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Abstract 

Piezoelectric nanowires (NWs) or nanotubes (NTs) are a vital component in nano-

electromechanical and piezo-electronic device development. With various cross-sectional 

geometries achievable, the piezoelectric property-cross sectional shape relation is of fundamental 

interest. As existing studies (primarily based on first-principles calculations) are limited to 

ultrathin NWs or analysis based on continuum theories, the present work employs molecular 

statics (MS) simulation, which enables the examination of NWs/NTs up to cross-sectional size of 

20.6nm and elucidation of the underlying mechanisms at the atomic level. Analyses are carried 

out for NWs/NTs with experimentally observed geometry by comparing their size-dependence of 

effective piezoelectric constant and the radial distribution of the average dipole moment change 

with strain. The fraction of strain-sensitive dipoles, initial volume contraction and surface 

piezoelectricity were shown to control the shape effect on the piezoelectricity of ZnO 

nanostructures. 

Keywords: Zinc oxide Nanowires, shape effect, piezoelectric constants, volume contraction 
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1. Introduction 

The development of piezoelectric nanostructures (PNs), in the recent decade, has led to 

practical ambient energy harvesters critical for self-powered nano-electronics [1,2] and provided 

an avenue towards prospective innovations in sensing [3], actuation [4], piezotronics [5,6] and 

biomechanical energy extractors [7]. A great deal of the effort has been devoted towards 

predicting the mechanical [8–11] and especially, piezoelectric behaviors and properties [12–20] 

of one-dimensional PNs. e.g. wurtzite zinc oxide (ZnO) and gallium nitride (GaN) nanowires 

(NWs), which is of importance to fundamental research and practical application due to the 

combined semiconducting-piezoelectric nature [5] and the diverse range of the stable growth 

structures with distinct shape of the cross section [21]. Particular attention has been placed on the 

size and related surface effect on the material properties of NWs due to the potential for property 

tailoring.  

Ensuing the seminal demonstration of NW piezo-response by Wang et. al. [22,23], 

experimental studies have shown size induced enhancement of effective piezoelectric 

coefficients (PZC) in ZnO nanostructures [24,25]. The inverse PZC size effect in NWs (i.e., 

higher PZC at smaller size) is then established with corroboration of first-principles studies of 

ultrathin (< 3nm) [0001]-oriented hexagonal ZnO NW (h-NW) [14,26–28]. Nevertheless, the 

discrepancy in the quantitative characterization of the size-effect remained, which, in the key 

work by Qin et. al. [29], is attributed to the different definitions of PZC and the effective volume. 

Indeed, through re-evaluation under one appropriate definition, a monotonous inverse size-effect 

(sizes < 3nm) with similar PZC values can be achieved across all studies [29].  

However, the examination of PZC size effect for nanostructures beyond 5nm in size was 

only made viable by Dai et. al. in [30] where the validity of classical core-shell potential in bulk 

ZnO piezoelectric response modelling was first demonstrated. Subsequently, Molecular statics 
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and dynamics studies were conducted by the same group to study ZnO (0001) surface 

piezoelectricity [31] and the influence of its effect on the overall PZC for finite-sized, square 

ZnO NWs (s-NWs) [16]. More relevantly, the s-NW PZC was found to exhibit a proportional 

dependence on size in opposition to the h-NW trend, which pinpoints to a crucial cross-sectional 

shape effect on piezoelectric property. Very recently, substantial shape effect on PZC is also 

achieved for GaN NW PZC by Lu et. al., based on a continuum model [32]. This, to the best of 

our knowledge, is one of a few recent studies where the shape effect, a fundamental issue in the 

research of nano-piezoelectricity, has been examined in-depth. As the interplay between size 

effect and cross-sectional shape becomes increasingly important at the nanoscale, systematically 

exploring how these two factors couple and thereby influence the nano-piezoelectricity of ZnO 

NWs is essential to the understanding of the underlying physics. It is also expected to provide 

guidance for experimental efforts to fabricate high efficiency nano energy devices based on 

nanostructured ZnOs. 

In addition to observing the shape effect, Lu et.al., [32] further identified specific surface 

area as the determining parameter in the shape effect on nano-piezoelectricity.  Thus, it is of 

value for fundamental study to take advantage of atomistic simulation and investigate the 

mechanisms at atomic level underlining the shape effect and its relation to the specific surface 

area. To do so we adopt ZnO as a prototypical example and an MS method similar to [30,33] to 

study the axial PZC variations across differently shaped ZnO nanostructures and characterize the 

intrinsic shape effect. Particularly, to remove the influence from different facet structures, we 

consider in this study experimentally observed ZnO nanostructures with facets dominantly 

composed of the same crystallographic planes.  
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2. Molecular statics simulation 

