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Abstract 

Purpose: Uncertainties are widely encountered in engineering practice, arising from such diverse sources as 
heterogeneity of materials, variability in measurement, lack of data, and ambiguity in knowledge etc. 
Academia and industries have long been researching for Uncertainty Quantification (UQ) methods to 
quantitatively account for the effects of various input uncertainties on the system response. Despite the rich 
literature of relevant research, UQ is not an easy subject for novice researchers / practitioners, where many 
different methods and techniques coexist with inconsistent input/output requirements and analysis schemes. 

Design/methodology/approach: This confusing status significantly hampers the research progress and 
practical application of UQ methods in engineering. In the context of engineering analysis, the research efforts 
of UQ are most focused in two largely separate research fields: Structural Reliability Analysis (SRA) and 
Stochastic Finite Element Method (SFEM). This paper provides a state-of-the-art review of SRA and SFEM, 
covering both technology and application aspects. Moreover, unlike standard survey papers that focus 
primarily on description and explanation, a thorough and rigorous comparative study is performed to test all 
UQ methods reviewed in the paper on a common set of reprehensive examples. 

Findings: Critical opinions and concluding remarks are drawn from the rigorous comparative study, providing 
objective evidence-based information for further research as well as practical applications. 

Keywords: structural reliability, stochastic finite element method, uncertainty quantification, uncertainty 
propagation, random field, random variable, surrogate model. 

1 Introduction 

The analysis and design of complex structures or engineering systems rely heavily on predictions from 
numerical models (e.g. finite element analysis), while the accuracy of the numerical results depends on the 
proximity between the digital representation and the real-world system. The feasibility, applicability, and 
confidence level of numerical models are frequently challenged by the presence of various evitable 
uncertainties in engineering structures and systems. This has motivated the research of Uncertainty 
Quantification (UQ) in engineering analysis, which has historically been pursued in two largely separate 
research fields: Structural Reliability Analysis (SRA) and Stochastic Finite Element Method (SFEM).   

SRA and the associated risk assessment have long been established in the civil engineering community, 
where the earliest research work can be dated back to over half a century ago. Over the years, SRA has 
gradually grown from an academic research topic to a more applied field emphasising applications in such 
critical structures as dams, tunnels, nuclear stations, and offshore structures etc. It aims to provide a rational 
framework to address uncertainties in structural analysis such that design can be more objective and less 
dependent on ideal assumptions. Despite the continuous progress in SRA, the estimation of structural reliability 
remains a challenging problem for structural engineers. The SRA theory is formulated around a core concept, 
namely the probability of failure:  

௙ܲ ൌ ሾ݃ሺ࢞ሻܾ݋ݎܲ ൑ 0ሿ ൌ ׬ ݀࢞௚ሺ࢞ሻஸ଴	ሺ࢞ሻࢄ݂                                                    (1)  

where ݂ࢄሺ࢞ሻ is the joint Probability Density Function (PDF) of random vector ࢄ, and ݃ሺ࢞ሻ is the limit state 
function (also known as the performance function) with ݃ሺ࢞ሻ ൑ 0 denoting the failure domain and ݃ሺ࢞ሻ ൐ 0 
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the safe domain. The definition of  ௙ܲ is simple, but its exact evaluation through direct integration is often 
intractable for practical problems, where the dimension of the integral is usually high and the limit state surface 
has complicated shape and topology. Moreover, direct integration is completely unfeasible when the joint PDF 
 ሺ࢞ሻ is unknown. Difficulties in computing the failure probability ௙ܲ has led to the development of variousࢄ݂

SRA methods, such as first and second order reliability methods, Monte Carlo simulation, important sampling, 
to name a few.  

SFEM is another major UQ research field in engineering analysis. The development of the standard FEM 
started from the 1950s, and during the past few decades it has become the dominant engineering simulation 
tool for analysing materials, structures and subsystems in almost all engineering sectors, especially in 
automotive, aerospace, manufacturing and civil engineering industries. As a deterministic analysis tool, all 
input variables in the standard FEM must be uniquely specified and the output solutions are also uniquely 
resolved in the form of constant values. To account for the various uncertainties encountered in engineering 
practice, researchers have been trying to extend the standard FEM into SFEM by incorporating random 
variables into the mathematical and computational formulations. The simulation capacity of SFEM has been 
growing steadily over the past decade, as a result of continuous algorithm development and growth in 
computing power. In the wider context, SFEM aims to provide numerical solutions to stochastic partial 
differential equations, and it has been applied in very diverse engineering topics including solid materials, 
structures, fluid flow, acoustics, and heat transfer problems etc. 

The aim of this study is to present a comprehensive and critical review of all existing SRA and SFEM 
approaches, with a particular emphasis on the potential of practical applications. The advantages and 
drawbacks of individual methods are elaborated through a rigorous comparative study, which provides 
objective evidence-based information for the feasibility and performance of different methods with respect to 
specific applications. The rest of the paper is organized as follows: the methods for transformation and 
discretization of random variables and fields are introduced in Section 2; technical summaries of various SRA 
and SFEM approaches are presented in Section 3 and Section 4, respectively; based on a set of carefully 
designed representative examples, a rigorous comparative study is presented in Section 5, covering all SRA 
and SFEM approaches reviewed in the paper; Section 6 draws the concluding remarks from the unbiased 
comparative study.  

2 Transformation and discretization techniques for random variables and random fields 

Uncertainties in engineering analysis are often associated with material properties (e.g. mass density, 
elasticity, permeability and damping factors etc.), geometry and boundary conditions of the concerned 
structure, and they are commonly modelled as discrete random variables or continuous random fields. For both 
SRA and SFEM, it is often essential and beneficial to perform transformation between different types of 
random variables and establish discretization of random fields. A random field ݂ሺ࢞,  ሻ can be defined as aߠ
curve in the probability space ሺ,,ሻ, containing a collection of random variables indexed by a parameter 
࢞ ∈ , where  is a subset of Թௗ defined by the system geometry. For a given point ࢞଴, ݂ሺ࢞଴,  ሻ is a randomߠ
variable, while for a given event ߠ଴ , ݂ሺ࢞,  ଴ሻ is a realization of the random field [1, 2]. The random fieldߠ
݂ሺ࢞,  ሻ can be univariate or multivariate depending on whether the quantity ݂ሺ࢞ሻ attached to the point ࢞  is aߠ
random variable or a random vector. Also, ݂ሺ࢞,  ሻ can be one- or multi- dimensional depending on theߠ
dimensionality of  . Different mathematical and computational methods have been developed for the 
transformation and discretization task, and a brief summary is provided below.  

2.1 Radom variable transformation 

Random variables quantified directly from practical observations can be of various probabilistic 
distributions, whose representation and statistical computation can be very different. To ease the task in SRA 
and SFEM, it is often beneficial to transform the original random variables from the physical space to the 
standard normal space for mathematical and computational processing. A number of transformation techniques 
have been developed for the task, among which Rosenblatt transformation and Nataf transformation are two 
most widely used approaches [3, 4]. Let 	ࢄ  denote a random vector defined in the physical space, the 
transformation of ࢄ is defined as: 

ࢁ ൌ ܶሺࢄሻ                                                                           (2) 
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where ࢁ  is a standard Gaussian random vector with zero mean and unit covariance matrix. If the joint 
Cumulative Distribution Function (CDF) of ࢄ is known, Rosenblatt transformation can be applied [3]:  

ଵܶ ൌ Φିଵൣܨ௑భሺݔଵሻ൧

ଶܶ ൌ Φିଵൣܨ௑మሺݔଶ|ݔଵሻ൧
⋯

ெܶ ൌ Φିଵൣܨ௑ಾሺݔெ|ݔଵ, … , ெିଵሻ൧ݔ

                                                        (3) 

whereܨ௑೔ሺݔ௜|ݔଵ, … ,  ,௜ିଵሻis the conditional distribution function and Φ is the standard normal CDF. Howeverݔ
in practical problems, the probabilistic information of random variables is usually limited to the marginal 
distribution and the correlation coefficients. For these cases, Rosenblatt transformation is unfeasible and Nataf 
transformation is suggested by Der Kiureghian and Liu [4]. Specifically, the random vector ࢆ is obtained by 
using the marginal PDF of ௜ܺ: 

ܼ௜ ൌ Φିଵൣܨ௑೔ሺݔ௜ሻ൧,						݅ ൌ 1,…  (4)                                                        ܯ,

where ࢆ  is a Gaussian random vector with the correlation matrix ࡾ଴, and ܨ௑೔ሺݔ௜ሻ is the marginal distribution 
function. The joint PDF of ࢄ  is determined by using the inverse transformation of Eqn. (4) as: 

ሺ࢞ሻࢄ݂ ൌ ௑݂భሺݔଵሻ… ௑݂೙ሺݔ௡ሻ
ఝ೙ሺࡾ,ࢠబሻ

ఝሺ௭భሻ…ఝሺ௭೙ሻ
                                                   (5) 

The unknown correlation matrix ࡾ଴ can be obtained by solving the following implicit equation: 

௜௝ߩ ൌ ∬ ሺ
௫೔ିఓ೔
ఙ೔

ሻሺ
௫ೕିఓೕ
ఙೕ

ሻ߮ଶሺݖ௜, ,௝ݖ ଴,௜௝ሻߩ
ାஶ
ିஶ  ௝                                             (6)ݖ௜݀ݖ݀

for which semi-empirical formulations have been adopted to simplify the calculation [4]. After defining the 
correlation matrix ࡾ଴ of the vector ࢆ, the transformation to the standard space can be expressed as:  

Tሺ܆ሻ ൌ ଴ۺ
ିଵ. ܈ ൌ ଴ۺ

ିଵ. ሼΦିଵൣFଡ଼భሺݔଵሻ൧, … ,Φ
ିଵൣFଡ଼౤ሺݔ୬ሻ൧ሽ

୘                                    (7) 

where the transformation matrix ࡸ଴ is determined by the Cholesky decomposition of ࡾ଴, i.e. ࡾ଴ ൌ .଴ࡸ ଴ࡸ
். 

2.2 Radom field discretization 

Introduced by Ghanem [5-7], the Karhunen-Loève (K-L) expansion is arguably the most widely used tool 
for random field discretization, especially for uncertainties associated with input parameters. The K-L 
expansion represents the random field as a linear combination of orthogonal basis terms, which are determined 
by solving the Fredholm integral equation:  

׬ ܴሺ࢞, ࢞ᇱሻ	߮௜ሺஐ ࢞ᇱሻ	݀Ω࢞ᇲ ൌ 	 ݅		∀															߮௜ሺ࢞ሻ	௜ߣ ൌ 1,….                             (8) 

where the kernel autocovariance function ܴሺ࢞, ࢞ᇱሻ is bounded, symmetric and positive definite. Thus all 
eigenvalues ߣ௜  are real and positive, and the deterministic functions  ߮௜ሺ࢞ሻ form a complete orthogonal basis 
of Hilbert spaces		ࣦଶሺΩሻ. The K-L expansion of the random field ݂ሺ࢞,  :ሻ isߠ

݂ሺ࢞, ሻߠ ൌ ሺ࢞ሻߤ	 ൅ ∑ ඥߣ௜	ߦ௜ሺ
ஶ
௜ୀଵ  ߶௜ሺ࢞ሻ                                                        (9)	ሻߠ

where 	ሼߦ௜ሺߠሻ, ݅ ൌ 1,… ሽ are a set of uncorrelated random variables, and they become independent Gaussian 
random variables if ݂ሺ࢞,  ሻ is a Gaussian field. In practice, only a finite number of terms in the K-L expansionߠ
are used, where the truncation is performed after sorting the eigenvalues ߣ௜ in a descending order.  

Analytical solutions to the K-L expansion are available for simple geometries and special forms of the 
autocovariance function. However, for more general cases, numerical solutions to Eqn. (8) are required to 
obtain the corresponding K-L expansion. These numerical solutions usually have a high computational cost, 
while the obtained approximations are rarely optimal. The effectiveness of the K-L expansion is affected by 
the accuracy of the eigenpair ߣ௜ and ߮௜ሺݔሻ [8], for which several effective solution methods to the Fredholm 
integral equation (8) have been reported in the literature [9, 10]. 

To overcome the computational difficulties in the K-L expansion of random fields, Li et al. [11-14] 
proposed the Fourier-Karhunen-Loève (F-K-L) expansion, which is based on the spectral representation theory 
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of wide-sense stationary stochastic fields and the standard dimensionality reduction technology of principal 
component analysis. The F-K-L expansion is independent from the detailed shape of the random structure, and 
is a completely meshfree scheme therefore avoiding the mesh convergence and mesh sensitivity problems 
often encountered in the mesh-based discretization schemes. In all our experiments where the discretization of 
a continuous random field is required, the F-K-L expansion has exhibited a much higher accuracy and 
efficiency over mesh-based discretization schemes. The superior accuracy and efficiency of the F-K-L 
expansion is due to the harmonic essence of wide-sense stationary stochastic fields.  

3 Structural reliability analysis  

As outlined in Section 1, the SRA theory is centered on the concept of failure probability	 ௙ܲ, which is 
essentially a multi-dimensional integral over the failure domain determined by the limit state function. The 
computational cost to calculate the probability of failure can be prohibitive, especially for evaluating small  ௙ܲ  
values, which is almost always the case in the practical world. Various approximation methods have been 
developed to evaluate the failure probability, forming a rich literature of SRA. These SRA methods can be 
broadly classified into three categories: Taylor-series based approaches such as the First Order Reliability 
Analysis Method (FORM) and the Second Order Reliability Analysis Method (SORM), simulation based 
methods such as Monte Carlo simulation and its variants, and surrogate methods such as the Response Surface 
Method (RSM) and the Kriging meta-model. A brief summary of various SRA approaches are presented in the 
following subsections.  

