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M.F. Lumentut  ·  M.I. Friswell 
 

A smart pipe energy harvester excited by fluid flow 
and base excitation 

 
Abstract This paper presents electromechanical dynamic modelling of the partially smart pipe 
structure subject to the vibration responses from fluid flow and input base excitation for generating 
the electrical energy. We believe that this work shows the first attempt to formulate the unified 
analytical approach of flow-induced vibrational smart pipe energy harvester in application to the 
smart sensor-based structural health monitoring systems including those to detect flutter 
instability. The arbitrary topology of the thin electrode segments located at the surface of the 
circumference region of the smart pipe has been used so that the electric charge cancellation can 
be avoided. The analytical techniques of the smart pipe conveying fluid with discontinuous 
piezoelectric segments and proof mass offset, connected with the standard AC-DC circuit 
interface, have been developed using the extended charge-type-Hamiltonian mechanics. The 
coupled field equations reduced from the Ritz method-based weak form analytical approach have 
been further developed to formulate the orthonormalised dynamic equations. The reduced 
equations show combinations of the mechanical system of the elastic pipe and fluid flow, 
electromechanical system of the piezoelectric component, and electrical system of the circuit 
interface. The electromechanical multi-mode frequency and time signal waveform response 
equations have also been formulated to demonstrate the power harvesting behaviours. Initially, the 
optimal power output due to optimal load resistance without the fluid effect is discussed to 
compare with previous studies. For potential application, further parametric analytical studies of 
varying partially piezoelectric pipe segments have been explored to analyse the dynamic 
stability/instability of the smart pipe energy harvester due to the effect of fluid and input base 
excitation. Further proof between case studies also include the effect of variable flow velocity for 
optimal power output, 3-D frequency response, the dynamic evolution of the smart pipe system 
based on the absolute velocity-time waveform signals, and DC power output-time waveform 
signals.  
 
Keywords: analytical weak form · electromechanical dynamic instability · energy harvesting · 
fluid-smart structure interactions · piezoelectric · signal analysis · vibration. 
 

1 Introduction 

This paper is concerned with the flow-induced vibration of a smart pipe structural system, and 
considers the physical interactions between the fluid, solid, circuit, and electromechanical systems. 
The coupled field effect of the fluid flowing through the elastic pipe has shown an interesting 
phenomenon and has raised some paradoxes until the late 2000s. Since then, the study has been 
further developed and the issues with possible paradoxes may still unfold in the future. The reason 
is that the dynamic stability or instability of the pipe conveying fluid depends upon the 
contributions of boundary conditions, flow velocity, Coriolis and centrifugal effects, fluid 
gravitation, tensioning, pressurisation, aspirating pipe, etc. Some equations may require to be 
extended and/or ignored depending upon the applications and experiments. For example, when the  
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dynamic equations of a pipe with certain base supports (constraints) meet their boundary 
conditions, it does not mean the whole system with flow can be solved correctly because the 
discharging flow from the pipe due to the work done by fluid can be either considered or ignored. 
Feodos’ev [1], Housner [2] and Niordson [3] presented the first preliminary mathematical studies 
for the flow-induced vibration of pipe systems with both end supported. The correct linear 
equations of motion have been reduced using several different methods to determine buckling 
instability or divergence. Later, Holmes [4] proved that the flutter instability never occurs when 
both ends of the pipe conveying the fluid are supported. Indeed, the system with this support 
condition is conservative. Long before his work was published, Heinrich [5] had developed the 
mathematical modelling of pipe vibration with flow under the effects of wave propagation and 
pressurisation. Moreover, Benjamin [6]-[7] presented groundbreaking research work investigating 
cantilevered pipe dynamics with flow, requiring a non-conservative equations using Hamiltonian 
mechanics. He showed the occurrence of stability and flutter instability depending upon the 
increase of the flow velocity. Examples of simplified mathematical studies of the non-conservative 
effect to analyse the dynamic stability and instability can be seen in Bottema [8] and Smith and 
Herrmann [9]. Further works have been extensively developed by Gregory and Païdoussis [10]-
[11] whose solution techniques showed three methods consisting of quasi-analytical and numerical 
solutions and partial differential equations with the Galerkin method [12]. They gave a criteria for 
the dynamic behaviour indicating the system is stable and damped due to small flow velocity but is 
unstable due to flutter for high flow velocity. Païdoussis and Issid [13] further developed the 
Newtonian mechanics of the pipes conveying fluid with different boundary conditions under the 
effects of tension and fluid pressurisation and gravitation. Païdoussis and Li [14] provided 
comprehensive technical reviews of the systems with flow with many different case studies and 
solutions. Ruta and Elishakoff [15] examined the shear-deformable pipe conveying fluid with a 
partial elastic foundation where the critical velocity increased with increasing foundation span 
over the pipe using higher values of the fluid-to-pipe mass per unit length ratio. Further analytical 
works for the fluid-pipe structure interaction using the two different conditions of supports with 
overhang have been developed in [16] where the divergent and flutter instability using Galerkin’s 
method with Duncan’s polynomials have been explored to show the optimal critical velocities 
through various case studies. Moreover, the pipes conveying fluid using various flow effects and 
solution techniques have been developed using the finite difference method [17], the fast Fourier 
transform-based spectral element method [18], and the finite element method [19]-[20]. The effect 
of flow in the three-dimensional pipes conveying fluid with an attached spring and tip mass have 
been comprehensively investigated using nonlinear dynamic equations [21]-[23]. For almost four 
decades, Païdoussis with his group [24] has been authoritative in the development of this area. 
Recent investigation for flow-induced vibration using the aspirating pipe has been developed 
mathematically in [25] and [24]. Although system modelling has been key for the theoretical 
studies, major experimental studies have been developed. Kuiper & Metrikine [26] corrected the 
theoretical works of Païdoussis [25] where the effect of flutter due to the aspirating pipe can occur 
due to the Coriolis force even without the centrifugal force and the depressurization depends on 
the inlet flow resulting in the negative pressure range values at the free end of the pipe. As a result, 
Païdoussis, et al. [27] revisited the issues raised. However, even after this series of published 
experimental and numerical studies, [28]-[29], specific conclusions about the aspirating pipe have 
not been finalised.  
 