In order to examine the effect of shape on nanostructure piezoelectric property, the most 

prevalent ZnO nanostructures with the same growth orientation, [    ] or c-axis, and dominant 

facets consisting the {   ̅ } planes were modelled [21,34]. The cross-sectional shapes of the 

structures considered are presented in Fig. 1a – d, which sequentially corresponds to an h-NW, a 

hexagonal nanotube (h-NT), a triangular NW (t-NW) and a nanobelt (NB). The comparability of 

the different structures is established through adopting a characteristic size such that the outer 

(lateral) surface areas are equal for all nanostructures at the same size (Note that h-NT inner 

surfaces are not accounted). Thus, considering the bulk lattice constants, we define the diameter 

d of h-NWs, side length b of t-NWs, outer diameter d0 of h-NTs and width w (the thickness t = 

w/2) of NBs as the characteristic size k.  At the same characteristic size, i.e., k = d = b = do = w, 

all these structures with equal length l possess the same area of outer surfaces, i.e., 3kl.  In 

addition, the inner diameter    of 2.6nm, 5.2nm and 10.5nm, is considered for h-NTs. The cross-

sectional dimensions of all specimens are presented in Table. 1.  

The atomic interaction is modelled via a core-shell Buckingham potential constructed by 

Binks and Grimes [35].  The validity of the potential in computational study of linear 

piezoelectric properties for bulk ZnO has been demonstrated by Dai et. al. [30]. It was further 

applied to model free surface piezoelectric response for ZnO (0001) surface, NBs and h-NWs 

[16,31,36].  The detailed formulation is as follows:   

   ∑ ∑            ⁄           
        (   ) (1) 

where     is the distance between an atom pair and   ,   ,   are parameters for the pair-wise 

interaction. The parameter values are taken from [35] and the     cut-off is set at 1.2nm. Due to 
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the existence of free surfaces the electrostatic interactions are computed utilizing the approach of 

Fennel and Gezelter [37], which improved upon Wolf’s summation by ensuring potential and 

force continuity at the cut-off radius: 

      ∑ ∑       [
        

 
 

         

  
 (
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   (    
 )

  
)       ]   

      
  (2) 

where    and     are the partial charges;   is the damping coefficient and    the cut-off radius 

respectively, and their values of 0.33 and 1.5nm are selected based on the convergence of 

piezoelectric property studied.  

The LAMMPS software suite [38] is utilized to conduct the simulated uniaxial deformation 

and the molecular statics method is employed to exclude thermal fluctuation. Periodic boundary 

condition is enforced in the axial direction to remove end effects. At zero strain, the initial local 

minimum energy structure is found through energy minimization via the conjugate gradient 

method. Engineering strain is then applied at increments of 0.5% up to ±1% and relaxed at each 

strain via the same method. The relaxed structure is utilized in the calculation of the axial 

polarization. The deformation experienced by the structure can be separated into the applied 

homogeneous strain and internal strain. The latter results from the structural relaxation required 

to reach an energy minimized state after each applied strain.  

The c-axis or axial polarization,    , can be decomposed in general into the electron 

delocalization and the internal strain terms of Eqn. 3. 

                                                      
            

   (     )                                   (3) 

Here, the internal strain term   
   (     )  is the polarization contribution from the relative 

displacement between the zinc and oxygen atoms, which is reflected through the change in 

fractional atomic coordinate   . The   
         or electron delocalization effect is represented 
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through the core shell separation [30]. To compute the    of each nanostructure (i.e., supercell), 

the volume normalized polarization,   ̅     ⁄ , is adopted where   is the volume of the 

corresponding nanostructure (similar to [33]).  As the cross sections are simple shapes the 

volume can be effectively calculated by the volume of an equivalent continuous structure that 

encompasses the energy minimized structure. The cross-sectional area is defined by the area 

bounded by the contour formed through adjoining the centers of the outmost atoms as illustrated 

by the black outlines in Fig. 1b, c and d for h-NT, t-NW and NB. For all structures the length is 

determined by the length of the simulation box in the c-axis direction. Finally, the piezoelectric 

response of the nanostructures are characterized by an effective piezoelectric constant for the 

axial (c-axis) direction. We employ the method of [30,33] based on the proper piezoelectric 

constant definition introduced by Vanderbilt [39]. 

   
   

  
  ̅ 

   
                                                        (4) 

 

3 Results and discussion 

In this section, the MS simulations demonstrated above are performed to characterise the 

shape effects on the axial PZC,    
   

, of ZnO nanostructures and disclose the physical 

mechanisms underlying the effect of the cross-sectional shapes on the size-dependence of the 

PZC. Four ZnO nanostructures are considered including h-NWs, h-NTs and t-NWs as well as 

NBs. 

3.1 Shape effect on the size dependence of    
   

 

To study the shape effect, we first calculate the characteristic size-dependence of    
   

 in Fig. 