3.1 FORM and SORM 

As one of the oldest SRA method, FORM applies the first-order Taylor expansion to linearize the limit 
state surface in the standard normal space at the so-call Most Probable Point (MPP) ࢁ∗, which has the highest 
likelihood among all points in the failure region [3, 15, 16]:    

݃ሺࢄሻ ≡ ݃ሺࢁሻ ൌ ݃ሺࢁ∗ሻ ൅ સ݃ሺࢁ∗ሻ்ሺࢁ െ  ሻ                                          (10)∗ࢁ

where સ݃ሺࢁ∗ሻ is the gradient vector at ࢁ∗. The reliability index ߚ is defined as the shortest distance from the 
origin to the failure surface, and the failure probability is approximated by ௙ܲ ൌ Φሺെߚሻ. Following the 
definition of the reliability index, MPP can be obtained from a constrained optimization problem in the 
standard normal space as: 

∗ࢁ ൌ ሻࢁሼܳሺ݊݅݉݃ݎܽ ൌ
ଵ

ଶ
ଶቚ‖ࢁ‖ 	݃ሺࢁሻ ൑ 0ሽ                                            (11) 

A number of optimization algorithms are available to solve this problem, interested readers can refer to [16-
18] for more information. 

To further improve the accuracy of FORM, a second-order Taylor expansion at MPP can be adopted to 
approximate the limit state surface and this leads to the formulation of SORM [19-23]. Specifically, the limit 
state surface is approximated by a quadratic surface in the standard normal space:  

݃ሺࢁሻ ൌ ∗ࢁ்ࢻ െ ࢁ்ࢻ ൅
ଵ

ଶ
ሺࢁ െ ࢁሺ࡮ሻ்∗ࢁ െ  ሻ                                         (12)∗ࢁ

where ࢻ ൌ
સ௚ሺࢁ∗ሻ

|સ௚ሺࢁ∗ሻ|
࡮	, ൌ

સ૛௚ሺࢁ∗ሻ

|સ௚ሺࢁ∗ሻ|
, સ૛݃ሺࢁ∗ሻ is the Hessian evaluated at the MPP. Several formulas are available 

to obtain the failure probability in the context of SORM, among which an  asymptotic formula proposed by 
Breitung is widely used [19]: 

௙ܲ ൌ Φሺെߚிைோெሻ	∏ ሺ1 ൅ 	ிைோெߚ ௝݇ሻିଵ/ଶ
ேିଵ
௝ୀଵ                                         (13) 

where ௝݇ , ݆ ൌ 1,… , ܰ െ 1  are principal curvatures at the MPP. Attempts to improve the efficiency and 

accuracy of SORM are still continuing [24-28]. 

3.2 Simulation based methods 

If the limit state function is highly nonlinear, large errors may be introduced into the failure probability 
calculation when using FORM or SORM, as the limit state surface is approximated only with lower-order 
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Taylor expansions. To achieve better accuracy in these cases, an alternative approach is the simulation based 
SRA methods, which generate samples of the limit state function with FE simulation and directly estimate the 
failure probability through numerical integration.  

3.2.1 Monte Carlo simulation  

The Monte Carlo Simulation (MCS) method is arguably the most robust and versatile SRA approach, 
albeit at high computational cost [29]. The failure probability in MCS is defined as the ratio of the number of 
samples in the failure domain to the total number of samples: 

෠ܲ௙ ൌ
ே೑
ே
ൌ

ଵ

ே
∑ ሾ݃௜ሺ࢞ሻܫ ൑ 0ሿே
௜ୀଵ                                                        (14) 

where the sampling points ࢞ are generated according the PDF ݂ࢄሺ࢞ሻ, ௙ܰ 	is the number of sampling points such 
that ݃ሺ࢞ሻ ൑ 0, 	ܰ is the total number of sampling points, ݃௜ሺ࢞ሻ is the ݅௧௛ realization of the limit state surface; 
ሾ݃ሺ࢞ሻሿ is an indicator function taking values of unity if ݃ሺ࢞ሻܫ ൑ 0 and zero otherwise. 

With a convergence rate of ܱሺ
ଵ

√ே
ሻ, the computational cost of MCS can be prohibitively high for complex 

problems, especially when time consuming numerical codes such as finite element analysis are involved in 
sample generation. In order to address this problem, many variance reduction techniques such as Importance 
Sampling (IS), Directional Sampling (DS), Latin Hypercube Sampling (LHS), Line Sampling (LS) and Subset 
Simulation (SS), have been proposed to conduct failure probability estimation with a reduced computational 
cost. These methods are briefly recapped in the following subsections, while more details are referred to the 
original papers and summary textbooks where appropriate. 

3.2.2 Importance sampling  

The key idea of Importance Sampling (IS) is to distribute the sampling points in the region of the greatest 
importance such that the failure probability evaluation can be accelerated. Specifically, Eqn. (1) is reformulated 
as: 

௙ܲ ൌ ׬
௙ࢄሺ࢞ሻ

௛ࢄሺ࢞ሻ
ሺ࢞ሻ݀࢞௚ሺ࢞ሻஸ଴ࢄ݄	                                                               (15) 

where ݄ࢄሺ࢞ሻ is the IS density function. Hence, the probability of failure can be approximated as: 

௙ܲ ൌ
ଵ

ே
∑ ሺܫ ௝࢞ሻ

௙ࢄ൫࢞ೕ൯

௛ࢄሺ࢞ೕሻ
	ே

௝ୀଵ                                                                (16) 

where the sampling points ௝࢞	, ݆ ൌ 1,… ,ܰ  are generated according to the distribution ݄ࢄ instead of ݂ࢄ. The 
effectiveness of IS depends on the selection of an appropriate ݄ࢄሺ࢞ሻ such that the probabilistic sampling in 
Eqn. (16) can be prioritized for the region of the greatest importance, therefore achieving a better convergence 
rate. Although there is no general conclusion on the choice of ݄ࢄሺ࢞ሻ [30-32], it has been argued that the MPP 
and its neighbourhood can be a good option for the region of the greatest importance unless additional 
information on the limit state function and the failure probability are available. The MPP can be identified by 
FORM. However, unlike FORM or SORM, the IS estimation is not sensitive to the exact position of MPP, 
therefore it does not need to be determined up to a high accuracy. 

It is well known that the MPP and its neighbourhood do not always describe the most ‘important’ region 
of the failure domain, especially in high dimensional space. An alternative approach is to place the sampling 
points inside the failure domain in order to create the optimal importance sampling density function. In the 
earlier attempts, a rejection sampling scheme following the original PDF ݂ࢄሺ࢞ሻ was adopted [33], but this is 
extremely inefficient in cases where the failure probability is small. To improve the efficiency, a Markov chain 
metropolis algorithm was introduced, and points ࢞௜  with a distribution of ݄௢௣௧ can be obtained as intermediate 
states of an irreducible Markov chain [34, 35]. The initial point ࢞଴ can be selected either by rejection sampling 
or using engineering assessment. Subsequently, a kernel sampling density estimator is created using ௩ܰ points 
࢞௜ obtained by the Markov chain:  

݇ሺ࢞ሻ ൌ
ଵ

ேೡ
∑ ଵ

ሺ௪ࣅ೔ሻಾ
ேೡ
௜ୀଵ ሺܭ

࢞ି࢞೔
௪ࣅ೔

ሻ                                                          (17) 
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where ݓ is the window width, ࣅ௜ is the local bandwidth factor, ܯ is dimensional space  and ܭ  is the kernel 
PDF, often set as the multivariate normal. The density ݇ሺ࢞ሻ is employed as the importance sampling density 
to estimate ௙ܲ based on Eqn. (16). Several methods have been developed to adjust ݓ and ࣅ௜ so that the estimate 
obtained Eqn. (17) is optimal [35, 36]. There are many other further improvements following the IS approach, 
and some of these variants rely on the concept of adaptive sampling [37, 38], which has shown promising 
results in evaluating the failure probability.  

3.2.3 Directional sampling  
The Directional Sampling (DS) method was originally proposed to evaluate the multivariate distribution 
function, and has been adopted to calculate the probability of failure in the U-space for general structural 
reliability problems [39-42].  The DS method generates uniformly distributed direction vectors and along each 
direction a one-dimensional integration is performed. The reference [43] used a series of hyperspherical 
segments, whose radii follow a Chi-square ߯ଶ distribution, to investigate the actual limit state surface in the 

standard normal space. Practically, a sequence of ܰ random direction vectors ࢇሺ௝ሻ ൌ
࢛ሺೕሻ

ฮ࢛ሺೕሻฮ
, ݆ ൌ 1,… ,ܰ are 

generated first, then ݎ௝ ൌ ൛ݎห݃൫ࢇݎሺ௝ሻ൯ ൌ 0ൟ are found iteratively. Finally the sum of the failure probabilities 
associated with those segments gives the approximated probability of failure: 

௙ܲ ൌ
ଵ

ே
∑ ሾ1 െ ߯ெ

ଶ ሺݎ௝
ଶሻሿே

௝ୀଵ                                                             (18) 

where ߯ெ
ଶ   is the chi-square CDF with M d.o.f.. The DS method is relatively more efficient compared to other 

Monte Carlo simulation approaches, but its performance drops dramatically when the limit state surface is 
highly nonlinear. As the prior knowledge of the limit state is rarely available, search-based importance 
sampling has been proposed, which increases the cost of computation. Moreover, the randomly generated 
samples in DS may not be optimal, and several new approaches have been proposed to better identify 
integration directions (e.g. spherical t-design, spiral points, and Fekete points) [44]. Once determined, the DS 
directions can be readily reused for calculations of other probabilistic integrations. The efficiency of DS was 
significantly improved recently [45] by utilizing deterministic point sets to preserve the underlying joint 
probability distribution and by employing neural networks to focus the simulation effort in the significant 
regions. 

3.2.4 Subset simulation  

Subset Simulation (SS) [46, 47] expresses the failure probability as a product of a series of conditional 
probabilities for some chosen intermediate failure events, whose estimations are cheaper than evaluating 
directly the overall failure probability. The conditional probabilities are obtained from Markov Chains Monte 
Carlo (MCMC) simulation, based on a modified Metropolis-Hastings algorithm. The efficiency and accuracy 
of SS depend on the ability of the MCMC algorithm to accurately estimate the conditional probabilities with 
a minimum number of samples. The idea of SS has attracted wider attention: it was suggested in [48, 49] to 
split the trajectory in order to increase the acceptance rate of a candidate sample; a spherical SS for high 
dimensional problems was proposed in [50]; an optimal scaling technique was developed in [51] for the 
modified Metroplis-Hasting algorithm, with a theoretical analysis for the optimal value of the conditional 
failure probability. SS methods have been widely applied in various UQ problems, including structures 
subjected to uncertain earthquake ground motions [46-48, 50, 52, 53], aerospace engineering [54], geotechnical 
engineering [55] and nuclear engineering [56].  

The failure of a practical structure ܨ ൌ ሼ݃ሺ࢞ሻ ൑ 0ሽ is usually a rare event, corresponding to a small 
failure region in the random parameter space. Let  ܨଵ ⊃ ଶܨ ⊃ ⋯ ⊃ ௠ܨ ൌ  denote a decreasing sequence of ܨ
failure events, which are defined as ܨ௜ ൌ ሼ݃ሺ࢞ሻ ൑  ௜ values for the limit state surface andݕ ௜ሽ with decreasingݕ
௠ݕ ൌ 0. Following the definition of failure probability, it can be calculated as [46]: 

௙ܲ ൌ ܲሺܨሻ ൌ ܲሺܨ௠ሻ ൌ ܲሺܨ௠|ܨ௠ିଵሻܲሺܨ௠ିଵሻ ൌ ⋯ ൌ ܲሺܨଵሻ∏ ܲሺܨ௜|ܨ௜ିଵሻ
௠
௜ୀଶ                 (19) 

Although the original failure probability ௙ܲ may be small, by choosing the appropriate intermediate failure 
events ሼܨ௜	, ݅ ൌ 1,… ,݉ሽ it is possible to evaluate more efficiently the associated conditional probabilities in 
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Eqn. (19). To calculate the probability of failure from Eqn. (19), one needs to compute the 
probabilities	ܲሺܨଵሻ	and ሼܲሺܨ௜|ܨ௜ିଵሻ: ݅ ൌ 2,… ,݉ሽ. The first threshold ݕଵ is obtained by a crude MCS, such 
that ܲሺܨଵሻ ൌ  ଴ is target probability for each subset step. For further thresholds, new sampling݌ ଴, where݌
points corresponding to the conditional events ሺܨ௜|ܨ௜ିଵሻ  are obtained from MCMC using on a modified 
Metropolis-Hastings algorithm [46, 51], and the conditional probability ܲ൫ܨ௝หܨ௝ିଵ൯ can be estimated as:   

௝ܲ ൌ ܲ൫ܨ௝หܨ௝ିଵ൯ ൎ
ଵ

ே
∑ ிೕሺ݃ሺ࢞௜ሻሻܫ
ே
௜ୀଵ                                                   (20) 

Finally, the failure probability of the target event is calculated as as ௙ܲ ൌ ∏ ௝ܲ
௠
௝ୀଵ . 

