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We explain in detail the quantum-to-classical transition for the cosmological perturbations using only the 
standard rules of quantum mechanics: the Schrödinger equation and Born’s rule applied to a subsystem. 
We show that the conditioned, i.e. intrinsic, pure state of the perturbations, is driven by the interactions 
with a generic environment, to become increasingly localized in field space as a mode exists the 
horizon during inflation. With a favourable coupling to the environment, the conditioned state of the 
perturbations becomes highly localized in field space due to the expansion of spacetime by a factor 
of roughly exp(−c�N), where �N ∼ 50 and c is a model dependent number of order 1. Effectively 
the state rapidly becomes specified completely by a point in phase space and an effective, classical, 
stochastic process emerges described by a classical Langevin equation. The statistics of the stochastic 
process is described by the solution of the master equation that describes the perturbations coupled to 
the environment.

© 2018 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

It is breathtaking that quantum fluctuations [1–6] in the in-
flating universe [7–12] became the seeds of the structure in the 
universe and were imprinted as small fluctuations of the CMB. 
However, there seems to be a missing chapter in the standard 
story, namely, how the quantum fluctuations actually became clas-
sical. If one is only interested in probability distributions then the 
issue can be discussed only in terms of the degree of decoherence 
and so it sits there as the elephant in the room.

The goal here is to go beyond a description of a quantum pro-
cess in terms of probabilities to one that can describe the tra-
jectory of a single system. The classic “Wigner’s Friend” thought 
experiment illustrates the issues involved in a very simple setting, 
but one that is not meant to be at all realistic.1 The friend mea-
sures a qubit initially in the state c+|+〉 + c−|−〉 and according to 
the external observer, Wigner, the total state of the system is the 
entangled state c+|+〉|F+〉 + c−|−〉|F−〉. More specifically, Wigner 
associates the reduced state ρ = |c+|2|F+〉〈F+| + |c−|2|F−〉〈F−| to 
the friend. On the contrary, for the friend, Born’s rule implies that 

E-mail address: t.hollowood@swansea.ac.uk.
1 True macroscopic systems cannot be described by simple states like |F±〉 be-

cause of entanglement with the environment that is being ignored here. In the 
simple toy model, it is the qubit that effectively decoheres the friend.

their state is either |ψ〉 = |F±〉 with probability |c±|2, respectively.2

So the state of the system depends on the frame of reference. The 
external observer, Wigner, describes the friend with the uncon-
ditioned state ρ whereas in the friend’s frame their state |ψ〉 is 
conditioned:

W (unconditioned state):

ρ = |c+|2|F+〉〈F+| + |c−|2|F−〉〈F−| ,

F (conditioned state): |ψ〉 =
⎧⎨
⎩

|F+〉 prob = |c+|2 ,

|F−〉 prob = |c−|2 .

(1.1)

The two states are related via a stochastic average

ρ = E (|ψ〉〈ψ |) . (1.2)

The key distinction between the two states is that the uncondi-
tioned state ρ exhibits entanglement – it is a mixed state – while 
the conditioned state |ψ〉 is pure but random. So there is a duality 
of perspective between entanglement and randomness: ρ ←→ |ψ〉, 
which gives rise to a form of observer complementarity.3

2 The states |F±〉 are the states in the generically unique decomposition of ρ into 
an orthogonal ensemble or, equivalently, the eigenvectors of ρ .

3 By recognizing that the state depends on the frame of reference (or perspec-
tive, or context) one realizes a unification of many worlds and Copenhagen quantum 
mechanics.

https://doi.org/10.1016/j.physletb.2018.08.073
0370-2693/© 2018 Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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In the context of the cosmological perturbations, the uncon-
ditioned state ρ is the one that is analysed in concrete models 
involving their interaction with some environment, consisting ei-
ther of other fields or self interactions of the perturbations. After 
various approximations, the state ρ satisfies a master equation that 
describes how the perturbations are decohered by the environ-
ment. This points to the fact that a classical description should be 
valid and probability densities can then be extracted from ρ . How-
ever, if one wants to describe how a single perturbation becomes 
classical, we need a description of the trajectory of the individual 
mode, in other words the state from the frame of the reference 
of the mode itself. This is the conditioned state constructed via 
the Born rule to satisfy (1.2). The formalism then decides whether 
the quantum-to-classical transition happens: does the state |ψ〉 be-
comes localized in phase space? The goal of this paper is to show 
that the conditioned state of the perturbations does become classi-
cal driven by interaction with the environment and the inflationary 
expansion.