2 for all nanostructure types considered. Expectedly, in Fig. 2, the dependence of    
   

 on the 
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characteristic sizes for all nanostructures examined hold an inverse relationship and show at least 

a 28% enhancement (at 20.6nm) compared to the bulk value of 1.624 C/m
2
. The obtained trend 

of h-NW    
   

 is found to be consistent with previous first-principles and MD studies [14, 28, 29, 

33] for ultrathin NWs. However, the NB trend opposes the findings in [33]. This mainly stems 

from the difference in the structures of {  ̅  } facet examined in the two studies, which results 

in the difference in surface reconstruction, the determining factor in the size dependence of NB 

   
   

 [33].  

The impact of cross-sectional shape on    
   

 is clearly observed in Fig. 2 through the relative 

difference in    
   

 and its rate of change with the size between the structures. Using h-NWs (Fig. 

1) as benchmark, t-NWs exhibit larger    
   

values at all sizes with 10% rise at 4.9nm and 3% at 

20.6nm.  For h-NTs, an even higher gain of 21.5% compared to h-NWs (17.5% versus t-NW) is 

obtained at the size of 4.9nm. However, as its    
   

 decays most rapidly with the increasing size, 

   
   

 of h-NT quickly declines below the t-NW response at the size of around 7nm or larger, and 

finally approaches the h-NW value at 12.8nm. To summarize, for the sizes below 7nm, h-NTs 

exhibit the highest    
   

, h-NWs the lowest value and that of t-NWs is in between. Above 7nm, t-

NWs show the largest    
   

while those of h-NWs and h-NTs are lesser and tend to get closer to 

each other with raising size. The NB    
   

 trend line closely tracks the h-NW benchmark relation 

with relative difference around 0.5%. The size-dependence of the specific surface areas are 

shown in the inset of Fig. 2 for all structures considered. The trends are found to be similar to 

those of     
   

 in Fig. 2.  

It is noted that the cross-sectional shape of h-NT contains additional dimension, i.e., the 

inner diameter      or the thickness t (          ). Thus, further calculations are performed 
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to identify the determining parameter for    
   

. In Fig. 3, the   -dependence of h-NT    
   

 is 

represented by three solid lines associated with constant    of 2.6nm, 5.2nm and 10.5nm, 

respectively, while the three dashed lines denote the   -dependence of h-NT    
   

corresponding 

to the thickness,    1.2nm, 2.1nm and 5.1nm, respectively. It is seen from the three dashed lines 

that    
   

 decreases greatly with the rising thickness. The small   -dependence is also observed 

for the thin h-NTs with t = 1.2nm but becomes negligible at t > 2.1nm. In addition, since there 

are only two independent factors among d0, di and t the large d0-dependence associated with 

constant di (i.e., the three solid lines in Fig.3) also reflects the sensitivity of h-NT    
   

 to the 

change of the thickness t. It is thus concluded that the thickness t is the key factor that controls 

   
   

 of h-NTs. The influence of di (or do) is observable only for ultra-thin h-NTs with thickness 

1.2nm, i.e., four atom layers. Again,  in the inset of Fig. 3, the trends of the specific surface area 

change with the size is plotted, which are quite close to their counterparts of    
   

   

Here, the shape effect shown in Fig. 2 is obtained for periodic axial boundary condition or 

infinitely long ZnO nanostructures where the end effects (or aspect ratio effect) on the 

deformation and material properties are excluded. However, ZnO nanostructures of finite length 

are used in their applications with certain constraints imposed on their two ends. It is thus of 

practical interest to further examine the possible effect of end constraints or the aspect ratio on 

the    
   

. To this end, we calculate the aspect ratio-dependence of    
   

 for h-NWs (d = 4.7nm) 

and t-NWs (b = 7nm) with finite length and nearly equal specific surface area (~0.09). In 

particular, four atom layers at each ends of structures are fixed to restrict their displacements in 

all directions and thus model the clamped ends for ZnO nanostructures. Here, the average 

volume per Zn-O dimer     needs to be calculated in evaluating    
   

of the nanostructures. For 
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ZnO nanostructures with periodic boundary condition    can be easily obtained as the 

nanostructures are perfect hexagonal cylinders and experience a uniform deformation when 

subjected to tensile force. However, when a finite length and fixed ends are concerned it is not 

that straight forward to calculate the volume as the end effect leads to non-uniform structural 

relaxation (before a force is applied) and deformation (when subjected to a tensile force). An 

appendix is thus attached to show the calculation methods for the finite-length nanostructures 

with clamped ends. The results obtained are presented in Table 5 showing that    
   

 of the h-

NWs increases from 2.157      at the aspect ratio 2.1 to 2.335      at the aspect ratio 10, and 

approaches the value 2.361     of infinitely long h-NWs when the aspect ratio further 

increases. A similar trend is observed for the t-NWs and consistent with Fig.2,     
   

of the t-NWs 

is higher than the one of the h-NW at nearly equal specific surface area. We note that a minor 

overestimation of    
   

 by around 1% at larger aspect ratio are observed due to the approximation 

method used in evaluating   of t-NWs. The relative change of    
   

 achieved for the h-NWs and 

t-NWs is 8.6% and 4.5%, respectively, when the aspect ratio grows from around 2 to infinitely 

large. It is understood that aspect ratio-dependent    
   

 arises from the constraints imposed on the 

two ends. Its influence on nano-piezoelectricity however is observable but small. As such, the 

trend shown in Fig.2 should remain nearly the same for the nanostructures of a finite length and 

with differently constrained ends. 