3.2.5 Latin hypercube sampling  

The Latin Hypercube Sampling (LHS) method is a popular tool to improve the efficiency of crude Monte 
Carlo sampling. The LHS was originally proposed in [57] and has been further developed for different purposes 
by many researchers [58-62]. The LHS is very efficient for estimating mean values and standard deviations 
[62], but it is only slightly more efficient than the crude MCS for estimating small probabilities [63]. Recently, 
some studies demonstrated the robustness of the LHS and the accuracy of the estimated probability of failure 
for both regular and irregular configurations [64] . LHS aims to spread the sample points more evenly across 
the domain, therefore with the same sample size it is more stable and more accurate than the estimation 
produced by MC sampling [65]. The main idea is a stratification of the probability distribution by dividing the 
CDF curve into equal intervals and then choosing one sample randomly inside each stratification. Taking the 
two-dimensional sample space as an example, a square grid is a Latin square if and only if there is only one 
sample in each row and each column. LHS extends this concept to arbitrary dimensions, whereby each sample 
is the only one in each dimension-aligned hyperplane including it. Unlike MCS, where the generation of later 
samples are completely independent from the early samples, the LHS requires to remember the history of 
sample generation such that its later samples do not overlap in the hyperplane of the early samples. It is worth 
to mention that even though the marginal distribution of each variable is efficiently represented, there is a risk 
that some spurious correlation will appear [65]. The correlation between random variables can be introduced 
during the LHS process that rearranges the samples to form pairs with desired correlation level, which is known 
as rank correlation. LHS with rank correlation technique is effective to generate sampling matrix with 
correlation structure rather close to the target correlation matrix [66]. Reference [67] applies LHS with 
Cholesky decomposition to minimize the correlation between samples of random variables in probabilistic 
space. Several authors have improved LHS by determining optimal pairings that either enhance space-filling 
or reduce spurious correlation (increasing orthogonality) [64].  

It is worth to note that other types of space-filling random sampling strategies such as Sobol series and 
Halton sequences [68] can also be used for structural reliability analysis.  

3.3 Surrogate methods  

In the aforementioned SRA methods, FE structural analysis is performed in every iteration of 
FORM/SORM or is required for every sample solution using the simulation based approach, which can be 
extremely time-consuming for complex structures. To reduce the computational cost associated with the FE 
simulation, an alternative approach is to approximate the actual limit state function with a surrogate model 
(also called meta-model) that is of a simpler form, after which the probability of failure can be efficiently 
estimated from the surrogate without resolving the actual limit function using FE simulation.  

3.3.1 Response surface method  

The Response Surface Method (RSM) [69-71] fits and identifies an approximate response surface model 
from input and output data collected from experimental / numerical studies, such that the actual limit state 
function ݃ሺ࢞ሻ can be replaced with a simple function (often polynomial) ො݃ሺ࢞ሻ for fast evaluation of the failure 
probability. In practice, quadratic functions with or without cross terms are often used to approximate the 
response surface:       

݃ሺ࢞ሻ ൎ ො݃ሺ࢞ሻ ൌ ܽ଴ ൅ ∑ ܽ௜ݔ௜
ெ
௜ୀଵ ൅ ∑ ܽ௜௜ݔ௜ଶ

ெ
௜ୀଵ ൅ ∑ ∑ ܽ௜௝

ெ
௝ୀଵ,௝ஷ௜

ெ
௜ୀଵ .௜ݔ  ௝                  (21)ݔ
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where ࢇ ൌ ሼܽ଴, ܽ௜, ܽ௜௜, ܽ௜௝ሽ  are unknown coefficients and ܯ denotes the number of random variables. The 
unknown polynomial coefficients ሼࢇሽ  are determined by the least square regression technique using a 
sufficient number of experimental points. After constructing the response surface ො݃ሺ࢞ሻ, the reliability analysis 
can be performed on ො݃ሺ࢞ሻ instead of the actual limit state function ݃ሺ࢞ሻ.  

A number of design schemes are available to select the experimental points for construction of the 
approximate response surface, among which the central composite design is a well-known approach. However, 
this scheme requires ܰ ൌ 2௡ ൅ 2݊ ൅ 1 evaluations of the exact limit state function, where the computational 
cost will be tremendous for large-scale structures with a large number of random variables. To reduce the 
number of fitting points, an adaptive interpolation scheme was proposed in [72], where a new centre point ࢞ெ  
for interpolation is chosen on a straight line from the mean vector ࢞  to the design point ࢞∗  obtained from the 
first constructed response surface: 

࢞ெ ൌ ࢄࣆ ൅ ሺ࢞∗ െ ሻࢄࣆ
௚ሺࢄࣆሻ

௚ሺࢄࣆሻି௚ሺ࢞∗ሻ
                                                     (22) 

This adaptive interpolation scheme ensures that the new center point is closer to the exact limit surface	݃ሺ࢞ሻ ൌ
0. The RSM has been continuously improved over the years, and the improvements include the adaptive 
iteration procedure [73], the gradient projection method to select sampling points [74], the coupled RSM and 
moment method [75], the adoption of the moving least-squares method for better response surface fitting [76],  
the use of exponential response surface [77], the artificial neural network based RSM and the support vector 
machine based RSM [78-81], among others. 

3.3.2 Kriging  

Kriging (also known as Gaussian process modelling) is another popular meta-modelling technique that is 
widely reported in the structural reliability and SFEM literature. Kriging was originally developed for 
geostatistics in the 50s and 60s by Krige and then by Matheron [82], and the method gained attentions in the 
field of computer experiments in the 80s. Kriging interpolates exactly the experimental design points and 
provides estimations of the local variance of the predictions, which provides an indication of uncertainty 
associated with the Kriging model. In the 90s, Kriging had been intensively used in optimisation problems 
with active learning methods such as efficient global optimisation [83].  

The application of the Kriging method in the context of structural reliability is relatively recent, 
introduced in [84] where Kriging with polynomial regression was compared with finite element interpolation 
on progressive lattice-samplings with analytical functions. In [85], a Kriging model implemented using the 
MATLAB toolbox DACE [86] was combined with FORM to compute the structural failure probability, after 
which the result was further compared with RSM. The sampling strategy to build the Kriging meta-model was 
improved in [87] by using an active learning approach to iteratively add new samples to the experimental 
design, which reduces the number of calls to the time-demanding performance function. 

Technically, Kriging model is a stochastic interpolation algorithm representing the output of a computer 
model ۻሺ࢞ሻ as a random process, which is assumed to be a Gaussian random process indexed by 	࢞ ∈ ࢄܦ ⊂
Թெ. The first step of Kriging is to define this stochastic field with its parameters according to a design of 
experiments. Then, the Best Linear Unbiased Predictor (BLUP) is used to estimate the value in a given point. 
A Kriging model consists of two parts [88] , as shown in the equation below:  

௄ሺ࢞ሻۻ ൌ ሺ࢞ሻࢌ்ࢼ ൅  ሺ࢞ሻ                                                           (23)ࢆ

The first term in the above equation is the linear regression part and the second term is the nonparametric part. 
The linear regression part is similar to the polynomial model in a RSM, and it consists of the basis functions 
ሺ࢞ሻࢌ ൌ ሼ ଵ݂ሺ࢞ሻ, ଶ݂ሺ࢞ሻ, … , ௉݂ሺ࢞ሻሽ் and the regression coefficients ࢼ ൌ ሼߚଵ, ,ଶߚ , … , ௉ሽ்ߚ , which needs to be 
determined. The second part in Eqn. (23) is used to model the deviation from the first term and it consists of 
the random process ࢆሺ࢞ሻ , which is assumed to be a Gaussian stationary process with zero mean. The 
covariance of ࢆሺ࢞ሻ can be defined as: 

,௜ሻݔሺܼൣݒ݋ܥ ܼ൫ݔ௝൯൧ ൌ ,௜ݔଶܴ൫ߪ ;௝ݔ ,݅					,൯ࣂ ݆ ൌ 1,… ,ܰ                               (24) 
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where ܰ is the number of experimental points, ߪଶ the progress variance and ܴ൫ݔ௜, ;௝ݔ  ൯ the spatial correlationࣂ
function, which controls on the smoothness of the model, the influence of other nearby points, and 
differentiability of the response surface. The correlation function ܴ ൌ ܴ൫ݔ௜, ;௝ݔ  ൯ describes the correlationࣂ
between two samples of the input space, e.g. ݔ௜ and ݔ௝, and depends on the hyper-parameter ࣂ. In the context 
of meta-modelling, it is of interest to provide a prediction Kriging model for a new point ࢞ . Let ढ ൌ
ሼ࢞ଵ,… , ࢞ேሽ  denote the set of known points of the computer model whose response is ण ൌ ሼݕଵ ൌ
…,ሺ࢞ଵሻۻ , ேݕ ൌ ௒෠ߪ ௒෠ሺ࢞ሻ and varianceߤ ሺ࢞ேሻሽ். For a new point ࢞, the expected valueۻ

ଶሺ࢞ሻ of the Kriging 

model prediction )(ˆ xY  can be calculated as [89]:  

௒෠ሺ࢞ሻߤ ൌ ሺ࢞ሻࢌ்ࢼ ൅ ࢘ሺ࢞ሻିࡾࢀ૚ሺण െ  ሻ                                                  (25)ࢼࡲ

௒෠ߪ
ଶሺ࢞ሻ ൌ ଶߪ െ ሾࢌሺ࢞ሻ்						࢘ሺ࢞ሻ்ሿ ቂ૙ ்ࡲ

ࡲ ࡾ
ቃ
ିଵ
൤
ሺ࢞ሻࢌ
࢘ሺ࢞ሻ

൨                                       (26) 

where ࢼ ൌ ሺିࡾ்ࡲଵࡲሻିଵିࡾ்ࡲଵण,  ࡲ is the information matrix of generation terms, ࢘ሺ࢞ሻ is the correlation 
vector between an unknown point ࢞ and all known experimental points ढ, and ࡾ is the correlation matrix 
defined by ܴ௜௝ ൌ ܴ൫ݔ௜, ;௝ݔ ,൯ࣂ ݅, ݆ ൌ 1,… ,ܰ.  

To construct a Kriging meta-model, the functional basis of Kriging trend ࢌሺ࢞ሻ needs to be selected 
properly. Then, an appropriate correlation function ܴ൫ݔ௜, ;௝ݔ  ൯ is needed to estimate the unknown parametersࣂ
 the rest of the unknown Kriging ,ࣂ by solving the optimization problem. Using the optimal value of  ࣂ
parameters ሺߪଶ,  ሻ can be calculated. Finally, predictions for new points can be made in terms of the meanࢼ
and variance of 	 ෠ܻሺ࢞ሻ, according to Eqns. (25) and (26). Before providing the Kriging meta-model in Eqn. 
(23), the unknown hyper-parameters need to be estimated by solving an optimization problem. The Maximum 
Likelihood Estimation (MLE) and the Cross-Validation (CV) methods are among the most popular approaches 
to estimate the best parameters of the spatial correlation functions [90].   

The Kriging meta-models predict the value of the limit state surface most accurately in the vicinity of the 
experimental design samples ढ, but these samples are generally not optimal to estimate failure probability. 
Thus, an Adaptive Kriging Monte Carlo Simulation (AK-MCS) was introduced in [88, 91] to improve the 
accuracy of the surrogate model in the neighbourhood of the limit state function. Using an actively learning 
method, AK-MCS adaptively establishes the Kriging meta-model, which is then combined with MCS to 
evaluate the probability of failure. By using the Kriging meta-model to approximate the limit state function, 
AK-MCS save the costly evaluation of the actual limit state function. There have been different learning 
functions reported in the literature to use with Kriging [87, 88, 92, 93]. 

3.3.3 The moment method 

The moment method [75, 94, 95] computes the statistical moments of the limit state function and fits 
these moments with an empirical distribution system such as the Johnson system, the Pearson system, and 
Gram-Charier series etc. The fitted distribution is then used to calculate the probability of failure. Unlike RSM 
and Kriging methods, which build surrogate models for the limit state function, the moment method builds the 
surrogate models for the probability distribution of the limit state function. Different methods have been 
proposed to evaluate the statistical moments required, including the generalised method of moments [96], the 
high-dimensional model representation [97] and the dimension reduction method [98]. A nonlinear system of 
equations for point estimate of probability was combined with the Johnson distribution system and Gram–
Charlier series in [99]. Five-moment method formulas were investigated in [100], where a point estimate using 
Rosenblatt transformation and quadrature points for each random variable were adopted. A design of 
experiment technique was proposed in [101], to use three level experiments for each random variable to 
calculate the first two moments of the limit state function. This approach was further improved in [102] where 
levels and weighs were set equivalent to the nodes and weights in the Guass-Herminte quadrature formula. 
The approach was further extended by [95]  from normally distributed random variables to non-normal cases, 
by deriving an explicit formulation of three levels and weights for general distributions. The fourth-moment 
method was suggested in [103].  
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The cost of the moment method can be high, as it increases exponentially with the increase of random 
variables. Among others, one way to reduce the associated computational cost is the univariate dimension 
reduction method [98, 104], which decomposes the multi-dimensional performance function into multiple 
univariate functions, therefore accelerating the calculation of the ܰ-dimension statistical moment integration. 
Specifically, the performance function ݃ሺ࢞ሻ is approximated by a sum of univariate functions, depending on 
only one random variable with the other variables fixed to the reference point. 