It is well known that there are an infinite number of ways to 
write the solution of a master equation ρ as a stochastic average 
as in (1.2), each known as an unravelling.4 However, there is a par-
ticular unravelling that follows from implementing the Born rule 
to a subsystem, the perturbations in the present context. This is 
the Born unravelling defined in [17] and first described by Diósi 
[18,19].5 This has a phenomenology that is similar to another un-
ravelling, known as quantum state diffusion [27–29] which has been 
widely studied as a description of the quantum-to-classical tran-
sition in [30–38]. In both unravellings, the quantum-to-classical 
transition happens dynamically when the conditioned state be-
comes sufficiently localized that Ehrenfest’s theorem applies and 
an effective description in terms of a position in phase space ap-
plies. In [17] it was argued that the quantum-to-classical transition 
becomes a dynamical process that involves the following concep-
tual steps:

• The unconditioned state ρ of the subsystem of interest sat-
isfies a master equation, within the Born–Markov approxima-
tion.

• The conditioned state |ψ〉 (the state from the frame of ref-
erence of the subsystem) satisfies a particular unravelling of 
this master equation which takes the form of deterministic 
evolution with a non-linear, non-Hermitian, Hamiltonian, in-
terspersed with stochastic jumps into orthogonal states (aris-
ing from applying the Born rule to each coherent interaction 
of the system with the environment).

4 The terminology comes from the theory of quantum trajectories that describes 
the behaviour of a subsystem conditioned on the measurements made on it [13–16].

5 See also [20–23]. As shown in [20], the Born unravelling also defines a set of 
consistent histories in the formalism of [24–26].

• Under favourable conditions, the dynamics of the conditioned 
state drive it to become localized on macroscopic scales and 
Ehrenfest’s Theorem can be invoked.

• The localized state can be described by point in phase space 
(i.e. a classical state) evolving according to the classical equa-
tions of motion plus stochastic noise, i.e. a Langevin equation.

• Finally, to bring things full circle, the Langevin equation has an 
associated Fokker–Planck equation whose solution is identified 
with the Wigner function of the unconditioned state in the 
semi-classical limit.

The purpose of this work is to apply this formalism to the cos-
mological perturbations by considering their evolution according to 
the Born unravelling. We will argue that, with a suitable coupling 
to the environment, although the unconditioned state spreads out 
in field space when a mode exits the horizon during inflation, the 
conditioned state is driven to become increasingly localized in field 
space as a result of the expansion (just as described above). In the 
end the usual state analysed in the literature—the unconditioned 
state—becomes a probability density for the conditioned state that 
is effectively specified by a point in field space. We can follow the 
stochastic evolution of this state and find that it follows a random 
walk in field space once the mode under discussion has crossed 
the horizon. The CMB across the sky can be viewed as an ensem-
ble of endpoints of the classical stochastic process.

The scalar curvature perturbations ζ are effectively described 
by a scalar field ν = √

2εaζ , the Mukhanov–Sasaki variable, each 
Fourier mode of which is effectively a parametric oscillator whose 
Schrödinger equation looks like that of non-relativistic quantum 
mechanics6:

−∂2ψ

∂ν2
+ ω2ν2ψ = 2i

∂ψ

∂τ
. (1.3)

Here, ν is identified with either of the real combinations (νk +
ν−k)/

√
2 or i(νk − ν−k)/

√
2, of wave vector k, and τ is the con-

formal time during inflation. The latter has negative values and 
approaches τend at the end of inflation. A mode exits the horizon 
when k|τ | ∼ 1 and the modes of interest for the CMB and structure 
formation underwent �N ∼ 50 e-folds before the end of inflation, 
so k|τend| ∼ e−�N for the modes of interest. Above, a(τ ) is the 
scale factor.

The power spectrum of the scalar curvature perturbations is 
simply related to the variance of the quantum mechanical prob-
lem,7

�2
ζ = k3

2π2
〈ζ ζ 〉 = k3

4π2εa2
〈ν2〉 . (1.4)

In the above,

ω(τ)2 = k2 − (a
√

2ε)′′

a
√

2ε
, (1.5)

where ε is a slow roll parameter. For present purposes, we will 
ignore slow roll effects and assume an exact de Sitter geometry 
during inflation for which a = −1/(Hτ ), for constant H , so ω2 =
k2 − 2/τ 2 and �2

ζ = k3 H2τ 2〈ν2〉/4π2ε.
The initial conditions of the mode are that at early times, 

k|τ | 	 1, the mode sits in the ground state of the oscillator with 
ω = k, the Bunch–Davies vacuum,

6 We present the Schrödinger equation in a form that looks like a harmonic os-
cillator. The Hamiltonian is related to the Hamiltonian of the perturbations by a 
canonical transformation that just shifts the momentum π → π − (a′/a)ν. So before 
shifting, we have (classically) π = ν′ while after shifting π = ν′ −(a′/a)ν = (

√
2εa)ζ ′ .

