial location is closely related to build-up observed in N1Shear (due to the close proximity of 

the vortex to the wall [13]). Extrema (and colouring) provide a pointer to the localised 

influence and N1-structures in the recess-corner flow. 

 Vortex-intensity across hardening-cases Vortex-intensity sal-plots are presented in 

Fig.6. Across the various hardening-options, Ext-hardening segregates the rotational-strength 

of the upstream vortex into three distinct levels. The corresponding field representation of 

such kinematic-structures, both in streamline patterns and N1-fields, is provided in Fig.7 and 

Fig.8, respectively. Upstream of the contraction, plateauing sal-trends are retrieved in No-

Hardening (NH) and Moderate-Hardening (MH) cases, whilst Strong-Hardening (SH) sal-

rises sharply (Fig.6a). NH and MH plateaux differ by an order-of-magnitude in intensity, 

from NH sal~0.012 units, to MH sal~0.14 units. Moreover, greater hardening retards the 

approach in take up of a plateau. For instance, NH plateaus at Q~2, whilst MH softens its 
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slope at Q~3, and SH invariably rises. Within such levelling and evolution with Q-rise, NH-

solutions report some degree of asymmetry for Q≥0.5, followed by vortex-retreat into the 

salient-corner (see streamline patterns in Fig.7 and counterpart 2D N1-field in Fig. 8), and 

ultimately at high-Q, to symmetric and significantly reduced vortices at Q~25. In contrast, 

under MH-solutions, marked asymmetry emerges in the range 0.5≤Q≤1 (elongated upstream-

vortices and downstream–vortex shrinkage in Fig.7, with intensification in normal-stress 

response – indicated in colour transition to yellow-levelsin Fig.8). Then at Q~5, a plateau is 

recorded in vortex-size (Fig.7-8; also observed in sal, see Fig.6a-top-right), followed by 

retreat into the salient-corner, producing asymmetric vortex-patterns by Q~25. The SH-

solution-set with sustained sal-rise, attains a striking maximum sal~2.3 units at Q=10 (see 

inset Fig.6a). The SH-flow-structure displays exaggerated asymmetry, with extreme 

upstream-vortex growth and N1-enhancement towards the re-entrant corner (of elastic-corner 

vortex-type), where the rotation-centre is shifted (Fig.7-8). Note that for Q=10 SH-solution 

(last tractable), N1-enhancement is witnessed by a yellow/intense-positive vortex-like 

structure, that is detached from the contraction back-face by a blue/intense-negative peak. 

One notes, this N1-overshoot-undershoot feature has already been reported for Boger fluids, 

in the elastic-corner vortex-evolution phase [13]. One may note that across the various 

hardening instances considered, SH develops a strong red/intense-zone in the contraction-

gap, which is weakened under MH, and absent altogether under NH-setting (in agreement 

with N1-extrema in Fig.8). 

 Across hardening-variants, the upstream-vortex evolution with Q-rise may be clearly 

linked with fluid-response in ideal deformation. Hence, for the NH-fluid, the trend of 

continual vortex-retreat may be correlated with NH strain-softening properties, whilst also 

being devoid of any manifestations of hardening (see Fig.1a); additionally, reduced 

symmetrical vortices at high-Q are related to the relatively low N1Shear-levels (Fig.1c). For the 

MH-fluid and with strain-rate rise, the initial vortex-growth and delayed retreat correlate well 

with the moderate strain-softening/hardening Ext-response (Fig.1a); whilst the asymmetric 

vortices at large flow-rates may be due to the increased MH N1Shear-levels (Fig.1c). Once 

more, one may recall our earlier findings, where internal vortex-activity matched with N1Shear, 

due to vortex proximity to the wall [13]. For these two NH and MH instances, the attainment 

of a second Newtonian-plateau regime is conspicuous (Fig.7-8). Notably, this position 

generates diminished upstream-vortices, which return to salient-corner forms, whilst adopting 

asymmetrical orientation about the obstruction and manifesting N1Shear-strength. Finally, the 

exaggerated SH asymmetry and elastic-corner vortex formation are in-line with the severe 

strain-hardening and N1Shear features of this SH fluid (Fig.1a and 1c). 