4 Stochastic finite element methods  

Unlike the deterministic FEM, which has a standard Galerkin formulation, the SFEMs do not have a 
unique and generally agreed framework. Instead, there are various SFEM approaches, such as the perturbation 
method, the polynomial chaos expansion method, the stochastic collocation method, joint diagonalization 
method etc. [105]. These different SFEM approaches all have their own advantages and drawbacks, and they 
have been formulated following various assumptions and have different mathematical setups. At the highest 
level, SFEM schemes can be roughly classified into two groups: intrusive methods and non-intrusive methods. 
The intrusive methods rely on dedicated formulations of a stochastic version of the original model. As such, 
their solution schemes have to be derived from scratch for each new class of problems. The non-intrusive 
methods, however, do not require modification to the deterministic FEM codes, which is a major advantage 
for analysing reliability problems involving complex FE analysis. These methods typically build surrogate 
models to approximate the system response based on sample solutions. It is worth to note that the SFEM is 
still in its early stage and further development is needed to advance the SFEM to a level where both reasonable 
mathematical accuracy and sufficient computational efficiency are achieved. All major SFEM approaches are 
briefly recapped in the following subsections, while their technical details are referred to the original papers 
or the summary papers where appropriate.  

4.1 The perturbation method 
The perturbation stochastic finite element method can estimate the mean and covariance  of the system 

response [106-108], with very wide applications in different engineering fields, including geotechnical 
problems [109, 110], nonlinear dynamic problems [111], to name a few. The main idea of the perturbation 
method is to expand all input random variables with respect to their respective mean values via Taylor 
expansion, which can then be used to derive the analytical expression for the variation of desired system 
response due to a small variation of those random variables. The unknown coefficients in the expansion are 
obtained by grouping like polynomials and cancelling the corresponding coefficients. The main limitation of 
the perturbation method is on its accuracy, which holds only for low-level input uncertainties [112, 113]. The 
standard perturbation scheme does not provide higher-order statistical estimates, and there is no easy way to 
extend the formulation to the higher-order situation without invoking significantly complicated 
implementation and greatly increased computational cost.  

4.2 The Neumann expansion method 

Proposed in [114, 115], the Neumann expansion method uses a truncated series expansion to approximate 
the solution of a discretized linear equation system, avoiding the cost of a direct matrix inversion. The method 
was further applied to non-linear static and dynamic problems [116], and also to cover geometric uncertainties 
[117]. The first step of the Neumann expansion method is to split the stochastic stiffness matrix and load vector 
into their corresponding mean and random deviatoric parts. Then expanding the stiffness matrix by Neumann 
expansion yields: 

࢛ ൌ ∑ ሺെࡽሻ௥ఈ
௥ୀ଴ ࢛଴ ൅ ∑ ሺെࡽሻ௥ࡷ଴

ିଵఈ
௥ୀ଴  (27)                                               ࡲ∆

The above Neumann expansion converges if all eigenvalues of ࡽ ൌ ଴ࡷ
ିଵ∆ࡷ  are always less than unity [118]. 

The computational cost of the Neumann expansion method increases with the number of terms required in 
Eqn. (27). Therefore, for problems with large random fluctuations, the Neumann expansion series may lose its 
advantage, and it could become even more expensive than the direct Monte Carlo method [118]. To overcome 
this computational difficulty and enhance the computational efficiency of matrix inversions, improvements 
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have been made by combining the Neumann expansion method and the preconditioned conjugate gradient 
method [119]. Another way to improve the efficiency and the accuracy is by introducing the convergence 
parameter ߣ, which can be determined as a solution to a distance minimization problem for an approximation 
of the inverse of the system matrix [120]. 

4.3 Joint diagonalization strategy 

As a general strategy to solve stochastic linear systems, the Joint Diagonalization (JD) method [105, 121, 
122] is applicable to any real symmetric matrices. The main idea of JD is to simultaneously diagonalize all 
matrices in the system to obtain an average eigen-structure using a sequence of orthogonal similarity 
transformation, which gradually decreases the off-diagonal elements of the matrices. The stochastic linear 
algebraic system is then decoupled by joint diagonalization, and its approximate solution is explicitly obtained 
by inverting the resulting diagonal stochastic matrix and performing the corresponding similarity 
transformation. For joint diagonalization, the classical Jacobi method is modified to solve the resulting average 
eigenvalue problem. The strategy is simply an approximation except if all the matrices have exactly the same 
eigen-structure. In this approach, the linear static equation FKu   is first reorganized as follows: 

ሺࡷ଴ ൅ ଵࡷଵߦ ൅ ଶࡷଶߦ ൅ ⋯൅൅ߦ௠ࡷ௠ሻ࢛ ൌ  (28)                                        ࡲ

where ࡷ௝, ∀ are real symmetric deterministic matrices and ߦ௝, ∀ are random variables. Assuming that there 
existing an invertible ࡽ to simultaneously diagonalize all matrices  ࡷ௝, ∀  such that: 

ࡽ௝ࡷଵିࡽ ൌ ઩௝ ൌ ݀݅ܽ݃൫ߣ௝ଵ, ,௝ଶߣ … , ሺ݆			௝௡൯,ߣ ൌ 1,… ,݉ሻ                               (29) 

where ߣ௝௜	, ሺ݅ ൌ 1,… , ݊ሻ are eigenvalues of the ݊ ൈ ݊ real symmetric matrix ࡷ௝, ∀. The product of the Givens 
rotation matrices forms the transform matrix 

ࡽ ൌ ଵࡳ
ଶࡳ்

் ௞ࡳ…
்,                                                                      (30) 

where ࡳ௝ ൌ ,݌௝ሺࡳ ,ݍ  .ሻ is the Givens rotation matrices and ݇ is the total number of Givens transformationsߠ
After determine the transformation matrix and eigenvalues the random equation system can be readily 
calculated. 

ܝ ൎ ሺ઩଴ۿ ൅ ଵ઩ଵߦ ൅ ⋯൅  (31)                                             ࡲଵିࡽ௠઩௠ሻିଵߦ

The major computational cost of the proposed approach is the Jacobi-like joint diagonalization procedure 
which is proportional to the total number of matrices ݉ . This implies that the algorithm can be easily 
parallelized and the total computational cost is proportional to the total number of random variables in the 
system. 

4.4 Polynomial chaos expansion  

Introduced by Ghanem and Spanos [5], the Polynomial Chaos Expansion (PCE) approach uses Hermit 
polynomials of Gaussian random variables (known as polynomial chaos expansion or Wiener chaos expansion) 
to represent the solution of the stochastic equations. By using a Galerkin scheme to project the random solution 
onto the Hermit polynomials, the solution can be resolved in the form of PCE coefficients by solving a 
deterministic equation system. The classical PCE based on Hermit polynomials have been extended to the so-
called generalised polynomial chaos expansion (gPC), by using different orthogonal polynomial basis 
functions corresponding to the probability distributions of other non-normal variables [123-125]. The PCE 
approach provides a very flexible framework to investigate numerical solutions for stochastic partial 
differential equations, and practically it has marked the foundation of SFEM as an independent and fast 
growing research field in computational mechanics and computational engineering. The PCE scheme has been 
researched in a very wide context of engineering problems, ranging from structural dynamics and random 
vibrations to computational fluid dynamics and thermodynamics problems [126-128]. The basic theory of PCE 
is outlined below, while the various PCE-based SFEM approaches are summarized in the following 
subsections. For simplicity, all SFEM techniques that directly or indirectly related to PCE are grouped together 
in this section. It is noted that for different emphasis, the methods reviewed here may well be considered as 
independent techniques in other literatures.   
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In the PCE approach, any second-order random variable or stochastic process, i.e. the quantities with 
finite variance, may be expanded as follows: 

ࢅ ൌ ∑ ሻఈ∈Գಾࣈఈ߰ఈሺݕ	                                                                 (32) 

where ߰ఈሺࣈሻ are a set of basis functions, ݕఈ refer to the deterministic coefficients to be solved, ࣈ  represent 
standard normal random variables vector, ࢻ ൌ ሼߙଵ, … ,  is the number of input ܯ ெሽ  is the multi-index, andߙ
random variables. These basis functions form the approximation space and can be represented by some 
orthogonal polynomials. For ܯ െ dimensional of PCE up to order ݌, the total number of terms ܲ  required in 
the expansion is:  

ܲ ൌ ቀெା௣௣ ቁ ൌ
ሺெା௣ሻ!

ெ!௣!
                                                                (33) 

The number of polynomials ܲ in the expansion grows very fast for small increases in ݌, or in the number of 
the random variables [129] ܯ. 

The PCE method can be classified into intrusive and non-intrusive approaches. The Galerkin method is 
the best example for intrusive approach [130-132]. The non-intrusive approaches include the probabilistic 
collocation method [133] and the sparse quadrature [134], which depend on repeated running of the 
computational model for selected realisations of random variables ࢄ. 

4.4.1 The Galerkin solution schemes 

In this approach, the PCE coefficients are determined by solving a system of linear equations derived by 
making the residual to be orthogonal to the approximation space. Considering the linear static elastic analysis 
equation ࢛ࡷ ൌ  with ݊ degree of freedom, the Galerkin based PCE formulation leads to a linear system of ࡲ
size ሺ݊. ܲ ൈ ݊. ܲሻ, which reflects the high computational cost associated with the standard PCE approach. A 
number of improvements have been reported to increase the computational efficiency while keeping the 
memory usage to a minimum [135-137]. As the block diagonal of the system are fully determined by a single 
component matrix ࡷ଴, whereas ࡷ௜ represent the random fluctuations and have the same sparsity structure, the 
block Gauss-Jacobi preconditioning was proposed for cost reduction [138].  An iterative solution was 
suggested in [139]  to avoid the assembly of the ሺ݊. ܲ ൈ ݊. ܲሻ  matrix system and solve the systems 
ൣ࢑௝௞൧ሼ࢛௞ሽ ൌ ሼࡲ௝ሽ which requires only the storage of the deterministic size ࡷ௜ matrices and the corresponding  
 coefficients. The preconditioned conjugate gradient solvers have also been adapted to the solution 〈௜߰௝߰௞ߦ〉
of linear SFEM system [140, 141].  

The accuracy of the Galerkin based PCE was checked in terms of representing the probability density 
function of the strain values for the composite panel structure [142]. It was found that low-order (such as 1-2) 
PCE provided reasonable accuracy, but higher-order expansion was required to achieve good accuracy in the 
tails of the distribution, which are essential in reliability analysis. Furthermore, it is noted that the results 
become unstable and highly inaccurate, where the stiffness has been modelled using normally distributed 
random parameters and the variation of these parameters exceed 30%. This is because the assumption of 
Gaussian random fields allows zero or negative values for the stiffness matrix, which is non-physical. 

4.4.2 Collocation method 

Stochastic collocation method estimates the PCE coefficients by calculating the stochastic response at 
selected points in the multidimensional space of the input random variables, which are referred to as the 

collocation points. Due to the orthogonality of the PCE basis, the deterministic coefficients ( iy ) for the PCE 

approximation of a random parameter (ࢅ) are estimated as 

௜ݕ ൌ
ଵ

〈ట೔
మ〉
׬	 .ࢅ ߰௜. ݂ሺࣈሻ.  (34)                                                                ࣈ݀

where ݂ሺࣈሻ	represents the joint PDF of the random vector	ࣈ. Thus each coefficient ݕ௜  is nothing but the 
orthogonal projection of the random response ࢅ onto the corresponding basis function	߰௜.  

The primary computational effort arises from the evaluation of the above integral, which is performed 
usually by either deterministic techniques, i.e. the tensor product method [143, 144] and sparse grid method 
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[145-147], or probabilistic approaches, i.e. Monte Carlo simulation. Recently quasi-random numbers [148] 
have also been investigated as an alternative option to replace Monte Carlo [149] simulation. The simplest 
general technique for approximating the multidimensional integral is to employ a tensor product of one-
dimensional quadrature rules. In this case, a so-called product grid is constructed, where the total number of 
points is the product of the number of integration points in each dimension. However, the tensor products 
would require an unacceptably high number of function evaluations for high dimensional integrals. To address 
this deficiency, Smolyak’s quadrature [145] is often employed, which reduces dramatically the number of 
collocation points, while conserving a high level of accuracy. It makes use of sparse and nested grids, where 
the function evaluations are performed only at important points, and furthermore the points used at one level 
can be re-used in the next one.  

Instead of directly estimating the PCE coefficients from Eqn. (34), the least-square regression was 
adopted in [132] to fit the PCE model on a set of specially selected collocation points. A critical aspect of the 
linear regression approach is the choice of data points, for which the LHS has been commonly adopted. 
Moreover, quasi-random sequences such as the Sobol’ or Halton sequence have also been adopted in the 
experimental design [150]. The reference [151] selected the points corresponding to the roots of the orthogonal 
polynomial of one degree higher than the maximum order of the current PCE. However, different selections 
of experimental design points can result in different coefficients, which raise questions to the stability of the 
regression techniques. Furthermore, it was shown in [152] that the selection number of 2ܲ [151] does not yield 
accurate estimations in most applications, and sequentially an empirical rule of  ሺܯ െ 1ሻܲ regression points 
was suggested. The minimal size of the experimental design points required for an accurate solution of the 
regression problem [153] may even make the computation intractable in high dimensions. 