7 In these formulae, we are ignoring the delta functions of the wave vector.
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ψ(ν, τ ) = N e−kν2/2 . (1.6)

Then as τ increases, at some point the mode crosses the horizon 
when k|τ | ∼ 1. The oscillator becomes unstable and the state be-
gins to spread out. We can describe the evolution in terms of the 
growth of the variance V ν = 〈ν2〉8:

1

4
V ′′′

ν + ωω′V ν + ω2 V ′
ν = 0 . (1.7)

In particular, as τ becomes small, the variance grows like

V ν −→ 1

2k3τ 2
, (1.8)

and the state is becoming highly squeezed in the conjugate direc-
tion. This implies that the perturbation ζ freezes since the power 
spectrum �2

ζ = H2/8π2ε becomes independent of k and τ at the 
end of inflation.

The perceived problem is that the state, although spread out in 
the field direction, is still a pure state, so how can |ψ(ν, τ )|2 be 
interpreted as a probability distribution in field space even though 
this is phenomenologically the right thing to do?

2. Born unravelling

In this section we digress to consider quantum mechanics. In 
quantum mechanics, an important rôle is played by observers, or 
more precisely frames of reference associated to subsystems. Con-
sider the case where a subsystem S is coupled to its environment 
E with a Hilbert space: H = HS ⊗ HE . As the subsystem S in-
teracts with E , the total state will build up entanglement. An 
external observer, describes the composite system with the total 
state |�〉, or if describing the subsystem S specifically, then the 
reduced density matrix ρ = TrE |�〉〈�|. This is the unconditioned
state. However, the state from the frame of the subsystem S ex-
periences entanglement as randomness according to Born’s rule: 
so the state is one particular state of the ensemble determined by 
the eigen-decomposition of the reduced density matrix of S ,

ρ =
∑

i

pi|ψi〉〈ψi| . (2.1)

The eigenvalues pi are probabilities and the possible states |ψi〉 are 
orthonormal.9 From the point-of-view of the unconditioned state 
ρ , the |ψi〉 are distinct branches while the conditioned state only 
picks one of the states |ψi〉 determined randomly according to the 
probabilities.

If S interacts with E over a short time interval δτ , then an ini-
tial pure state of S , |ψ〉 evolves, as a conditioned state, randomly 
to one of the |ψi〉 with probability pi . One of the probabilities will 
be O(δτ 0) while the others will be O(δτ ). In realistic situations, 
entanglement with the environment is dispersed rapidly and so we 
can model the environment as a series of subsystems Ea . The sub-
system S interacts with a single component Ea for a short space 
of time δτ and interacts with the next component Ea+1 in turn: 
see Fig. 1. After each interaction, entanglement is set up and the 
conditioned state evolves randomly as above. The Born–Markov ap-
proximation in this context means that the subsystem Ea interacts 
with S over the short time interval and then never interacts with S
again so the branches are completely decoherent for all subsequent 

8 Note that for the unconditioned state 〈ν〉 = 0.
9 We can assume that in a generic situation there are no degeneracies. Any de-

generacy that arises only occurs in an instance of time and does not lead to any 
non-analyticity in the following formalism.

Fig. 1. The ticker-tape paradigm for the environment that lies behind the Born–
Markov approximation. In each time interval δτ , the system S interacts with a fresh 
bit of the environment and becomes entangled with it. These parts of the environ-
ment then disperse to leave only their entanglement and no further interaction. 
This continually decoheres the states of S and gives rise to distinct branches. The 
conditioned state of S follows one of these branches stochastically.

time. This approximation is known to be good for subsystems in-
teracting with large environments which can rapidly disperse the 
entanglement with no back reaction.10 Within this approximation, 
at longer time scales, we can effectively take δτ → 0 and derive 
an autonomous differential equation—the master equation—for the 
unconditioned state of S , the density matrix ρ . This can always, on 
general grounds, can be written in Lindblad form as [39–41]

i
∂ρ

∂τ
= [H,ρ] + i

2

∑
i

(2Aiρ A†
i − A†

i Aiρ − ρ A†
i Ai) , (2.2)

where H is an effective Hamiltonian and Ai are the Lindblad oper-
ators.