For the smart structure system, the coupled field effect of the piezoelectric material has shown 
viable interactions between the electrical, thermal, and mechanical behaviours. In the earlier 
studies, there have been growing mathematical interests in the applications for piezoelectric 
structures in structural control-based sensing and actuation systems [30]-[34], shape control-based 
sensing and actuation under static and dynamic responses [35]-[37], strain-type sensor networks 
[38]-[39], feedback gain control-based sensor and actuator systems [40–41], thermal effects [37], 
[42]-[43], and shunt control-based circuit systems [44]-[47]. Over the past decade, smart structures 
for converting the mechanical energy into electrical energy have shown application in micro-
power extraction for the use of extending the battery life and enabling wireless sensor devices. 
This technique has spurred the development of theoretical solutions of the continuous system 
modelling such as Rayleigh-Ritz methods [48]-[50], modal analysis method [51], weak-form 
techniques [52], fully closed-form boundary value methods [53], random analysis [54]-[55], 
analytical voltage- and charge-type Hamiltonian formulations [56], and electromechanical finite 
element analysis [57]-[58]. In recent developments to widen the power output frequency 
bandwidth and to increase power amplitude, complex smart structure power harvesters studied 
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with various analytical methods have been investigated using the piezoelectric dynamic magnifier 
with proof mass offset effect [59], the piezoelectric segment system [60]-[61], the multiple 
piezoelectric bimorph beams connected with different circuit interfaces [62]-[66]. Moreover, the 
wideband piezoelectric power harvesting system using the charge-type Hamiltonian-based 
analytical method was developed using shunt control system-based adaptive single piezoelectric 
bimorph beams with distributed and segmented electrodes [67]-[68]. An aerodynamic system to 
capture electrical energy has been investigated using the vortex-induced vibration of a tree-
inspired system [69], transverse galloping analytical studies [70] and experimental works [71], and 
flapping flags with two-dimensional inviscid flow [72]. 
 
In this paper, the equations of a partially smart pipe conveying fluid with a tip mass offset and 
base excitation, and connected to the standard AC-DC circuit interface, have been simultaneously 
formulated using the Ritz method-based weak form analytical approach reduced from the charge-
type-Hamiltonian mechanics. Since the smart pipe covered with a thin electrode layer has a 
uniform cylindrical form, the arbitrary topology of electrode segments was taken into account to 
avoid electric charge cancellation. For various flow velocities, the effect of dynamic 
stability/instability of the smart pipe system was analysed using varying discontinuous 
piezoelectric segments. The orthonormalised dynamic equations were reduced to formulate the 
power output multi-mode frequency and time signal waveform responses. Currently, there are no 
previous works developing the proposed theoretical models. Detailed discussions of the parametric 
analytical studies have been provided to analyse the system response without and with fluid effects 
and these case studies are discussed extensively. For structural safety, the high pipe displacements 
at resonance or with the flutter instability can cause fatigue of the pipe and the structural safety 
should be carefully checked during the detailed design of a particular system. However, flexible 
piezoelectric elements such as MFCs and EAPap film provide potential solutions for a flexible 
pipe. Potential application of this concept can be found in the particular design of micro- or meso-
scale flexible pipe structure power harvesters under fluid flow for detecting the flutter instability.  
The smart pipe conveying a fluid may also be applied in a miniature jet flow power harvesting 
device for smart sensor-based structural health monitoring to detect water levels, flood levels, or 
the pH level of water including toxicity. Another application is a windsock power harvester device 
for a smart sensor to monitor wind speed, weather (humidity, temperature, etc), flood/water level, 
and to charge a battery. 
 

2 Constitutive coupled equations  

In Fig. 1a, the smart pipe system with proof mass offset is shown, connected with the harvesting 
circuit system, and consisting of substructure and piezoelectric layers. Here, the linear 
piezoelectric beam constitutive equation-based Helmholtz free energy in terms of the 3-1 mode of 
piezoelectric constant operation and the 3-3 effect of piezoelectric permittivity can be formulated 
using the stress-electric field relation [56], [73]-[75] as, 

    ,                                                (1.1) 

                                                        .                                               (1.2) 

where the parameters T, S, E and D represent stress, strain, electric field, and electric displacement, 
respectively. Moreover, the coefficients cD, g, and  indicate modified elastic constant, modified 
piezoelectric constant and permittivity at constant strain, respectively (Appendix A). Note that 
each layer of the smart pipe structure is denoted by superscripts, where 1 and 2 represent the 
substructure and piezoelectric layers respectively. They can be used for stress T, strain S, elastic 
stiffness c, density ρ, and cross-sectional area A. The linear-elastic constitutive relation for the 
substructure can be formulated as,  

  .                                                             (2) 

In figure 2, the fluid entering the undeformed pipe at point o via a rigid base support is under a 
steady flow velocity U relative to the pipe. At the same time, the undeformed pipe, located at the 
fixed reference frame of oXZ, moves in the initial reference frame of XZ due to the base vector 

 moving from the point  to . The position of point also moves to 
point indicating the same magnitude as the base vector. 
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As the base vector represents the input excitation, the pipe undergoes relative transverse 
deformation  as indicated by point  moving to the final point . The flow velocity U 
relative to the pipe, which depends on the unit vector tangent , is related to the material 
derivative from the continuum body. It is defined as a time rate of change of physical property for 
the fluid element flowing through the pipe, while its element also moves from points  to . 

The absolute displacement  with respect to the deformed pipe is measured from the 
reference frame of oXZ to the final position. Note that the difference between the absolute 
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Fig.1 Physical systems: (a) flow-induced vibrational smart pipe structure with tip mass offset and input 
base excitation connected with circuit interface and (b) cross-sectional smart pipe with arbitrary electrode 
segments arranged in series connection (example). 
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displacement and base vector defines the relative deformation. Since the pipe carries a tip mass 
with the centroid located at a distance offset from the end of the pipe, the position vectors of the 
tip mass start from the fixed reference frame oXZ to the final differential element of the tip mass at 
point . The offset results in the extra position vector from point of attachment  
(deformation point of the end of the pipe) to the tip mass centroid at point . The tip mass 
centroid, whose origin is determined from the differential element, has the extra position vector 
from point  to  relative to the local point  of the local parallel coordinate system of the 
tip mass structure.  