 The relatively reduced-activity in downstream-vortices is also worthy of note. In the 

largest illustration of departure (SH-case), the upstream vortex-activity is two to three orders-

of-magnitude more intense than that downstream of the constriction (Fig.6). In terms of flow-
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structure and with Q-rise, downstream-vortices balance the upstream activity, by simply 

shrinking into the salient-corner, whilst increasing in intensity. These observations lie in 

distinct contrast to the counterpart phenomena revealed experimentally for Boger fluids 

(high-solvent fractions, constant shear-viscosity and significant elasticity [13]). There, and 

for constant-viscosity highly-elastic fluids, upstream-vortex enhancement is attended at larger 

rates by similar downstream vortex-activity (with even downstream lip-vortex formation 

found in larger aspect-ratios ≥6; [13]). In addition, in Fig.6b and with respect to upstream 

observations, an inversion of downstreamsal-trend-ordering is recorded. Here, NH 

downstream-vortices rotate with the largest strength whilst SH-vortices recirculate with the 

weakest. Under Q<20, downstream NH-vortices rotate more quickly (sal_avg~0.0034 units), 

than those of MH (sal_avg~0.0024 units), and those of SH in the range at Q<=5 

(sal_avg~0.0014 units). Finally at relatively large flow-rates, all hardening-cases display a 

sudden sal-rise. 

4.1.2 Variation in polymer-concentration (1-) 

Vortex-intensity with polymer-concentration (1-)-variation A range of solvent-fractions of 

={1/9, 0.5, 0.7, 0.8, 0.9} is studied (upstream vortex-intensity Fig.9; streamlines-N1 Fig.10-

11; ideal response in Fig.2), under strong hardening SH-conditions, principally with focus 

upon vortex-phasing (lip-vortex formation).  

Under polymer-concentration (1-)-increase, vortex-intensity sal is reflected in Fig.9. 

In general and upstream of the contraction, solute-content (1-)-increase elevates the 

intensity of vortex rotational-speed and segregates response. With Q-rise, sal appears flatter 

in solvent-dominated fluids (=0.9), whilst it sharply rises for highly-polymeric fluids 

(=1/9).  This is accompanied by a change in vortex-cell shape and traversal of rotation-loci 

(see last column of Fig.10). As described under hardening-changes above, diminished 

downstream-activity appears to balance that in the upstream of the contraction, only adjusting 

with (1-). 

For solvent-dominated fluids (=0.9), vortex-intensitysal rises shallowly, levelling at 

sal~0.015 units at Q~10 (Fig.9). Streamline patterns display a retarded upstream-response 

(first column of Fig.10), with symmetrical salient-corner (sc) vortices in the range 0.1≤Q≤1, 

followed upon further Q-rise (2≤Q≤10) by delayed sc-vortex-elongation. 

With (1-)-increase, yet still within the diluted-regime (={0.8, 0.7}), sal is seen to 

somewhat enhance with Q-increase; in the largest-sal recorded (=0.7, Q=10), sal is some 

4.5-times larger than that observed in the solvent-dominated =0.9-case (Fig.9). 

Conspicuously, in terms of vortex-structure (second and third columns of Fig.10), after initial 

symmetrical streamline (0.1≤Q≤1; somewhat distorted with increase in polymer-
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concentration), intermediate phases of salient-corner (sc)/lip-vortex (lv) coexistence are 

recorded (1≤Q≤4). Notably, within the high-Q range of Q≥5, each ={0.8, 0.7} solution-set 

has an alternative and different response to Q-rise (Fig.10). Under =0.8, the coexistent sc-lv 

structures coalesce, and a single sc-vortex is recovered. In contrast, at slightly increased 

polymer-concentration (=0.7), the lv dominates and becomes an elastic-corner (ec) vortex. 

Finally under highly-polymeric fluids (≤0.5), a steep sal-rise is recorded with 

incrementation in flow-rate (Fig.9). The increase in rotational intensity is such that, at Q=10, 

=1/9-upstream rotational-intensity (sal~2.29 units) is some 230-times stronger than that 

under the solvent-dominated =0.9-fluid (sal~0.01 units) at the same flow-rate. With Q-rise, 

such strong (≤0.5)-sal behaviour is reflected in a direct transition from salient-corner (sc)- 

to elastic-corner (ec)-vortex formation (last two columns of Fig.10).  