It is desirable to predict in advance the truncation error, to guide the selection of the maximal polynomial 
degree of PCE. The standard procedure is to test several truncation schemes of increasing polynomial degrees 
and check the convergence for the interest quantities. A posteriori error estimate was suggested in [154] to 
evaluate the accuracy of any truncated PCE. In order to obtain a fair error estimation within reasonable 
computational cost, the leave-one-out (LOO) cross-validation [155] can be adopted. The main idea of LOO is 
to build the surrogate model and compute the error by using different sets of experimental design points.  

The main drawbacks of the PCE based SFEM approaches is the high computational costs. Even a low-
order PCE can lead to a large number of unknown coefficients, and therefore the experimental design may 
become unaffordable. Most PCE terms correspond to polynomials representing interactions between input 
variables, but in many practical applications the high order interactions terms are insignificant and even 
negligible. Some sparse representations of the truncation have been studied in [154, 156-158] to reduce the 
computational cost, where the least-angle regression (LARS) algorithm was proposed to keep only the most 
influential polynomials.  

4.4.3 Combining PCE and Kriging (PCK) 

The PCE approximation may become inefficient for high nonlinear performance function with a large 
number of random variables [159, 160]. To overcome this problem, the PCE with LARS and the universal 
Kriging model were combined to obtain a new family of the optimized meta-model [161]. The PCE treats the 
global behaviour of the model whereas Kriging interpolates the local variations as a function of the nearby 
experimental design points. The new technique is defined as a universal Kriging model:  

௉஼௄ሺ࢞ሻۻ ൌ ∑ ሻఈ∈Գಾࣈఈ߰ఈሺݕ	 ൅  ሺ࢞ሻ                                                  (35)ࢆ

where the first term is an orthogonal PCE describing the trend of the model, whereas the second term is used 
to model the deviation from the main trend, and it consists of a Gaussian stationary process with zero mean 
and the covariance as introduced in Eqn. (24). The purpose of this technique is to choose polynomials that 
bring the most relevant information to the Kriging meta-model. Note that the new surrogate model can be 
interpreted as a universal Kriging model, the trend of which consists of a set of orthogonal polynomials. There 
are two ways to combine the PCE and Kriging: sequential PC-Kriging and optimal PC-Kriging. 
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In Sequential PC-Kriging (SPCK), the set of polynomials and the Kriging meta-models are determined 
sequentially. Firstly, the optimal set of the polynomials is determined by the LARS algorithm. Then these 
results can be used as a suitable trend for the universal Kriging model. At the end of the algorithm, the accuracy 
of the calibrated meta-model can be estimated by determine the LOO error. In the Optimal PC-Kriging 
(OPCK), the PC-Kriging meta-model is obtained iteratively. As in SPCK, the optimal set of polynomials is 
evaluated by LARS. The LARS algorithm results in a sparse set of polynomials which are ranked according 
to their correlation to the current residual at each LARS iterations (in decreasing order). Each polynomial is 
then added individually to the trend of a PC-Kriging model. In each iteration, a new PC-Kriging model is 
calibrated.  

5 Comparative studies 

In this section, four examples are tested to compare the performance of the representative SRA and SFEM 
approaches reviewed above and to extract general guidelines for selecting the most appropriate UQ approach 
for specific application needs. The first example consists of a group of explicitly defined limit functions under 
different nonlinearities and different number and type of random inputs. The rest examples are based on 
different structural problems with the presence of both continuous and discontinuous uncertainties.  

5.1 Examples for explicit limit-state functions 

As listed in Table 1, several commonly used limit state functions are tested in this example. The reference 
values are obtained using the crude Monte Carlo simulation. The failure probability together with the time and 
the number of functional calls are evaluated for each case. The results for cases 1, 2, 3 and 4 are shown in 
Tables 2, 3, 4 and 5 respectively. These cases are investigated to demonstrate the accuracy, efficiency and 
robustness of different reliability methods.  

Case 1 is a linear limit-state function with noise terms, where the FORM gives acceptable results for the 
reliability index but the SORM gives very poor results. This is because the noise terms in the performance 
function causes the total principal curvatures of the limit state surface exceeding the applicable range of 
SORM. If the noise term is removed from the performance function, the probability of failure will convergent 
to the exact solution ( ௙ܲ

ௌைோெ ൌ 1.264 ൈ 10ିଶ). The limit state function in u space and FORM iteration for 
case 2 are shown in Figures 1a and 1b. In this case, FORM has significant errors for the performance function 
with multiple MPP problems, as shown in Table 3. This means that FORM is not suitable for performance 
function with multiple MPP. The same reason explains the bad result by SORM. The results given in Table 4 
shows that FORM and SORM both provide quite good results for slightly non-linear problem as given in case 
3 compared with those of MCS, i.e. with a relative error equal to 5.99% and 0 for FORM and SORM, 
respectively. However, this is not the case for concave limit state function given in case 4 where FORM and 
SORM both fail to converge. 

The IS has been proposed to reduce the number of samples in the conventional MCS. This technique can 
shorten the computational time to a certain extent as shown in all results except for the case 4 (concave limit 
state function). The SS approach is applied with a conditional failure probability at each level equal to  ݌଴ ൌ
0.1 and with the number of samples set to ܰ ൌ 500 at each conditional level. The number of conditional levels 
is chosen to cover the required response level whose failure probability is estimated.  From Tables 2, 3, 4 and 
5, it is seen that the average values of failure probability produced by SS/MCMC mostly agree with the results 
of MCS. Figure 1c plots the number of subsets for case 2; however, it uses seven subsets until the results 
converge. The value obtained for the probability of failure with the combined DS and IS method, gives good 
accuracy with less than 1% relative error.  

The RSM approach can provide results with sufficient accuracy for certain cases, but becomes 
computationally impractical for problems including a large number of nonlinear random variables or with 
multiple MPPs. Besides, it is hard to build the appropriate response surface without knowing the location of 
MPP, and there is no guarantee that the surrogate surface is a sufficiently close fit in all regions of interest.  

The random variables in case 1 are independent lognormal variables. Let ሼܼ௜ሽ௜ୀଵ
଺  be Gaussian random 

variables Nሺ0,1ሻ. By employing Hermite polynomials to approximate ሼ ௜ܺሽ௜ୀଵ
଺  we get: 

௜ܺ ൎ ܺே.௜ሺܼ௜ሻ ൌ ∑ ܿ௜,௞ܪ௞ሺܼ௜ሻ,			
ே
௞ୀ଴ ܿ௜,௞ ൌ exp	ሺߤ௜ ൅

ఙ೔
మ

ଶ
ሻ
ఙ೔
ೖ

௞!
                          (36) 

Then the surrogate model can be constructed as follows: 
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݃ேሺܼሻ ൌ ܺே.ଵ ൅ 2ܺே.ଶ ൅ 2ܺே.ଷ ൅ ܺே.ସ െ 5ܺே.ହ െ 5ܺே.଺ ൅ 0.001∑ sin	ሺ100ܺே.௜ሻ
଺
௜ୀଵ                  (37) 

Adaptive LARS is now compared to OLS algorithm with the degree of polynomial ݌ ൌ 2. From the results of 
case 1, it can be observed that adaptive LARS appears to be more efficient than OLS. In particular, it yields a 
relative error ݁ݎݎ௅ைை ൌ 5 ൈ 10ିସusing only ܰ ൌ 40 model evaluations, whereas ܰ ൌ 120 simulations are 
used for OLS algorithm to get ݁ݎݎ௅ைை ൌ 0.0023 . However, with a sufficient number of samples of 
performance function, an accurate failure probability estimation can always be obtained.  

The Kriging meta-model based MCS procedure is also applied to these cases. First, an initial Kriging 
predictor is built for the limit-state function using 100 uniformly generated points within a hypersphere. Based 
on this initial prediction, the refinement procedure introduced in AK-MCS is then used to add new points at 
each refinement iteration. As can be seen from Table 2~Table 5, the results provided by Kriging meta-model 
method are quite close to those given by MCS, which means that the Kriging predictor is rather accurate in all 
cases.  

The full factorial moment method (FFMM) give accurate results for cases 1,2,3 and 4 but with high 
computational cost for cases 1 and 3. This is due to the exponential increase of computation time with input 
dimension. Thus, it is only suitable for low-dimension.  

Table 1 Limit-state functions description 

Case Limit-state functions Random variables Description Ref. 

1 

݃ ൌ ଵݔ ൅ ଶݔ2 ൅ ଷݔ2 ൅ ସݔ െ ହݔ5 െ ଺ݔ5

൅ 0.001෍sinሺ100ݔ௜ሻ

଺

௜ୀଵ

 

:ଵିସݔ ሺ120,12ሻܰܮ
:ହݔ ሺ50,15ሻܰܮ
:଺ݔ ሺ40,12ሻܰܮ

 

 

Linear limit 
state function 

with noise term 
[31] 

2 ݃ ൌ 2ݔ1ݔ െ 146.14 
 

:ଵݔ ܰሺ78064.4,11709.7ሻ
:ଶݔ ܰሺ0.0104,0.00156ሻ

 

 
Multiple MPPs [31] 

3 ݃ ൌ 2 ൅ 0.015෍ݔ௜
ଶ

ଽ

௜ୀଵ

െ :ଵିଵ଴ݔ ଵ଴ݔ ܰሺ0,1ሻ 
Quadratic limit 
state function 
with 10 terms 

[162] 

4 ݃ ൌ െ0.5ሺݔଵ െ ଶሻଶݔ െ
ሺݔଵ ൅ ଶሻݔ

√2
൅  ଵିଶ:ܰሺ0,1ሻݔ 3

Concave limit 
state function 

[163] 

Table 2 Comparison of reliability approximations for case 1: ܿݒ݋௉೑ ൌ 0.01 

Method ௙ܲ ൈ 10ିଶ ߚ 
Function 

calls 
Time 
(sec) 

Relative error 
 % ఉߝ

FORM 0.943 2.3481 1165 1 4.2 
SORM (Curvature Fitting method) 0.00055 4.3950 1245 1.02 95 
SORM (Curvature Fitting method) 0.00076 4.3255 1245 1.02 95 

MCS 1.212 2.2533 820000 1.5 Reference 

IS 1.200 2.2572 6565 1.2 0.17 

DS+IS 1.190 2.2511 2680 0.75 0.1 

Subset Simulation 1.220 2.2511 18994 0.11 0.1 

RSM (second order without cross term) +IS 1.240 2.2455 650 3.45 0.35 

PCE – Quadrature (Smolyak) 1.160 2.2708 455 0.49 0.78 

PCE – OLS 1.182 2.2629 120 0.34 0.42 

PCE – LARS 1.227 2.2485 40 0.25 0.21 
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AK-MCS 1.213 2.2530 40 35 0.01 

Moment method-Zhao & Ono 1.219 2.2511 42 0.07 0.098 

Moment method-FFMM 1.212 2.2533 729 1.2 0 

Table 3 Comparison of reliability approximations for case 2: (multiple MPPs) ܿݒ݋௉೑ ൌ 0.1 

Method ௙ܲ ൈ 10ି଻ ߚ 
Function 

calls 
Time 
(sec) 

Relative error 
 % ఉߝ

FORM 0.285 5.428 20 0.03 5.83 
SORM Found curvatures >= 1 

MCS 1.460 5.1285 910    

IS 1.1791 5.1686 8220 0.2 0.78 

DS+IS 1.610 5.1101 57  0.34 

Subset Simulation 1.418 5.134 57134 0.72 0.11 

RSM (second order without cross term) +IS Not converged 

Non-intrusive PCE – Quadrature (Smolyak) 1.604 5.110 30 0.7 0.36 

Non-intrusive PCE – OLS (Full PC) 0.803 5.240 80 0.13 2.17 

Non-intrusive PCE – LARS (Sparse PC) 1.5054 5.1220 75 80 0.12 

AK-MCS 1.501 5.1233 30 30 0.10 

Moment method-FFMM 1.3255 5.1467 9 0.04 0.35 

Table 4 Comparison of reliability approximations for case 3: (quadratic LS 10 terms). 

Method ௙ܲ ൈ 10ିଶ ߚ 
Function 

calls 
Time 
(sec) 

Relative error 
ఉߝ % 

FORM 2.28 2.00 24 0.02 5.97 
SORM 1.67 2.127 236 0.03 0 

SORM (Breitung) 1.75 2.108 236 0.03 0.89 

MCS 1.67 2.127 590000 1.07 Reference 

IS 1.62 2.138 27124 0.96 0.52 

Subset Simulation 1.65 2.131 18999 0.1 0.19 

RSM (second order without cross term) +IS 1.64 2.135 1050 2.9 0.38 

PCE – Quadrature (Smolyak) 1.75 2.108 1771 2.45 0.89 

PCE – OLS 1.71 2.117 500 0.33 0.47 

PCE – LARS 1.68 2.126 250 0.27 0.05 

AK-MCS 1.53 2.1628 40 40 1.68 

Moment method-FFMM 1.4871 2.1735 59049 0.04 2.19 

Table 5 Comparison of reliability approximations for case 4: (concave LS). 
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Method ௙ܲ ൈ 10ିଵ ߚ 
Function 

calls 
Time 
(sec) 

Relative error 
 % ఉߝ

FORM No convergence 
SORM No convergence 

MCS 1.0537 1.2516 90000 0.137 - 

IS 1.0411 1.2584 2,191,012 190 0.54 

DS+IS 1.02 1.2702 32 75 1.49 

Subset Simulation 1.0680 1.2437 10000 0.1 0.63 

RSM (second order without cross term) +IS No convergence 

PCE – Quadrature (Smolyak) 0.994 1.2849 30012 0.6 2.7 

PCE – OLS 1.0469 1.2553 20 0.20 0.29 

PCE – LARS 1.0408 1.2586 15 0.17 0.55 

AK-MCS 1.0458 1.2559 28 3.5 0.34 

Moment method-FFMM 1.137 1.2071 9 0.04 3.56 

 
 

(a) (b) (c) 

Figure 1. Case 2 multiple MPPs.  (a) Limit state function in U space. (b) FORM iteration and limit state 
function. (c) Graphical visualization of the convergence of the subset simulation analysis. 