In the above analyses, the shape effect on the size dependence of    
   

 are achieved for the 

four different nanostructures considered. Specifically, the role of the specific surface area in the 

size and shape effect of    
   

, and the key factor   for the piezoelectrical effect of h-NTs are 

identified for the ZnO nanostructures. The possible end effect on    
   

 is also examined for ZnO 



10 

 

nanostructures. Here, comparison to experimental data is challenging as existing experiments 

[40-44] are mainly focused on the piezoelectric constant    
   

for the inverse piezoelectric effect 

of ZnO NWs, NBs or nanorods [40-44] instead of    
   

 obtained here. In addition, synthesized 

ZnO nanostrucutres typically yield sizes from hundreds of nanometers [42, 44] to micrometers 

[40].  The smallest ZnO h-NWs achieved in experiments have a diameter around 50nm [42], 

which is still much larger than the maximum 20nm size considered here. For these large nano-, 

meso- or micro-piezoelectrical structures, the shape or size effect on nano-piezoelectricity almost 

vanishes. This can be understood from Fig.2 where the shape or size effect decreases 

substantially with rising size or specific surface area. Specifically, large uncertainty arises in the 

experiments with the obtained values of    
   

 ranging from 1 to 45pm/V [40-44] due to the 

crystallographic defects in the fabricated NWs and different magnitudes [40] or frequencies [41] 

of the external loads applied in individual experiments. These however are not considered in the 

present MS simulations. As a result, a direct comparison cannot be achieved between the shape 

or size-dependence of    
   

 obtained in the present simulations and the available experimental 

data. In the meantime, first-principles calculations [12, 14, 18, 26-28] (for ultra-thin 

nanostructures), molecular dynamics simulations (MDSs) [19, 20, 30, 31] and a continuum 

model [32] have been efficiently used as an alternative way to investigate the size effect or shape 

effect on piezoelectricity of small pristine nanostructures that cannot be easily synthesized 

experimentally. We, therefore, form comparison with the previous simulations and theoretical 

models in predicting the size and shape effects on nano-piezoelectricity. It is shown that the 

shape effect on ZnO nanostructures and the importance of thickness t for ZnO h-NTs obtained in 

this work agrees qualitatively with MDSs [19, 20] and the most recent theoretical model [32] for 

GaN nanostructues. The trend of    
   

 to size change is also found to be consistent with the first-
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principles calculation for ultrathin ZnO and GaN NWs [14,28,29], e.g., the diameter from 0.6nm 

to 2.4nm [14]. It is thus of great interest to further explore the physical origins behind the 

observation at atomic level, and reveal their pathway to generate the shape-dependent 

piezoelectricity at the nanoscale. These are of scientific and engineering interest and considered 

as fundamental issues in the research of nanomaterial and nanomechanics.  

 

3.2. Physical mechanisms of the shape effect 

As shown by Qin et.al. [18],  the     
   

 description is given by Eqn. 6, which is adopted here 

to characterize the cross-sectional shape effect.  

     
   

                              
       

              (6) 

Here,    is the axial strain,     is the average dipole moment per Zn-O dimer. The evaluation of 

all quantities in Eqn. 6 is presented in Tables 2, 3 and 4 for t-NWs, h-NTs and h-NWs, 

respectively. As shown in Tables 2 to 4, amongst the structures considered               
   is 

between 2.45 C/m
2
 and 3.23 C/m

2
 which is around one order of magnitude greater than the 

absolute value of     
             varying from 0.27 to 0.41 C/m

2
. More importantly, 

              
   is found to be much more sensitive to the shape variation than is      

   

         . Therefore, to extract the origins of the shape effect on    
   

 we shall focus our 

attention on its dominant part               
  .  