The correspondence of flow-structure, through vortex-activity to normal-stress 

development, is illustrated in Fig.11. Here, the most active instance of =0.7 is selected for 

illustration purposes, where salient-corner/lip vortex coexistence is strongly evident. In the 

1≤Q≤4 range, N1-fields possess isolated zones in the corner/back-face region, which 

correspond to counterpart streamline vortices. For 1≤Q≤3, upstream salient-corner and lip-

vortex-like N1-patterns are clearly apparent, attended with the corresponding downstream 

salient-corner N1-structures. Upstream and for Q=4, an elongated N1-structure with two 

centres of rotation is retrieved; one less-intense, located at the salient-corner, and a second 

more-intense near the lip; this intense lip-vortex structure announces the onset of lip-vortex 

domination.  

4.1.3 BMP+_p vs De Souza predictions: flow structure 

The present theme continues to report on contrast in solution response when considering 

variation across constitutive models, namely through differences observed when appealing to 

De Souza representation against the foregoing BMP+_p form. Three separate instances of 

prominent rheological distinction are identified. The first comparison is taken under highly-

polymeric =1/9 and no hardening NH-response, when matching N1Shear-inflection-points. 

Then, the second comparison under moderate hardening MH-response, preserves the match 

in  =1/9 and N1Shear-inflection-point match. The third comparison under strong hardening 

SH-response, matches extensional viscosity Ext-peaks at intermediate solvent-fraction 

(=0.7; diluted-fluids). In terms of material-function response and under {=1/9, NH}, one 

observes the effects of N1Shear-rise with shear-rate increase (Fig.3a-b). With {=1/9, MH}, 

strain-hardening/softening influence is analysed (Fig.3c-d). Lastly {=0.7, SH} setting, 

exposes the effects of N1Shear-differences under stronger solvent presence (see Fig.3e-f). 

De Souza NH-MH-fluids N1shear-plateaux matching (highly-polymeric =1/9) In 
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Fig.12a and for complex contraction-expansion flow, vortex-intensity (-sal)-plots are 

presented, contrasting NH and MH-instances (corresponding to the match in N1Shear 

inflection-points; see Fig3a-d). Upstream and with Q-rise, NH-sal plateaus at sal~0.05 

units (Q~10), whilst MH-sal rises severely. These two distinct trends may be aligned with 

the NH and MH Ext-response, for which NH barely displays hardening at intermediate 

strain-rates (see Fig.3a); whilst MH displays unbounded response (Fig.3c). Streamline-

patterns reflect these contrasting positions under extension. Under NH, De Souza 

approximation exhibits stronger asymmetry than BMP+_p predictions (Fig.13a). Such 

solution response is synchronised with a stronger response in normal-stress (compare N1-

extrema across models at fixed-Q; Fig.3b). Notably, beyond Q>5 in Fig.13a, upstream-vortex 

retraction into the recess corner is gathered, in accord with the strain-softening nature of these 

NH-fluids (see Fig.3a). In the high-Q regime (Q=25), De Souza sharp-asymmetrical vortex-

structures contrast with BMP+_p symmetrical-response (Fig.13a). Such disparity is 

consistent with De Souza stronger elastic-response, with De Souza N1max being some four 

times larger than that of BMP+_p (Fig.3b). Once some strain-hardening has been 

introduced, De Souza MH responds through intensely large-N1 zones around the constriction-

region (see Fig.13b). Recall that De Souza has an unbounded extensional response, when 

matching N1shear-inflection-points with the MH-BMP+_p fluid (Fig.3c). Consistently, De 

Souza N1-extrema grow by an order-of-magnitude above and relative to that for BMP+_p. 

Through Q-rise, such contrasting extension-driven De Souza response, is accompanied by the 

early development of an elastic-corner vortex; as opposed to that under BMP+_p of vortex-

enhancement and subsequent vortex-retraction. Interestingly, now downstream, NH-sal rises 

continually (Fig.12b); whilst MH-sal firstly rises in the 0<Q≤2 range, locating a maximum 

of vortex-intensity of -sal~0.0012 units at Q=2; then beyond Q=2, a gradual sal decline is 

observed, to reach an ultimate plateau-level of sal~0.0006 units. 