Given the master equation (2.2), the dynamics of the condi-
tioned state as described above is then determined as follows. 
The time interval δτ for the interaction with each element of the 
environment is infinitesimal at the level of the master equation. 
So during the time interval, there is a probability O(δτ 0) that 
the state |ψ〉 evolves deterministically via an effective Schrödinger 
equation

∂|ψ〉
∂τ

= −iHeff|ψ〉 , (2.3)

and a probability of O(δτ ) that it jumps into an orthogonal (but 
unnormalized) state |ψi〉 = J i |ψ〉, which defines the branch creation 
operator J i . The normalization determines the rate of the jumps via

ri = 〈ψ | J †
i J i |ψ〉 , (2.4)

and the orthogonality condition requires

〈ψ | J i|ψ〉 = 0 , 〈ψ | J †
i J j|ψ〉 = riδi j . (2.5)

We now determine the branch creation operators explicitly. The 
overall consistency condition is that performing an average over 
the stochastic evolution of the conditioned state should give the 
unconditioned state, as in (1.2). Let us show this for the case when 
there is a single Hermitian branch creation operator J (see [17] for 
the general case). Over a short time interval δτ , the unconditioned 
state should correspond to summing over the possible conditioned 
states, weighted with their probability, starting from ρ = |ψ〉〈ψ |. 
With one branch creation operator J , there are two states to sum:

10 Note that the assumption here makes the formalism more tractable but is not 
necessary.
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ρ = |ψ〉〈ψ |

ρ − iHeffρ δτ + iρH†
eff δτ

Jρ J/r ,

p = 1 − r δτ

p = r δτ

(2.6)

implies

ρ + δρ = (
1 − rδτ

)(
ρ − iHeffρ δτ + iρH†

eff δτ
) + 1

r
Jρ J (rδτ ) .

(2.7)

The r = 〈ψ | J 2|ψ〉 in the denominator here is needed to normalize 
the state Jρ J . Taking δτ → 0, we can write this as

∂ρ

∂τ
= −iHeffρ + iρH†

eff + Jρ J − rρ . (2.8)

Matching this to the master equation (2.2) implies there is one 
Lindblad operator, and given the constraint that J |ψ〉 is orthogonal 
to |ψ〉, fixes the relation

J = A − 〈ψ |A|ψ〉 , (2.9)

and the effective Hamiltonian that determines the evolution of the 
conditioned state in-between the jumps is

Heff = H − i( J 2 − r)/2 . (2.10)

This is a non-Hermitian, non-linear, Hamiltonian and we will see 
that it has remarkable properties for the evolution of the condi-
tioned state. Non-linearity arises because the operator J depends 
implicitly on the state |ψ〉 via the expectation value in (2.9). In 
particular, the non-Hermitian term in (2.10) has the tendency of 
driving the state towards a state that is annihilated by J : in other 
words, a state that is localized in the A eigenbasis.

It is worth emphasizing that the dynamics of the conditioned 
state is defined for any quantum subsystem in [17] in a completely 
general way that goes beyond the Born–Markov approximation.

3. Unravelling the perturbations

There is a large literature discussing how cosmological pertur-
bations became classical, including [47–67], but we should empha-
size that in the present work we are considering a specific mech-
anism for how classical trajectories arise from quantum systems 
driven by decoherence by generic environmental interactions (Born 
unravelling). The question is whether this formalism can success-
fully explain how the perturbations appear as effectively classical, 
but stochastic, quantities. Note that in other approaches, it is sim-
ply assumed that the perturbation are classical stochastic variables, 
here we will show how that arises via the unravelling formalism.

It is unrealistic to suppose that the curvature perturbations 
evolve in isolation. We can expect that they are interacting with 
other fields and also coupled by self interactions. So the perturba-
tions will form a subsystem of a much larger system. When the 
perturbations couple linearly to the environment then, subject to 
other approximations [43,44], the Schrödinger equation (1.3) will 
be generalized to a master equation with a single Lindblad opera-
tor proportional to the field mode ν:

−∂2ρ

∂ν2
+ ∂2ρ

∂ν′2 + ω2(ν2 − ν′2)ρ − iσ 2(ν − ν′)2ρ = 2i
∂ρ

∂τ
, (3.1)

where ρ = ρ(ν, ν′) is the density matrix in the field basis and the 
term involving σ = σ(τ ) describes the decoherence arising from 
coupling to the environment.