 

3.2.1 Shape effect due to surface layer 

In this section, we first discuss the physical orgins of the shape effect (Sec.3.1) from the 

surface layers. It is noted in Tables 2 and 3 that, for h-NTs compared with t-NWs, the 

                            
   (or      

   
) at small characteristic size mainly arises from the 
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variation of   
   (inverse average volume) while          remains nearly unchanged. For 

example, for h-NT versus t-NW of 4.9nm,          is slightly lower (~3%) but   
   is much 

greater (~10%) leading to higher               
          

   
) of the h-NT. It is understood that 

   
   reflects the initial volume contraction arising primarily from residual surface stress whose 

effect can be enhanced by raising the specific surface area. As shown in the inset of Fig. 2, at the 

small size (< 6nm) t-NTs with inner and outer surfaces exhibit much higher specific surface area, 

which naturally leads to much greater residual surface stress. The higher surface stress finally 

results in larger initial volume contraction and thus, greater    
   

 of h-NTs. It is thus concluded 

that, as far as larger specific surface area is considered, the initial volume contraction due to the 

residual surface stress plays an central role in determining the shape effect on nano-

piezoelectricity.  

In addition, it is noted in Tables 2 to 4 that, across the three nanostructures studied, 

both          and   
   decrease with the rising characteristic size or the decreasing specific 

surface area (See the insets in Figs. 2 and 3). Specifically,   
   of h-NTs (Table 3) is found to 

decrease more rapidly than   
   of t-NWs (Table 2) while the rate of change in          are 

quite close. As a result, when the size increases,               
          

   
) of h-NTs decreases 

more rapidly than that of t-NWs. It finally becomes lower than that of t-NWs (Table 2) and 

approaches its counterpart of h-NWs (Table 4) at sufficiently large size. These results closely 

reflect the shape effect on    
   

 achieved in Fig. 2 for t-NWs, h-NTs and h-NWs. It is thus 

confirmed that the transition from around 10%     
   

 enhancement to about 3% reduction of h-

NTs (relative to    
   

of t-NWs) shown in Fig.2 is attributable to the quicker decay of volume 

contraction of h-NTs with the decreasing specific surface area.  
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Indeed, the initial volume contraction (  
  ) and its sensitiveness to the variation of the 

specific surface area are found to play a central role in determining the shape effect on    
   

 of h-

NTs and t-NWs. As mentioned above, this volume contraction is mainly due to the residual 

surface tension and thus considerably decreases with the decreasing specifc surface area. It is 

however independent of the effect of surface piezoelectricity in ZnO nanostructures. These 

results and analyses eventually converge to the fact that the residual surface stress is one of the 

major determinants of piezoelectricial effect at the nanoscale and it impacts the nano-

piezoelectricity by enhancing the volume contraction of nanostructure to improve dipole moment 

per unit volume.  

 For the shape-effect between h-NW and NB an oddity occurs as at the same size the values 

of     
   

are near parity (Fig.2) while the specific surface area are up to ~30% larger for NBs (Fig. 

2 inset). The additional {   ̅ } surface planes in NBs seem to suggest an obvious explanation in 

difference of surface layer behaviour, however, a comparison of the terms in Eqn. 6 shows 

additional effects.  The evaluated Eqn. 6 terms are presented in Table 6 for h-NW and NB sizes 

of 7.5 and 12.1 nm. First, term A is larger by 1-~1.6% in NBs owing to larger   
   and coheres 

with their greater specific surface areas. However, term B (negative) is also smaller for NBs by 

10-15% due to a larger absolute values of    
      . Therefore, the more sensitive volume 

change to strain competes with the effect from higher specific surface area in NBs resulting in 

the marginal     
   

 shape-effect observed between h-NWs and NBs.   

3.2.2 Shape effect from internal layers  

Next, let us find out the physical origin of the shape effect from the internal layers by 

comparing t-NWs with h-NWs. It is found in Tables 2 and 4 that               
          

   
) of 

t-NWs is greater across the characteristic sizes considered.   
   of t-NWs is, however, very close 
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to that of h-NWs. For example, at the size of 4.9nm          and   
   of t-NWs are, 

respectively, 8% and 2% higher, which decreases to 2.6% and 0.5% at 20.6nm (Tables 2 and 4). 

Thus, the larger               
   of t-NWs is primarily due to its greater         .  

To reveal the polarization mechanism underlining the above t-NW versus h-NW shape 

effect, we further calculate           
   for each concentric Zn-O layer that maintains the cross-

sectional geometry of the corresponding nanostructures. The surface and sub layers are defined 

as the outermost and the subsequent interior Zn-O layers. All remaining interior layers are 

referred to as core layers. The results are presented in Figs. 4 and 5 for h-NWs and t-NWs. Here, 

the innermost core layer is denoted as layer 1. The outer layers are labelled by integers in 

ascending order when moving outwards in the radial direction. 

For an h-NW,           
  of the core layers is nearly a constant which rises gradually 

with growing size but is always below the bulk value 3.55    (Fig. 4). It then abruptly increases 

above the bulk at the sub (by ~3-6%) and surface layers (by ~21%). Differently, in t-NWs 

          
   of layer 1 reaches its maximum value around 27% higher than the bulk. It then 

decays rapidly in the neighbouring 3 to 4 layers (Fig. 5). After that, it decreases gradually to 

finally reach its minimum value above 3.55    . At the sub and surface layers, the sudden 

increase of           
  occurs, which is up to around 21% higher than the bulk. This rapid 

growth in           
   at the surface layers is found to be very similar in both t- and h-NWs. 