Strong-hardening (SH) fluids, intermediate solvent-fractions (~0.7) – Fig.13c {=0.7, 

SH} Ext-peak match – comparison of lip-vortex formation and exposition of N1-effects. This 

preliminary examination of representative De Souza response now lies in stark contrast to 

that discussed above for BMP+_p solutions (in Fig.3e).  Under such solvent-fraction setting 

and hardening intensity, Q-increase BMP+_p solutions disclose an intermediate salient-

corner (sc)/lip-vortex (lv) coexistence phase, followed by elastic-corner vortex formation.  In 

contrast and even from early flow-rates of Q=0.1, De Souza solutions develop asymmetry 

and much stronger upstream elastic-corner (ec)-vortices. This departure is strikingly 

observed in vortex-intensity trends of Fig.12c. Here, De Souza sal-rises steeply from low 

flow-rates, in contrast to the relatively softer BMP+_p-trend. For instance, at Q=3 De Souza-

sal attains a level of ~0.08 units, which is some eight times larger than the intensity retrieved 

for BMP+_p-solution (sal~0.01 units). Then, such stronger De Souza response is also 

reflected in N1-field structure and development, for which elongated upstream vortex-like 
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structures emerge (Fig.13c). Comparatively at each Q-level studied, De Souza N1-extrema are 

significantly enhanced, as gathered through corresponding red/intense-regions across the 

contraction-gap, which are stronger and larger than those equivalent for BMP+_p. The final 

tractable De Souza steady-state solution to be extracted is that at Q=3. One may associate the 

considerably stronger De Souza response, noted in ideal shear (reduced shear-thinning) and 

extension (SH), with this earlier loss in solution tractability against that for BMP+_p. 

4.2 The Plastic Regime – low flow-rates (Q≤10) and extremely high polymer 

concentrations (≤1/9); moderate hardening MH-fluids; exposure to yield-stress influence 

- De Souza (00d-increase) against BMP+_p (-decrease)  

 

4.2.1 Yield-fronts 

De Souza solutions in the form of yield-fronts are illustrated in Fig.14a, upon selecting the 

highly-polymeric concentration (=1/9) to establish a common comparison-basis with 

BMP+_p predictions. The criterion to discern the yield-front (interface between yielded fluid 

and non-yielded solid-like material) is derived through the second invariants of polymeric-

stress, 21

2
 

p ptr  ; as such, stress levels greater than or equal to the 
p
-threshold 

correspond to yielded-fluid zones (see [29] for this and other valid measures to discern yield-

fronts). At fixed Q=1 and under yield-stress parameters 00d=0.02, an X-shaped yield-front 

region is identified. This asymmetrical pattern about the contraction-plane, is retrieved from 

imbalanced unyielded-zones in the recess-corners. Subsequent and rising yield-stress 

influence (0d≥0.05), renders shrinking double-claw/shamrock-shaped unyielded regions, 

which are confined to the contraction-gap neighbourhood. Conversely, with Q-rise, a 

sequence of fixed-0d=0.1 solutions, commence from a symmetrical eight-petal/branched and 

yielded-structure, which is confined to the constriction-zone. Then, at an intermediate Q-

range (0.5≤Q≤1), the eight-petal structure gives way to a four-petal/shamrock-shaped 

unyielded-zone. Finally, at relatively high-Q (Q≥5), the ever expanding yield-fronts of the 

contraction-flow zone, link-up with those from the upstream-wall and downstream-wall flow 

regions. At this juncture, elastic-effects become prominent (recall, rising N1Shear material-

function response; Fig.3d), with larger asymmetrical upstream yielded-zones appearing in the 

corner-recess regions.  

 Comparatively, across models and at low flow-rates, BMP+_p solutions (Fig.14b) 

reveal similar yield-front response to that of De Souza. In contrast however, at higher flow-

rates (Q>5) and extremely low solvent-fractions (≤0.005), ever expanding yielded-regions 

are recorded, that are slightly more prominent with BMP+_p than De Souza representation, 

showing marked asymmetrical unyielded-zones in the recess corners. One comments that, 

under BMP+_p and with rise in polymeric-concentration - at low flow-rates, plastic features 

are promoted (see Fig.14b Q≤5 solutions); whilst, at sufficiently large flow-rates, pronounced 
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shear-thinning is provoked, resulting in expanded fluid-response type regions (see Q=10 

fields). 

 One may gather observations at larger-Q, equivalent to intermediate deformation-rates, 

as the interface between the low-Q plastic-regime and the high-Q viscoelastic-regime. There, 

thixo-viscoelastic non-linearity is manifest, through increasing N1Shear-levels and 

asymmetrical yield-fronts. The relatively reduced De Souza asymmetry in yield-fronts at 

intermediate flow-rates, may be correlated with the relatively low N1Shear-levels apparent 

under the 0d-range chosen. This is illustrated via De Souza ideal-deformation solutions in 

Fig.4c with 0.1≤N1Shear≤20; in contrast to the BMP+_p solutions in Fig.4f with 

102≤N1Shear≤104. Moreover, at larger yield-stress levels and at intermediate shear-rates, De 