On general grounds, for a generic model of this type, the de-
coherence term behaves as σ 2 ∼ |τ |−2 [42],11 For example, in 
[43,44], the rôle of the environment is played by another scalar 
field �, massless and conformally coupled, with an interaction 
ν�2, other, dissipative, terms arise in the master equation; how-
ever, the form above has the dominant term that controls the 
decoherence as modes exit the horizon. Another concrete model of 
this form is the approach of [45] that identifies the environment 
with shorter wavelength modes of the curvature perturbation ζ

mediated purely by gravitational self couplings. The dominant cou-
pling is cubic with two derivatives of the form ζ(∂ζ )2 that cou-
ples a long wavelength mode, the system, to a pair of shorter 
wavelength modes, the environment. However, it is interesting, fol-
lowing [46], to analyse a more general class of models with the 
general scaling

σ 2 = α/|τ |p−3 , (3.2)

for constants α > 0. So the physical models have the special value 
p = 5.

The advantage of the simple model (3.1), is that the uncondi-
tioned state remains Gaussian, even in the presence of the deco-
herence term:

ρ = N exp
[ − �ν2 − �∗ν′2 − ξ(ν − ν′)2] . (3.3)

We can write the evolution in terms of the variance V ν = 1/(4�1), 
where � = �1 + i�2:

1

4
V ′′′

ν + ωω′V ν + ω2 V ′
ν = 1

2
σ 2 , (3.4)

to compare with (1.7). As τ → τend, we can express the decoher-
ence correction to the power spectrum as a multiplicative factor 
1 + �P , which behaves as �P ∼ αkp−5, independent of τ , if 
p < 8, while there are potentially large corrections that behave as 
�P ∼ αk3|τ |8−p , for p > 8 [46].12 The physical models with the 
special value p = 5, leads to log corrections �P ∼ log k.

The coupling to the environment leads to unconditioned state 
that becomes increasingly decoherent (mixed) as τ → τend. A good 
way to visualize the decoherence of state is via the Wigner func-
tion

W(ν,π) =
∞∫

−∞

dν′

2π
ρ(ν + ν′/2,ν − ν′/2)eiν′π

= N exp
[ − 2�1ν2 + �2(π + 2�2ν)2] , (3.5)

where � = 1/
√

2�1 + 4ξ is the coherence length that governs the 
fall off of the off-diagonal components of the density matrix:

ρ(ν + δν,ν − δν) ∼ exp
[ − δν2/�2] . (3.6)

This is found to scale like � −→ |τ |p/2−2 as τ → τend. For the cur-
vature perturbation ζ , this would be a coherence length behaving 
as |τ |p/2−1 which indicates that efficient decoherence by the end 

11 Written in terms of the perturbations ζ , this is a term proportional to a3(ζ −
ζ ′)2ρ in the master equation written in terms of cosmic time ∂ρ/∂t .
12 The powers of k here are just determined by power counting. A factor of α

comes with kp−5 and a factor of |τ | with k.
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of inflation requires at least p > 2.13 We can also quantify deco-
herence in terms of the area of the wave packet in phase space �, 
where,

�2 = 4〈ν2〉〈π2〉 − 〈νπ + πν〉2 = 1 + 2ξ/�1 , (3.7)

which is also the area of the Wigner ellipse

2�−2�1ν2 + (π + 2�2ν)2 = (π�2)−1 . (3.8)

Initially the state is pure � = 1, but as it exits the horizon the 
area diverges like � ∼ |τ |2−p , for p < 8, |τ |10−2p , for p ≥ 8. The 
area also determines the increase in the entanglement entropy of 
the mode

S = � + 1

2
log

� + 1

2
− � − 1

2
log

� − 1

2
. (3.9)

Hence, the rate of entropy production becomes fixed in cosmic 
time: dS/dt −→ (p − 2)H , for p < 8, and (2p − 10)H , for p ≥ 8.