The surface piezoelectricity thus can contribute to the shape-dependence on    
   

 when the 

fraction of surface Zn-O dipoles (measured by the specific surface area) is different between the 

two NWs. In contrast,            
  distributions across the core layers are substantially different 

in the two NWs. Thus, the different distributions should contribute largely to the disparity in the 

overall          between the two NWs. The change made by the distinct distributions can be 
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substantial even if the two NWs have the same specific surface area. For example, for h-NW of 

4.9nm and t-NW of 6.7nm while the specific surface areas are nearly equal (Fig. 2 inset) the t-

NW    
   

 is noticeably higher than the h-NW value (Fig. 2).   

Here, it is worth mentioning that           
  distribution is substantially different for h-

NWs (Fig.4) and t-NWs (Fig.5) no matter what characteristic size is considered. This leads to 

different overall value of           
  for the two NWs at the small size. Nevertherless, with the 

rising size the overall values of the two NWs will get closer to each other and finally converge to 

the bulk value at sufficiently large size. This is simply because the contribution of the surface 

layers and the central layers of the t-NWs to the overall           
  value decreases and then 

vanishes when the size is raised to a sufficiently large value.  

To understand the different           
  distribution, we examine the structural details of 

h- and t-NWs. Their core layers form hexagonal and triangular shells, respectively, with the 

length equal to l. The cross-sectional views of the shells (viewed in the axial direction [0001]) 

are shown in Fig. 6a and b. For a core layer of h-NWs (Fig. 6a), a four-atom unit (highlighted in 

green in Fig. 6c) can be viewed on the lateral surfaces of the shell in [  ̅  ] direction. This unit 

is the repeating unit of h-NW layers, which shows four Zn-O dipoles denoted by their 

displacement vectors (in the direction of tensile strain) as   ,   ,    and   , respectively (Fig. 

6c). For a core layer of t-NWs (Fig. 6b), the same repeating units are found between the corners 

of its triangular cross-section, while, at the corners a six-atom repeating unit is achieved (Fig. 6d) 

in the axial direction [0001]. The shape effect on these two NWs thusly lies in the different 

corner structures of t-NWs where the six-atom units possess additional Zn-O dipoles denoted by 

  
 ,   

  and   
  (Fig. 6d).   
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As verification of this explanation, we re-calculate the           
  distribution for the 

4.9nm t-NW by excluding the contribution from the additional corner Zn-O dipoles (Fig. 6d) 

within all t-NW core layers. The distribution is plotted in Fig. 7 in comparison with the 4.9nm h-

NW distribution. Evidently, the modified           
  distribution of t-NW no longer exhibits a 

large increment against bulk value at its layer 1 (the innermost layer) and are nearly parity with 

h-NW values of 3.39     (below bulk). The results confirm that, for t- and h-NWs, different 

          
  distributions are due to the extra Zn-O dipoles at the corner of t-NW layers (Fig. 

6d). 

In our simulations of tensile test, we calculate in Fig. 8 the axial displacements of all atoms 

in the relaxation after a (uniform) strain increment (See details in Sec.2). The results show that 

while    reduces,   remains unchanged, leading to increased   
 ,   

  and   
 . As such,   

 ,   
  and 

especially   
  increases more sensitively to the tensile strain than does   , i.e., 

   
 

   
 

   

   
  (i = 1, 2 

and 3). Here,   
  represents the magnitude of   

  (i = 1, 2 and 3) and the corresponding dipole 

moment is given by     
  where   is the charge of dimers independent of    (same for    in Fig. 

6). Thus, the additional strain-sensitive dipole   
  (i =1, 2 and 3) in the six-atom unit of t-NWs 

can greatly increase           
   through higher 

   
 

   
  (i=1, 2 and 3). The high sensitiveness of   

   

to an external strain    at least partially explains the mechanisms behind the enhancement of 

          
  due to the additional Zn-O dipoles found in the six-atom units in t-NWs (Fig. 6d). 

Conclusions 

In this study, MS simulations and theoretical analyses are combined to examine the shape 

effect on the axial piezoelectric constant    
   

 of ZnO nanostructures with an emphasis on its 

physical mechanisms. The atomic fraction of the strain-sensitive Zn-O dipoles, the initial volume 
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contraction   
   induced by residual surface stress and the surface piezoelectricity are identified 

as main physical origins leading to the (cross-sectional) shape-dependence of PZC. The impacts 

of these small-scale effects decrease with the rising characteristic size or the specific surface area 

of the ZnO nanostructures. On the other hand, the sensitivity of volume change to axial strain is 

high for NB and exerts significant influence on their piezoelectric effect independent of the 

specific surface area. The above results demonstrate that a sizable contribution to shape and size 

dependence of nano-piezoelectricity is not determined by the surface layers and thus, cannot be 

fully controlled entirely by the specific surface area.  