Souza-(0.5≤0d≤1) N1Shear-curves decline (Fig.4c), whilst BMP+_p sustains N1Shear-plateaux 

(Fig.4f). As a consequence, one can devise three ways to enhance De Souza nonlinear-

response parametrically: (i) Q-increase (driving predictions towards a liquefied viscoelastic-

response), (ii) yield-stress 0d-increase (enhancing nonlinear N1Shear-response) and (iii) 

increase in polymer-concentration (1-). Nevertheless, one should bear in mind the highly 

non-linear De Souza response, observed for example, in the dynamic yield-stress 0d-level 

increments demonstrated in Fig.4c. There, at relatively low-0d, in the range 0.02≤0d ≤0.1, 

the onset of a N1Shear-plateau is apparent, and achieved with 0d=1.0. This covers the shear-

rate range 0.5≤ 1  ≤3 units, which is prior to the second N1Shear-upturn at higher rates. 

Notably, for relatively high-0d in the range 0.5≤0d≤1, N1Shear-maxima are recorded at 

1  ~O(1); followed by N1Shear-drop that extends out to shear-rates 1  ~O(102); prior to 

recovering quadratic-slope in N1Shear. Hence, to amplify De Souza non-linear features in 

complex flow, one plausible option is to extend predictions to higher flow-rates-Q in the 

(0d=0.1)-case of Fig.4c. This case displays a rising monotonic N1Shear-curve, with yield-front 

patterns that already display some asymmetry about the contraction-plane, see Fig.14a 

(5≤Q≤10). One may note that analysis of thixotropic features through variation of thixotropic 

construction-destruction parameters on top of the viscoelastoplastic response of these models 

has been already explored in [6-7], in the context of viscoelastoplastic flow in rounded-corner 

=4 circular contraction-expansion geometries. There, in accord with the findings reported in 

the present work, asymmetry about the contraction-plane was recorded with variation of 

thixotropic parameters.2 

4.2.2 Pressure-drops 

In Fig.15 and under increasing yield-stress influence, total pressure-drop ptotal-trends are 

plotted against rising flow-rate for both proposed models. This provides contrasting response 

across models, in terms of respective levels of pressure-drop reached. Here, De Souza ptotal 

                                                           
2 Further studies on thixotropic response of viscoelastoplastic materials will appear subsequently in the current 

setting of =10 sharp-cornered circular contraction-expansion flow (transient solutions) and flow past sphere 

(match of experiements). 



20 

 

generates a relatively tight-window of response under increasing-0d. (Fig.15a, fixed-

=1/9)). This lies in stark contrast with the wide-window of response for BMP+_p 

solutions under decreasing-. For instance, at fixed Q=10, the extremities of the De Souza 

pressure-drop window lie within {0d, ptotal}={0.02, 358} units and {0d, ptotal}={1, 512} 

units. Comparatively, BMP+_p Q=10-solutions (Fig.15b) span-out from {, ptotal}={1/9, 

400} units to {, ptotal}={5x10-3, 5755} units. Moreover, extremely polymer-concentrated 

BMP+_p solutions (=1x10-3) can reach total pressure-drop levels as high as ptotal=20,923 

units at Q=5 (see Fig.15b-inset). With Q-elevation, both De Souza and BMP+_p solutions 

display an initial sharp-rise at relatively low flow-rates, followed by a continual slope-

decrease. Nevertheless, the most highly polymer-concentrated case, (=1x10-3)-BMP+_p, 

rises rapidly with Q-increase, and barely displays slope weakening (Fig.15b-inset). Recall, 

plastic-features (and hence total pressure-drop) are enhanced under De Souza 0d-increase, 

and likewise, BMP+_p performs analogously under polymer-concentration (1-)-increase. 

From Fig.4, one can gather the rheological justification for such contrasting behaviour in 

pressure drop. For BMP+_p, polymer-concentration increase elevates first Newtonian-

plateaux (with fixing on common second plateau), both in simple-shear and uniaxial 

extension. This is reflected in shear-stress Trz, through rising branching patterns observed at 

low deformation-rates, with increase in polymer concentration. In contrast, De Souza 0d-

increase only affects shear-stress at relatively larger deformation-rates (change noted to 

commence at 1  ~0.3 units). Under De Souza approximation, there is unification in shear-

stress at smaller shear-rates, reflected in a common first Newtonian plateau. 