5.2 Tunnel analysis 
A plane strain problem of a simplified tunnel model is considered in this example, and the geometry and 

load parameters are shown in Figure 2a. The deterministic parameters which considered in this example are 
the unite weight of the rock mass ߛ ൌ 25	݇ܰ/݉ଶ , Poison’s ratio ߥ ൌ 0.3	 and the surcharge load ݌ ൌ
1900	݇ܲܽ . While Young’s modulus of elasticity of the rock is considered spatially varying with 

݉݁ܽ݊ሺܧሺ࢞, ߱ሻሻ ൌ 15 ൈ 10଼  Pa and ݒ݋ܥሺܧሺ࢞ଵ, ߱ሻ, ,ሺ࢞ଶܧ ߱ሻሻ ൌ 5.0625 ൈ 10ଵ଺exp	ሺെ
ሺ௫మି௫భሻమାሺ௬మି௬భሻమ

ସ
ሻ 

Pa2. A plane-strain finite element mesh consisting of 267 nodes and 472 triangular elements is shown in Figure 
2b. Subject to surcharge load, the maximum settlement of the tunnel is taken as the key factor for measuring 
the serviceability of the tunnel, thus the performance function is expressed as: 

݃൫ܧሺ࢞, ߱ሻ൯ ൌ ௠௔௫ߜ െ ,ሺ࢞ܧሺݑ| ߱ሻሻ|                                                   (38) 

where ߜ௠௔௫	is the maximum allowable settlement at the top of the tunnel, and ݑሺܧሺ࢞, ߱ሻሻ is the crown 
settlement dependent on the random field ܧሺ࢞, ߱ሻ . For illustrative purposes, the maximum allowable 
settlement is assumed to be 20 mm. As no exact K-L expansion solution is available for representing this 
random field, only the F-K-L discretisation is used for this stochastic field.  In order to determine the number 
of random variables needed in the F-K-L discretization, the approximation error due to truncation is controlled 
within 10% in terms of the difference of variance, which leads to 13 random variables.  A specific realization 
of the random Young’s modulus field of the rock is shown in Figure 2c, where the random Young’s modulus 
varies significantly by -30% and 20% from the mean value. The stochastic system of linear algebraic equations 
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is composed of fourteen 534 ൈ 534  real symmetric matrices including the mean matrix. The failure of 
probability, reliability index, number of evaluation model and computational time are investigated using 
different SRA and SFEM methods, and the results are summarized in Table 6. 

 
  

(a) (b) (c) 

Figure 2. (a) Geometry of the underground tunnel. (b) Finite element mesh and boundary conditions of the 
tunnel. (c) Young’s modulus of elasticity for the rock reconstructed from F-K-L expansion. 

The reference result is obtained as 2.6345 for the reliability index and 3102130.4   for the probability 
of failure from MCS with 1,000,000 simulations, where ܸܱܥ ൌ 1.5%  as shown in Figure 3b.  From Table 6 
and Figure 3a, the following observations are made: 

 The FORM is inaccurate in dealing with such large number of random variables with a nonlinear 
performance function.   

 SORM and RSM have similar results and are reasonably accurate compared with the MCS reference 
with relative errors of 0.67% and 0.83% in reliability index respectively. According to the number of 
model evaluations, RSM is more efficient than SORM in this test.  

 The JD method obtains a good path-wise solution (strong solution) to the probability of failure with 
the best accuracy and low computational cost with the ratio of the off-diagonal entries to the Frobenius 
norm is 310024.6  . Nevertheless, when the magnitude of the uncertainties becomes large (more 
than 20%), the JD scheme yields an oscillating solution, which gives poor results see Figure 5a and 
Figure 5b. Moreover, for problems with the probability of failure in an order higher than 310 , the JD 
leads to less accurate results compared with other reliability methods, see Figure 4a and Figure 4b.  

 The instructive PCE (based on a 3rd order expansion, 13 random variables, and total degree of freedom 
at 534) requires to solve a large system of 299040 linear equations in order to determine the PCE 
coefficients. To reduce the cost, the non-intrusive methods OLS and LARS are tested in this example, 
where the adaptive LARS procedure converges at the cost of only N = 700 runs and gives an accurate 
result for the probability of failure. The obtained PCE provides a normalized LOO error of 8.8977e-
04. 

 The results obtained from the AK-MCS compare very well to the reference as soon as N = 140 points 
are used in the experimental design, see Figure 3c. The error is less than 0.2% in the generalized 
reliability index for probabilities of failure in the order of 310 .  

Table 6 reveals that in relative terms, the JD, AK-MCS and PCE-LARS schemes have the best balance 
of accuracy and efficiency. The classical Neumann method converges much slower than all other methods. 
The intrusive PCE is not particularly suitable for complex structures with many uncertain variables (e.g. 10).  

A parametric study is carried out by varying the threshold u  from 18 mm to 22 mm to examine the SRA 
and SFEM methods at different levels of the failure probability and the reliability index. The results are 
summarized in Table 9, Figure 4a and Figure 4b. The error of the JD method increases with the growth of the 
failure probability, while the error of other methods increases as the failure probability decreases.  
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The PDF and CDF of the performance function considered and the number of the experimental design 
points selected in various SRA methods are plotted in Figures 6a and 6b. Figure 6a shows that the PDF curve 
obtained from JD differs significantly from the other PDF curves. The PDF curves for other methods are 
similar and agree well with the MCS result with a sample size of 5000. The CDF curve obtained from the JD 
is also different from the reference curve except in their tails. This observation confirms that JD is only suitable 
for evaluating lower-level of failure probability, see Figure 6b. In any case, the accuracy in representing the 
tails of the CDF of the performance function should be carefully evaluated, as they are the single most critical 
part for failure probability evaluation.  

Figures 5a and 5b show the effect of the coefficient of variance of the input random field  ܿݒ݋ா  on the 
probability of failure and the reliability index of the tunnel respectively. It is noted that ܿݒ݋ா  has a significant 
influence on ௙ܲ . The increase of ܿݒ݋ா	will cause an increase in ௙ܲ in this example.  

The mean, standard deviation, skewness and kurtosis of the distribution of the crown settlement are also 
considered. The MCS provides the reference value with a two-digit accuracy (100,000 model evaluations are 
performed), and the reference mean, standard deviation, skewness and kurtosis are 17.79 mm, 0.75 mm, -
0.3221 and 3.1476, respectively. The statistical moments are also estimated using different SRA and SFEM 
schemes and the results are compared in Table 7. Good accurate estimates of the fourth order moments are 
obtained by these methods. Also, the results of the fourth statistical moments of the performance function are 
calculated by various methods and recoded in Table 8. Good results are obtained by these methods except 
RSM.  

Figures 7a and 7b show the effect of (ܿݒ݋ா) on the statistical moments. It is found that the mean and the 
standard deviation of the settlement are very sensitive to ܿݒ݋ா . For example, when  ܿݒ݋ா  increases from 0.15 
to 0.4, the mean value increases from 17.79 mm to 18.63 mm and the standard deviation increases from 0.54 
to 2.6 mm.  Also, it is observed that when increasing  ܿݒ݋ா , the perturbation and JD methods give poor results 
for the statistical moments. 

Table 6 Comparison of SRA and SFEM methods for the tunnel example. 

Method ௙ܲ ൈ 10ିଷ ߚ 
Function 

calls 
Time 
(sec) 

Notes 

Relative 
error 
 % ఉߝ

FORM 1.9827 2.8809 236 15 - 9.35 
SORM (Curvature Fitting method) 4.8704 2.5849 589 30 - 1.88 
SORM (Curvature Fitting method) 4.4370 2.6169 589 30 Improved Breitung 0.67 

MCS 4.2130 2.6345 1,000,000 40766 ܿݒ݋௉೑ ൌ 0.015  

IS 4.2270 2.6334 45736 1666 ܿݒ݋௉೑ ൌ 0.01 0.04 

Subset Simulation 4.590 2.6053 2800 115 ܿݒ݋௉೑ ൌ 0.197 1.11 

RSM (second order without cross term) 
+IS 

௉೑ݒ݋ܿ 14 116 2.6127 4.4921 ൌ 0.01 0.83 

Neumann Expansion 4.2270 2.6334 45736 2134 ܿݒ݋௉೑ ൌ 0.01 0.04 

MCS with Neumann-Lambda-first 4.0213 2.6503 37141 1692 ܿݒ݋௉೑ ൌ 0.01 0.60 

Intrusive PCE (Galerkin) - - - - - - 
Non-intrusive PCE – Quadrature 

(Smolyak)  
4.4905 2.6128 3654 255 Error= 6.766e-4 

0.82 

Non-intrusive PCE – OLS (Full PC) 4.6108 2.6037 700 45 

LOO = 4.924e-05 
݌ ൌ 3 

Size of full basis: 
118 

1.17 

Non-intrusive PCE – LARS (Sparse 
PC) 

4.1797 2.6372 350 33 

LOO 8.8977e-04  	
݌ ൌ 3 

Size of sparse basis: 
115 

0.1 

AK-MCS 4.2850 2.6287 140 427 ܿݒ݋௉೑ ൌ 0.015 0.22 
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Joint diagonalization + IS 4.2181 2.6341 --- 323  0.02 

 

Table 7 Comparison of moment analysis for the crown settlement of the tunnel 

Method ߤ௎ cm ߪ௎	cm 
Function 

calls 
MCS 17.79 0.75 100,000 

RSM (second order without cross term) 17.78 0.721 116 
Intrusive PC -Galerkin - - - 

Non-intrusive PCE – OLS (Full PC) 17.79 0.75 1000 
Non-intrusive PCE – LARS (Sparse PC) 17.79 0.75 700 

Perturbation (Second order) 17.68 0.76 - 
MCS-Neumann 17.79 0.75 50 

Kriging 17.66 0.75 80 
Joint diagonalization 17.61 0.76 50 

Table 8 Comparison of statistical moment for performance function	݃൫ܧሺ࢞, ߱ሻ൯ ൌ ௠௔௫ߜ െ ,ሺ࢞ܧሺݑ| ߱ሻሻ|. 

Statistical 
moments 

MCS 
Joint 

diagonalization 
Neumann RSM Kriging PCE-OLS PCE-LARS 

Mean  mm 2.21 2.39 2.21 2.22 2.21 2.21 2.21 
Standard 
deviation  

mm 
0.751 0.818 0.751 0.722 0.751 0.7591 0.751 

Skewness -0.3221 -0.3074 -0.3221 -0.1693 -0.3221 -0.3213 -0.3062 
Kurtosis 3.1476 3.1305 3.1476 2.9464 3.1476 3.1411 3.0787 

  

(a) (b) (c) 

Figure 3.  (a) The convergence of the probability of failure for different reliability methods, (b) Monte 
Carlo convergences,  and    (c) AK-MCS convergence. 

Table 9 Estimates of the generalized reliability index for various values of the threshold settlement of the 
tunnel 

Threshold 
mm 

Reference IS FORM SORM Subset RSM 

Beta Beta error Beta error Beta error Beta error

18 0.317 0.561 76.9% 0.444 40.0% 0.332 4.7% 0.296 6.5%

19 1.528 1.793 17.3% 1.571 2.8% 1.501 1.8% 1.537 0.6%

20 2.633 2.881 9.4% 2.617 0.6% 2.605 1.1% 2.613 0.8%

21 3.539 3.842 8.6% 3.550 0.3% 3.602 1.8% 3.553 0.4%

22 4.370 4.686 7.2% 4.373 0.1% 4.452 1.9% 4.394 0.6%
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Cont. Table 9 Estimates of the generalized reliability index for various values of the threshold settlement of 
the tunnel 

Threshold 
mm 

PCE-OLS PCE-LARS AKMCS JD Neumann 

Beta error Beta error Beta error Beta error Beta error

18 0.339 7.0% 0.322 1.7% 0.306 3.5% 0.502 58.4% 0.328 3.5%

19 1.546 1.2% 1.526 0.1% 1.516 0.8% 1.632 6.8% 1.553 1.7%

20 2.598 1.3% 2.652 0.7% 2.629 0.2% 2.634 0.0% 2.597 1.4%

21 3.570 0.9% 3.649 3.1% 3.662 3.5% 3.553 0.4% 3.594 1.6%

22 4.431 1.4% 4.586 5.0% 4.753 8.8% 4.394 0.6% 4.416 1.1%

 

  

(a) (b) 

Figure 4. (a) Influence of the thresholds on the probability of failure, and (b) Influence of the thresholds on 
the Beta index. 