At small characteristic sizes, h-NTs and t-NWs exhibit large specific surface area and thus 

higher residual surface stress. In this case, the surface layer-induced volume contraction  

  
   plays a major role in determining the PZCs. As a result, h-NTs with larger volume 

contraction (i.e., higher   
  ) show greater    

   
 than that of t-NWs. With rising size,   

   of h-

NTs however declines more rapidly than   
   of t-NWs, giving lower    

   
 in h-NT at relatively 

large size. 

For t-NWs and h-NWs, the greater portion of the strain-sensitive Zn-O dipoles (i.e., those 

with larger displacement change due to an applied strain) in t-NWs greatly enhance their 

         at the core layers, leading to greater     
   

  of t-NWs. The portion of the strain-

sensitive dipoles in t-NWs then decreases with the rising size but is always larger than its 

counterpart of h-NWs even if they have the same specific surface areas.  

In addition, surface piezoelectricity responsible for the size effect on    
   

 also contributes to 

the shape effect on    
   

. Its influence is implemented via the variation of the specific surface 

area induced by changing the cross-sectional shapes.  
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Appendix 

Finite Length Nanostructure Volume Estimation 

 

 

Figure 1. The cross-sectional area change along Z (blue dot) and exponentially fitted function (dot-dashed) line for 

h-NW of d=4.9nm and aspect ratio 1 at zero strain. 

 

The volume of an encapsulating continuum body is again utilized to estimate finite nanostructure 

volume (Fig.1 marked in the red box) at each strain state. The layers of fixed atoms (grey) used 

to model clamped ends are not included. As the cross-sectional area varies along the 

nanostructure length in a symmetrical fashion, the cross-sectional areas are first estimated for at 

least 8 evenly spaced points along the nanostructure axial direction, z, for half of the 

nanostructure length. The cross-sectional area is calculated by a technique similar to section 2 

via finding its bounding contours. The relationship between the cross-sectional area and z is then 

fitted by exponential functions for the examined length. For higher aspect ratios of 7.8 and 10, 

additional cross-sectional area evaluations are included in order to appropriately fit the 

exponential relation as the change in cross-sectional area become very rapid. The effective 

volume of the nanostructure is finally evaluated by integrating this fitted function across half of 

the nanostructure length and doubling its value.    
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Figure 1. Cross-sectional geometry of all [0001] oriented nanostructures considered, where the 

black contour lines are the cross-sectional area boundary. a) h-NW, d is the diameter. b) h-NT, di 
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and do are the inner and outer diameters respectively (here            ). c) t-NW, b is the 

base length. d) NB, t is the thickness and w the width.   

 

 

Figure 2. The change of    
   

with characterize size of all nanostructure types. The inset shows 

the specific surface area relation with characterize size. 
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Figure 3. The change of    
   

with characterize size for all h-NTs considered. 
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Figure 4. Radial distribution of           
 
 for all h-NWs. The horizontal dashed line marks the 

bulk value of 3.55   . 
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Figure 5. Radial distribution of           
 
 for all t-NWs. The horizontal dashed line marks the 

bulk value of 3.55   . 
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Figure 6. Typical Structure of h-NW and t-NW core layers where the O atoms are colored in blue 

and Zn atoms in red. a) and b) cross section of h-NW and t-NW core layer structure, viewed 

along the NW axial [    ̅] direction. c) Structure of the h-NW layer and its corner structure as 

highlighted in green in a) viewed along the transverse [   ̅ ] direction. Here            show the 

displacement vectors of the dipoles within the unit where    ([    ̅] directed) is negative. d) 

Structure of the t-NW layer and its corner structure as highlighted in red in b) viewed along the 

[   ̅ ] direction. The displacement vectors of the positive ([    ] directed) dipoles produced 

by the additional Zn-O pair are labelled by           
 .  
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Figure 7. Distribution of           
  for 4.9 nm h-NW and 4.9 nm t-NW. The additional Zn-O 

atoms (Fig. 6d) in the t-NW layers have been removed. The horizontal dashed line marks the 

bulk value of 3.55   . 
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Figure 8. Characteristic relaxation behaviour, at +0.5% strain state, for a primitive wurtzite unit 

cell from the t-NW core layer corner of Fig. 6b. The atomic displacement (with the affine 

deformation removed) in the axial direction is marked by the blue arrow nearest to the O atoms 

(blue) and the red arrow nearest to the Zn atoms (red). This results in a shortening of    and 

lengthening of            
  (refer to Fig. 6). C, the wurtzite [    ] lattice constant, does not 

change with relaxation due to periodicity. Similar behavior is observed in the h-NW core layers. 