5. Conclusions 

This study has facilitated comparative prediction for two new versions of thixotropic and 

viscoelastoplastic models, under circular sharp-cornered contraction-expansion flow with 

aspect-ratio =10. Two main flow-regimes have been examined in detail under a flow-rate 

Q-incrementation procedure: firstly, under viscoelastic-response, in the high-Weissenberg 

setting and relatively diluted fluids; and secondly, under plastic-response, where predictions 

are explored for extremely solute-concentrated fluids and relatively low flow-rates. The 

viscoelastic-response regime covers the range of (0.1≤Q≤25) solutions and with various 

polymer-concentrations (0.1≤(1-≤8/9). The plastic-response regime of extremely 

concentrated fluids covers the range of ((1-≥8/9) in the range (Q≤10). 

In terms of the thixotropic and viscoelastoplastic constitutive models employed, the 

proposed BMP+_p model possesses the complete set of features inherited from earlier 

variants; that is, bounded extensional-viscosity response and rising first normal-stress 

difference at high deformation rates. This rheology exposes an intimate and explicitly 

dynamic interaction between elasticity and fluid-structure. Such features are typically 

observed under experimental conditions in the rheology of wormlike micellar and polymeric 

solutions. The De Souza model considered is the particular variant proposed in [7], coupled 
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with the correction in the fluid-structure equation proposed by [11]. Such a time-dependent 

constitutive equation provides attractive normal-stress response in simple shear, with highly 

non-linear N1Shear-trends through shear-rate rise; particularly, this De Souza model variant 

displays a relatively narrow N1Shear-plateau at moderate shear-rates, from which a second-

upturn branch is gathered. Nevertheless, for greater polymer-concentration instances (=1/9), 

the De Souza model may exhibit unboundedness in its extensional viscosity (dependent upon 

yield-stress parameters,
0
  and 

0


d
). 

Under the viscoelastic regime and for highly-polymeric fluids (=1/9), striking 

correlation is observed between flow-structure derived (both in streamline and first normal-

stress patterns; 0.1≤Q≤25) and their respective intensities, with strength of hardening in 

extensional viscosity.  

a) Micellar-based BMP+_p: With flow-rate Q-increase, a rich flow-structure evolution 

is gathered. The strength of hardening drives the kinematical structures appearing 

and their intensity. Micellar fluids devoid of hardening (no hardening NH) evolve into 

symmetrical and relatively weak salient-corner flow-structures. When some 

extensional hardening is introduced by the variation of thixotropic parameters 

(moderate hardening MH-fluids), asymmetric and more intense vortices are 

generated. Moreover, at high deformation-rates and for NH and MH cases, there is 

evidence of attainment of a second Newtonian plateau, where vortex-activity retreats 

into the recess-corners. Finally, for strongly-hardening (SH) fluids and considering 

solute-concentration increase, predictions for various solvent-fractions (1/9≤≤0.9) 

reveal a complex evolution history, from salient-corner vortex activity for =0.9, to 

strong elastic-corner vortices for =1/9. Notably, intermediate ={0.7, 0.8} solutions 

display coexistence of both upstream lip- and salient-corner vortices; with greater 

polymer-concentration, lip-vortices tend to dominate and generate elastic-corner 

vortices. These are all features of challenge to experimental validation, providing 

benchmark predictive solutions to be reproduced by experimentalists and/or to be 

taken as a source of comparison by other theoretical/numerical workers. 

b) Oil-based De Souza: The relatively stronger extensional response of the De Souza 

model renders stronger kinematical activity, with larger and more active vortices that 

evolve directly from salient-corner vortices at low flow-rates to strong elastic-corner 

vortices. 

Under the plastic regime, in extremely concentrated conditions (≤1/9) and low-to-

moderate flow-rates (0.1≤Q(Wi)≤10), with Q-rise yield-fronts reveal growing yielded-zones 

about the contraction-zone. These yielded-zones connect those arising in the constriction-

region to those around the upstream and downstream-walls; gradually becoming 

asymmetrical of form with either Q-rise.  

c) Under micellar BMP+_p-response, plastic features are enhanced via increase in 
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polymer-concentration (1-). This has a combined effect with flow-rate rise: at low 

flow-rates, symmetrical and reduced yielded regions are recognised; whilst Q-increase 

exaggerates shear-thinning (drop in viscosity levels in high-shear zones) and drives 

solutions towards enhanced fluidisation (high fluidity in same high-shear zones). 