The position vectors , , , and for the pipe can be defined as, 

     
 ,                             (3.1) 

                                                  , ,                                             (3.2) 

                     ,                (3.3) 
                    .                    (3.4) 

Note that small angle  approximation has be used based on the Taylor’s series 
to give  and . 
The unit vector tangential of the fluid element in the pipe can be formulated as, 

  .                                            (4)
                    

 

Using the Reynolds transport theorem and the material derivative, the fluid element flowing 
through the pipe can be formulated as,  

                    .                                                (5)
 

The absolute velocity vectors for the pipe and tip mass components can be formulated as,    

           and  .              (6) 

The velocity of the elemental tip mass offset can also be formulated as,  

            

            .      (7) 

The position vector can be specified as the relative displacement with respect to the moving 
base support from reference frame to  as, 

  .                       (8) 

The strain field for all layers can be obtained by differentiating with respect to x giving the 
typical Euler-Bernoulli theory as,   

 
         

 .                                      (9)  

Note that since all vectors depend on the variables x and t, they can be utilised at different 
locations or segments of the smart pipe structure. Further formulations related to the segmented 
structures are derived in the next section. 

3 Fluid-solid-circuit-electromechanical weak form analytical approach 
 

This section formulates the weak form Ritz method using the charge-type Hamilton’s principle. 
The fully coupled field equations consisting of the mechanical system (fluid and solid), 
electromechanical system (piezoelectricity), and electrical system (circuit interface) are introduced 
to formulate the orthonormalised dynamic equations. Further solutions of the key equations will be 
explored in this paper.   
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3.1. Coupled system of fluid-solid-electromechanical dynamic with harvesting circuit.   

The coupled system of the smart pipe conveying fluid for vibration energy harvester can be 
formulated using the extended charge-type Hamilton’s principle to give, 

             

,                                      (10) 

or         .                            (11) 

Each functional energy term in Eq. (11) is expanded in Eqs. (12)-(22). Note that a detailed 
discussion of the charge-type-based Hamiltonian mechanics was given in [56]. The kinetic energy 
of the smart pipe conveying fluid and the proof mass offset can be formulated as,    

        

                    

                   .                            (12) 

Parameters , and represent the mass densities of the substructure, the 
piezoelectric, the proof mass offset, and the fluid components, respectively. Eq. (12) can be 
extended by substituting Eqs. (3.1), (5) and (7). After manipulation and simplification, Eq. (12) 
can be reformulated in terms of the variational form to give, 

                    

    

    

        

           

     .         (13) 

Note that based on the consistency of the physical geometry in Fig. 1, Heaviside functions for 
H1(x)=H(x)−H(x−L1) and H2(x)=H(x)−H(x−L2) are introduced to model the two segmented 
structures with different mode shapes along the x-axis. It is also important to note here that 
although the fluid flows within the uniform internal pipe section, the Heaviside functions on the 
fluid part are also utilised due to different modes at each segment. Parameters  and  
represent the zeroth and second mass moments of inertia of the segmented structures whereas 
parameters  and  represent the zeroth and second mass moments of the tip mass. Also note 
that details of the mathematical expressions for the dynamical structure and proof mass offset as 
shown in the first six terms of Eq. (13) can be found in [58]. They were reduced since the relative 
displacement w(x,t) is defined as the difference between the absolute displacement wabs(x,t) and the 
base excitation wbase(t). The potential energy or strain energy of the structure can be formulated as, 
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   .        (14) 

The variation of strain energy can be further formulated by substituting Eqs. (1.1)-(2) and (9) into 
Eq. (14) and taking into account the segmented structures and electrodes, as 

.  (15) 

Parameter  represents the arbitrary stiffness coefficient of the segmented structures. Note that 
the Heaviside functions G1(γ)=H(γ−α1)−H(γ−β1) and G2(γ)=H(γ−α2)−H(γ−β2) are introduced 
since the two segmented electrodes are located on the circumference region of the piezoelectric 
layer in the polar coordinate system. Parameter  depends on the segmented system, and is 

and . These are used in the 

forthcoming reduced equations. Note that  and  represent internal charge parameters in the 
electrode layers of the piezoelectric circuit (for example, series connection).   
The electrical energy term for the piezoelectric elements can be formulated to give, 

  .                                              (16) 

Eq. (16) can be extended using Eq. (1.2) as, 

.       (17) 

The non-conservative work on the system due to the input base excitation can be stated as, 

   .   (18) 

Note that detail of the mathematical expressions of Eq. (18) can be found in [58].    

The variational form of energy gained due to fluid flow at the free end of the pipe can be 
formulated as, 

     
   .                             (19)  

Since the end of the smart pipe structure with the offset proof mass is free to move, Eq. (19) must 
be taken into account ( ) leading to a non-conservative system due to the discharged 

fluid. is the mass of fluid per unit length. However, if both ends are fixed, Eq. (19) is ignored 
( ), and this assumption has been used in many previous papers related to a pipe 
conveying a fluid [6],[10], [24]. Also note that Eq. (19) implies two physical behaviours of the 
smart pipe conveying fluid. If U is positive and sufficiently small, the free motion of the pipe will 
be damped. This occurs when the first part of the multiplication inside the curly brackets is much 
larger than the second part resulting in  due to the Coriolis force. However, if U is 
positive and large, the free motion of the pipe will be amplified because the pipe will gain energy 
from the flow. This occurs when the second part has the opposite signs during a cycle of 
oscillation resulting in . In such situations, the system will have a dynamic instability 
and the pipe shows a dragging, lagging motion that has been demonstrated in experimental and 
theoretical studies [6]-[7], [10]-[11], [24]. After manipulation and simplification, Eq. (19) can be 
reformulated using Eqs. (3.4) and (4) to give,       
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 .          (20) 

The electrical energy of the capacitor in terms of the tuning circuit can be formulated as, 

.                                                         (21) 

The electrical work dissipated by the resistor can be stated as, 

.                                                       (22) 

In terms of the variational operations, the functional energy forms in Eq. (7) can be prescribed as 
the continuous differentiable functions of virtual displacements, electric displacement and charge 
for the whole system that can be stated as, 

,                             (23.1) 

   .              (23.2) 

Equations (23.1) and (23.2) can be further formulated using total differential equations as,    

     

          

  ,                          (24.1)      

.                             (24.2)  