We can now unravel this master equation (3.1) using Born un-
ravelling. In the context of the perturbations, it follows from the 
master equation (3.1) that the branch creation operator is J =
σ(ν − ν̄). The deterministic part of the dynamics is the Schrödinger 
equation defined by the effective Hamiltonian (2.10)

−∂2ψ

∂ν2
+ ω2ν2ψ − iσ 2(ν − ν̄)2ψ + irψ = 2i

∂ψ

∂τ
, (3.10)

where ν̄ = 〈ν〉. On top of this, the state can jump randomly

ψ −→ ψ̃ = ν − ν̄√
V ν

ψ , (3.11)

where V ν = 〈(ν − ν̄)2〉 is the field variance of the conditioned state, 
with a rate

r = 〈 J † J 〉 = σ 2 V ν . (3.12)

Note that ψ̃ is normalized and orthogonal to ψ . The Schrödinger 
equation is non-linear because ν̄ depends upon the state ψ and 
this is why it can lead to localization of the state. Intuitively the 
non-Hermitian term proportional to σ 2 is trying to drive the state 
to be an eigenstate of ν − ν̄: in other words, localized in field space.

We can solve the Schrödinger equation (3.10) with a Gaussian 
ansatz:

ψ = N exp
[ − �(ν − ν̄)2 + i P (ν − ν̄)

]
, (3.13)

for N , �, P and ν̄, all functions of τ .14 By substituting the ansatz 
(3.13) into (3.10), one can readily derive the following equations for 
the field variance V̂ ν , the momentum π = −i∂/∂ν variance V̂ π =
〈(π − π̄)2〉 and covariance Ĉνπ = 1

2 〈{ν − ν̄, π − π̄}〉:

dV̂ ν

dτ
= 2Ĉνπ − 4σ 2 V̂ 2

ν ,

dV̂ π

dτ
= −2ω2Ĉνπ + σ 2 − 4σ 2Ĉ2

νπ ,

dĈνπ

dτ
= V̂ π − ω2 V̂ ν − 4σ 2 V̂ νĈνπ .

(3.14)

13 For the curvature perturbations, and for the special value p = 5, (3.6) becomes 
exp[−c · a3δζ 2]. This matches the decoherence factor found in [42] for a generic 
model with a linear coupling to the environment. It also matches the specific model 
of [45] based on gravitational self interactions.
14 In the following we set k = 1 but note that the momentum dependence can 

easily be re-introduced by noticing that from (3.10) ψ(ν) = f (k1/2ν, kτ , σ/k).

Fig. 2. The evolution of the variance V̂ ν of the both the unconditioned and con-
ditioned state for the deterministic evolution with k = 1 as it exits the horizon at 
k|τ | ∼ 1 with p = 5. The localization of the conditioned state is clearly evident.

The hat on a quantity, indicate that it refers to an expectation with 
the Gaussian state evolving according to the effective Schrödinger 
equation (3.10). We also have the relations

V̂ π = 1 + (4σ 2 V̂ 2
ν + V̂ ′

ν)
2

4V̂ ν
, Ĉνπ = 2σ 2 V̂ 2

ν + 1

2
V̂ ′

ν , (3.15)

and the area of the conditioned state � = 1 because the state is 
pure.

A relevant question is, how do V̂ ν , V̂ π and Ĉνπ behave towards 
the end of inflation τ → τend. With the model coupling (3.2), we 
find the asymptotic scaling

p > 5 : V̂ ν −→ 1

2
√

α
|τ |(p−3)/2 , V̂ π −→ √

α|τ |(3−p)/2 ,

Ĉνπ −→ 1

2
. (3.16)

In the regime, 3 ≤ p < 5, the scaling is more complicated and we 
simply write the exponents:

3 ≤ p ≤ 5 : V̂ ν −→ c1|τ |p−4 , V̂ π −→ c2|τ |p−6 ,

Ĉνπ −→ c3|τ |p−5 . (3.17)

It is interesting that the dividing line between the two branches 
has p = 5, precisely the special value.

The behaviour (3.16) and (3.17) means that the Gaussian wave 
packet becomes very narrow in field space, compared with the 
variance of the unconditioned state V ν ∼ |τ |−2 (1.8), as the mode 
exits the horizon and the end of inflation is approached: see Fig. 2. 
This is exactly what is needed to ensure that the conditioned state 
is effectively classical and is the main result of this paper.