These trends are also reflected through corresponding total pressure-drops, which rise 

with yield-stress increase. As such, the yield-stress enhancing-parameter plays a key 

role in total pressure-drop response. Under BMP+_p, polymer-concentration (1-)-

increase (solvent-fraction -decrease) provides much stronger pressure-drop 

adjustment than observed under De Souza 0d-increase. Indeed, between these two 

models, two distinctly different total pressure-drop patterns can be observed.  

d) Under De Souza response at fixed solvent-fraction (=1/9), 0d-increase generates a 

relatively narrow pressure-drop prediction window. In contrast, for response under 

BMP+_p, pressure-drops span-out with polymer-concentration (1-)-increase.  

e) Overall, BMP+_p provides ultimate plateauing trends in pressure-drop at larger 

levels of solvent-fraction (≥10-2); then, these tend towards more monotonically 

rising forms as polymer concentration heightens still further (≤5x10-3). Such 

dramatic BMP+_p pressure-drop elevation with solute-content (yield-stress), 

correlates with the rise of first Newtonian-plateaux (both in shear and extension) at 

low deformation-rates. In addition, the impact of shear-thinning and strain-softening 

become steeper. As a consequence, their effects are stark, but only when departing 

from the low deformation-rate regime - via Q-rise and for the more extreme polymer 

concentrated fluids (≤5x10-3). 
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List of Acronyms and Abbreviations 

 

a    De Souza model kinetic parameter 

ABS-f    ABSolute f-functional correction  

b    De Souza model kinetic parameter 

BMP    Original Bautista-Manero-Puig model variant, see [1] 

BMP+_p Latest Bautista-Manero-Puig model variant; see present work 

& [38] 

D     Rate-of-deformation tensor 

ecv    Elastic-corner vortex 

epd    Excess pressure-drop 

f     Structural f-functional 

FENE    Finite Extensible Non-linear Elastic models 

 sG      Structure-dependent elastic modulus, De Souza model  

0G     Elastic modulus at vanishing shear-rates  

IKH    Isotropic-Kinematic Hardening model  

IVP    Initial-value-problem 

p

II     Second-invariant of the polymeric stress tensor 

DII     Second-invariant of the rate-of-deformation tensor 

K    Power-law consistency coefficient 

0k     Inverse of the structure-destruction stress 

KEP     Kinetic Elasto-Plastic model  

LAOS    Large Amplitude Oscillatory Shear 

L     Characteristic length  

lv     Lip-vortex  

m     De Souza model kinetic parameter 

MH    Moderate-Hardening fluid 

n     Power-law index 

N1    First normal-stress difference in complex flow 

N1Shear    First normal-stress difference in simple shear flow 

NH    No-Hardening fluid 

NM_T    New Micellar total-stress-based model, see [4] 

NM_p    New Micellar polymeric-stress-based model, see [4] 

p     Isotropic pressure 

PTT    Phan-Thien-Tanner models 

Q    Flow-rate 
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Re     Non-dimensional group Reynolds number 

sc    Salient-corner vortex 

SH fluid   Strong-Hardening fluid 

SGR model    Soft Glassy Rheology Model 

STZ model     Shear Transformation Zone model 

swanINNFM(q) Swansea-Institute of Non-Newtonian Fluid Mechanics model, 

see [13] 

T     Total stress tensor 

Trz    Shear-stress 

t    Time 

teq    Characteristic-time for structure-equilibrium, De Souza models 

u     Velocity  

U     Characteristic velocity  

VGR    Velocity-Gradient Recovery correction  

Wi     Non-dimensional group Weissenberg number 

 

Greek symbols 

    Contraction-expansion of aspect-ratio 

    Solvent-fraction 

ptotal Total pressure-drop

0d
  Shear-rate level for transition between 

0
  to 

0


d
, De Souza 

model

Ext    Uniaxial extensional viscosity 

p
     Polymeric viscosity 

0p
     Polymeric viscosity at zero shear-rates 

s
     Solvent viscosity 

ss
     Steady-state polymeric viscosity, De Souza model 

     Gradient operator 
m     De Souza structure-parameter 

ss
     Steady-state De Souza structure-parameter 

1    Relaxation time 

1   Non-dimensional shear-rate

s Characteristic time of structure construction, Bautista-Manero 

models 

  Non-dimensional structural construction parameter, Bautista-

Manero models 

DS Non-dimensional structural construction parameter, De Souza 

models 

     Fluid density

p     Polymeric stress tensor 
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0
     Dynamic yield-stress parameter, De Souza model 