To formulate dynamical weak form equation, the extended variational principle can be developed 
corresponding to the virtual relative transverse displacement field due to the fluid, the solid and the 
virtual electrical charge due to piezoelectricity and the harvesting circuit. The weak form-based 
Ritz method [76]-[77] can be further formulated for the solution, and requires a test function that is 
a piecewise continuous function over the entire domain of the coupled system. The function must 
meet continuity requirements and boundary conditions. After manipulation and simplification, the 
electromechanical weak form of Eq. (11) can be formulated using Eqs. (13), (15), (17), (18), (20)-
(22) in terms of Eqs. (24.1)-(24.2) to give,     
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  .                                                                                         (25) 

Each coefficient in Eq. (25) is given in Appendices B, C, and D. Applying KCL for the internal 
piezoelectric connection and harvesting circuit in Fig. 1 gives the electric charge equations as, 

                                                ,   .                                                  (26) 

Note that the series connection was used as an example for the internal piezoelectric connection. 
The variable  in Eq. (25) can be eliminated for simplicity using,  

          .                (27)  

The normalised eigenfunction series form can be formulated as,  

      . 
     

                                           (28) 

Substituting Eq. (28) into Eq. (25) gives the first dynamic equation representing the smart pipe 
conveying fluid under transverse bending as 

  

   

 

 

 .                                                          (29)
 

The second and third equations represent the piezoelectric and harvesting circuit forms, 
respectively that can be formulated as, 

,  (30.1) 
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                .                                                             (30.2) 

For more compact system equations, the constitutive equations from Eqs. (29), (30.1)-(30.2) 
can also be simplified into matrix form by including the mechanical damping coefficients to give, 

,(31.1) 

         .                                              (31.2) 

Alternatively, Eqs. (31.1)-(31.2) can be reformulated into matrix form as, 

,   (32) 

where, 
       

 

,      (33.1) 

 ,                         (33.2) 

          

,                                                     (33.3) 

           

,                    (33.4)

 
     ,                       (33.5) 

            ,                  (33.6) 

          ,     ,            (33.7) 

                             ,  ,                               (33.8) 

, . (33.9) 

Note that there are four major technical aspects that can be outlined as followed, 

1. Eq. (32) represents the coupled field equations of fluid-solid-circuit-electromechanical system. 
2. If some parameters of the piezoelectric system such as ,  and  and the proof mass 

offset terms  ( ) and  ( , ), are ignored, then Eq. (61) can be reduced to 
similar form to that of previous works of a fluid flow-induced pipe vibration system as shown 
by the examples in [6], [10], [13], [24].    
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3. The Coriolis effect due to fluid flow through the pipe can be seen in the first term of the  
matrix. 

4. The centrifugal effect due to the fluid flow through the pipe can also be seen in the first term of 
the  matrix.  

Note that with the Euler-Bernoulli assumptions, the second mass moment of inertias of the pipe 
structure and the fluid ( and ) are ignored. Also, the fluid gravitation and pressurization at the 
beginning of derivations were excluded for simplicity due to the relative meso-scale pipe system. 
The parameter representing the normalised eigenfunction for the Euler-Bernoulli pipe 
structure is assumed to be       

.  (34) 

The function  can be obtained from the generalized space-dependent Ritz eigenfunctions as,   

  ,      .                                      (35) 

Note that the accurate mode shape  reduced from the closed-form boundary value 
technique can be found in Appendix E and the generalized Ritz coefficient  is the eigenvector 

matrix. To obtain the coefficients, Eq. (28) was initially formulated as 
 
so 

that Eq. (32) can be rearranged by only considering the characteristic mechanical equation 

. The Ritz coefficients  for the mechanical transverse 

bending form can be manipulated into matrix form corresponding with the eigenvalues for each 
column of the matrix. Corresponding to Eqs. (32), the orthonormalisations can now be further 
proven by using Eq. (34) in terms of the orthogonality property of the mechanical dynamic 
equations as, 

            
       

                       ,            (36.1)                               

.             (36.2) 

Two Rayleigh mechanical damping coefficients in Eq. (33.3) can determined by applying 
orthonormality. Detailed derivations are given in [53].  The mass proportional damping term due 
to air friction can be estimated as, 

    .      (37)                         

The stiffness proportional damping term due to internal friction of damping stress of the smart 
pipe structure can be estimated as, 
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              .              (38) 

Therefore, Rayleigh mechanical damping coefficients can simply be reduced to give, 
       .                                         (39) 

where  is the Kronecker delta. Note that the functions  and  are the normalised 
mode shapes. Applying the orthonormalisation from Eqs. (36.1)-(36.2) and (37)-(38) into Eq. (32) 
gives the fluid-smart pipe system equations in terms of the index notation as, 

                

                          ,                    (40.1) 

                               .                                            (40.2) 

The two dependent electromechanical equations, Eqs. (40.1)-(40.2), show the coupled field system 
of fluid-smart structure interaction with a standard harvesting circuit. At this case, since those 
equations have been normalised, the fluid parameters can be reduced to give, 

  ,    ,  (41.1) 

   
      .                          (41.2) 

Note that the other parameters can be seen in Eq. (33). The characteristic electromechanical 
dynamic equation with the n-th degree-of-freedom can be formulated using the index notation as,  

.    (42) 

Note that once each parameter was identified using the properties of the eigenfunction, the 
complex driving frequency ω can be calculated using the incremental values of flow velocity U. 
The Routh-Hurwitz stability criterion can be used to determine the complex polynomial roots of ω 
and these can be displayed in the Argand diagram. 
 

Laplace transformations are used to give the transfer functions of the multi-mode 
electromechanical equations. After simplification, the electric charge FRFs can be formulated in 
terms of the index notation as, 

            ,                                   (43) 

where: 

.  (44) 

n represents the number of degrees of freedom in Eq. (43), related to a number of normalised 
mode shapes. Other multimode FRFs relations can also be formulated. Here, the multi-mode 
electric current FRFs can be formulated as,  

  .                                             (45) 
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The voltage FRFs across the resistor or capacitor of the harvesting circuit can be formulated as, 

  .                                         (46)

      

             

 The power FRFs across the resistor and capacitor can also be formulated respectively as, 

         ,                                   (47.1)                 

  .                              (47.2) 

As an example, the optimal load resistance is formulated using Eq. (47.1) as, 

     .           (48) 

Note that the parameter  is seen in Eq. (44). The optimal power output can be formulated by 
substituting back Eq. (48) into Eq. (47.1) in terms of Eq. (43). 