 

  

(a) (b) 

Figure 5. Estimate of (a) probability of failure, and (b) reliability index in terms of coefficient of variance 
of the rock evaluated by different reliability methods. 
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(a) (b) 

Figure 6. (a) the probability density functions, and (b) the cumulative distribution functions of the 
performance function. 

 

  

(a) (b) 

Figure 7.  (a) Mean value, and (b) Standard deviation value of the settlement in terms of coefficient of 
variance of the rock evaluated by different stochastic methods. 

5.3 Sheet pile problem 
A sheet pile is studied in this example where the settlement of an elastic soil layer displays spatial 

variability in its material properties. The uncertainty in the soil material properties is modelled by Gaussian 
random fields. The site consists of a 5.0 m deep excavation with cantilever sheet piles, without anchors or 
bottom support (Figure 8a), in a homogeneous soil layer of dense cohesionless sand with uncertain spatially 
varying mechanical properties. The soil is modelled in 2D with plane-strain finite elements and external 
loading equal to 10	݇ܲܽ. It is assumed that the Poisson’s ratio of the soil takes a constant value and the only 
random material property is Young’s modulus. The deterministic and probabilistic properties of the sheet pile 
and soil are shown in Figure 8a and Table 10 respectively. The spatial variability of the soil is modelled by a 
homogeneous random field, with the following auto-correlation function:  

ሺ࣎ሻߩ ൌ exp	ሺെ
ఛೣ
௟ೣ
െ

ఛ೥
௟೥
ሻ                                                              (39) 

where ࣎ is the vector of absolute distances in the horizontal and vertical directions, and ݈௫ ൌ 20݉, ݈௭ ൌ 5݉ 
are the correlation length in ݔ,  of the soil. The first four terms in the ܧ directions for the Young’s modulus 	ݖ
F-K-L representation are considered, resulting in four Gaussian random variables ߦ௜ . Figure 9b shows a 
realization of the Gaussian random field representing the uncertainty of Young’s modulus.  

A refined mesh was first used to get the exact maximum deflection of the sheet pile. Then different meshes 
were tried in order to design an optimal mesh that meets the 1% error requirement in the maximum deflection. 
The selected mesh is shown in Figure 8b, which contains 1542 nodes and 1460 elements. The pile is modelled 
using beam elements with corresponding to a Larssen 24 profile that behaves equally to the sheet pile in 
bending and axial resistance. The interaction between the sheet pile and the surrounding soil is modelled using 
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spring elements. The maximum horizontal ݑ௫ displacement occurs at the top of the sheet pile. The failure 
occurs when the value of ݑ௫	exceeding a threshold of 	ݑ௠௔௫ ൌ 2.5	ܿ݉, as expressed by the following limit 
state function:  

݃ሺࢄሻ ൌ ௠௔௫ݑ െ  ௫                                                                            (40)ݑ

Given the random variables ࢄ		and by using the FEM we can solve the value of		ݑ௫. 

Table 10 Material properties of the soil in the sheet pile example 

Variable Dist. Mean kPa Std kPa COV 
Eୱ୭୧୪ Normal 50000 15000 0.25 

 
 

 

 

(a) (b) 

Figure 8. (a) Sheet pile wall (without anchors). (b) Finite element discretization of the soil. 

The mean and standard deviation of the random displacement at the top of the sheet pile is now 
considered. Figure 9a depicts the deformed shape of the sheet pile and soil computed with the mean value of 
the random field. The reference value is obtained by LHS with 100,000 model evaluations. The mean and 
standard deviation for the response reference are 9.86 mm and 3.87 mm respectively. The results obtained 
using different SRA and SFEM schemes are listed in Table 11, Figures 10a, 10b. It appears that the first order 
perturbation method estimates acceptable mean only when the variance of the input random field is less than 
0.25, while the second order perturbation gives better estimates for the full range of random parameters 
considered here. The results from the Neumann and PCE methods both give better accuracy than the 
perturbation methods. As for the efficiency aspect, the intrusive PCE method takes more computational effort 
than all other methods except MCS. In contrast, the non-intrusive PCE by using the ordinary least regression 
(OLS) or least angle regression (LARS) and Kriging meta-modelling required less model evaluations.  

The probability of failure is investigated by different SRA and SFEM approaches, and the results are 
summarized in Table 12. The accuracy of each method has been investigated for different variance values of 
the input random field and plotted in Figure 11. The AK-MCS approach is seen to have the optimal balance 
between the accuracy in the reliability index and the computational cost, with a relative error of 1% and only 
152 finite element runs. FORM runs fastest with the minimum limit state function evaluations, but it gives the 
worst result in terms of accuracy. The accuracy of the simulation methods (e.g. subset simulation) are better 
than the FORM and PCE methods, but required a large number of limit state function evaluations to converge 
with an acceptable level of accuracy. The non-intrusive PCE including both OLS and LARS are also tested 
here, with the polynomial order set to 4. The random field is discretized with four random variables leading to 
a total dimensionality of the computational model of 70 (i.e. the number of basis). The experimental design 
using LHS consists of  ܰ ൌ 157,123  samples for OLS and LARS respectively. The accuracy of the PC 
expansion for this problem is low compared with the reference value. This is because the probability of failure 
for this problem is very small and as alluded in the previous examples that the PCE can be used in one-shot 
for not too small probabilities of failures.  Moreover, the computation time may, however, blow up when more 
than a couple of random variables are used to discretize the random field.  

The pile is modelled 
using beam elements 

The interaction 
between the pile and 
the surrounding soil 
is modelled using 
spring elements 

The soil is modelled in 2D 
with plane-strain finite 
elements 
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After collecting all the results, it clarifies that the AK-MCS method is the most attractive for problems 
involving random field because it is accurate with reasonable computational cost even for large coefficients of 
variation of the input. SORM is the second good method for the reliability index evaluation. The PCE approach 
also gives accurate results when applied at third and higher orders. The computation time may however blow 
up when more than 2 or 3 random variables are used to discretize the random field. In contrast, using intrusive 
polynomial chaos in this context requires increasing the order of expansion, leading rapidly to intractable 
calculations. 

Table 11 Comparison of moment analysis for sheet pile example. 

Method ߤ௎ cm ߪ௎ cm 
Function 

calls 
Time 
(sec) 

Notes 

MCS 0.986 0.387 100,000 105,830 LHS 

Intrusive PC -Galerkin 1.44 0.93 - 10,772 F-K-L with 4 Rv. p=4 

Non-intrusive PCE – OLS  0.985 0.39 157 514 p=4 
Non-intrusive PCE – LARS  0.984 0.39 123 150.7 p=4 

Perturbation I 0.973 0.82 - 37 F-K-L with 4 Rv. 
MCS-Neumann-Lambda 0.983 0.38 - 90 - 

Table 12 Comparison of reliability approximations for sheet pile example (Continue). 

Method ௙ܲ ൈ 10ିଷ ߚ 
Function 

calls 
Time 
(sec) 

Notes 

Relative 
error 
 % ఉߝ

FORM 1.1805 3.0406 118 255 - 4.11 
SORM (Curvature Fitting 

method) 
1.7936 2.9123 180 502 Improved Breitung 0.29 

SORM (Curvature Fitting 
method) 

1.7004 2.9289 180 502 Breitung 0.28 

IS 1.7464 2.9207 67518 50145 ܿݒ݋௉೑ ൌ 0.01 - 

Subset Simulation 1.9400 2.8878 2778 20596 ܿݒ݋௉೑ ൌ 0.22 1.23 

Neumann Expansion Not converged 

MCS with Neumann-Lambda 1.400 3.0141 - 7811 ܿݒ݋௉೑ ൌ 0.01 3.19 

Intrusive PCE (Galerkin) Required high capacity 
PCE – Quadrature (Smolyak) array exceeds maximum array size 

PCE – OLS 1.9207 2.8909 157 593 ݌ ൌ 4 1.02 
PCE – LARS 1.9012 2.8941 123 397 ݌ ൌ 4 0.91 

AK-MCS 1.8900 2.8959 152 238 ܿݒ݋௉೑ ൌ 0.07 0.85 

 
 

 

 

(a) (b) 
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Figure 9. (a) Deformed shape of the Structure, and (b) Realization of a homogeneous anisotropic normal 
random field representing the Young’s modulus E of the soil. 

 
 

 
 

(a) (b) 

Figure 10.  Estimate of  (a) expected value, and  (b) variance value of the displacement of sheet pile in 
terms of coefficient of variance of the soil evaluated by the IS, Perturbation, PC and Neumann method. 

 
 

 
Figure 11.  Estimate of probability of failure in terms of coefficient of variance of the soil evaluated by 

different reliability methods (sheet pile example). 

5.4 Frame structure 

A three-span, five-story frame structure subjected to horizontal loads is considered in this example, as shown 
in Figure 12. Three applied loads, two Young's modulus, eight moments of inertia and eight cross-section areas 
of the frame components are modelled by random variables. There are in total ܯ ൌ 21 random variables, 
denoted byࢄ ൌ ሼ ଵܲ, ଶܲ, ଷܲ, ,ସܧ … , ,଺ܫ … , ,ଵସܣ … , ଶଵሽ்ܣ . The applied loads and the material properties are 
assumed respectively to follow a lognormal distribution and truncated Gaussian distribution over ሾ0, ൅∞ሻ. It 
is noted that the Gaussian random variables have been truncated in order to avoid non-physical negative 
realizations. Moreover, the various input random variables are correlated (see [154] for the complete 
description). The response of interest is the horizontal displacement u  at the top right corner of the top floor, 
with the horizontal loads acting at individual floor levels. The model response can be eventually recast as a 
function of independent standard Gaussian random variables ߦ௜  by using Nataf transformation so that it may 
be expanded onto a PCE made of normalized Hermite polynomials. Of interest are the mean and the standard 
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deviation of the random maximal displacement ࢁ ൌ ሻሻࢄሺࢆሺࡹ . The reference value for this example is 
obtained with the quadrature scheme with a two digit accuracy (15179 model valuations are performed). The 
reference mean and standard deviation value for the deflection are 0.069 ft. and 0.021 ft, respectively. The 
statistical moments estimated with different methods are listed in Table 13.   

 
Figure 12. Three-span, five-story frame structure subjected to lateral loads. 

Table 13 Comparison of Moment Analysis for Frame structure example. 

Method ߤ௎ft ߪ௎ft 
Function 

calls 
Time 
(sec) 

Notes 

MCS 0.0652 0.0202 100000  LHS 
MCS with Neumann-Lambda 0.0662 0.0202 1000 3.1 LHS 

Non-intrusive PCE – OLS (Full PC) 0.0653 0.0200 330 3.5 ݌ ൌ ௠௔௫ܬ	;2 ൌ 2 
Non-intrusive PCE – LARS (Sparse PC) 0.0649 0.0200 120 0.48 LOO=0.011 

The maximum degree ݌௠௔௫ of the spars PC is set equal to 7, its target approximation error to 10ିଶ, its 
maximum interaction order ݆௠௔௫		to 2, and the cut-off values ߝଵ, 5	 to	ଶߝ ൈ 10ିହ. The LHS design is used to 
generate collocation points to calculate PCE coefficients and LARS coefficients, and the experimental design 
points are enriched until the regression problem is well-posed. An initial sampling of the size ܰ ൌ ܯ ൅ 1 ൌ
22  is used. The LARS approximation leads to gain factor of 2.75 (120 finite element runs instead of 330). The 
expectation and variance value of the deflection for the frame evaluated by different values for the coefficient 
of variance of material 	ܿݒ݋ሺܧସሻ are presented in Figures 13a and 13b. The perturbation method gives poor 
results especially when increasing ܿݒ݋ሺܧସሻ, while all other methods give accurate results compared with MCS. 
Figure 14 presents the probability density function for the response, which shows a good agreement with the 
MCS.  