0


d
    Static yield-stress parameters, De Souza model 

  Non-dimensional viscous-structural destruction parameter, 

Bautista-Manero models 

0
G  Non-dimensional elastic-structural destruction parameter, 

Bautista-Manero models 

sal Vortex intensity 

sal_avg Average vortex intensity 
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across models 
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Figure 14. Yield fronts against Q and yield-stress; a) De Souza (0d-increase; =1/9), b) 

BMP+_p (-increase); MH fluids 

 

Figure 15. Total pressure drop against Q; De Souza (0d-increase; =1/9) v BMP+_p (-

increase); MH fluids 
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a) 

b) 

c) 

Strain Hardening Comparison: =1/9, BMP+_p 

 

Figure 1. a) Shear and Ext, b) Trz and c) N1Shear; BMP+_p; =1/9; 

hardening comparison: NH {, G0}={4, 1}, MH {, G0}={4, 0.1125},  SH {, G0}={0.28, 0.1125} 
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a) 

b) 

c) 

Solvent Fraction Comparison: BMP+_p 

 

Figure 2. a) Shear and Ext, b) Trz and c) N1Shear; BMP+_p; SH fluids 

solvent-fraction comparison: ={0.9, 0.5, 1/9} 



33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) b) 

Highly-polymeric =1/9 - Matching N1Shear-inflection-point level 

 

e) f) 

Diluted =0.7 - Matching Ext-peak 

 Shear & Ext 

 

N1Shear 

 

Figure 3. Material functions: BMP+_p v De Souza 

 (a-b) NH fluids,=1/9, N1Shear-inflection-point matching across models; (c-d) MH fluids,=1/9; N1Shear-

inflection-point matching across models + hardening; (e-f) SH fluids,=0.7, Ext-peak matching across models 

 

c) d) 

Highly-polymeric =1/9 - Matching N1Shear-inflection-point level + Ext-hardening 
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De Souza 

b) 

a) 

c) 

BMP+_p 

d) 

e) 

f) 

Figure 4. Shear and Ext, Trz and N1Shear; De Souza (left) and BMP+_p (right);  

second Newtonian-plateau scaling; MH fluids 
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Figure 5. Results section outline; a) viscoelastic regime; b) plastic regime 
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a) 

b) 

Figure 6. Salient-corner vortex-intensity (-sal) against flow-rate Q; BMP+_p; a) upstream; b) downstream; 

hardening comparison: NH {, G0}={4, 1}, MH {, G0}={4, 0.1125},  SH {, G0}={0.28, 0.1125}, =1/9 
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Figure 7. Streamlines against flow-rate Q and hardening level {NH, MH, SH}; BMP+_p, =1/9 
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 Figure 8. First normal stress difference N1 against flow-rate Q and hardening level {NH, MH, SH};  

BMP+_p, =1/9  
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Figure 9. Upstream salient-corner vortex-intensity (-sal) against flow-rate Q; BMP+_p; 

solvent-fraction -variation ={0.9, 0.8, 0.7, 0.5, 1/9}, SH fluids 
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Figure 10. Streamlines against flow-rate Q and solvent-fraction -variation ={0.9, 0.8, 0.7, 0.5, 1/9}, SH fluids; 

BMP+_p 



41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Streamlines and N1 against Q and -variation ={0.7, 1/9}, SH fluids; BMP+_p 



42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Salient-corner vortex-intensity (-sal) against flow-rate Q;  

De Souza match of N1Shear-inflection-point(ip), =1/9-{NH, MH} fluids: a) upstream, b) downstream; 

c) BMP+_p v De SouzaExt-peak match, {=0.7, SH} fluids 

c) 

a) b) De Souza De Souza 
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Figure 13a. Streamlines and N1 against Q; De Souza v BMP+_p; =1/9, NH fluids 
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Figure 13b. Streamlines and N1 against Q; De Souza v BMP+_p; =1/9, MH fluids 
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Figure 13c. Streamlines and N1 against Q; De Souza v BMP+_p; =0.7, SH fluids 
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Figure 14a. Yield fronts against Q and yield-stress; De Souza (0d-increase; =1/9); MH fluids 
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Figure 14b. Yield fronts against Q and yield-stress; BMP+_p (-increase); MH fluids 
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Figure 15 Total pressure drop against Q; De Souza (0d-increase; =1/9) v BMP+_p (-increase); MH fluids 

 

b) 

a) 