Table 1. Characteristic sizes of all ZnO nanostructures examined 

h-NW/t-

NW 
d/b (nm) 

h-NT 

(di = 2 nm) 

do 

(nm) 

h-NT 

(di = 4 nm) 

do 

(nm) 

h-NT 

(di = 10 nm) 

do 

(nm) 

1 4.906 1 4.906 5 7.523 8 12.756 

2 6.716 2 6.869 6 9.485 9 14.719 

3 12.756 3 12.756 7 15.373 10 20.606 

4 15.373       

5 20.606       
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Table 2. Evaluated results of Eqn. 6 for t-NWs, where                 
   and   

    
             in units of     ⁄  . 

t-NW                 
          A     ⁄               

         
          ⁄   

4.9 nm 3.981 0.04719 3.010 1.489 -0.01724 -0.411 

6.7 nm 3.878 0.04565 2.836 1.409 -0.01753 -0.396 

12.8 nm 3.740 0.04388 2.629 1.299 -0.01814 -0.377 

15.4 nm 3.710 0.04353 2.587 1.274 -0.01831 -0.374 

20.6 nm 3.671 0.04310 2.535 1.242 -0.01857 -0.370 

 

Table 3. Evaluated results of Eqn. 6 for h-NTs, where                 
    and   

    
             in units of     ⁄  . 

h-NT                 
               ⁄               

         
          ⁄   

1 (do=4.9 nm) 3.870 0.05213 3.2321 1.2955 -0.01747 -0.3625 

2 (do=6.9 nm) 3.699 0.04712 2.7922 1.2266 -0.01846 -0.3627 

3 (do=12.8 nm) 3.609 0.04399 2.5438 1.1777 -0.01900 -0.3586 

4 (do=7.5 nm) 3.894 0.05183 3.2333 1.2955 -0.01598 -0.3317 

5 (do=9.5 nm) 3.704 0.04706 2.7928 1.2261 -0.01826 -0.3586 

6 (do=15.4 nm) 3.610 0.04400 2.5446 1.1776 -0.01905 -0.3593 

7 (do=12.8 nm) 3.909 0.05130 3.2133 1.2957 -0.01294 -0.2687 

8 (do=14.7 nm) 3.709 0.04690 2.7866 1.2258 -0.01760 -0.3457 

9 (do=20.6 nm) 3.611 0.04398 2.5444 1.1776 -0.01904 -0.3592 

 

Table 4. Evaluated results of Eqn. 6 for h-NWs, where                  
    and   

    
             value in units of     ⁄  . 

h-NW                 
         A     ⁄               

         
    B     ⁄   

4.9 nm 3.668 0.04625 2.718 1.217 -0.01833 -0.357 

6.7 nm 3.635 0.04496 2.619 1.196 -0.01857 -0.356 

12.8 nm 3.600 0.04353 2.511 1.170 -0.01898 -0.356 

15.4 nm 3.587 0.04325 2.485 1.165 -0.01911 -0.357 

20.6 nm 3.577 0.04291 2.459 1.159 -0.01927 -0.358 
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Table 5.    
   

 results for finite h-NWs (d = 4.7nm) and t-NWs (b=7nm) of clamped ends, 

varying aspect ratio and nearly equal specific surface area in units of     ⁄  . 

Aspect ratio 1.6 2.1 3.0 5.0 7.8 10.0 ∞ 

   
   

     ⁄   

 

h-NW  

 
 

2.157 
 

2.260  2.335 2.361 

 

t-NW   

 
2.330  2.385  2.455 2.465 2.441 

 

Table 6 . Evaluated results of Eqn. 6 for h-NWs and NBs with w/t ratio of 2, where    

              
    and       

             value in units of     ⁄  . 

h-NW                 
         A     ⁄               

         
    B     ⁄   

7.5 nm 3.631 0.04469 2.600 1.191 -0.01862 -0.355 

12.1 nm 3.635 0.04361 2.516 1.172 -0.01894 -0.356 

NB                 
         A     ⁄               

         
    B     ⁄   

7.5 nm 3.651 0.04516 2.642 1.203 -0.02110 -0.407 

12.1 nm 3.611 0.04393 2.541 1.180 -0.02078 -0.393 

 

Research Highlights 

 Atomistic study of shape effect on piezoelectricity of four nanostructures. 

 Identified the physical origin of the shape effect including the fraction of strain-sensitive 

dipoles, surface piezoelectricity and volume contraction. 

  While the latter two are effects of the free surface, the influence of the strain-sensitive 

dipoles is purely a result of the variation in cross sectional geometry. 

 The greatest    
   

is achieved for h-NTs at small size and t-NWs at large size (critical size 

of ~7nm).    
   

of h-NWs and NBs are close but always lower than    
   

 of  h-NTs and t-

NWs. 
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