 
 

3.2. Electrical signal waveform with Standard Harvesting AC-DC Interface Circuit  

This section discusses the conversion of AC electrical signal output from the piezoelectric 
component via the electrode segments into a DC electrical signal output from the full-bridge 
rectifier. The DC output can be further smoothed using an RC circuit. In Fig. 3, the signal 
waveforms show different forms from the system parts such as the AC voltage of the piezoelectric, 
DC signal voltages via rectifier and capacitor, and DC currents via a capacitor and load resistance.   

                                   

a. Current flowing with interval ti < t < tf indicating the charging time over every half-cycle 
of the frequency. 

 
The system equations with harvesting DC rectifier and smoothing RC circuit can be reformulated 
with slight modification in Eqs. (40.1)-(40.2). The following equations of the coupled system 
response during the period of charging can be formulated as, 

,  (49.1)        

  
     

        ,                                                (49.2)        
where . Note that the first and second terms in Eq. (49.2) were introduced 
by replacing the first and second terms from Eq. (40.2). They can be obtained by removing Eqs. 
(21)-(22) and introducing the new electrical work done  in the Hamiltonian 
functional energy. Differentiating Eq. (48.2) with respect to time gives, 
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.                                              (50) 
The harvesting DC circuit equation can be formulated as,  

         .                                                   (51) 

After substituting parameter from Eq. (49.2) into Eq. (49.2) and parameter  from Eq. 
(51) into Eq. (50), the state space representation of the multi-mode response system can be 
formulated to give,     

        ,                                      (52) 

where:    , , ,                (53.1) 

,   , , (53.2) 

,   ,   .                  (53.3) 

b. Current flowing with interval t f < t < ti + T/2 indicating the discharging times every half-
cycle of the frequency. 

 
The harvesting circuit during the period of discharging can be formulated as,  

     .                                                       (54) 

The solution of Eq. (54) can be formulated as, 

   .                                             (55) 

Thus, the current and voltage waveform signals during the charging and discharging periods can 
be predicted using Eqs. (52) and (55).  
 

4 Results and discussion 
 

This section discusses the effect of the fluid flow inside the smart pipe with an offset proof mass. 
The investigation of dynamic stability or instability using the first four coupled modes highlights 
the physical phenomena of the smart pipe conveying fluid. The dynamic evolution of the smart 
pipe system over one period for particular frequencies will also be discussed. This section also 
includes a discussion of the power harvesting frequency and time signal waveform responses. For 
the material properties, the smart pipe system is composed of the substructure and piezoelectric 
layers as shown in Table 1. The piezoelectric material used here was PZT PSI-5A4E. The 
geometry parameters of length (L), inner and outer radii (r1 and r2) of the substructure (elastomer) 
and inner and outer radii (r2 and r3) of the piezoelectric were set to 150 mm, 6 mm and 7.6 mm, 
and 7.6 mm and 7.7 mm, respectively. Note that the outer radius of the substructure layer is the 
same value as the inner radius of the piezoelectric layer. The dimensions of the tip mass offset 
such as length lt, inner and outer radii (rt1 and rt2) were set to 8 mm and 10 mm and 7.6 mm, 
respectively. The mass of fluid per unit length was set to 0.11 kg/m. The angles of 
circumference electrode segments were variable for the upper and lower regions of the smart pipe. 
The input base acceleration was chosen to be 3 m/s2. Also, the discontinuous piezoelectric 
segments were also variable. The effect of the variable geometry will be shown later. Again, all 
dimension parameters are shown in Fig. 1.  
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Material  properties Piezoelectric    Elastomer        Fluid 
Young’s modulus,  (GPa) 66 0.025  - 

Density, (kg/m3) 7800 1200 1000 
Piezoelectric constant, d31 

(pm/V) -190 - - 

Permittivity,  (F/m) 1800  - - 
permittivity of free space, 

(pF/m) 8.854 - - 

 

  

           

 

               
 
 
 

In Fig. 4, the trend of the first two modes of the optimal power harvesting frequency responses 
under optimal load resistance without fluid effect shows the essential aspect for identifying the 
potential use of different piezoelectric segments. For this case, the optimal load resistance as 
shown in Eq. (48) was used by removing fluid parts. The two examples of the optimal responses 
can be seen in the use of the partial piezoelectric segments (L1=0.09m & L2=0.06m) and 
(L1=0.15m & L2=0m). Rayleigh damping coefficients of 0.5 rad/s (cv) and 2e-5 s/rad (cd) were 

11c
ρ

T
33e oe

oe

Table 1. Material properties  

Fig. 4. Optimal power harvesting FRFs under optimal load resistance without fluid effect using 
electrode segment (β1-α1=144o & β2-α2=144o) and variable length piezoelectric segment. 

Fig. 5. Optimal power harvesting FRFs under optimal load resistance without fluid effect using 
a partial piezoelectric segment (L1=0.06 m & L2=0.09 m) and variable electrode angle. 
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chosen for this study. It is found that a significant shift of the resonances from the short to open 
circuit conditions predominantly occurs for the distributed piezoelectric structure or segment 
(L1=0.15m & L2=0 m). The contribution of the piezoelectric length (L1=0.15m & L2=0 m) clearly 
affects wider optimal responses compared with the other segments. The power responses with two 
different load resistances overlap with the optimal power response representing strong 
electromechanical coupling. However, the segment (L1=0.15m & L2=0m) for fluid flow does not 
show an effective option due to very high critical flow velocity as shown next. More detailed 
discussion of the optimal responses using different geometry and material properties that 
particularly affect the weak and strong electromechanical coupling can be found in [53].  
 