A reliability analysis is carried out with respect to the limit state function ݃ሺࢄሻ ൌ ௠௔௫ݑ െ  ሻ, whereࢄଵሺݑ
 ௠௔௫ is a given threshold set to 0.2 ft. Theݑ	ሻ is the horizontal component of the top displacement andࢄଵሺݑ
reference value of the failure probability ௙ܲ is obtained by MCS by using (1,000,000) model frame evaluations 
to get a coefficient of variation less than 0.05 on ௙ܲ. Estimates of the probability of failure and reliability index 
are calculated by different methods, and the results are summarized in Table 14. It can be observed that FORM 
requires 209 function evaluations (frame analysis) with approximations yield relative error on  ߚ equal to 11 
%, while SORM requires 680 function evaluations and give more accurate result than FORM. The results of 
failure probability analysed with different methods are plotted in Figures 15, 16a and 16b. It can be observed 
that all methods except for FORM give reasonable results. Furthermore, using ܰ ൌ 24159		 samples to 
construct the kernel sampling density, the importance sampling simulation results give an estimate of the 
probability of failure with the approximated error on ߚ equal to 5%. While the probability of failure ௙ܲ ൌ
2.0575 ൈ 10ିସ, which was obtained by DS using 10,000 directions, gives about 4% approximation error. 
Nevertheless, other commonly used reliability methods, such as SS over predict the failure probability by 0.6% 
compared with MCS by using five subsets but with high computation effort. Due to the very slow convergence 
of the Neumann series, we used only the MCS-Neumann with Lambda parameter, which leads to a 
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significantly more accurate solution than conventional Neumann with smaller effort. Also, estimates of the 
failure probability are computed by post-processing a full third order PC (OLS) as well as sparse PC (LARS) 
approximation. The latter is built up by setting the target approximation error equal to 10ିଷ (this is an overall 
mean square error that drives the convergence of the adaptive PC expansion). From the result, it can be note 
that both PCE approximations yield relative errors on ߚ less than 9%. Additionally, we can observe that LARS 
to be efficient since it makes use of only ܰ ൌ 700 runs of the finite element model. In comparison, using a 

full third order PC expansion would require performance more than  ቀெା௣௣ ቁ ൌ ൫ଶଵାଷଷ ൯ ൌ 2024	and would thus 

require about 2ܲ ൎ 4048 finite element runs in order to get accurate results. Hence a computational cost 
multiplied by 5.7 compare to the LARS approach. It is also seen that PCE in the least square sense provides 
an approximation whose accuracy is controlled globally. In the tail of the distribution of the performance 
function, it does not guarantee a perfect control of the accuracy. This frame structure has been treated a sparse 
polynomial chaos of maximum degree 6 was necessary to obtain accurate enough results on the performance 
function. However, this approach should not be used for very small probabilities less than  ௙ܲ ൌ 10ିସ. In such 
a case, it should be better to use other kinds of meta-models to ensure the accuracy. The AK-MCS can 
approximate the probability of failure with accuracy similar to an MCS with high efficiency. This example 
shows that AK-MCS can be applied on moderate dimension problems with great effectiveness. For the MPP-
based univariate method with numerical integration and the univariate method with simulation [164], the linear 
approximation of the limit state function in rotated Gaussian space ݃ேሺݒேሻ was employed. Both versions of 
the univariate methods provide more accurate results than FORM and SORM with slightly more expensive 
computational effort, but significantly more efficient than simulation methods. The probability of failure is 
also evaluated by the full factorial moment method.  The results show that it leads to accurate results but with 
large number of computational model runs.  

  

(a) (b) 

Figure 13. (a) Expected value, and (b) Variance value of the response evaluated with different value of the 
coefficient of variance of the Young’s modulus of the material 

4E  

Table 14 Comparison of reliability approximations for Frame structure example. 

Method ௙ܲ ൌ 10ିସ ߚ 
Function 

calls 
Time 
(sec) 

Notes 

Relative 
error 

ఉߝ  % 

FORM 0.7846 3.7800 209 10 - 11.62 
SORM (Curvature Fitting 

method) 
1.3930 3.6344 252 11.4 Improved Breitung 7.32 

SORM (Curvature Fitting 
method) 

1.3396 3.6445 252 11.4 Breitung 7.61 

SORM (Point Fitting method) 1.3823 3.6364 680 31 Improved Breitung 7.38 
SORM (Point Fitting method) 1.3396 3.6445 680 31 Breitung 7.62 

MCS 3.5400 3.3865 1000000 43936 ܿݒ݋௉೑ ൌ 0.05 - 
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IS 1.7698 3.5722 24159 31 ܿݒ݋௉೑ ൌ 0.05 5.48 

DS 2.0575 3.5326 51309 2323 ܿݒ݋௉೑ ൌ 0.27 4.31 

Subset Simulation 3.2720 3.4080 212960 9548 ܿݒ݋௉೑ ൌ 0.04 0.63 

RSM (second order without 
cross term) 

2.2344 3.5107 731 -- - 3.67 

Neumann Expansion --- --- --- --- Not converged  

MCS with Neumann-Lambda 1.3762 3.6375 9782 28 ܿݒ݋௉೑ ൌ 0.025 7.41 

Non-intrusive PCE – OLS 1.4555 3.6231 4048 39 ݌ ൌ 3 6.98 
Non-intrusive PCE – LARS 1.1059 3.6935 700 23 ݌ ൌ 3 9.06 

AK-MCS 3.1400 3.4192 142 18.4 ܿݒ݋௉೑ ൌ 0.056 0.97 

Moment method (FFMM) 3.7340 3.3718 600 26.4 - 0.43 

UDR 3.6280 3.3797 600 26.4 - 0.2 

 
 

 

Figure 14.  Probability density functions for the response (Frame structure). 

 

 

Figure 15.  Influence of the threshold on the reliability index (Frame structure). 
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(a) (b) 

Figure 16. (a) Influence of the threshold on the probability of failure, and (b) Distribution tail for 
probability of failure. 

6 Conclusion 

A comprehensive review and rigorous study of structural reliability analysis and stochastic finite element 
methods have been completed. The accuracy, efficiency and robustness of each method are analysed in detail 
against the common set of representative examples, including explicit limit-state functions, geotechnical and 
structural problems etc. The results from the comparative study provide comprehensive evidence-based 
references for the performance of different SRA and SFEM approaches. The main concluding remarks are 
summarised below:  

 As the most ancient SRA methods, the theory and computational framework of FORM and SORM are 
well established in their own context. However, both schemes have severe drawbacks when dealing with 
practical structures whose limit-state functions can be implicitly defined, non-smooth, of high randomness 
dimensionality and with large degrees of freedoms.  

 The simulation methods have become increasingly attractive in recent years due to the availability of 
cheaper and fast computers. The main drawback is its high computational cost, especially when dealing 
with rare events. A number of numerical techniques have been developed to reduce the cost, including IS, 
LHS, DS and SS methods etc.  

 The RSM offers a vehicle to efficiently combine the powerful FEMs with reliability related problems. 
Methods have also been developed to rationally reduce the size of the probabilistic models using 
importance measures. 

 The SFEM enables the treatment of spatially varying stochastic structural heterogeneity. This is of 
essential importance, for instance, in the treatment of geotechnical problems, structural problems 
involving high-frequency vibrations and in problems of elastic stability.  

 In the context of intrusive SFEM, a number of algorithms have been developed, including the 
perturbation, Neumann expansion, JD, and PCE methods etc. The advantages and drawbacks of each 
method are presented in Table 15.  

 The surrogate model based structural reliability analysis has become quite popular in the literature. It is 
most suitable for cases where the performance function has implicit form and needs to be evaluated point-
wise by numerical methods such as FEM. However, most surrogate models suffer from the number of 
unknown coefficients increasing quickly with the increase in the number of variables (the curse of 
dimensionality) and selection of the experimental points to construct the surrogate model.  

 The meta-models that are used in this paper are PCE (OLS and LARS algorithms), Kriging meta-model, 
and the combined PCK technique. PCE is a regression technique that models well the global behaviour 
of the computational model. On the other side, Kriging is known to model well local variations because 
of its interpolation properties. In fact, PCK is a special case of universal Kriging models where the trend 
is modelled by orthogonal polynomials. From the comparative study, it is observed that accuracy increases 
by using PCK instead of the traditional meta-modelling techniques.  
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 The meta-models are used to compute rare events, such as small failure probabilities by a popular strategy 
like PCE-IS, AK-MCS, APCK-MCS. In the shown applications, the results of AK-MCS are almost better 
than that from PCE-IS. But at the same time, these results have large relative errors. Also, APCK-MCS 
provides an accurate estimation of the statistics of interest for a reasonable amount of runs of the 
computational model. 

 

Figure 17. The accuracy via the efficiency for the structural reliability methods. 

 

 

(a) (b) 

Figure 18.  Bar chart of (a) the accuracy, and (b) the efficiency for the structural reliability methods. 

Table 15 Advantage and disadvantage of the reliability methods. 

Method Advantage Disadvantage 

FORM 

 Efficiency, effectiveness and simplicity when the 
limit state function is explicitly defined. 

 The accuracy depends on the shape of the limit 
state surface, and can only be assessed through 
comparison with MCS.  

 Convergence issues when the LSF is nonlinear 
and/or in the presence of non-Gaussian random 
variables also for LSF with multiple MPP. 

 It is not suitable for the LSF which is implicitly 
defined. 

 Requires the solution of an optimization problem 
to find the smallest distance to the limit state. 

 It requires search MPP. No guarantee to determine 
the correct MPP. 
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SORM 

 More accurate than FORM. 
 More efficient compared with simulation 

methods. 

 Computational efficiency is no greater than that of 
MCS when the number of random variables is 

large  ሺ~100ሻ [165]. 

 The accuracy depends on the shape of the failure 
surface and can only be assessed in comparison 
with MCS. 

 It is not particularly suitable for the implicitly 
defined limit state function.  

 It depends on FORM’s result. 

MCS 

 MCS is very robust in the sense that it can handle 
complex limit states. 

 MCS are simple, flexible, friendly to parallel 
computing, and not restricted by the number of 
random variables. 

 High computational cost especially for small 
probability values. 

IS 

 It is designed to reduce the variance of the Monte 
Carlo estimators for a given sample size. 

 IS algorithm is more efficient than Monte Carlo 
simulation and directional simulation. 

 It is able to simulate more rare random events. 

 It requires information about the location of the 
limit state(s), especially the part closest to the 
origin in U-space, to be useful. 

 It faces difficulties when applied to high-
dimension problems and when the limit state 
function has multiple MPPs. 

DS 
 It is relatively efficient compared to MCS.  The accuracy drops drastically when the 

performance function is highly nonlinear unless 
the number of sampling directions is large. 

SS 

 It has been capable to solve very complex 
problems (complex non-linear limit state function 
in high dimensions) [166]. 

 It is relatively efficient compared to other 
simulation methods. 

 It is capable to reduce the computational efforts 
needed by MCS by one to two orders of 
magnitudes; the needed sample size is still essential 
that is the drawback of its generality. 

RSM 

 It gives comparable results from other 
computationally more demanding approach. 

 Identifying the sensitive parameters involved in 
controlling the system response and helps in 
quality control measures.  

 Reduces the number of runs. 
 Simplified relationship that can be used for 

practical engineering purposes. 

 It can sometimes lead to false MPP, and there is no 
guarantee that the fitted surface is in fact a 
sufficiently close fit in all regions of interest. 

 The training points for the construction of RSM 
model are empirically selected. 

Neumann 

 It is a simple formulation.  The computational efficiency of the method 
depends on the range of random fluctuations. The 
fluctuation range allowed by the Neumann 
expansion method is generally higher than the 
perturbation methods.  

 Not suitable for problems with large random 
variations.  

 The convergence is very slow. 

Perturbation  Only the first two moments of random variables 
need to be known. 

 It is restricted to small variability, and the accuracy 
decreases when the random fluctuation increases. 

JD 

 This method is not sensitive to the number of 
random variables in the system. 

 It is better and more accurate than Neumann 
expansion and perturbation method. 

 There has not been a mathematically rigorous 
proof for its accuracy. 

 It is used with the random field problem and 
inapplicable with the random variable problems. 

Intrusive PCE 

 

 Compared with the MCS, the computational cost 
of gPC is significantly lower. 

 The computation is efficient and robust. 
 The use of sampling is not required. 

 Intrusive methods have the inconveniency of 
requiring full re-programming of conventional 
finite element software. 
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 Their low efficiency, because the simulation runs 
increase exponentially with the number of random 
variables and the order of the polynomials used. 

 The amount of computation required for a given 
problem is much greater than that of the equivalent 
deterministic problem. 

Collocation 
method (non-
intrusive) 

 The low number of simulation runs, when few 
random parameters are involved. 

 Easy to implement with analysis codes treated as  
black boxes 

 Sparse grids reduce the “curse of dimensionality” 
drastically.  

 When the same random variable occurs in many 
different problems, it is sufficient to calculate the 
integration point set once and to save it for further 
use. 

 Less rigorous and their accuracy is poorer than the 
full projection methods using the Galerkin 
approach. 

AK-MCS 

 It is independent from the type of the response 
surface function to be fitted. Also it is not greatly 
affected by the choice of the space. 

 Kriging meta-model is more efficient than the 
other meta-models found in literature 

 The parameters of the Kriging method 
significantly affect the reliability results. 
However, there is no guidance how to select 
appropriate values for the parameters. 

 Some parameters used in Kriging are determined 
by optimization approach. These causes no 
guarantee a good result for the structural 
reliability problems. 

Classical 
Moment 
methods 

 The probability of failure can be computed, even 
when the CDFs or PDFs of random variables are 
unknown. 

  It is simple and efficiency, while it requires 
neither iteration nor the computation of 
derivatives. 

 The expression of the fourth moment reliability 
index is too complicated for the engineering use. 

 It is more suitable for a negative skewness than 
for a positive value. 

 It is often considered more suitable for high 
probability problems. However, at probability 

levels less than 10ିହ, ௙ܲ deduced by the Pearson 

system might not be reliable. 
 If used the third polynomial (cubic) normal 

distribution to predict the probability, the moment 
method becomes generally inapplicable to a limit-
state function with more than third power random 
variables. 

 Two error sources exist: estimating four statistical 
moments and approximating the response PDF or 
CDF based on the four actual moments. 

Improved 
Moment 

method-FFMM 

 It shows very robust performance in terms of 
accuracy against the non-normality of inputs. 

 It suffers from the exponentially increasing 
number of nodes with random input dimensions, 
and it seems suitable only for problems with very 
small dimensionality because of the “curse of 
dimensionality”. 

Improved 
Moment 

method-UDR 

 Easy to implement and use.  It is also noted that the accuracy of UDR 
deteriorates as the interaction effect increases and 
the high-order moments (skewness and kurtosis) 
are more vulnerable to this error than low-order 
moments. 

 It may be not be adequate for a system with a large 
number of random variables or strong nonlinearity 
due to the high-dimensional integrals retained in 
the residue error of this method. 
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