An important question is how localized does the conditioned 
state become relative to the unconditioned state? This can be an-
swered by comparing the sizes of the associated Wigner ellipses: 
see Fig. 3. The one for the unconditioned state is written in (3.8)
while for the Gaussian conditioned state (3.13), we have

4�2
1ν2 + (π + 2�2ν)2 = 2�1/π . (3.18)

One can verify that there is an important distinction between the 
regimes p ≤ 5 and p > 5. In both cases, the ratio of the semi-
major axis of the conditioned to unconditioned state scales to 0 
as τ → τend. However, it is only for p > 5 that the ratio of the 
semi-minor axis of the conditioned to unconditioned state scales 
to 0 as τ → τend. For p ≤ 5, the ratio remains fixed. So it is only 
for p > 5, that the unconditioned state effectively looks point-like 
and it becomes consistent to construct a coarse grained description 
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Fig. 3. The Wigner ellipses of the unconditioned and conditioned states (the latter 
centred at the origin) soon after the mode exits the horizon and squeezing begins.

that just involves specifying the position of the conditioned state 
in phase space. We can also see this distinction in the intercept 
of the Wigner ellipse along the momentum axis. For the uncon-
ditioned state, this equals the inverse coherence length 1/� and 
scales like |τ |2−p/2. The same intercept for the unconditioned state 

is 1/

√
2V̂ v which scales in the same way, for p ≤ 5, but which 

scales like |τ |(3−p)/4, for p > 5.
Up till now we have not considered the stochastic jumps and 

so now we turn to them. They occur with a rate, as τ → τend, 
estimated via the Gaussian wave packet (3.13), which scales as

r̂ = σ 2 V̂ ν ∼

⎧⎨
⎩

|τ |(3−p)/2 p > 5 ,

|τ |−1 p ≤ 5 .

(3.19)

To start with, let us consider the behaviour of the variances when 
the jumps are included. A simulation of this is shown in Fig. 4. 
This is based on an approximation where the wave packet is as-
sumed to be approximately Gaussian when the jumps occur. It is 
clear from this fairly crude analysis, that the jumps do not affect 
the overall localization of a mode, relative to the unconditioned 
state, as it exits the horizon. Hence, the degree of localization of a 
particular mode can be quantified, at the end of inflation, by the 
ratio

V ν
∣∣

conditioned

/
V ν

∣∣
unconditioned ∼

⎧⎨
⎩

e−�N(p+1)/2 p > 5 ,

e−�N(p−2) p ≤ 5 ,

(3.20)

where we have used k|τend| = e−�N at the end of inflation. So for 
the modes that are relevant for the CMB, which exited the horizon 
�N ∼ 50 e-folds before the end of inflation, say, their conditioned 
state becomes extraordinarily narrow in field space and, hence, a 
classical description is entirely reasonable!

Now we consider the motion of the centre of the wave packet 
in phase space. From what we said above, this should a good 
coarse grained description when p > 5 and for later times when 
the conditioned state has becomes effectively point-like in phase 
space. The special case p = 5, realized in concrete models, is 
marginal in this regard and will require a more in-depth analysis 
than we present here. When the wave packet jumps, the Gaussian 
form is not maintained and it is split into two wave packets. The 
non-linear deterministic dynamics (3.10) then takes over and one 
of the offspring is amplified while the other fades away. The one 
that survives and the time it takes for the process depends on the 
detailed non-Gaussian form of the initial wave packet [23]. Follow-
ing [23], if one assumes that the relaxation occurs over a fast time 
scale, then one can coarse grain the process by describing the net 

effect of a jump to be a shift in position of the wave packet in 
phase space (ν̄, ̄π) by the form

δν̄ ≈ ±
√

2V̂ ν , δπ̄ ≈ ±
√

2V̂ π , (3.21)

occurring with equal rate r̂/2. Since the rate of jumps r̂ grows as 
τ → τend (3.19), the effective process (3.21) looks more and more 

like a random walk with variances σν =
√

2r̂ V̂ ν and σπ =
√

2r̂ V̂ π in 
the ν and π direction. Therefore, including the deterministic evo-
lution, the coarse grained dynamics of the position of the wave 
packet satisfies the Langevin equation

dν̄
dτ

= π̄ + σν ξ ,
dπ̄
dτ

= −ω2ν̄ + σπ ξ , (3.22)

where ξ(τ ) is a random Gaussian variable (white noise) with 
stochastic correlators

E
(
ξ(τ )

) = 0 , E
(
ξ(τ )ξ(τ ′)

) = δ(τ − τ ′) . (3.23)

We can pin down the variances σν and σπ by noticing that 
the probability density P (ν̄, ̄π) associated to the Langevin equation 
(3.22) satisfies the Fokker–Planck equation