  

  

                             
 

 

For many previous power harvesting research publications, the frequency response system under 
short and open circuit conditions shows similar behaviour. The difference between the present 
study and previous works is the different physical geometry of the structure. Most previous works 
have used a piezoelectric unimorph or bimorph beam. Thus, the aim of presenting Fig. 4 is to 
ensure the present study has similar trends to the established previous studies. Note that the power 
responses shown in Fig. 4 used the angle of the electrode circumference segment (β1-α1=144o & 
β2-α2=144o) representing the optimal amplitude. This can be proved in Fig. 5 where the particular 
piezoelectric segment (L1=0.06m & L2=0.09m) with variable electrode circumference segment was 

Fig. 6. Argand diagram under variable fluid flow with Rd=100 kΩ and Cd = 0.1 µF using electrode segment 
(β1-α1=144o and β2-α2=144o) and partially piezoelectric segment: (a) L1=0.03m & L2=0.12 m, (b) L1=0.06m 
& L2=0.09 m, (c) L1=0.09m & L2=0.06 m, (d) L1=0.12m & L2=0.03 m, (e) L1=0.15m & L2=0 m. 

e 

d c 

b a 
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chosen as an example. Also note that the electrode segments chosen here have symmetrical 
geometry between the lower and upper portions of the cross-sectional pipe as shown in Fig. 1b. 
For example, the electrode segment at upper portion with α1=18o and β1=162o gives a difference of 
144o. For lower portion, the electrode segments with α1=198o and β1=342o also gives a difference 
of 144o. The complete electrode angles for upper portion are set as α1=0o, 18o, 36o, 54o, and 72o 
corresponding to β1=180o, 162o, 144o, 126o, and 108o. The complete electrode angles for the lower 
portion are set to α2=180o, 198o, 216o, 234o, and 252o corresponding to β2=360o, 342o, 324o, 306o, 
and 288o. It is noted here that the chosen particular piezoelectric and electrode segments of the 
smart pipe structure are obviously related to the analysis of the system with the fluid flow effect. 

For observing the effect of the smart pipe conveying fluid, the Argand diagram is an essential tool 
to identify whether the predicted system is unstable. In Fig. 6, the locus points in the Argand 
diagram for five different piezoelectric segments for the first four coupled modes show different 
characteristic responses with increasing flow velocities. The electrode segment (β1-α1=144o & β2-
α2=144o) was utilized as it gave the optimal response. Note that the term, “coupled mode” means 
the system with different frequencies having the combined physical aspects of fluid, solid, and 
electromechanical systems. For example, it is clearly seen in Fig. 6a that the smart pipe conveying 
fluid at the first coupled mode observes divergent instability after reaching the critical flow 
velocity of 4.275 m/s. However, this situation does not occur any longer where the system 
becomes stable. The instability at the second mode occurs by flutter beyond the critical flow 
velocity of 2.95 m/s. At the third coupled mode, the system dynamics initially gains stability, but 
loses it by flutter after reaching the critical flow velocity of 10.35 m/s. On the smart pipe system, it 
appears that the second mode reached the flutter first where it predominantly affects the whole 
frequency domain and also depends on the imaginary value that moves faster and higher than other 
modes. Further proof can be discussed next using the absolute velocity-time waveform signals. 
Moreover, the fourth coupled modes tend to give stability during operation of the system response 
to flow velocity. The segments (L1=0.06m & L2=0.09m) and (L1=0.09m & L2=0.06m) shown in 
Figs. (6c) and (6d) demonstrate the potential and effective options for the pipe conveying fluid for 
power harvesting applications. The reason is that the smart pipe requires reasonable lower onset of 
flutter instability and lower critical velocity value (Hopf bifurcation). The smart pipe having 
divergent instability may not be a good choice since its natural dynamic behaviour shows static 
instability that means the pipe velocity grows continuously without oscillation. For power 
harvesting, oscillation is one of the important aspects to continuously generate electrical energy.  

Again further proof of the dynamic instability behaviour of the system can be seen in Fig. 7. Here, 
the case study of the three different piezoelectric segments is given as example. The absolute 
velocities at the tip end of elastic pipe using particular fluid flow velocities show the evolution of 
time waveform responses. Starting with the occurrence of the beating response, Fig. 7a shows the 
resonance frequency of the smart pipe having similar response to that of the fluid system because 
the beating phenomenon occurs when the system approaches the critical flow velocity. A slightly 
higher critical velocity can give an initial flutter response as shown in Fig. 7b. The divergent 
instability as shown in Fig. 7c occurs. However, the use of the piezoelectric segment (L1=0.03m & 
L2=0.12m) can give the mixed flutter-divergent instability as shown in Fig. 7c. But, the trend 
shows predominantly divergence over the time domain where the response with a very high 
amplitude grows without oscillation and bound. This situation can also be proved from Fig. 6a 
where particular imaginary value of divergent instability response (slightly beyond its critical flow 
velocity) at the first mode approaches to overlap with the imaginary value of the flutter instability 
response. Note that the absolute velocity means the total velocity from the relative motion of the 
elastic pipe and base excitation. With increasing fluid velocities, the absolute velocity of the elastic 
pipe becomes flutter (response grows continuously with oscillation and without bound) as shown 
in Fig. 7d.  

Fig. 8a shows a stable response below the critical flow velocity. However, it becomes a beating 
response on reaching the critical flow velocity. However, the system responses appear to change to 
the flutter instability, as shown in the series of events in Figs. 8c-d. In Fig. 9a with the partially 
piezoelectric segment (L1=0.09m & L2=0.06m), the stable response occurs at below the critical 
flow velocity. Again the beating response occurs at the critical flow velocity as shown in Fig. 9b. 
Then, as seen in Fig. 9c, with just a slightly higher flow velocity than its critical value, the 
dynamic instability occurs by a flutter response (oscillation without bound). There is still the 
mixed beating response during the formation of the flutter instability. It should be remarked here 
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that if the flow velocity increases further, as shown in Fig. 9d, the fully flutter response of elastic 
smart pipe will also continue to increase.  

 

   

  

 
 
 
 

    

 
 

   

  
 
 
 

Fig.7. Evolution of the absolute velocity-time waveform signals using piezoelectric segment (L1=0.03 m & 
L2=0.12 m) and electrode segment (β1-α1=144o & β2-α2=144o)  with Rd =100 kΩ and Cd = 0.1 µF under fluid 
velocity and resonance excitation: (a) U=2.93 m/s with 18.29 Hz, (b) U=3.35 m/s with 18.38 Hz, (c) U=4.37 
m/s with 17.69 Hz, (d) U=9 m/s with 11.42 Hz. 

c d 

a b 

Fig.8. Evolution of the absolute velocity-time waveform signals using piezoelectric segment (L1=0.06m & 
L2=0.09 m) and electrode segment (β1-α1=144o & β2-α2=144o)  with Rd =100 kΩ and Cd = 0.1 µF under fluid 
velocity and resonance excitation: (a) U=3.75 m/s with 25.60 Hz, (b) U=4.06 m/s with 25.20 Hz, (c) U=4.25 
m/s with =25.23 Hz, (d) U=5 m/s with 24.62 Hz. 

a b 

c d 
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In Fig. 10, the physical motions of the elastic smart pipe using partially piezoelectric segment 
(L1=0.06m & L2=0.09m) show the dynamic evolution over one period of the absolute velocity-
time waveform. The first two coupled modes of the particular resonance frequencies are shown as 
an example. Unlike the previous published works related to the fluid structure interaction, this 
paper shows the elastic pipe under base excitation where the absolute velocity phenomenon was 
chosen for the analysis. This can be proved that the base support of the elastic pipe does not 
completely give the fixed value of zero absolute velocity. For example, at some point for the first 
coupled mode, when the base support initially approaches positive maximum velocity, the tip end 
of the elastic pipe reaches minimum level of negative velocity. This occurs over half-period of the 
absolute velocity-time waveform. However, when the base support moves down at the negative 
velocity value, the tip end of the elastic pipe moves up at the positive velocity value. This situation 
occurs repetitively when the base support moves up and down at instant times. It is important to 
note here that the segment of L1=0.06 m shows the lowest velocity due to the stiffness contribution 
of piezoelectric and elastomer. Although, the piezoelectric thickness is quite thin, its modulus of 
elasticity is very high compared with the elastomer. Moreover, the second coupled mode shows 
different dynamic evolution over one period of the absolute velocity-time waveform. 

a 
b 

c 

Fig.9. Evolution of the absolute velocity-time waveform signals using piezoelectric segment (L1=0.09 m & 
L2=0.06 m) and electrode segment (β1-α1=144o & β2-α2=144o)  with Rd =100 kΩ and Cd = 0.1 µF under fluid 
velocity and resonance excitation: (a) U=6 m/s with 35.43 Hz, (b) U=6.97 m/s with 34.78 Hz, (c) U=7.25 m/s 
with 35.50 Hz, (d) U=7.48 m/s with 34.60 Hz. 

d 

Fig.10. Dynamic evolution of the smart pipe structure over one period of the absolute velocity-time waveform 
signals using piezoelectric segment (L1=0.06 m & L2=0.09 m) and electrode segment (β1-α1=144o & β2-
α2=144o) with Rd=100 kΩ, Cd = 0.1 µF, and U=5 m/s: (a) first coupled mode and (b) second coupled mode. 

a b 
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With the constant base excitation and variable flow velocity, the variable optimal power output 
can be visualised in Fig. 11 in order to identify the effect of the flow velocity on the pipe system. 
As shown, with increasing flow velocity, the optimal power output also increases until reaching its 
critical value. Then, the power gradually decreases as flow velocity increases further. Note that the 
system response as shown here only investigates the onset of instability. Nevertheless, the study 
can be utilised as an essential identification for dynamic instability. In future work, the nonlinear 
coupled system due to the flutter instability with a Hopf bifurcation will be considered. There is 
also some coupling between the frequency response and velocity signal behaviour due to flow 
velocity. As shown, a stable response below the critical flow velocity occurs where the velocity 
signal reaches a steady state. However, the beating signal will occur after reaching the critical flow 
velocity region. After the critical value, the flutter instability response occurs with increasing fluid 
velocities where the signal grows continuously with oscillation and without bound. 

           
 

 

The optimal power harvesting frequency response for the elastic pipe with the effects of the fluid 
and base excitation can be seen in Fig. 12. Note that the optimal power output can be obtained 
using the optimal load resistance as shown in Eq. (48). It obviously shows the trend of the first 
coupled mode response with variable flow velocity where it has relationship with the previous 
result. The stable response occurs at the variable resonance frequency. However, in the second 
coupled mode, the optimal power shows the unstable response by flutter. With increasing flow 
velocity, the maximum power of 0.08 W/(m.s-2)2 can be achieved at critical flow velocity. Note 
that the optimal power at very high amplitude can still be achieved before reaching critical flow 
velocity. It only requires the lower flow velocity to reach its critical value. Also note that the 
resonance frequency will be different if the flow velocity changes. In such situation, this series of 
events shows of how the fluid flow amplifies the elastic pipe.  

                       
 

 

Fig.12. Optimal power harvesting FRFs at first and second coupled modes under variable flow 
velocity using piezoelectric segment (L1=0.06 m & L2=0.09 m) and electrode segment (β1-α1=144o & 
β2-α2=144o) 

Fig.11. Optimal power harvesting FRFs under variable flow velocity using piezoelectric segment 
(L1=0.06 m & L2=0.09 m) and electrode segment (β1-α1=144o & β2-α2=144o) 
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As shown in Fig. 13, the examples of the DC voltage signal time waveforms show different trends 
for different flow velocities. In Fig. 13a, the DC voltage signals of the rectifier and capacitor 
become constant after reaching 4 seconds because the chosen flow velocity is slightly below its 
critical value. However, the beat signal occurs when the flow velocity was similar with its critical 
value as shown in Fig. 13b. Fig. 8b also shows this behaviour based on the absolute velocity 
signal. Again, the beating phenomenon may not be effective for harvesting applications. The 
beating response may occur when the resonance of the smart structure is similar with fluid system. 
In Fig. 14, the power outputs also show similar behaviour. Note that the voltage and power signal 
amplitudes with flow velocity being a slight away from its critical value can give potential benefit 
for this case. However, if the chosen flow velocity is quite far away from its critical velocity, the 
DC signal response with variable resonance frequency excitation will tend to form fully flutter.   