∂ P

∂τ
= −π̄

∂ P

∂ ν̄
+ ω2ν̄

∂ P

∂π̄
+ σ 2

π
2

∂2 P

∂π̄2
, (3.24)

where we have not included the σν term as it goes like |τ |0 and 
becomes subleading. Since, at the coarse grained level, for p > 5, 
the conditioned state is effectively point-like in phase space and 
the unconditioned state is very decoherent (e.g. has large entan-
glement entropy), the Wigner function of the unconditioned state 
acts as a probability density for the conditioned state in phase 
space. This means that we can identify P with W . Indeed, the 
master equation (3.1) written in terms of the Wigner function of 
the unconditioned state is precisely of the form (3.24). This iden-
tifies the coarse grained quantity σπ = σ and also proves that 
the term involving σν is, indeed, sub-leading, as anticipated. We 
can check the assumptions that have gone into the derivation 
of the Langevin equations by the following separate argument. 
The asymptotic form (3.16), for p ≥ 5, shows that, as τ → τend, 
σ 2

π = 2r̂ V̂ π = 2σ 2 V̂ ν V̂ π = σ 2.
Four simulations of the conditioned state are shown in Fig. 5

which plots the curvature perturbation ζ for the unconditioned 
and conditioned state. The picture is that the quantum-to-classical 
transition is a dynamical process that happens continuously. How-
ever, one can subjectively identify some τ , say τc , when the condi-
tioned state becomes sufficiently localized relative to one’s resolu-
tion scale, that the Langevin equation becomes a good description 
of the resulting coarse grained dynamics. The unconditioned state 
ρ(τc) then effectively provides stochastic initial conditions for the 
classical dynamics.

It is interesting that the coarse grained stochastic dynamics of 
(ν̄, ̄π) is the same as that resulting from the quantum state diffu-
sion unravelling of the master equation. This suggests that quan-
tum state diffusion can act as a more tractable effective description 
of Born unravelling.

4. Discussion

Let us summarize the final picture we have established. The 
perturbations, like any subsystem of a bigger quantum system, 
define their own frame of reference. Their intrinsic state, the con-
ditioned state, is always pure and evolves stochastically according 
to Born’s rule. This evolution involves an effective non-Hermitian 
Hamiltonian that has the effect of localizing the state in field 
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Fig. 4. One simulation showing the behaviour of the variance Vν including jumps (the dotted line shows the deterministic evolution) for p = 5. The right figure is a close up 
of the small |τ | region. Notice that after a jump the variance rapidly relaxes to the underlying deterministic value. It is clear that the jumps do not change the underlying 
behaviour of the deterministic evolution of Vν as the mode exits the horizon.

Fig. 5. The evolution of the conditioned state (the dotted lines) and 4 realizations of the conditioned state (the shaded region) for the curvature perturbation ζ = ν/(a
√

2ε)

in units of H/
√

2ε, with p = 6. Note that the unconditioned state has a variance for ζ that freezes after exiting the horizon while the conditioned state clearly localizes.

space. In every time interval there is also a chance that it jumps 
into a new branch of the unconditioned state |ψ〉 → J |ψ〉 which is 
orthogonal to the instantaneous conditioned state. A stochastic av-
erage of the conditioned state gives back the unconditioned state. 
Even as the unconditioned state spreads out as the mode exits the 
horizon, the conditioned state becomes more and more localized 
in field space, dependent on the exact model. Hence, the intrinsic 
state of the perturbations effectively becomes classical, specified 
by a point in phase space. An individual simulation of the condi-
tioned state looks like a random walk. Modes with different wave 
vectors k then provide an ensemble of simulations whose statis-
tics is governed by the unconditioned state. One implication of the 
formalism is that as they exit the horizon thy modes do not com-
pletely freeze rather they are subject to random kicks from the 
environment described by a Langevin equation.

Finally, we believe that our formalism has implications for the 
stochastic inflation formalism [68,69]. In the latter, one defines a 
coarse grained field with a time dependent cut off that includes 
super Hubble modes with k < εHa, for ε � 1 (i.e. k < ε/|τ |). So 
new modes are continuously being included in the coarse grained 
field giving rise to a noise term in its equation of motion. In the 
present formalism, as modes are added to the coarse grained field 
they have been localized by a factor ε(p+1)/2, p > 5 and εp−2, 
p ≤ 5. So for ε � 1, it is consistent to treat the newly added modes 
as effectively classical.
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