5 Conclusion  

This paper has presented the unified analytical approach of flow-induced vibrational smart pipe 
structure with tip mass offset under input base excitation. The extended charge-type-Hamiltonian 
mechanics has been used to develop the Ritz method-based weak form analytical approach. The 
electrode circumference segment system and partial piezoelectric segment of the elastic pipe were 
considered in the theoretical modelling. The reduced orthonormalised dynamic equations have 
shown the coupled field constitutive formulations representing the mechanical system (fluid and 
solid), electromechanical system (piezoelectricity), and electrical system (circuit interface). The 
equations can formulate the electromechanical multi-mode frequency and time signal waveform 
response equations. The proposed techniques can be used to analyse the onset of the flutter 
instability due to the coupled system responses of the fluid, solid, circuit, and electromechanical 
systems. There are six findings that can be highlighted: 
1. The initial investigation without fluid effect was presented in order to observe the common 

trend of power harvesting frequency response using optimal load resistance. This showed 
similar trends to the previous published works. Also, it also showed more complete studies 
using partial piezoelectric segments and circumference electrode segments, and there are no 
previous works showing these cases.  

Fig.13. Voltage-time waveform signals under variable fluid velocity using piezoelectric segment (L1=0.06 
m & L2=0.09m) and electrode segment (β1-α1=144o & β2-α2=144o) with Rd=100 kΩ and Cd = 0.1 µF (blue 
line: rectifier DC voltage and red line: capacitor DC voltage): (a) U=3.75 m/s and (b) U=4.06 m/s. 

Fig.14. Power-time waveform signals using piezoelectric segment (L1=0.06m & L2=0.09m) and 
electrode segment (β1-α1=144o & β2-α2=144o) with Rd=100 kΩ and Cd = 0.1 µF under variable flow 
velocity:  (a) U=3.75 m/s and (b) U=4.06 m/s. 

a b 

a 
b 
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2. With the effect of fluid flow, the first four coupled modes have been used to analyse the 
dynamic instability using the root locus responses obtained from the characteristic coupled 
field equations and the result of which have been displayed into the Argand diagram. It 
obviously becomes the essence of observing dynamic instability for each mode. We observed 
that the partially piezoelectric segments (L1=0.06m & L2=0.09 m) and (L1=0.09m & L2=0.06 
m) with the electrode segment (β1-α1=144o & β2-α2=144o) showed the optimal response with 
the potential and effective options for the pipe conveying fluid for power harvesting 
applications. However, partially piezoelectric segments (L1=0.06m & L2=0.09m) was chosen 
for further analysis. Note that the circumference electrode segment was used due to avoiding 
the electric charge cancellation. 

3. Each parametric case studies showed their relations to each other giving the validated proofs 
from the findings. For example, the results from the Argand diagram can be confirmed using 
the evolution of the absolute velocity-time waveform signals and the 3-D power harvesting 
frequency response with variable flow velocity. 

4. Beating signal phenomena occurs at the critical flow velocity giving the maximum power 
output amplitude from the 3-D power harvesting frequency response. Beating signal responses 
were identified due to the resonance of the elastic pipe having a similar value with the fluid 
system. However, the beating signal may not be any benefit for DC power output-time 
waveform signals. Operating slightly away from the critical flow velocity can be an effective 
option for all scenarios of the studies.  

5. The dynamic evolution for the first two coupled modes was also presented in order to show the 
behaviour of the physical motions of the smart pipe system (from the base support to the tip 
end). 

6. The potential and effective options for the smart pipe conveying fluid for power harvesting 
applications depend on the optimal responses, lower onset of flutter instability, and lower 
critical velocity value and beyond (Hopf bifurcation). A smart pipe having a divergent 
instability may not be good choice since its natural dynamic behaviour shows static instability 
that gives a pipe velocity growing continuously without oscillation. 
 
 

Appendix A. Modified Elastic Constant and Piezoelectric Constant  
The modified elastic constant and piezoelectric constant for piezoelectric layer can be formulated, 
respectively as, 

          ,  .                                 (A.1) 

The permittivity at constant strain (superscript S) represents  where 
is the permittivity at constant stress (superscript T). 

Appendix B. Stiffness Coefficients for the Smart Pipe Structure 

The total transverse stiffness coefficient for the first and second segments can be formulated as, 

 

 

,    .                      (B.1) 

Appendix C. Mass Moment of Inertias for the Smart Pipe Structure and Proof Mass Offset 
 
The zeroth mass moment of inertias for the first and second segments of smart structure can be 
formulated as, 

 ,      .                         (C.1) 

The zeroth mass moment of inertia of the proof mass offset can be formulated as,  

                                   

.                                (C.2) 

The second mass moment of inertia of the proof mass offset at the point d in Fig. 2 can be 
formulated as, 

    
          .        (C.3) 
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Note that, Eqs. (C.2)-(C.3) show mass moment of inertias for the whole proof mass because the 
attached proof mass offset is a rigid body that perfectly bonded with the portion of the smart pipe 
structure. 
 
Appendix D. Modified Transverse Piezoelectric Coupling Coefficient and Modified 
Piezoelectric Internal Capacitance 

Modified transverse piezoelectric couplings for the first and second electrode segments in the 
harvesting piezoelectric layer can be formulated, respectively as, 

 , .      (D.1) 

Note that the negative sign on the second part of Eq. (D1) is due to the opposite polarisation 
direction of the lower part of cross-sectional pipe. The modified internal capacitances can be 
stated, respectively as,  

          ,    .                         (D.2) 

Also note that the two segmented electrodes located at the particular regions of the piezoelectric  
pipe give different internal capacitances which depend on the angle (in radian) of those regions in 
the polar coordinate system.  

 
Appendix E. Mode Shapes of Partially Cantilevered Pipe Structure with Proof Mass Offset  
 
The two mechanical dynamic equations for partially pipe structures can be formulated as,  

,     .          (E.1) 

The static boundary conditions are given as, 

   ,    .                         (E.2) 

The transition boundary conditions are shown as,  

          ,    ,            (E.3) 

,  .              (E.4) 

The dynamic boundary conditions can be formulated as, 

,                      (E.5) 

  .         (E.6) 

The method of separation of variables  was used where the general solutions of 
mode shapes for each segment as shown in Fig. 1 can be formulated as,  

   .    (E.7) 

Using Eq. (E7) into Eqs. (E2)-(E7), the characteristic equations in the matrix form can be solved 

giving the frequency equations  and including the unknown constants. 
Eq. (E7) with the eight constants must be algebraically simplified to give only one similar constant 
for both mode shapes. Once the modified Eq. (E7) was obtained, the equal constant was presumed 
to be one because the orthonormalisation-based Ritz method and its Ritz constants were utilised, 
such that the Ritz eigenfunction showed the accurate mode shapes.   
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